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Haploinsufficiency networks identify targetable
patterns of allelic deficiency in low mutation
ovarian cancer
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Identification of specific oncogenic gene changes has enabled the modern generation of

targeted cancer therapeutics. In high-grade serous ovarian cancer (OV), the bulk of genetic

changes is not somatic point mutations, but rather somatic copy-number alterations

(SCNAs). The impact of SCNAs on tumour biology remains poorly understood. Here we build

haploinsufficiency network analyses to identify which SCNA patterns are most disruptive in

OV. Of all KEGG pathways (N¼ 187), autophagy is the most significantly disrupted

by coincident gene deletions. Compared with 20 other cancer types, OV is most severely

disrupted in autophagy and in compensatory proteostasis pathways. Network analysis

prioritizes MAP1LC3B (LC3) and BECN1 as most impactful. Knockdown of LC3 and BECN1

expression confers sensitivity to cells undergoing autophagic stress independent of platinum

resistance status. The results support the use of pathway network tools to evaluate how the

copy-number landscape of a tumour may guide therapy.
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C
haracterization of specific cancer mutations has yielded
a map of which oncogenes and tumour suppressors
that may be chemically or biologically targetable1,2 and

guided immunotherapy3. However, single-nucleotide variants
and short insertion–deletion mutations (here referred to simply
as ‘mutations’) are not the sole drivers of oncogenesis. High-grade
serous ovarian cancer (OV) is uniquely low in mutation and
high in somatic copy-number alterations (SCNAs). SCNAs drive
cancer through losses of tumour suppressors or amplifications of
oncogenes, often by large SCNAs encompassing hundreds
of genes4.

Homozygous deletion occurs rarely (1–2% of SCNAs) due
co-deletion of essential genes. On a gene-to-gene basis, SCNAs
are more common than mutations even in highly mutated cancer
types and B95% of SCNAs observed in tumours are monoallelic
changes. However, with B16,000 genes with SCNAs in the
average OV tumour (Fig. 1d), statistical modelling of driver
SCNAs is complicated by pervasive ‘background’ SCNAs, which
may not drive tumour progression. Previous analyses of SCNAs
via chromosome arm alterations identified correlated pairs5,6, but
lack a consideration of collaborative monoallelic SCNAs altering
entire molecular pathways. Pathway analysis can improve an
understanding of which molecular processes are altered when
multiple genes contribute to cellular function, since different gene
deletion combinations can yield identical phenotypes.

We developed a new tool to analyse highly variable SCNA
tumours to determine significantly altered pathways and the
gene-level SCNAs, which most likely contribute to pathway
disruption. The tool is designed to incorporate known pathway
concepts of genetic bottlenecking7, and is found to correctly
prioritize known tumour suppressors and oncogenes as impactful
genes in OV. By this analysis, the most suppressed pathway
in OV is autophagy. Many other proteostasis pathways, such
as the proteasome, endoplasmic reticulum (ER) stress and
the lysosome are suppressed in OV. In validation of these
computational findings, treatment of multiple OV in vivo models

by autophagy- and proteostasis-disrupting drugs abolishes
tumour growth. Knockdown of BECN1 and LC3B sensitizes
OV to the autophagy halting drug chloroquine. These results
implicate autophagy as a major disrupted pathway in OV,
which is also amenable to therapy.

Results
Half of ovarian tumours lack clear driver mutations.
OV tumours have been characterized8 as being uniquely low in
mutations and high in SCNAs (Fig. 1a). However, it is possible
that despite relatively low mutation rates, each OV tumour
nonetheless contains multiple tumour suppressor or oncogene
mutations that drive cancer formation. To investigate
this possibility, we analysed The Cancer Genome Atlas (TCGA)
OV data for mutations in well-known tumour-driver genes8.
Interestingly, 48% of studied tumours have no mutations in these
oncogenes or tumour suppressors, other than TP53 (Fig. 1b).
Since mutant p53 alone is insufficient for tumour formation9,10,
these tumours likely contain SCNA drivers5 which aid in
tumorigenesis. Given the high ratio of SCNAs to mutations
in OV (Fig. 1c,d), we sought a new method to better understand
potential SCNA drivers.

Design of the HAPTRIG SCNA analysis tool. We developed
a computational tool to identify pathways significantly
disrupted by SCNAs in the highly noisy genetic background
of OV tumours. The program was designed to analyse diverse
genetic backgrounds which all yield at least one similar phenotype
(Fig. 2a). Many biological pathways have multiple bottleneck7 or
regulatory points11, any of which can equivalently affect pathway
phenotype12. While Gene Set Enrichment Analysis (GSEA)
also looks at multiple genes within a pathway to determine
statistical significance at the cohort level13, we designed our
tool to incorporate two additional pieces of information to
better characterize genetic disturbance of pathway biology:

Mutations (% of genes)

C
op

y-
nu

m
be

r 
al

te
ra

tio
ns

(%
 o

f g
en

es
)

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2

SCNAs per mutation
0

0

10

20

30

40

50

60

70

100 200 300 400 500 600

G
en

es
 a

lte
re

d 
(%

 o
f t

ot
al

)

0

20

40

60

M
ut

at
io

n

0 1 4+3

0

20

40

60

0 1 2 3 4+
Number of significantly mutated
cancer genes (other than TP53)

O
V

 g
en

es
 a

lte
re

d 
(%

)

#Alleles:

O
V

 tu
m

ou
rs

 (
%

)

OV

LIHC

LAML/THCA

BRCA

SKCM

LUSC

LUAD

BLCA

HNSC

CESC

PAAD

KIRP

PRAD

GBM
LGG

BRCA

OV

THCA LAML

STAD

LIHC

UCEC

COAD-
READ

a b

c d

Figure 1 | Prevalence of gene-level alterations in cancer. (a) The average percentage of genes with either somatic copy-number alterations (SCNAs) or

somatic point and small indel mutations for TCGA studied cancers (N¼ 9,740 tumors). (b) The number of significantly mutated cancer genes8 other than

TP53 that are mutant in OV is plotted as a percentage of primary tumours from TCGA studied patients. Nearly half have no oncogenic mutation other than

TP53. (c) Ratio of SCNAs to mutations relative to total percentage of genes changed across cancer types. (d) The percent of genes altered by either SCNA

(allele numbers 0, 1, 3 or 4þ ) or by mutation is plotted for each TCGA OV tumour (N¼ 579 for SCNAs, N¼ 316 for mutations).
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protein–protein interactions (to prioritize genes that modulate
other genes within the same pathway) and haploinsufficiency
data (to prioritize genes that are known to affect biology when
only a single gene copy is altered).

