
ARTICLE

Received 12 May 2016 | Accepted 22 Dec 2016 | Published 14 Feb 2017

Infection-derived lipids elicit an immune deficiency
circuit in arthropods
Dana K. Shaw1, Xiaowei Wang1, Lindsey J. Brown1,w, Adela S. Oliva Chávez1, Kathryn E. Reif2,w, Alexis A. Smith3,

Alison J. Scott4, Erin E. McClure1, Vishant M. Boradia1, Holly L. Hammond1, Eric J. Sundberg5, Greg A. Snyder5,

Lei Liu6, Kathleen DePonte6, Margarita Villar7, Massaro W. Ueti2, José de la Fuente7,8, Robert K. Ernst1,4,

Utpal Pal3, Erol Fikrig6,9 & Joao H.F. Pedra1

The insect immune deficiency (IMD) pathway resembles the tumour necrosis factor

receptor network in mammals and senses diaminopimelic-type peptidoglycans present in

Gram-negative bacteria. Whether unidentified chemical moieties activate the IMD

signalling cascade remains unknown. Here, we show that infection-derived lipids

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and 1-palmitoyl-2-oleoyl

diacylglycerol (PODAG) stimulate the IMD pathway of ticks. The tick IMD network protects

against colonization by three distinct bacteria, that is the Lyme disease spirochete

Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale.

Cell signalling ensues in the absence of transmembrane peptidoglycan recognition proteins

and the adaptor molecules Fas-associated protein with a death domain (FADD) and IMD.

Conversely, biochemical interactions occur between x-linked inhibitor of apoptosis protein

(XIAP), an E3 ubiquitin ligase, and the E2 conjugating enzyme Bendless. We propose the

existence of two functionally distinct IMD networks, one in insects and another in ticks.
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T
he immune deficiency (IMD) signalling cascade is
functionally analogous to the mammalian tumour necrosis
factor (TNF) receptor network, and has a critical role in

arthropod humoral responses1,2. In insects, peptidoglycan
recognition protein LC (PGRP-LC) and PGRP-LE sense
diaminopimelic-type peptidoglycans (DAP-PGN) present in
most Gram-negative bacteria. PGRP-LC interacts with the
protein IMD3, which recruits the molecule Fas-Associated
protein with Death Domain (FADD)4. FADD engages the
caspase-8 homologue, death-related ced-3/Nedd2-like protein
(DREDD)5, which cleaves IMD and uncovers a binding site for
lysine (K)63-polyubiquitylation via the E3 ubiquitin ligase
Inhibitor of Apoptosis Protein (IAP)26. Together with three E2
ubiquitin conjugating enzymes: Uev1a, Bendless (Ubc13) and
Effete (Ubc5), IAP2 polyubiquitylates IMD in a K63-dependent
manner. This leads to the recruitment of TGF-b activated kinase
(TAK1) and Tak1-binding protein 2 (TAB2), which engage
the I-kB kinase (IKK) complex1,2. The transcription factor Relish
is then phosphorylated and the N-terminal portion (N-Rel) is
cleaved by DREDD2,6. N-Rel is subsequently translocated to the
nucleus and induces the production of antimicrobial peptides
(AMPs)2,6.

Variations of the IMD signalling cascade indicate the existence
of an uncharacterized biochemical network. For instance,
deficiency in components of the IMD pathway in Drosophila
renders flies susceptible to Sindbis and Cricket paralysis
viruses7,8. Unlike bacterial infections, activation of the IMD
pathway by viruses does not result in a robust induction of
AMPs7,8. Silencing the expression of caspar, an inhibitor of the
IMD pathway, curbs parasite colonization by Plasmodium
falciparum and Leishmania spp. in Anopheles mosquitoes
and sand flies, respectively9–12. The genome of the Chagas
disease arthropod vector, Rhodnius prolixus, does not encode
IMD and FADD13. Nonetheless, targeted gene silencing
of relish through RNA interference (RNAi) increased the
population of the symbiotic bacterium Rhodococcus rhodnii13.
Along these lines, genome sequencing of the pea aphid
Acyrthosiphon pisum and the body louse Pediculus humanus
humanus revealed gene losses in the IMD pathway14,15 and,
of particular importance to this study, comparative genomic
analysis indicated the presence of an atypical IMD pathway in
ticks16–20.

These findings suggest the existence of plasticity in the IMD
pathway of arthropods. Previously, we reported that the E3
ubiquitin ligase x-linked inhibitor of apoptosis protein (XIAP)
restricts bacterial colonization of Ixodes scapularis ticks21. Herein,
we used a combination of structural modelling, biochemical
approaches and RNAi coupled to homology transfer and
interactome analysis to demonstrate that XIAP interfaces with
the IMD signalling pathway by interacting with the E2
conjugating enzyme Bendless. This molecular circuit functions
despite lacking several upstream signalling components including
the transmembrane PGRP receptor, the death domain protein
FADD and the adaptor molecule IMD. The tick IMD pathway
protects against colonization by two evolutionarily divergent
bacteria: the Lyme disease spirochete Borrelia burgdorferi and
the rickettsial pathogen Anaplasma phagocytophilum.
Interestingly, infection-derived lipids 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoglycerol (POPG) and 1-palmitoyl-2-oleoyl
diacylglycerol (PODAG) stimulate the I. scapularis IMD
pathway. Moreover, immune priming with POPG and PODAG
protect against infection by A. phagocytophilum and A. marginale
in I. scapularis and Dermacentor andersoni ticks, respectively.
These findings are conceptually important because they
demonstrate that the immune system of ticks diverges from
what has been demonstrated in insects.

Results
XIAP interfaces with the I. scapularis IMD pathway. In an
earlier study, we determined that the I. scapularis E3 ubiquitin
ligase XIAP restricts colonization of the rickettsial bacterium
A. phagocytophilum in ticks21. Here we optimized the purification
of recombinant XIAP by testing a range of buffers for protein
solubility (Supplementary Figs 1–2). We also validated XIAP
structural integrity by circular dichroism (Supplementary
Fig. 2d). The protein retained the previously characterized
enzymatic activity, as assessed by polyubiquitylation
assays. XIAP carried out K63-dependent polyubiquitylation
(Supplementary Fig. 2e, lane 1), which was ablated when a
point mutation at position 63 of ubiquitin was introduced
(UbK63R; Supplementary Fig. 2e, lane 4). As expected, a point
mutation at position 48 (UbK48R) had no effect on XIAP
enzymatic activity (Supplementary Fig. 2e, lane 3). However,
there was some residual polyubiquitylation in the absence of
XIAP (Supplementary Fig. 2e, lane 7), which was attributable
to the previously reported autocatalytic activity of the E2
conjugating enzyme UbcH13 (ref. 22).