This Haploinsufficient/Triplosensitive Gene (HAPTRIG)
tool generates network scores by (1) building protein–protein
interaction networks of pathway proteins from BioGRID14,
(2) prioritizing interactions that contain a haploinsufficient or
triplosensitive gene, (3) negatively scoring interactions containing
gene deletion SCNAs and positively scoring interactions
containing gene amplification SCNAs, and (4) summing all
interaction scores within a molecular pathway. For statistical
significance, pathway scores from observed tumours were
compared with control data of 1000 tumour-paired randomly
permutated SCNAs to derive a P value of observed tumour
pathway changes compared with what would be expected by
chance (for a schematic, see Supplementary Fig. 1). This design
enables statistically significant pathway changes in a cohort of
tumours to be detected in a high noise background. In addition,
the HAPTRIG pipeline scores the contribution of each gene
within a pathway to allow for ranking the biological importance
of each gene within a pathway. For example, since TP53 is highly
interactive and often deleted, it is ranked by the HAPTRIG tool
as the most impactful deletion within the p53 pathway for
most OV tumours.

To test the robustness of the HAPTRIG approach, we queried
HAPTRIG for its ability to prioritize known tumour suppressor
genes and oncogenes15, as most affecting deleted or amplified
gene sets, respectively, and similarly tested for ‘STOP’ and ‘GO’
gene4 prioritization. Using the full HAPTRIG approach
as a reference, we measured how its sensitivity is affected by
the following parameters: (1) removal of haploinsufficient
orthologue data from mice and yeast, (2) inclusion of only
intrinsic (within gene set only) interactions or primary/secondary
interactions as well, and (3) when gene ontology (GO) pathways
were used in place of comparable Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (Fig. 2b, Supplementary
Fig. 2A). All components altered HAPTRIG efficiency in the
range of 10–60%. While we predict many GO pathways to be
useful in HAPTRIG analysis, GO pathways are typically much
larger and contain many genes with tangential relation to core
pathway function. The most accurate view of SCNA-altered
pathways within OV was thus found by using all distinct, human
KEGG pathways (N¼ 187 pathways) scored for intrinsic and
haploinsufficient interactions.

HAPTRIG pathway analysis of OV identifies autophagy loss.
In TCGA OV cohort, we observed the most statistically
unlikely disrupted deletion-enriched pathway to be autophagy
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Figure 2 | Design of HAPTRIG and OV pan-pathway analysis. (a) Schematic of the rationale behind designing HAPTRIG network analyses. Genotypes

with similar phenotypes can be spread across many genes and each tumour may alter the phenotype using different genes. Haploinsufficient genes are

more likely to drive phenotype changes, as are highly interactive genes. (b) Different versions of HAPTRIG were coded and executed to test which inputs

prioritized genes with known tumour suppressor or oncogenic function, as annotated in COSMIC, and for ability to prioritize ‘STOP’ and ‘GO’ genes as

expected. HAPTRIG was most effective across all KEGG pathways when considering protein–protein interactions within pathway genes only and when

mouse and/or yeast orthologue haploinsufficiency data were included. Including genes that interacted with pathway genes (1� interactors) reduced

efficiency as did including genes with an additional interaction distance from pathway genes (2� interactors). (c) HAPTRIG network analyses were created

for all distinct, human KEGG pathways (N¼ 187 pathways) and significantly disrupted pathways are plotted by significance compared with a minimally

altered SCNA cancer type, thyroid cancer (THCA; in grey overlay). The top-disrupted pathways are noted in comparison with known canonical

OV-disrupted pathways, focal adhesion and p53 signalling. Detailed information on these pathways is in Supplementary Data 1, and secondary OV data sets

can be found in Supplementary Data 2 and 3.
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(followed by FoxO signalling, adipocytokine signalling, arginine/
proline metabolism and NOTCH signalling) and the most
statistically unlikely disrupted amplification-enriched pathway to
be glycerophospholipid metabolism (Fig. 2c, all disrupted
pathway data in Supplementary Data 1). Known altered pathways
such as p53 and focal adhesion were also significantly altered,
albeit at lower significance. This pattern persisted in an inde-
pendent OV cohort16 but did not reach statistical significance in
an endometrioid OV cohort, perhaps due to small sample
size (Supplementary Fig. 2; Supplementary Data 2 and 3).
While we focus on KEGG pathways here, HAPTRIG functions
on any pathway set (Hallmark pathway set results shown
in Supplementary Data 4). HAPTRIG improves on GSEA to
identify these significantly disrupted pathways: only two KEGG
pathways reached statistical significance using GSEA
(Supplementary Table 1; Supplementary Fig. 3). We release the
code for HAPTRIG as Supplementary Software 1, and provide
example input data sets as Supplementary Data 5.

Autophagy has long been implicated in tumour development
and may have dual roles: loss of autophagy genes including
BECN1 leads to early oncogenesis in mouse models17,18; however,
KRAS mutant cancers are addicted to elevated autophagy19.
Interestingly, most proteostasis pathways in our pan-pathway
analysis were enriched for deletions, including ER stress,
ubiquitin-mediated proteolysis and the lysosome, although
the peroxisome pathway was enriched for amplifications.
Haploinsufficiency in model organism screens is associated
with an inability to form adequately proportioned protein–
quality control complexes20, suggesting single allele SCNAs
disrupt these pathways. To determine whether proteostasis
disruption was specific to OV, we ran HAPTRIG analyses
across 20 other cancer types studied by TCGA. Alterations ranged
from minimal among acute myeloid leukaemia and thyroid
cancers, a strongly suppressed network of proteostasis genes
in invasive breast (BRCA) and serous ovarian (OV) cancers, to
a uniquely amplified autophagy network in renal papillary
cell carcinoma (KIRC; Fig. 3a). Many genes were frequently
altered in OV, and HAPTRIG ranked known biologically
impactful genes (for example, BRCA1, TP53, BECN1 and
CASP3) as most altered for OV (Fig. 3b, full OV networks in
Supplementary Fig. 4), as well as some genes uncommonly
associated with cancer (for example, CTSD for lysosomal function
and PEX5 for peroxisomal function, full summary in
Supplementary Table 2). OV was clearly the most disrupted for
proteostasis amongst these 21 tumour types. We next evaluated
whether these SCNA network alterations contribute to cancer
phenotypes as mutations do, and whether they might be
predictably targeted.

Targeting autophagy and proteostasis in vivo halts OV growth.
Well-controlled single-allele losses reduce messenger RNA
(mRNA) expression up to 90% of the time, even in a single
unstressed experimental condition21. In OV, protein expression
correlated with mRNA expression for 80–90% of genes22.
Autophagy depends on mRNA induction for full function23.
TCGA OV tumours exhibit decreased mRNA expression of core
autophagy genes upon heterozygous loss and often contain
several core autophagy gene deletions (Supplementary Fig. 5).
Such pervasive deletions in protein and organelle quality control
genes may sensitize OV to proteotoxic, autophagy-stressing
drugs24; redundant losses may underlie the severely
compromised capacity of these tumours to compensate
for proteotoxic treatment combinations (Supplementary Fig. 6).
To investigate this possibility, we treated OVCAR3 cells with
chloroquine, to prevent autophagy resolution25, and nelfinavir, to

promote ER stress26. Protein aggregates increased by 3–6-fold
(Supplementary Fig. 7), concurrent with the accumulation of
autophagolysosomes (Supplementary Fig. 8). The phenotype was
further amplified when chloroquine/nelfinavir was combined
with rapamycin and/or dasatinib24, which we term Combination
Of Autophagy Selective Therapeutics (COAST; Supplementary
Fig. 8). Proteasomal inhibitors also stress autophagy,
and bortezomib exhibited cytotoxicity in the low nanomolar
range. However, bortezomib was not OV selective and risks high
clinical toxicity (Supplementary Fig. 9). Cytotoxic concentrations
required for the OV tumour cells were low for other proteostasis-
targeting agents (Supplementary Figs 10 and 11). Chloroquine
and nelfinavir within the concentration range found in patients’
blood24 was sufficient to prevent single-cell colony formation, cell
growth in suspension, and to promote cytotoxicity (Supple-
mentary Fig. 12) in OV cells. Higher-order combinations
(COAST) were selective across six different OV tumour cell
lines (Supplementary Fig. 11) with autophagy gene deletions
(Supplementary Table 3), and no drug or combination reduced
the effects of any other drug.

We next evaluated whether this HAPTRIG-informed choice of
drugs would ameliorate disease in preclinical models of OV.
Cisplatin and docetaxel did not alter the growth of a patient-
derived xenograft model derived from a recurrent chemotherapy-
resistant patient (Fig. 4a), while the proteostasis-targeted cocktail
resulted in a striking complete ablation of tumour growth.
Given the lack of any macroscopic disease, we next used an
ID8-IP-mCherry labelled tumour model27 to allow detection of
persistent microscopic disease. Again, mice treated with COAST
showed eradication of tumours, although microscopic nests of
cells were still detected in 2/8 mice. Interestingly, chloroquine and
nelfinavir alone did not result in statistically significant inhibition
(Fig. 4b), despite having the best efficacy of two drugs in vitro
(Supplementary Fig. 10), possibly reflecting the complexity of the
tumour microenvironment and other forms of heterogeneity in
syngeneic models. This five drug cocktail was remarkably well
tolerated in mice24, in which we tested up to 8 weeks of COAST
therapy, long after all control mice perished (Supplementary
Fig. 13). COAST also arrested tumour growth in a subcutaneous
OVCAR3 model (Fig. 4c), with residual tumour showing
accumulation of autophagosomal Lc3-II and the ER stress
marker Grp78 (Fig. 4d).

Impactful HAPTRIG genes influence OV drug targeting. Since
genetic targeting is an important consideration of new therapies,
we next utilized HAPTRIG network information to determine
gene SCNAs most likely to have an impact on autophagy in OV.
These most ‘impactful’ genes were identified by summing the
score contribution of each gene within HAPTRIG networks
across all tumours. We ranked impactful suppressive and onco-
genic genes for all pathways in OV (Supplementary Table 2). For
autophagy, the two highest impact genes were MAP1LC3B (LC3)
and BECN1. These two genes were also commonly lost in OV,
along with ATG10, ULK2 and GAPARAPL2 (Fig. 5a). LC3 and/or
BECN1 are monoallelically deleted in 94% of OV (Supplementary
Fig. 5C). Mechanistically, this may explain the sensitivity of
OV tumours to drugs pressuring the autophagy network, since
orthologues of each gene confer haploinsufficiency in yeast20 or
mice18. These losses occur early in the evolution of OV28 and
have an associated defect in expression when monoallelically lost
(Supplementary Fig. 5), consistent with previous reports29.
OV cell lines that differ in LC3 and BECN1 gene dose (Fig. 5b)
were next tested for differences in autophagy.