To determine the signalling cascade in which XIAP interfaces,
we performed structural modelling and compared our results
with experimentally determined structures available in the
protein data bank (PDB). We threaded XIAP onto the solved
structure of the E3 ubiquitin ligase cellular inhibitor of apoptosis
protein 1 (cIAP1; PDB: 3T6P; Supplementary Fig. 3a) and
observed that XIAP carried a non-structured region and the
catalytic Really Interesting New Gene (RING) domain,
but did not have either the ubiquitin-associated (UBA)
or the caspase activation and recruitment domain (CARD;
Supplementary Fig. 3a). I. scapularis XIAP is substantially
shorter than homologues found in humans, mice and Drosophila
and has different domain distributions. The tick XIAP carries
only one conserved baculoviral IAP repeat (BIR) and no
annotated UBA domains (Supplementary Fig. 3b)21. The
predicted structure of I. scapularis XIAP revealed a model of
high quality with conserved residues in the BIR domain when
compared with Drosophila, mice and humans (Supplementary
Fig. 3c–d)23.

The tick XIAP BIR domain carried the typically conserved zinc
coordinating residues (Supplementary Fig. 3a in cyan and yellow
and Supplementary Fig. 3d). Alignment of human and Drosophila
BIR domains showed that the I. scapularis XIAP BIR domain
belonged to the type III group (Supplementary Fig. 3e). The tick
XIAP type III BIR domain demonstrated a preference for proline
in the third residue of the ligand (Supplementary Fig. 3e),
resembling the classic IAP-binding motif (Supplementary
Fig. 3f)23. These findings provided the impetus to perform
homology transfer between the tick XIAP, its homologue in
humans, and the closely related protein melanoma (ML)-IAP.
Homology transfer is the transposition of a function from one
protein to another on the basis of their common evolutionary
origin24. This method proved instrumental for functional
prediction because there is a lack of empirically determined
data. We acquired the top related proteins interacting with the
human XIAP and ML-IAP based on previously observed protein
and genetic interactions, pathways and co-localization assays
(Fig. 1a,b; Supplementary Table 1). I. scapularis homologues
showed an overrepresentation of immune-related genes in the
XIAP interactome (Fig. 1c; Supplementary Fig. 4). In particular,
six out of 14 proteins (B43%) [P¼ 0.01; GO:0002376
and GO:0006955] were identified from the IMD pathway:
(1) Bendless, (2) Effete, (3) Uev1a, (4) IAP2, (5) TAK1 and
(6) TAB2 (Fig. 1c). Overall, these findings suggested that XIAP
interfaces with the IMD signalling pathway in I. scapularis during
microbial infection.
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XIAP interacts with the E2 conjugating enzyme Bendless.
To validate the findings described above, we analysed the
quantitative proteomics data deposited in the Dryad repository
database25. We identified the IMD pathway E2 conjugating
enzymes Bendless, Uev1a and Effete as being differentially
expressed on A. phagocytophilum infection in the midgut of
I. scapularis (Fig. 2a). We then used the recombinant protein
XIAP (XIAP-GST) cross-linked to a glutathione agarose column
to perform pull-down assays with tick cell lysates. Cross-linking
did not cause steric hindrance or interfere with enzymatic activity
(Supplementary Fig. 2f). Bound proteins were eluted and a
peptide identified by tandem mass spectrometry resembled
the E2 conjugating enzyme Bendless from the IMD pathway.
Importantly, Bendless shares homology with UbcH13
(E value¼ 1e� 101), the E2 ubiquitin conjugating enzyme used
in our assays (Supplementary Fig. 2e,f). Furthermore, when we
docked the tick protein Bendless to XIAP in silico, the resulting
model indicated that these two molecules could interact (Fig. 2b).

To confirm these results, we first incubated the recombinant
forms of tick Bendless and XIAP and analysed their interactions
using mobility shift assays26. Under non-denaturing conditions,
XIAP was shifted to a higher molecular weight with increasing
concentrations of Bendless (Fig. 2c, Supplementary Fig. 8). This
observation was substantiated with an ELISA-based approach to
assess binding saturation of Bendless to XIAP. With XIAP as a
bait protein, increasing concentrations of Bendless bound to
XIAP reaching saturation at 9.1 mM (Fig. 2d). Furthermore,
Bendless and XIAP interactions were blocked with a mouse
monoclonal antibody to the human homologue of Bendless in a
dose-dependent manner (Fig. 2e). Next, we observed that the
recombinant forms of the tick XIAP and Bendless were able to
produce free K63-, but not, K48-polyubiquitin chains in an
enzymatic reaction. These results were displayed with the use of

wildtype ubiquitin (UbWT; Fig. 2f, lanes 1–3 and 5–10,
Supplementary Fig. 9a,b); or, alternatively, with the addition of
ubiquitin containing mutations at either lysine 63 (UbK63R;
Fig. 2f, lane 11, Supplementary Fig. 9c) or lysine 48 (UbK48R;
Fig. 2f, lane 12, Supplementary Fig. 9c).

We then employed a Human Embryonic Kidney (HEK)293 T
cell transfection system with plasmids expressing the tick
XIAP and Bendless (Fig. 2g, Supplementary Fig. 10a–c).
Immunoblotting against FLAG and HA tags (Bendless-FLAG
and XIAP-HA) demonstrated robust protein expression for
Bendless and XIAP in transfected cells. When co-expressed,
immunoprecipitation against the affinity tags revealed that
Bendless specifically pulled down XIAP and vice versa (Fig. 2g,
Supplementary Fig. 10d–e). Finally, to assess whether
XIAP-Bendless interactions could occur in vivo, we extracted
protein from unfed I. scapularis nymphs that had been
microinjected with either siRNA targeting bendless (siBendless)
or a scrambled control (scBendless). Whole tick lysates were used
as bait and were incubated with increasing concentrations of
recombinant XIAP. We observed that protein extracted from
control ticks (scBendless) had significantly higher amounts of
bound XIAP when compared with tick lysates silenced with
bendless (scBendless) (Fig. 2h). Altogether, we demonstrated that
XIAP and Bendless directly and specifically interact with each
other through six independent approaches.

The IMD pathway restricts bacterial colonization in ticks.
XIAP restricts A. phagocytophilum colonization of I. scapularis
and, when silenced, confers a survival advantage for this
rickettsial bacterium (Fig. 3a)21. Because Uev1a activates
the human homologue of Bendless, UbcH13, to carry out
polyubiquitylation27,28, we hypothesized that the same would be
true for ticks. We, therefore, employed a dual knock down
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scheme targeting both uev1a and bendless to assess the
contribution of these enzymes in the I. scapularis IMD pathway
during A. phagocytophilum infection. Significant silencing was
achieved for both bendless and uev1a, which caused increased
A. phagocytophilum burden in tick cells when compared with the
control treatment (Fig. 3b). Silencing the positive regulator of the
IMD pathway, relish, also favoured A. phagocytophilum infection
of tick cells (Fig. 3c), whereas the converse results were obtained
when we knocked down the expression of caspar, a negative
regulator of the IMD pathway (Fig. 3d). Reduced caspar
expression should cause the pathway to be over-activated and,
accordingly, we observed decreased A. phagocytophilum
colonization of tick cells when caspar was silenced (Fig. 3d).

To determine whether the results obtained in vitro could also
be observed in vivo, we placed I. scapularis ticks microinjected
with siRNA for bendless/uev1a, relish, caspar and scrambled

controls on mice and allowed them feed to repletion (Fig. 4). We
determined gene silencing and A. phagocytophilum load as a
function of 16 s rDNA in fully-engorged I. scapularis nymphs.
As observed for the ISE6 cell experiments, I. scapularis ticks
microinjected with the siRNA for bendless/uev1a and relish were
more susceptible to A. phagocytophilum infection when compared
with the control treatment (Fig. 4a,b). Conversely, silencing
caspar reduced A. phagocytophilum infection of ticks (Fig. 4c).
To ascertain whether the IMD pathway of ticks responded to
additional Gram-negative pathogens, we infected I. scapularis
ticks with B. burgdorferi, the causative agent of Lyme disease.
RNAi silencing of bendless/uev1a, relish and caspar altered
B. burgdorferi colonization of I. scapularis in a manner similar
to A. phagocytophilum (Fig. 4d–f). In sum, we discovered that the
atypical IMD signalling pathway restricts A. phagocytophilum and
B. burgdorferi colonization of I. scapularis ticks.
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Infection-derived lipids stimulate the IMD pathway. Both
B. burgdorferi and A. phagocytophilum induced expression
of AMPs triggered by the IMD but not the Toll pathway in
Drosophila (Supplementary Fig. 5). These results were intriguing
because neither A. phagocytophilum29 nor B. burgdorferi30 have
DAP-PGN in the cell envelope, which is the canonical agonist of
the IMD pathway1,2. They instead use lipids and lipid-containing
molecules for structural support of the membranes31,32. We
sought to determine the unidentified chemical moiety that
activates the IMD signalling cascade in these systems. Hence,
we conducted an unbiased lipid analysis using matrix-assisted
laser desorption/ionization (MALDI)-time of flight (TOF) mass
spectrometry of host-free A. phagocytophilum, as we hypothesized
that lipids could be activating the tick IMD pathway
(Supplementary Table 3). A glycerophospholipid putatively
identified as phosphatidylglycerol - PG 34:1 (34 total
acyl carbons and one unsaturation) was enriched in
A. phagocytophilum-infected samples when compared with host
cells alone (Supplementary Table 3). We used a pure standard of
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG; also
PG 34:1) for stimulation studies (Fig. 5a). Two control lipids were
also selected: 1-palmitoyl-2-oleoyl diacylglycerol to match the
acyl arrangement of POPG, but lacking a headgroup (PODAG;
DG 34:1), and 1-myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine
(MPPC; PC 30:0) to serve as a negative control with an
unmatched acyl arrangement and an unrelated headgroup
(Fig. 5a).

To assess whether POPG, PODAG and MPPC could stimulate
humoral immune pathways, we used the Drosophila surrogate
model because pathway-specific AMPs have not yet been
identified in I. scapularis. We stimulated Drosophila cells with
increasing concentrations of lipids and assessed activation of
either the IMD or Toll pathways by quantifying transcripts of
specific AMPs: diptericin (IMD) or im1 (Toll). None of the three

lipids affected the Toll pathway (Fig. 5b). However, two out of the
three lipids, POPG and PODAG, caused a dose-dependent
increase in diptericin, while MPPC-stimulated cells remained
unchanged (Fig. 5c). Altogether, these findings indicate that
POPG and PODAG specifically stimulate the IMD pathway.

To evaluate whether this stimulatory effect on the IMD
pathway also occurred in ticks, we used an approach that
involved first priming with the lipids and then infecting cells with
A. phagocytophilum. We rationalized that pre-stimulation of tick
cells with POPG and PODAG would induce the activation of the
IMD pathway, conferring a survival disadvantage for the bacteria.
Accordingly, Drosophila and ISE6 cells were primed with 1 ng of
each lipid for six hours, corresponding to the characterized peak
of IMD pathway activation33. Cells were then infected with
A. phagocytophilum overnight. In agreement with previous
experiments, cells treated with POPG led to a statistically
significant reduction in bacterial load when compared with the
naive group both in Drosophila and I. scapularis (Fig. 5d,e).
Conversely, MPPC stimulation did not affect bacterial survival
inside of cells when compared with the control treatment
(Fig. 5d,e). PODAG, on the other hand, only conferred a
protective effect in tick cells. Although we do not know
the biological significance of these findings, we speculate that,
as there is a divergence in the IMD signalling pathway across
arthropods34, it is possible that ticks and insects respond to
pathogen associated molecular patterns (PAMPs) differently on
microbial infection.

We raised an antibody against the positive IMD pathway
regulator, Relish. Cleavage of Relish by DREDD can be used as a
rapid read-out for the activation of the IMD pathway2,6. In the
tick system, Relish cleavage occurred very rapidly after DAP-PGN
stimulation (Fig. 5f, Supplementary Fig. 11). Similarly, both
A. phagocytophilum and infection-derived lipids, POPG and
PODAG, induced the appearance of Rel-N as early as one-minute
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post-stimulation of the I. scapularis tick cell line ISE6 (Fig. 5f,
Supplementary Fig. 11). This effect was also dose dependent
(Fig. 5g, Supplementary Fig. 12). Altogether, these data suggested
a molecular mechanism linking A. phagocytophilum infection
with the activation of the of I. scapularis IMD pathway.