OVCAR3 is a cisplatin-resistant tumour cell genetically
similar to TCGA assayed OV30, exhibiting monoallelic deletions
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of LC3 and BECN1, and forming appropriate high-grade
histology in mice31. In contrast, IGROV1 and SKOV3 are
characterized as ovarian, but not serous (nor high SCNA)
ovarian, cancer30 cell lines that have lost neither allele (Fig. 5b).
Flux through autophagy showed a delayed response in OVCAR3
relative to IGROV1 and SKOV3 following treatment with
chloroquine, as measured using complementary assays
(Fig. 5c,d)25,32. Similar results were found when autophagy was
perturbed with rapamycin, nelfinavir or combination (COAST)
treatments (Supplementary Fig. 14). While few OV cell lines
are currently well established and also contain common
OV genetics31,33,34, we additionally studied OVCAR5,
OVCAR8, the patient-derived xenograft model cells LPPDOV
and A2780 for autophagic response to chloroquine and again
found cell lines with low HAPTRIG scores to poorly induce
autophagy upon chloroquine stress (Supplementary Fig. 15),
which correlated with increased cell death. Taken together,
although OV cells are not completely lacking autophagy,
a maximized response to stress is compromised among cells
with losses in autophagy genes such as LC3 and BECN1.

To test directly whether suppression of LC3/BECN1
was sufficient to confer a proteostasis bottleneck, we next
evaluated IGROV1 or SKOV3 cells stably expressing lentiviral

shRNA selected for modest suppression (B35–70%) of LC3 or
Beclin. Slowed autophagosome accumulation was clearly
observed with shLC3, although not significantly with shBECN1
(Fig. 5e,f). Cells with reduced LC3 or BECN1 showed
compromised survival following treatment with chloroquine,
which prevents clearance of autophagosomes35 (Fig. 5g).
This survival defect was observed with multiple cell types,
including IGROV1 and a glioblastoma (U373) resistant to
autophagy drugs (Supplementary Figs 10 and 16). Resistance to
cisplatin, a standard of care agent used to treat OV, was not
indicative of response to COAST drugs including chloroquine
(Fig. 5g; Supplementary Figs 10 and 15). Rather, autophagy-
stressing drugs compromised cell survival selectively among
lines with autophagy gene losses, regardless of single or combined
drug treatment (Supplementary Figs 10, 11 and 15). The
results support a model implicating haploinsufficiency, at
a minimum for LC3 and BECN1, in the sensitivity of OV to
agents targeting autophagy.

Discussion
The HAPTRIG tool represents an initial haploinsufficiency
network-based analysis program that can be applied genome
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Figure 3 | Summary of HAPTRIG proteostasis network scores across 21 cancer types. (a) HAPTRIG analyses were performed for proteostasis pathways

and the p53 pathway. Since these pathways are functionally interdependent, HAPTRIG scored both intrinsic and primary interactions from within these

different pathways. The chart displays pathway network scores as blue fill if deletion-enriched, red fill if gain-enriched, and white fill for neither. Significance

is represented as overlaid circles of size proportional to the log10 q value. (b) OV HAPTRIG networks were visually graphed by Cytoscape, with gene node

and edge protein–protein interaction size proportional to the penetrance of the gene changes within the cancer type (left panel) or by HAPTRIG predicted

gene-impact scores (right panel). A red fill is assigned if the majority of copy-number changes are positive, and blue if they are negative. Node outlines are

highlighted in cyan if haploinsufficiency annotations are associated with that gene. Green fill and edges indicate genes mutated in 410% of the tumour

cohort. Expanded HAPTRIG OV networks, with gene labels, are available in Supplementary Fig. 3.
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wide for any cancer. Sequencing of mutations has identified
potentially targetable genes in minorities of OV patients34,36.
However, given the excessive (two-third of the genome)
SCNAs present in OV (Fig. 1a–d), we undertook a strategy to
identify pathways that are uniquely and perhaps unexpectedly

disrupted by SCNAs. Our permutation strategy enabled
identification of significant pathways despite a potentially
passenger-filled SCNA landscape. Critically, aside from
merely identifying known altered genetics such as suppression
of the p53 pathway, enhancement of the focal adhesion pathway
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Figure 4 | OV tumours are sensitive to disruption of proteostasis. (a) Low passage patient-derived OV (LPPDOV) ascites cells from a patient who failed

cisplatin–docetaxel chemotherapy were injected i.p. into Nu/nu mice, allowed to disseminate and grow for 10 days, and then treated with control

50% PEG400 or with COAST (Combination of Autophagy Selective Therapeutics: chloroquine 30 mg kg� 1, nelfinavir 250 mg kg� 1, rapamycin

2.24 mg kg� 1, dasatinib 4 mg kg� 1 and metformin 150 mg kg� 1 in 50% PEG400) daily for 15 days. An additional control group was treated with

cisplatin/docetaxel chemotherapy (injected i.p. with 1 mg kg� 1 cisplatin and 2.5 mg kg� 1 docetaxel once per week starting at the first control treatment day

for 2 weeks). Upon harvest, all visible and palpable tumours in the peritoneum space were dissected, counted and weighed, as were mouse spleens.

(b) C57BL/6 immunocompetent mice were injected i.p. with ID8-IP-mCherry cells (N¼ 8 per group). After 2 weeks to permit tumour establishment, mice

were orally gavaged daily with control 50% PEG400, with COAST, or chloroquine and nelfinavir alone. At 14 days, control mice developed ascites. All

groups were killed, ascites were measured and tumour burden assayed by native mCherry fluorescence. Ovaries are displayed for all mice, and any

additional tumor fluorescence observed is displayed on the right panel with labels ‘P’ for peritoneal wall growth and ‘L’ for liver. (c) Nu/nu mice with

100 mm3 subcutaneous OVCAR3 tumours were gavaged with COAST or control and tumour growth monitored by digital calipers for 7 days. Tumours were

then dissected, weighed and (d) subjected to immunoblotting for autophagosomal Lc3-II and the ER stress marker Grp78 (mean±s.e.m. N¼ 7 mice per

group). *Po0.05, **Po0.01, ***Po0.001 by Wilcoxon rank-sum test.
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and disruption of homologous recombination repair pathways37,
our top hits are not currently considered to be canonical
OV driver pathways. Yet, using in vivo and in vitro models, we
validated that autophagy was suppressed in OV and moreover
that by targeting this suppression by drugs that disrupt
proteostasis we achieved remarkable tumour remission
independent of platinum resistance.