The priming with POPG and PODAG in ticks was not due to
off-target signalling mechanisms. Knock-down of molecular
components of the tick IMD, but not the Toll or the JAK-STAT
pathways, abolished the effect that lipid priming had on bacterial
survival inside tick cells (Fig. 6a–h). Silencing the expression
of the heterodimeric E2 ubiquitin conjugating complex,
bendless/uev1a or the E3 ubiquitin ligase xiap hampered
protection against A. phagocytophilum infection (Fig. 6a–d).
Conversely, targeted-gene silencing of the Toll and JAK-STAT
pathways (siRNA) had no altered phenotype when compared
with the control group (scRNA) (Fig. 6e–h). Collectively, our
results demonstrate a mechanism by which two lipid agonists
(POPG and PODAG) stimulate the IMD pathway of I. scapularis
ticks.

We examined whether lipid priming offered bacterial
cross-protection in another chelicerate model system. We
inoculated a calf with the most prevalent tick-borne livestock
pathogen A. marginale and allowed mock or Dermacentor
andersoni ticks injected with POPG, PODAG and MPPC to feed.
After feeding, ticks were removed and A. marginale load was
measured six days post-feeding. As previously observed for the

A. phagocytophilum-I. scapularis system, POPG and PODAG but
not MPPC priming, was protective against bacterial infection of
ticks (Fig. 6i). These results suggested that the atypical IMD
signalling pathway was also functional in ticks of veterinary
importance.

PGRP knockdown does not affect A. phagocytophilum infection.
In insects, PGRPs can function as immune pathway receptors,
negative regulators of the immune response or as effectors that
kill bacteria by enzymatically breaking down peptidoglycans34.
As previously mentioned, the tick genome does not encode a
transmembrane PGRP-LC, which is the known IMD pathway
receptor in insects. However, there are four PGRPs that
are predicted to be either extracellular with amidase activity
(PGRP-4: XM_002413046.1) or intracellular and non-catalytic
(PGRP-1: XM_002411731.1, PGRP-2: XM_002433644.1, PGRP-3:
XM_002410377.1)34. To investigate whether the encoded
tick PGRPs interfaced with the IMD pathway during
A. phagocytophilum infection, we silenced each PGRP
individually or in combination to address potential redundancy
(Supplementary Fig. 6). Although significant silencing was
achieved, no difference in bacterial load was observed for any
of the treatments (Supplementary Fig. 6a–e). This was in
agreement with the PGRP literature, which describes affinity for
peptidoglycan, but no known lipid-binding capabilities2,34.
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IMD pathway divergence among arthropod subphylums.
I. scapularis does not bear some components of the IMD path-
way, such as transmembrane PGRPs and the signalling molecules
IMD and FADD (Supplementary Fig. 7)16–20,34. Of significant
interest, these observations are not specific to ticks, which became
evident as we mined other arthropod genomes and a clear
immunological pattern emerged between the branches of
Arthropoda. While imd was mostly present in the Pancrustacea
(Hexapods and Crustaceans), this gene was absent in Myriapods
(centipedes and millipedes) and Chelicerates (ticks, spiders, mites
and scorpions) (Fig. 7a). This phylogenetic relationship was
consistently seen in other analyses such as with Relish, the
transcription factor of the IMD pathway (Fig. 7b), and with
the PGRPs (Fig. 7c), reflecting a clear divergence between
Pancrustacea and Chelicerates/Myriapods. Altogether, our results
provided strong evidence that two functionally distinct IMD
networks exist: one previously recognized by the scientific

community occurring in Hexapods and Crustacea, and another
atypical pathway displayed in Chelicerates and Myriapods
(Supplementary Fig. 7).

Discussion
The prevailing view of humoral immunity in arthropods is largely
driven by studies performed in Dipteran insects2,16,18–20. The
assumption is that pattern recognition receptors sense pathogens
and/or danger signals, which then trigger an immune response
similar to what has been described in model organisms16,19,20,34.
Although this paradigm has certainly advanced our knowledge of
arthropod immunity, this premise carries limitations when
pathways in evolutionarily distant species, such as ticks, do not
resemble what has been described for insects. For example, ticks
do not carry bGRPs16, which, in Drosophila, binds to the
polysaccharide b-1,3 glucan from the cell wall of fungi and the
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lipopolysaccharide of Gram-positive bacteria1,2. Moreover,
Ixodidae ticks do not have a pro-phenoloxidase system, which is
essential for pathogen control in insects by melanization17,34–36.

In this article, we have demonstrated an immune signalling
cascade in ticks with several conserved molecules from the insect
IMD pathway (Bendless/Uev1a, Relish and Caspar). However, the
tick IMD network also lacks upstream signalling components,
such as the PGRP-LC receptor and the signalling molecules,
FADD and IMD17,34. This pathway responds to infection-derived
lipids, POPG and PODAG, and does not involve the encoded
PGPRs in the I. scapularis genome during A. phagocytophilum
infection. Interestingly, although I. scapularis does not encode a
transmembrane PGRP-LC receptor, Relish is still cleaved in
response to DAP-PGN exposure. It has been previously shown
that soluble PGRPs are capable of recognizing DAP-PGN
and may assist in activating the Drosophila IMD pathway
by providing a co-receptor function to transmembrane PGRPs3.
Because tick cells have only soluble PGRPs encoded in the
annotated genome17,34, they may be able to recognize and
respond to DAP-PGN, particularly, if invaded by intracellular
bacteria.

Our findings suggest that the immune system of Chelicerates
and Myriapods is fundamentally different when compared with
Hexapods and Crustaceans (Fig. 7 and Supplementary Fig. 7).
The conceptual implications of these results are wide in scope
because it suggests that atypical IMD signalling cascades exist
across Arthropoda. The notion that immune pathways in ticks
diverge from insects may be expected, given their unique lifestyle
when compared with other blood-feeding arthropods. For
example, ticks are obligate hematophageous parasites, feeding
exclusively on blood at all life stages, and are capable of
transmitting a variety of disease-causing agents, including
bacteria, viruses and protozoa37,38. The diverse pathosphere and
relatively long life span of ticks, which can extend over 10 years
for some species35, suggests that unique evolutionary pressures
exist for the development of immune signalling networks to
control pathogens and promote prolonged survival.

Ticks are one of the earliest lineages of terrestrial arachnids,
estimated to have originated between 443 and 120 million years
ago35,39–41. Owing to their ancient evolutionary history, there is
potential for the use of ticks as model organisms to study
fundamental questions in arthropod immunology as well as in
higher organisms. One can envision a scientific approach where
conceptual breakthroughs made in ticks can be applied to other
organisms. This possibility is supported by our observation
that POPG, PODAG and organisms without DAP-PGN
(A. phagocytophilum and B. burgdorferi) stimulate upregulation
of the Drosophila IMD pathway-specific AMP diptericin,
suggesting a conserved IMD pathway across arthropods. This
combinatorial strategy will: (i) permit the identification of host
and microbial factors that induce or suppress immune signalling;
(ii) lay the groundwork for novel insights in pathogen-vector
interactions; and (iii) help to develop novel interventions for
prevention of tick-borne diseases.