Given the strong autophagy phenotypes we found in OV, it is
curious why the autophagy pathway has not been emphasized in
prior integrative analysis publications. Previous publications have

supported the finding that OV is deficient in DNA repair
pathways, dysregulated in cell cycle control and often overexpress
MYC and ERBB2 (Supplementary Table 4). HAPTRIG
confirms these disruptions in KEGG pathways and in MSigDB
(Molecular Signature Database) Hallmark pathways. Interest-
ingly, GSEA13 of copy-number data also highly ranks these
pathways and autophagy, albeit at a lower rank than HAPTRIG.
This is likely because GSEA does not incorporate interaction or
haploinsufficiency data, resulting in an altered spectrum of
prioritized genes relative to HAPTRIG. A second significant
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reason that autophagy has not received further exposure in
the context of OV is that very few pathway sets include
autophagy. In the many thousands of pathways annotated
in MSigDB38, autophagy is only included in KEGG and
GO pathways, as assayed here. Many genes remain to be
annotated within pathways39, and improved pathway curation
will certainly advance pathway analysis tools such as HAPTRIG.

Although loss-of-heterozygosity accompanied by mutations is
a recognized phenomenon in breast, ovary, and other cancer,
99.8% of gene deletions in OV show no mutation in the opposing
allele. For autophagy genes, mutations in the remaining allele
for tumours with heterozygous deletion were not observed.
Rather, cumulative gene expression changes from SCNAs
contribute to biological phenotypes40–42. Reduced gene
expression is observed much more commonly than no change
in controlled heterozygous deletions21, and mRNA correlates
with protein expression in B80–90% of OV mRNAs22. Losses of
proteostasis genes are likely oncogenic; multiple studies implicate
BECN1 as a haploinsufficient tumour suppressor in mice17,18,
possibly related to roles in chromosomal segregation during cell
division43,44. Chromosome instability in human cancers such as
OV and BRCA may be further exacerbated by loss of BRCA1,
a functionally independent tumour suppressor neighbouring
BECN1 (ref. 45) on cytoband 17q21. Early losses in autophagy
genes may contribute to the extreme SCNA heterogeneity of OV,
but as we have shown here, also provide opportunity for network-
targeted therapy.

The prevalence of such monoallelic changes has been
largely unappreciated. In all cancer types, more genes are
affected by single gene-dose changes than by biallelic deletions,
doubling or more amplifications, and mutations combined.
Tumour selection for specific chromosomal arm losses
or duplications follow enrichments for tumour suppressors
or oncogenes, respectively4,41. However, methods to interpret
effects and implement action on SCNAs have been
underdeveloped. Monoallelic SCNAs may sometimes be viewed
as a gene-dose equivalent of a passenger mutation, but
scoring collaborative and cumulative pathway interactions and
alterations and comparing to a permuted control enabled
HAPTRIG to sort through this ‘passenger’ noise and yield
significant results. We developed the HAPTRIG tool to accurately
predict targetable individual gene losses for the autophagy
pathway in OV, and have further provided quantitative
predictions for all disrupted OV pathways (Supplementary
Data 1–4). In addition, we have provided a free web-tool
(https://delaney.shinyapps.io/HAPTRIG_Single_Module_Beta/)
to allow the community to easily perform a HAPTRIG analysis
on 21 cancer types with 187 unique KEGG pathways.

We suggest that a roadmap of targetable genetic changes in
tumours need not be limited to mutations, and HAPTRIG may
therefore reveal additional targetable pathways across cancer
types. COAST therapy should be clinically tested in OV, given its
strong effects, minimal toxicity24, and genetic rationale.

Methods
HAPTRIG analysis construction. HAPTRIG proteostasis networks were
built from the KEGG pathways autophagy (hsa04140), Lysosome (hsa04142),
endoplasmic reticulum processing (hsa04141), ubiquitin-mediated proteolysis
(hsa04120), peroxisome (hsa04146) and the p53 (hsa04115) pathway. The
KEGG autophagy pathway was further curated using current knowledge by adding
MAP1LC3B, encoding the protein most commonly used to define autophago-
somes25. We used protein–protein interactions (PPIs) from the BioGRID curated
database14 to connect input pathway genes. For the pan-pathway analysis and in
quality control networks, all human KEGG pathways were used. The full list of
187 KEGG pathways tested is included in Supplementary Data 1.

We obtained copy-number data (N¼ 579 tumours for OV) from the UCSC
cancer genome Browser46, using copy-number calls from the GISTIC2.0
algorithm47. For the 2009 OV data sets16, log2 segmented copy-number data were

used, since the array used was not a SNP6 array. There were 102 serous tumours
and 11 endometrioid tumours.

To incorporate information regarding dose sensitivity of genes into our network
scores, orthologous data sets were used. Yeast data were extracted (17 August2015)
from YeastMine48, with the query ‘Phenotype¼Haploinsufficient’ or
‘Phenotype¼Haploproficient’. Similar annotations for 169 murine genes were
extracted (9/17/2015) from the Mouse Genome Informatics database or the
MouseMine database49. Human homologues for mouse and yeast genes were
systematically determined using the ‘Homology’ tool of MouseMine and
YeastMine. Of the 486 proteostasis genes studied, 284 were annotated as
gene-dose-sensitive. All gene annotations can be found in Supplementary Table 3.

Each edge connecting two gene nodes was scored for negative (loss or deletion)
or positive (gain or amplification) copy-number change as follows. Given an edge
between gene1 (G1) and gene2 (G2), edge scores were calculated as:

For either (G1,G2) GISTICo0 (at least one gene is deleted):

EdgeLossScore G1;G2ð Þ ¼ MinimumðGISTIC1�GDS1;GISTIC2�GDS2Þ
ð1Þ

For both (G1,G2) GISTICZ0 (neither gene is deleted):

EdgeGainScore G1;G2ð Þ ¼ MaximumðGISTIC1�GDS1;GISTIC2�GDS2Þ
ð2Þ

Wherein GISTIC scores represent a range of (� 2, � 1, 0, 1, 2) from � 2 as
a double deletion, � 1 as a monoallelic deletion, 0 as no somatic change,
1 as a monoallelic gain and 2 as a gain of two or more alleles, and gene dose
sensitivity (GDS) indicates the gene-dose sensitivity information (1 for no
information, 2 for yeast information and 3 for mouse information).

For Fig. 2, the pan-pathway analysis utilized only gene edges within the given
pathway (for example, only genes within the autophagy pathway). For Fig. 3,
wherein interactions between proteostasis pathways were important to consider,
edges were also utilized in the analysis if one gene in the edge contained a gene in
another proteostasis pathway.

For each pathway within a cancer type, we first calculated for each patient the
sum of edge scores. We then normalized to the minimum possible haploinsufficient
score of that module (a score in which every gene within the module had
a monoallelic loss). We further average these normalized scores across all tumours
within a TCGA cohort to produce the colourized depiction of average network
score suppression (blue) or enhancement (red) in Fig. 3a.

Each cancer type has a unique distribution of chromosome losses and gains.
Since a highly copy-number variable cancer may have a higher chance of a random
loss or gain of a pathway than a relatively SCNA stable cancer, we compared the
distribution of observed HAPTRIG module scores to that of the distribution of
HAPTRIG module scores resulting from globally shuffled gene copy-number data
from the same cancer cohort (Supplementary Software 1). Edge scores were then
recreated using the shuffled gene data. Two distributions for each cancer type were
thus created using identical calculations: an observed HAPTRIG module score
distribution corresponding to observed tumour data, and a statistical comparison
HAPTRIG module score distribution corresponding to randomized data To
increase the confidence in the output P value, our automated HAPTRIG code
creates 1,000 control network scores for each tumour and output P values are
generated from the average log10(P value) resulting from these 1,000 control
network comparisons. HAPTRIG score distributions were compared by
Student’s t-test and multiple hypothesis testing corrected by the Bonferroni method
(for 6 pathways and 21 cancer types¼ 126 comparisons in Fig. 3, 187
comparisons—all KEGG pathways—for Fig. 2) to generate a q value.

Visual networks were drawn using Cytoscape 3.3 (ref. 50). To produce
a representative network for the entire OV cohort, the EdgeScores were
recomputed at the cohort level using mean GISTIC scores across all tumours.
If a node had an SCNA alteration in 433% of patients, an edge was drawn to
its PPI partner (blue: loss, red: gain, purple: antagonistic). To accommodate
lower numbers of mutations relative to SCNA events, if a gene reached a mutation
rate of above 10%, PPI edges were represented as disrupted by mutations
(green edge visualization). Node size and colour represent their frequency of
SCNAs: blue for more common losses, red if for more common gains, and green if
mutated in 410% of patients. Node shade represents the prevalence of the
most frequent SCNA event. Node outlines are coloured bright cyan if mouse
GDS information was incorporated, and light cyan if yeast GDS information was
incorporated. Grey edges depict associations of genes with their respective KEGG
molecular pathways.

For gene-impact prioritization, EdgeScores were summed among all tumours
within a cohort. Scores were then summed for each gene within the proteostasis
network (the gene could be on either end of the edge). The sum of scores was used
to rank those genes which had the lowest values (genes of highest network
score impact for losses) as well as rank those genes that had the highest values
(genes of highest network score impact for gains). A summary of the highest and
lowest scoring five genes for each KEGG molecular pathway is provided in
Supplementary Data 1.

For quality control, a table of the top 10 ranked genes (as in the gene-impact
prioritization) for each of the 187 KEGG pathways was generated and compared
with the appropriate COSMIC tumour suppressor/oncogene gene set or STOP/GO
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gene set. Efficiency was calculated as the per cent of possible hits that were found to
be present in the quality control table.

Code availability. Complete HAPTRIG code is available as Supplementary
Software 1. Demo data for input are provided as a convenience as Supplementary
Data 5.

Gene set enrichment analysis. TCGA OV data were used as the expression data
set, with tumour copy number compared with normal tissue control copy number.
Gene sets were the same as HAPTRIG. Gene set permutations were set at 1,000. To
find oncogenic pathways, the comparison was TUMOR_versus_NORMAL, to find
tumour suppressor pathways, the comparison was NORMAL_versus_TUMOR.
Leading edge analysis was performed and the top 10 genes for each pathway were
input as benchmarking genes for quality control analysis, as described above.
GSEA version used was 2.2.2.

Cell culture and reagents. Established cell lines were purchased from the
American Type Culture Collection and validated by short tandem repeat profiling
(Promega). Routine microscopic morphology tests were performed before
each experiment. Cells were verified to be mycoplasma negative by a PCR assay
(Agilent Technologies (Stratagene), cat# 302008). Patient consent was obtained for
scientific use and publication of the LPPDOV patient-derived OVs, as previously
described24. All cells were grown in RPMI (Life Technologies) supplemented with
2% glucose, nonessential amino acids (Mediatech #45000-700), sodium pyruvate
(Mediatech #45000-710), antibiotics (penicillin, streptomycin and amphotericin,
Mediatech #30-004-CI) and 10% fetal bovine serum (Omega Scientific #FB-11).
Cells were cultured at 37 �C with 5% CO2.

Antibodies. All primary antibodies were used at 1:1,000 dilution. LC3B
(Novus Biologicals #NB100-2220), p62 (BD Biosciences #610382), b-actin
(Sigma-Aldrich #A5441-.2ML), GRP78 (BioLegend #644402), BECN1
(SantaCruz sc-11427), PIK3C3 (Abgent AP1851b), GABARAPL2 (Abgent
AP1822d), ATG5 (Cell Signaling 8540P), g-tubulin (Sigma-Aldrich T6557),
GAPDH (GeneTex #239) and DyLight secondary (1:15,000 dilution) antibodies
were used: 800 nm for anti-rabbit (VWR #PI35571) and 680 nm for anti-mouse
(VWR # PI35518). Secondary horseradish peroxidase antibodies were anti-rabbit
(Jackson ImmunoResearch #211-032-171) anti-rat (Life Technologies #619520) or
anti- mouse (Jackson ImmunoResearch #115-035-003).