Methods
Bacteria and animal models. I. scapularis nymphs were obtained from the Bio-
defense and Emerging Infectious Diseases (BEI) Research Resources Repository
from the National Institute of Allergy and Infectious Diseases (NIAID)
(www.beiresources.org) at the National Institutes of Health (NIH). Adult
D. andersoni (Reynold’s Creek colony) were used in all A. marginale experiments.
I. scapularis ticks were maintained in an incubator at 23 �C with 85% relative
humidity and a 14/10-h light/dark photo-period regimen, while D. andersoni ticks
were maintained in an incubator at 25 �C with 98% relative humidity and a
12/12-hour light/dark photo-period regimen. Mouse breeding and experiments
were performed in strict compliance with guidelines set forth by the NIH (Office of
Laboratory Animal Welfare (OLAW) assurance numbers A3200-01, A323-01,
A3270-1). Procedures were approved by the Institutional Biosafety (IBC:00002247,
HP07-08, DES14-27) and Animal Care and Use (IACUC:0413017, 2014-07941,
R15-34) committees at the University of Maryland, Baltimore School of Medicine,
University of Maryland, College Park and Yale University of School of Medicine.
C3H/HeJ mice (catalogue number 000659) were purchased from Jackson
Laboratories. Mice were gender matched and at least 6–10 weeks of age. A low
passage infectious isolate of B. burgdorferi B31, clone MSK5 (ref. 42) was used.
A. marginale procedures were approved by the University of Idaho Institutional
Animal Care and Use and Biosafety Committees (IACUC, 2013-66; Biosafety,
B-010-13). A splenectomized Holstein calf (C82198) was inoculated with
A. marginale-infected blood and allowed to develop acute infection.
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Culturing for the A. phagocytophilum strain HZ and calculations were described
elsewhere43. Briefly, A. phagocytophilum strain HZ was grown in HL-60 cells
(ATCC, CCL-240), a human promyelocytic cell line, with Roswell Park Memorial
Institute (RPMI) medium supplemented with 10% heat-inactivated FBS and
Glutamax (Gibco, 35050-061). Cells were maintained at a concentration
between 1� 105 and 1� 106 ml� 1 at 37 �C, 5% CO2. Before isolating host-free
A. phagocytophilum, bacteria were enumerated using a previously reported
formula43. The percentage of infected cells is multiplied by the average number of
microcolonies per cell, termed ‘morulae’ (5), the average bacteria per morulae (19)
and the average amount of bacteria typically recovered from the isolation
procedure (50%).

E. coli, ISE6 and Drosophila melanogaster cell cultures. E. coli cultures21 were
grown overnight in lysogeny broth (LB) supplemented with appropriate antibiotics
(ampicillin 100mg ml� l). The tick cell line, ISE6, was a gift from Ulrike Munderloh
at the University of Minnesota and was used for all reported in vitro tick
experiments. Cells were cultured in L15C-300 medium supplemented with 10%
heat inactivated fetal bovine serum (FBS, Sigma), 10% tryptose phosphate broth
(Difco, 260300), 0.1% bovine cholesterol lipoprotein concentrate (MP Biomedicals,
191476; referred here as L15C-300 complete)21. Cells were grown to confluence, as
assessed by an inverted light microscope, before either being seeded in 24-well
plates (Celltreat, 229124) or split (1:5–1:20) in T25 flasks (Cellstar, 690-160) for
culture expansion. To infect ISE6 cells, A. phagocytophilum was lysed from HL-60s
using a 27-gauge needle, followed by washing with PBS. Infections were allowed to
progress for 18 h before cells were collected, unless otherwise stated.

The Drosophila melanogaster cell line, S2* was a gift from Neal Silverman at the
University of Massachusetts Medical School. Cells were cultured in Schneider’s
Drosophila medium supplemented with 10% heat inactivated fetal bovine serum
(FBS, Sigma). For bacterial infection experiments, S2* cells were seeded at 1� 106

per well in 24-well plates with 1 mM 20-hydroxyecdysone (Sigma) for 24 h to prime
the IMD pathway, as previously reported44. Positive controls for IMD and Toll
pathway activation were as follows: E. coli-derived peptidoglycan (InvivoGen,
tlrl-pgnek, 10 mg mL� 1) stimulation for 6 h and Staphylococcus aureus infection for
20 h. For S. aureus infections, strain USA300 JE2 (MRSA) was grown overnight at
37 �C on trypticase blood agar plates (5% sheep blood, BD). Single colonies were
inoculated into Tryptic Soy Broth (TSB, BD) for overnight liquid culture at 37 �C
with 180 rpm shaking. Subcultures were inoculated at 1:100 in TSB in the same
conditions for 2.5 h. Optical density (OD600) of the subculture was adjusted to
0.169 in sterile PBS (Gibco). Bacteria were pelleted and the OD-adjusted
subcultures were washed in PBS and pelleted. Final pellets were re-suspended in
Schneider’s medium as described above. Cell cultures were inoculated with
S. aureus at an MOI of 1,000 or with sterile medium (mock) and cultured for 20 h
at 23 �C. For antimicrobial peptide transcript production, infections or incubations
were collected after 6 or 20 h corresponding to the reported peak of IMD or Toll
pathway activation33.

Plasmid construction. Both bendless or xiap were amplified by PCR using the
primers indicated in Supplementary Table 2. bendless was cloned with HindIII and
KpnI sites into pCMV/hygro-Negative Control Vector (FLAG-tagged) (Sino
Biological, Inc). Similarly, xiap was cloned with EcoRI and NotI sites into
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pCMV-HA (New MCS) (Received as a gift from Christopher A. Walsh; Addgene
plasmid # 32530). Both constructs were confirmed by sequencing. Recombinant
Bendless was generated by amplifying the gene from I. scapularis cDNA using the
indicated primers in Supplementary Table 2 and was cloned into pGEX-6P-2 using
BamHI and XhoI sites. Recombinant XIAP was produced using the previously
reported XIAP expression plasmid21.