Drugs. Docetaxel (Winthrop, US, 20 mg ml� 1 injection concentrate) and
cisplatin (Teva Pharmaceuticals, US, 1 mg ml� 1 injectable) were obtained by the
Moores Cancer Center pharmacy. Metformin (VWR, cat# 89147-892), rapamycin
(LC Labs, cat# R-5000), dasatinib (LC Labs, cat# D-3307) and nelfinavir
(Creative Dynamics Inc, special order, or for in vivo studies Viracept, Agouron
Pharmaceuticals) were purchased in powdered form.

Knockdown shRNAs. Knockdowns for MAP1LC3B and BECN1 were purchased
from ThermoFisher Scientific (#RHS4533-EG8678). At least two shRNAs were
always used to generate the presented figures. PEG400 for in vivo drug vehicle was
from Spectrum Laboratory Products (#TCI-N0443-500G).

Transmission electron microscopy. Three million cells were seeded onto 10 cm
tissue culture (TC) plates, grown for 24 h and then treated with control dime-
thylsulphoxide/water, nelfinavir (10mM), chloroquine (10 mM) or COAST (which
includes metformin, 10 mM, chloroquine, 10mM, nelfinavir, 10 mM, rapamycin,
10 nM and dasatinib, 50 nM. Supernatant was removed at 12 h, 10 ml fixative added
and incubated at room temperature for 10 min, and then samples were immedi-
ately processed by our electron microscopy core. For the analysis, pictures were
blinded and then scored using ImageJ to quantify regions of protein aggregates, as
measured by high electron density.

Statistics. In all figures, *Po0.05, **Po0.01, ***Po0.001. In vivo tests
used Wilcoxon rank-sum with the exception of live subcutaneous tumour
measurements, which was tested by analysis of variance two factor with replication
(a t-test of tumour sizes reaches Po0.05 at day 2). All other P values were
calculated using a two-tailed Student’s t-test unless otherwise noted. All experi-
ments were performed at least three times with combined data quantified and
representative images shown, with the exception of mouse and electron microscopy
experiments that were performed once. For HAPTRIG tool statistics, refer to
HAPTRIG section above.

In vitro growth inhibition and death assays. Assay data are from at least four
independent experiments. If shRNAs were used, with two or more shRNAs per
gene were always tested. A total of 2.5–5k cells were seeded onto 96-well
TC-treated plates, allowed to adhere for 30 min and then treated with drugs or
control vehicle for a total volume of 100ml. Plates were placed at 37 �C for 48 h
unless otherwise indicated. Media was removed and cells were washed once with
125ml PBS. PBS was then removed and 50 ml crystal violet stain (0.11% crystal
violet, 0.17 M NaCl, 22% MeOH, in water) was added. After 30 min room tem-
perature staining, stain was removed and 125 ml PBS was added as a wash.
Supernatant was carefully removed to minimize cell disturbance but maximize

removal of unspecific crystal violet. Plates were then dried at 37 �C for 1 h without
lids and 85 ml MeOH was added to solubilize the crystal violet. Absorbance was
read at 600 nm to determine cell density, and background was subtracted. Per cent
cell loss was calculated using the formula: 100� (100�AbsDrug/AbsControl),
which incorporates both slowed growth as well as dead cells.

For specificity calculations in Supplementary Fig. 11, the average growth
inhibition of U373 and IGROV1 is subtracted from the average growth inhibition
of OVCAR3, 5, 8, 10 and LPPDOV to yield the average per cent difference in
growth inhibition between groups, which is termed the Specificity % in the graphs.
For Supplementary Fig. 11C, the 17 drug combinations including the labelled drug
from Supplementary Fig. 11A were used to obtain a ‘Drug Landscape Specificity’.
This calculation was: Drug Landscape Specificity¼ log2(Survival(U373)/
Survival(CellLineX)), where survival is the average survival of the 17 drug
combinations and CellLineX is one of the OV lines.

For soft agar assays, 0.5% agar/RPMI layer was laid by pipetting 50 ml agar
into wells of a 96-well plate. The top layer contained 500 cells per 50 ml, in
0.3% agar/RPMI. After agar solidified, drugs were added with another 50 ml of
agar-free RPMI. After 7 days of growth, colonies were stained by 0.005% crystal
violet, imaged and analysed for size by ImageJ. To determine number of cells
per colony, a duplicate plate was stained immediately after seeding to provide
images of single cells. Colony sizes were assumed to be spherical to calculate the
number of constituent cells.

For suspension assays, cells were seeded to 100k cells per 4 ml RPMI with or
without drug and grown in six-well polyHEMA plates. After 3 days of growth, cells
were spun down (500 g, 5 min), washed in PBS, trypsinized 5 min, spun down and
washed in PBS again, and then stained by trypan blue to obtain viable single-cell
counts via a Vi-Cell XR automated cell counter (Beckman Coulter).

Autophagic flux microscopy. OVCAR3 cells with mCherry-GFP-LC3B virally
integrated were seeded on a glass bottom 12-well plate to 5,000 cells per well
and treated with COAST drugs (chloroquine (10 mM, C), nelfinavir (10 mM, N),
rapamycin (R, 10 nM) and dasatinib (D, 50 nM)). Cells were then imaged live
by a Olympus XI-51 spinning disc microscope fitted with an environmental
chamber set to standard 5% CO2 37 �C conditions.

Western blotting. Cells were grown to 50% confluency on 10 cm plates and
treated with drugs or control for 24 h at 37 �C. Media was collected, cells washed in
PBS and the supernatant was spun 500 g. Iced RIPA buffer (supplemented with
a protease inhibitor cocktail (Sigma-Aldrich), 2 mM sodium orthovanadate and
50 mM NaF) was added to solubilize the cells (15 min, room temperature) at which
point cells were collected using a cell lifter (Fisher Scientific). Supernatant cells
were added to the RIPA buffer and combined with adherent cell fraction. Lysates
were spun at 10,000g for 10 min at 4 �C, and supernatant was saved and quantified
by bicinchoninic acid (BCA) assay (Pierce #23235). A measure of 30 mg of protein
was loaded per well of a 15% SDS–polyacrylamide gel electrophoresis gel and
transferred onto polyvinylidene difluoride membrane. The membrane was blocked
in 5% dry milk (Genesee Scientific, #20-241) or 0.1% casein (Sigma C5890-500G).
Primary antibodies were used at 1:1,000 dilution, and secondary horseradish
peroxidase antibodies were used at 1:5,000 dilution or secondary fluorescent
antibodies were used at 1:15,000. Fluorescent secondary antibodies were visualized
using a LI-COR Odyssey scanner. Quantification of band intensity was performed
in ImageJ and all normalizations were to the shown loading control. For uncropped
western blots, refer to Supplementary Fig. 17.

Flow cytometry. Flow cytometry was performed on a BD FACS Calibur cytometer
and analysed with BD CellQuest Pro.

Propidium iodide viability staining. A total of 100,000 cells were grown in
a six-well TC dished with 3 ml media containing drug or control solution for 48 h.
Media was collected, cells were washed with 1 ml PBS, which was pooled with
the media, and then cells were trypsinized for 5 min in 1 ml Tryspin-EDTA.
Trypsinized cells were then combined with supernatants, cells were centrifuged
for 5 min at 500g and then resuspended in 400 ml iced PBS containing 1 mg ml� 1

propidium iodide. Cells were then analysed on the flow cytometer.
Acridine orange autophagosome staining. A total of 100,000 cells were grown in

a six-well TC dished with 3 ml media containing drug or control solution for
indicated time points, staggered from the latest time point. Media was removed and
adherent cells were stained by 1 mg ml� 1 acridine orange for 15 min. Staining
solution was aspirated, cells were washed once in 1 ml PBS, and then cells were
trypsinized for 5 min in 1 ml Tryspin-EDTA. Trypsinized cells were then combined
with 1 ml iced RPMI and centrifuged for 5 min at 500g. Supernatant was aspirated
and cells were resuspended in 400 ml iced PBS. Cells were then analysed on the flow
cytometer.

Mouse models. All animal protocols were approved by the Institutional
Animal Care and Use Committee (IACUC) of University of California: San
Diego (UCSD), and all rules and regulations were followed during experimentation
on animals. Experiments were powered to detect differences of 30%
(http://homepage.divms.uiowa.edu/Brlenth/Power/). No blinding was performed,
since drug and control solutions were visually distinguishable. All mice were
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female, and COAST doses (250 mg kg� 1 nelfinavir, 30 g kg� 1 chloroquine,
2.24 mg kg� 1 rapamycin, 150 mg kg� 1 metformin and 4 mg kg� 1 dasatinib, daily
by gavage in 50% PEG400 in water) were determined using clinically safe doses as
determined from a previous study24. All mice were included for the following
experiments if above 18 g starting weight and with a healthy disposition before any
injections. No mice were censored in these experiments.

In the subcutaneous model, 5� 106 OVCAR3 cells were injected into the
right flank of 8–10-week-old female nude Nu/nu mice (N¼ 7 per group).
Mice were randomized when tumours were palpable. Treatment with control
(gavage, daily, 50% PEG400) or COAST began when tumours reached 100 mm3,
which was 14–20 days after cell injection. Mice were treated for 7 days and then
killed 3 h following the last treatment. Tumours were removed and weighed as
additional confirmation of the caliper size measurements.

For the chemo-resistant model, 5� 106 early passage LPPDOV cells were
injected intraperitoneal (i.p.) into a female Nu/nu mouse, allowed to develop visible
tumours, and ascites were collected and plated in complete RPMI on a TC-treated
Petri dish. Non-adherent blood cells were washed off with RPMI, and then the
adherent cells were trypsinized and transferred to a non-TC-treated plate for
amplification. As soon as sufficient cells were grown to inject a cohort of mice
(o5 passages), 3 million cells were injected i.p. into 8–10-week-old female
Nu/nu mice. After injection, groups were normalized and randomized for mouse
weight (N¼ 10 for control group, N¼ 7 for chemotherapy group and N¼ 9 for
COAST group). Ten days post cell injection, daily gavaging of COAST or control
(50% PEG400) was performed for 15 days. In the cisplatin/docetaxel group, mice
were additionally injected i.p. with 1 mg kg� 1 cisplatin and 2.5 mg kg� 1 docetaxel
once per week starting at the first control treatment day for 2 weeks.

For the syngeneic OV model, 3� 106 mCherry labelled ID8-IP cells27, which
have been passaged in the peritoneal cavity, were injected i.p. into syngeneic female
C57BL/6 mice at 10 weeks of age. Mice of equal mean weights were used in each
group (N¼ 8 per group), randomized post-injection, and are the same cohort
summarized in a previous study of ours24. Fourteen days after injection, one group
received daily (seven times a week) vehicle gavage injections (50% PEG400),
the CþN group received daily chloroquine and nelfinavir gavage
(30 and 250 mg kg� 1, respectively) and the COAST group received daily COAST
gavage. Mice were monitored daily for distended abdomens following the first
treatment injections. All mice were killed when ascites formation produced
visible discomfort to control animals, which occurred after 14 days of treatment
(28 days since cell injection). The peritoneum of the mice was exposed and any
visible nodules on the peritoneum wall were surgically dissected along with the
liver and ovaries. These tissues were then imaged with the OV100 Small Animal
Imaging System (Olympus). Bright-field, GFP and mCherry channel information
were collected and only red fluorescent (but not green autofluorescent) punctae
area was quantified in ImageJ. Fluorescent area was mathematically converted into
tumour volume assuming spherical shape of the tumour and circular shape of the
fluorescent area. Any bloody ascites present upon initial opening of the peritoneum
was transferred by P1000 micropipette into a 15 ml conical tube and volume
determined by micropipette. In the longer-term safety experiment, the experiment
was performed identically, except mice were treated by COAST for a period
of 8 weeks with five daily doses (daily excluding weekends).

Data availability. All the data that support the findings of this study are available
within the article and Supplementary Files, or available from the authors upon request.
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