Mobility shift electrophoresis and western blotting. Western blotting was
performed as previously described26. Briefly, proteins were separated by
SDS–PAGE and transferred to PVDF membranes. Membranes were blocked with
5% milk in PBS-T (1� phosphate-buffered saline containing 0.05% Tween 20) for
1–2 h before being incubated with primary antibodies in either 0.25% milk PBS-T
or 5% BSA (Bovine Serum Albumin) in PBS (for ubiquitin antibodies) overnight at
4 �C. Primary antibodies are as follows: a-UbK63 (Millipore, 05-1308, 1:1,000),
a-UbK48 (Millipore, 05-1307, 1:1,000), a-PanUb (Millipore, MABS486, 1:1,000),
a-XIAP (Thermo Scientific, custom, 1:200), a-HA (Sino Biological, 100028-MM10,
1:1,000), a-FLAG (Sigma, F3165, 1:1,000), a-I. scapularis Relish (Thermo Scientific,
custom, 1:750), a-b-actin (Sigma, A2103, 1:1,000), a-rabbit (Life Technologies,
A16023, 1:5,000) and a-mouse (Abcam, AB97046, 1:5,000). All blots were washed
and incubated with secondary antibodies for 1 h at room temperature before being
visualized with Enhanced chemiluminescence (ECL) western blotting substrate
(Thermo Scientific). When necessary, blots were stripped with Western Blot
Stripping Buffer (Thermo Scientific). Native gel electrophoresis was performed as
previously described26. Briefly, 0.2 mg of XIAP was combined with increasing
amounts of Bendless, as indicated. Proteins were incubated at room temperature
for 4 h followed by native PAGE analysis and immunoblotting.

ELISA. 0.2 mg of XIAP was coated into a high-binding 96-well plate with 0.5 M
carbonate-bicarbonate (pH 9.5) at 4 �C overnight. Plates were washed with PBS-T
and blocked with 10% heat-inactivated FBS in PBS followed by incubation with
indicated concentrations of Bendless at room temperature for 1 hour. Equal
concentration of purified GST was used as a control. Plates were washed 5X with
PBS-T and incubated with the a-UbcH13 (Novus Biologicals, NB100-56357, 1:400)
and the a-rabbit IgG-HRP (Abcam; 1:10,000). To evaluate in vivo binding, 0.4 mg of
lysates from unfed I. scapularis nymphs microinjected with either scrambled RNA
or siRNA targeting bendless were coated onto a 96-well plate with 0.5 M carbonate-
bicarbonate (pH 9.5). Increasing concentrations of GST-XIAP were added at room
temperature for 1 hour. Equal concentration of purified GST was used as a binding
control. Plates were washed 5X with PBS-T and probed with a-GST (Calbiochem,
OB03, 1:400) and a-mouse IgG-HRP (Abcam, 1: 10,000). For antibody blocking,
9.1 mM of either Bendless or BSA control were incubated with a mouse monoclonal
antibody, a-UbcH13 (Novus Biologicals, H00007334-M01) with indicated
titrations at room temperature for 1 h before being added to a 96-well plate coated
with 0.2 mg of XIAP. Binding levels were assessed with a polyclonal rabbit antibody,
a-UbcH13 (Novus Biologicals, NB100-56357, 1:400). ELISAs were developed with
3,30 ,5,50-tetramethylbenzidine (TMB) (BD Biosciences). Reactions were stopped
with 1 M H2SO4 and the absorbance was measured at 450 nm with a 595-nm
correction with the Bio-Rad iMark reader.

Transfection of HEK293 T cells. 1� 106 HEK293 T cells were seeded into 6-well
plates for 18 h followed by 10ml of Lipofectamine 2,000 (Invitrogen) with 4 mg of
pCMV-XIAP-HA and/or pCMV-Bendless-FLAG plasmids in Opti-MEM I
Reduced Serum Medium (Invitrogen). The DNA-Lipofectamine 2,000 complex was
removed after 5 h and replaced with DMEM, 10% FBS and incubated for 2 days.
The transfected cells were lysed in 25 mM Tris-HCl pH 7.4, 150 mM NaCl,
1% NP-40, 1 mM EDTA and 5% glycerol with a protease inhibitor cocktail for
15 min on ice. Whole lysates were centrifuged for 30 min at 4 �C at 12,000 r.p.m.
and the supernatants were collected for downstream assays. All HEK293 T cell
cultures were validated to be Mycoplasma free via PCR.

Co-immunoprecipitation assay. The expression of both XIAP-HA and
Bendless-FLAG in HEK293 T cells was validated with a-HA (Sino Biological,
100028-MM10, 1: 1,000) and a-FLAG (Sigma, F3165, 1: 1,000). 2 mg of cell lysates
were incubated with 80 mL of either cross-linked a-FLAG M2 agarose beads
(Sigma, A2220) or a-HA agarose beads (Pierce, 26181) at 4 �C overnight. The
beads were washed three times with 50 mM Tris, 150 mM NaCl, pH 7.5. The
agarose beads were boiled in 50 ml of 2� Laemmli buffer for 5 min and analysed
via Western blot.

Recombinant protein and ubiquitylation assays. E. coli cultures transformed
with either pGEX-6 P-2-Bendless or pGEX-6 P-2-XIAP21 were grown to an OD600
of 0.6–0.8 and induced with 0.1 mM of IPTG overnight at 20 �C. Cells were
collected at 4,000�G for 20 min at 4 �C and resuspended in 20 mM Tris pH 8.9,
300 mM NaCl, 5% glycerol. Recombinant Bendless cell pellets were lysed using a
low-volume homogenizer (Microfluidics LV1). Soluble lysates were incubated with
glutathione agarose affinity purification beads (Thermo Scientific 16100) for 1 hour
at room temperature. Recombinant proteins were either eluted with 10 mM of
reduced glutathione in 50 mM Tris, 150 NaCl, pH 8 or had the GST-tag cleaved

with 100 U of PreScission Protease in 50 mM Tris-HCL pH 7, 150 mM NaCl, 1 mM
EDTA, 1 mM DTT at 4 �C overnight. Recombinant XIAP cell pellets were
re-suspended in buffers with pHs ranging from 4 to 10. Samples were sonicated
and fractions were separated by centrifugation at 20,000g for 30 min at 4 �C.
Affinity purification proceeded as outlined above. An additional buffer exchange
step was included using Amicon Ultra Tubes (Millipore, 903024) as well as a size
exclusion step to purify GST-tagged XIAP using fast purification liquid
chromatography (FPLC). Ubiquitylation assays were performed with the following
conditions: reaction buffer (500 mM Tris pH 7.4, 10 mM DTT), Energy R Solution
(Boston Biochemical, B-10), 1.2 mg XIAP, 275 ng Ube1 (Boston Biochemical,
E-305), 100 ng Bendless, 100 ng Uev1a (Boston Biochemical, E2-662), 5 mg wild
type ubiquitin or ubiquitin mutants (Boston Biochemical, U-100H, UM-K48R or
UMK63R) and resuspended with water in a final volume of 15 ml. Reactions
were allowed to proceed for 1 h at 37 �C before being stopped with stop buffer
(Boston Biochemical, SK-10).

Circular dichroism. To ensure that recombinant XIAP folded properly, the
secondary structure of the protein was analysed by circular dichroism (Jasco, Inc.).
Protein concentrations were quantified by Bicinchoninic acid assay (BCA) (Pierce,
23225) and diluted to 5 mM for analysis. Data were collected over the spectral
range from 190 nm to 260 nm at 1 nm intervals and averaged over three
acquisitions. The far-ultra violet circular dichroism spectra showed a prominent
minimum at 208 nm, which is consistent with a protein carrying mostly a-helical
structures.

Pull-down assays. Protein pull-downs assays were carried out with
recombinant GST-tagged XIAP crosslinked to glutathione agarose beads with
bis(sulfosuccinimidyl)suberate (BS3, ThermoFisher, 21580), following the
manufacturer’s instructions. 2.5� 105 ISE6 cells were sonicated in 20 mM Tris pH
8.9, 150 mM NaCl, 0.01 Triton X-100 with protease inhibitors. Lysates were
incubated with cross-linked XIAP for 1 hour at 4 �C. Columns were washed four
times and eluted in 20 mM Tris pH 8.9, 150 mM NaCl, 10 mM DTT, 5 mM EDTA,
0.01% Triton X-100 with ‘PreScission’ protease. Eluted proteins were precipitated
using trichloroacetic acid and neutralized with ice cold acetone. 100 mg of protein
was digested with trypsin overnight. Samples were quenched with trifluoroacetic
acid, desalted and analysed by the University of Maryland, School of Pharmacy
Mass Spectrometry Facility.

Structural modelling. The tick XIAP sequence was compared with experimentally
determined structures from the protein data bank (PDB). Depiction of the least
squares structural alignment of the tick (tXIAP) BIR domain and neighbors
identified from the Dali server were: 1) cIAP1 BIR3 (PDB:3D9T) - z-score: 18.4;
RMSD: 1.2; aligned residues: 95; identity: 35%; 2) hXIAP BIR3 (PDB:3CLX) -
z-score: 16.9; RMSD: 1.5; aligned residues: 102; identity: 31%; 3) ML-IAP (PDB:
1OXN) - z-score: 17.6; RMSD: 1.3; aligned residues: 95; identity: 39%; 4) dIAP1
BIR2 (PDB: 1JD6) - z-score: 22.2; RMSD: 0.4; aligned residues: 106; identity: 36%.
Structural docking was used to predict protein-protein interactions between XIAP
and Bendless. BLAST searches using Bendless (B7PKK7) and XIAP (B7PF95)
sequences were evaluated against the PDB. Predicted structures with the highest
homology where modelled using the Multiple Mapping Method and Phyre2 pro-
grams. The software ZDOCK was used to model the XIAP-Bendless complex. Top
ten predictions, which localize to a single interface were shown. Visualization was
made by PyMol.

Protein interactomes. We acquired the top related proteins interacting with the
human XIAP and ML-IAP based on previously observed protein and genetic
interactions, pathways and co-localization assays. I. scapularis homologues were
then identified based on the searches with position-specific iterated (PSI)-basic
local alignment search tool (BLAST) and GeneCard. Interactomes were compiled
according to GeneMANIA and visualized by Cytoscape. Candidates were grouped
according to the functional gene ontology (GO) categories available at the Database
for Annotation, Visualization and Integrated Discovery (DAVID).

iTRAQ. Data sets from a previous iTRAQ (Isobaric tags for relative and
absolute quantitation) experiment deposited on the Dryad repository database
(http://dx.doi.org/10.5061/dryad.50kt0) were analysed for proteins of interest.

RNAi silencing and quantitative reverse transcriptase–PCR. siRNA and their
scrambled controls were synthesized using the primers listed in Supplementary
Table 2 and the Silencer siRNA construction Kit (Ambion, AM1620). 3 mg of
siRNA or the equivalent scrambled control was transfected into 1� 105 ISE6 cells
overnight using 5 ml ml� 1 of lipofectamine 2,000 (Life Sciences, 11668-019). The
following day, cells were infected with A. phagocytophilum. After 18 h, cells were
collected in Trizol (Ambion, 15596018) and stored at � 80 �C. RNA was extracted
using the PureLink RNA Mini Kit (Ambion, 12183025). cDNA was synthesized
from 500 ng of RNA with the Verso cDNA Synthesis Kit (ThermoFisher,
AB-1453). Gene silencing and bacterial burden were assessed by quantitative
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reverse transcriptase–PCR using the primers described in Supplementary Table 2.
All data were expressed as means±s.e.m.

I. scapularis microinjections. Tick microinjections were done, as previously
described21, with approximately 10 ng of siRNA or equivalent scrambled controls.
10ml microdispensers (Drummond Scientific) were drawn to fine point needles
using a micropipette puller (Sutter Instruments). Microinjections were performed
using a micromanipulator (Narishige, Tokyo) connected to a Nanojet
microinjector (Drummond Scientific). For each group, 20 ticks were microinjected
with either siRNA or scRNA and were then allowed to rest for 3–24 h before being
placed onto infected mice. Each group of 20 was placed on a single infected mouse.
Ticks were allowed to feed to repletion and were then collected for analysis.

Lipid identification and priming assays. Host-free A. phagocytophilum was
isolated and lipids were extracted using methods that were previously described45.
Briefly, triplicate cell pellets were prepared from infected and uninfected cultures.
Cells were re-suspended in the water volume of the Bligh and Dyer single-phase
extraction solution followed by the addition of methanol and chloroform for a total
lipid extraction. Total lipids were dried under a gentle stream of nitrogen and
reconstituted in a 2:1 (v:v) mixture of chloroform:methanol at equal volumes. For
analysis by MALDI-TOF, 1 mL was spotted followed by 1 mL of norharmane matrix
at 20 mg ml� 1 in the same diluent46. These triplicate samples, along with triplicate
uninfected controls, were analysed in at least technical duplicate by MALDI-TOF
mass spectrometry in negative mode (Bruker Daltonics Autoflex Speed
MALDI-TOF; Billerica, MA) and identified according to the lipid metabolites and
pathways strategy nomenclature (LIPID MAPS)47. To identify relative changes
between the uninfected control and A. phagocytophilum, all mass channels from
m/z 700–900 exceeding a signal:noise ratio 46 were exported and analysed further.
A cluster of PG ions were upregulated at least 2-fold (by S:N ratio comparison) in
A. phagocytophilum samples, dominated by a cluster of PG species containing
34 acyl carbons in unsaturated, mono-, and di-unsaturated configurations.
Specifically, m/z 747.5 was identified (putative identity assigned as PG 34:1,
commonly observed as palmitoyl (16:0)-oleoyl(18:1)-PG, POPG)48,49 as an ion of
interest due to the dramatic increase in relative abundance compared with
uninfected cells. Additionally, PG 34:0 and PG 34:2 were unique to
A. phagocytophilum (Supplementary Table 3). Supplementary Table 3 highlights
ions exclusive in both conditions and includes the 3 ions exceeding 2-fold detection
over uninfected cells predicted to be even-carbon chain PGs. Exact masses are
given from LIPID MAPS for error calculation. All organic solvents and MALDI
reagents were sourced from Sigma-Aldrich (St Louis, MO).

For priming experiments, 0.01–1 ng of reference lipids (Avanti Polar Lipids,
840457, 800815 and 850445) were diluted into the tick cell culture and were added
to previously seeded cells. Stimulation proceeded for 6 h, corresponding to the
height of IMD pathway activity33. Media was then replaced with media containing
A. phagocytophilum. Infection progressed for 18 h before samples were collected.
For sequential silencing and priming experiments, targeted RNAi silencing was
performed, as described earlier, before medium containing lipofectamine/RNAi
was removed and replaced with lipid-containing medium.

To examine whether lipids affected A. marginale (St Maries strain) infection,
we injected groups of unfed, adult male D. andersoni with individual lipids or a
control. On the calf reaching a bacteremia of 1.6% (16 days post-infection; packed
cell volume¼ 36%), five cohorts of 150 adult male D. andersoni were injected,
as previously described50 with either 1 ng of POPG, 1 ng of PODAG, 1 ng of
MPPC, or 1 ml of chloroform/MeOH (lipid diluent control) diluted in Hanks
buffered saline solution per tick and were immediately placed on the calf. Ticks
were allowed to feed for six days and were then removed and held at 26 �C for
seven days. Midguts from individual ticks were assessed for A. marginale infection
levels using quantitative PCR and the primers described in Supplementary Table 2.
The calf was killed the same day ticks were removed and had a final
bacteremia¼ 30.4% and packed cell volume¼ 21%. 95–100% of injected ticks were
recovered from their respective patches.

Relish antibody production and immunoblot. A polyclonal antibody was raised
against the I. scapularis protein Relish. The protein sequence was empirically
determined by amplifying relish from ISE6 cDNA using the primer combination
Isc_Relish 50 and 30 (Supplementary Table 2). This resulting amplicon was
sequenced and used to predict an amino acid sequence. Based on this, the peptide
sequence REDGRATFPSMSIVFQQKK, drawn from the Rel-homology domain
(RHD) portion of I. scapularis Relish, was synthesized and used to raise specific
rabbit polyclonal antibodies (Pierce Antibodies, custom services). For immuno-
blots, ISE6 cell cultures were grown and lysed with radioimmunoprecipitation
assay buffer (RIPA, Teknova, R3792) supplemented with protease inhibitors
(Pierce, 88665).

Phylogenetic analysis of imd, relish and PGRPs. Imd was searched for in
Arthropoda using the Basic Local Alignment Search Tool (BLAST) available
through NCBI. All available arthropod genomes (tBLASTn), transcriptomes
(tBLASTn) and proteomes (PSI-BLAST) were mined using the D. melanogaster
IMD amino acid sequence. This BLAST analysis does not reflect overrepresentation

of any genus within the subphylum. Data sets available for each subphylum are as
follows: Hexapoda: 100 genomes, 231 transcriptomes. Crustacea: 3 genomes,
41 transcriptomes. Myriapoda: 1 genome, 18 transcriptomes. Chelicerata:
13 genomes, 44 transcriptomes.

The Rel homology domain sequence from D. melanogaster Relish was used to
search arthropod transcripts for relish (class I) and other Rel homology domain-
containing targets (dorsal and dif; class II) with tBLASTn. A multiple sequence
alignment method with reduced time and space complexity (MUSCLE)51 was used
to generate the multiple sequence alignment. The maximum likelihood
phylogenetic tree was calculated with RAxML52 and resampled 100 times to assess
clade support. The phylogenetic tree was visualized and annotated with the
Interactive Tree of Life tool53. Two human NF-kB transcripts served as outgroups.

Annotated PGRP protein sequences for Aedes aegypti, Apis mellifera, Anopheles
gambiae, Culex quinquefasciatus, and D. melanogaster were downloaded from
NCBI. I. scapularis PGRP-1 was used to search chelicerate proteomes for PGRPs.
MUSCLE was used to align the protein sequences. The maximum likelihood
phylogenetic tree was calculated with RAxML and resampled 100 times to assess
clade support. Bootstrap values greater than or equal to 70 are shown.

Statistical analysis. Sample sizes were chosen based on methods that have pre-
viously been reported in the literature and what has historically been appropriate to
achieve statistical power21,26,54–58. In vitro experiments were performed with
3–5 replicates. In vivo experiment involved the use of 10-20 ticks. Data were
expressed as means±s.e.m. and analysed with either the unpaired Student’s t-test
or one-way analysis of variance. Calculations and graphs were made by using
GraphPad Prism version 6.0. Po0.05 was considered statistically significant.

Data availability. Protein structural data that support the findings of this study
have been deposited in the Protein Data Bank with the primary accession codes
3D9T (cIAP1 BIR3), 3CLX (hXIAP BIR3), 1OXN (ML-IAP), and 1JD6 (1JD6).
iTRAQ data referenced in this study are available in the Dryad Digital Repository
with the identifier http://dx.doi.org/10.5061/dryad.50kt025. Sequence data for
Bendless and XIAP interactions referenced in this study are available in Uniprot
with the accession codes B7PKK7 and B7PF95. Sequence date referenced in
Supplementary Tables 1 and 2 are available in UnitProt or the National Center for
Biotechnology Information with accession codes provided in those Supplementary
Tables. Other data that support the findings of this study are available from the
corresponding author on request.
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38. Kopácek, P., Hajdusek, O., Buresová, V. & Daffre, S. Tick innate immunity.
Adv. Exp. Med. Biol. 708, 137–162 (2010).

39. Hoogstraal, H. & Aeschlimann, A. Tick-Host Specificity. Bull. Société Entomol.
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