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Abstract

The development of a facile genome engineering technology based on transcription activator-like 

effector nucleases (TALENs) has led to significant advances in diverse areas of science and 

medicine. In this review, we provide a broad overview of the development of TALENs and the use 

of this technology in basic science, biotechnology, and biomedical applications. This includes the 

discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, 

general advances in nuclease-based editing strategies, and challenges that are specific to various 

applications of the TALEN technology. We review examples of applying TALENs for studying 

gene function and regulation, generating disease models, and developing gene therapies. The 

current status of genome editing and future directions for other uses of these technologies are also 

discussed.
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1. Introduction

The emergence of transcription activator-like effector nucleases (TALENs) has made 

genome editing tools widely accessible to any laboratory with basic molecular biology 

expertise. The development of the TALEN technology and its use in various 

biotechnological applications builds on the considerable progress in genome editing over the 

previous decade with other approaches. Accordingly, the availability of the TALEN 

technology over past few years has led to numerous advances in genome editing in a diverse 

range of cell types and organisms. This facile genome editing approach has facilitated new 

strategies to model disease, develop novel genetic therapies, or create desired phenotypic 

properties through highly specific rewriting of the genome. In this chapter, the development 

and use of TALEN technologies will be reviewed and discussed.
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1.1. Genome Editing Systems

Genome editing with engineered site-specific endonucleases has emerged as a technology to 

selectively replace or correct disrupted genes, in contrast to conventional genetic engineering 

methods of gene addition (1,2). There are numerous platforms for generating site-specific 

gene modifications in the genome, but to date the most successful have been based on zinc 

finger nucleases (3,4), TALENs (5,6) and more recently, the RNA-guided CRISPR/Cas9 

system (7–9). These systems are at present the most developed publicly available platforms 

for robust and efficient targeted gene editing. In particular, the recent development of 

TALENs and CRISPR/Cas9 has dramatically advanced genome editing due to their ease of 

engineering and efficient genetic modification (6,10–18,9,19,20,7,8). Other systems in 

development include meganucleases (21,22), triplex-forming oligonucleotide (TFO) 

complexes (23), and programmable recombinases based on zinc finger protein (24–27) or 

TALE DNA-binding domains (28). Historically, meganucleases have been difficult to 

engineer due to interdependence of the DNA-binding and cleavage domains, although recent 

developments in directed evolution of meganucleases (29–31) and fusion of meganucleases 

to TALE DNA-binding proteins (32,33) are providing promising new opportunities with this 

technology. TFO complexes have thus far been limited by relatively low levels of gene 

modification, but oligonucleotide-mediated gene editing can be improved with the 

incorporation of TALENs (34). Programmable recombinases are a promising next-

generation gene editing technology, but target site requirements, overall efficiency, and 

unknown off-target effects are still major challenges to the widespread adoption of this 

technology (35).

1.2. Nuclease-Mediated Genome Editing

Engineered nucleases generate targeted genome modifications by creating a targeted double-

strand break in the genome that stimulates cellular DNA repair through either homology-

directed repair (HDR) or non-homologous end-joining (NHEJ) (36,37) (Figure 1). Briefly, 

HDR uses a designed synthetic donor DNA template to guide repair and can be used to 

create specific sequence changes to genome, including the targeted addition of whole genes. 

HDR has enabled integration of gene cassettes of up to 8kb in the absence of selection at 

high frequency (~6%) in human cells (38). Generally, gene correction strategies have been 

based solely on HDR, the efficiency of which is dependent on the genomic target, cell type, 

cell-cycle state, and efficient delivery of an exogenous DNA template (39–43). In many 

cases, antibiotic selection is used in tandem with genome editing for gene correction in cell 

types with low levels of HDR repair (40–42). In contrast to genome modification by HDR, 

the template-independent re-ligation of DNA ends by NHEJ is a stochastic, error-prone 

repair process that introduces random small insertions and deletions at the DNA breakpoint 

(Figure 1). Gene editing by NHEJ has been used in mammalian cells to disrupt genes 

(44,45), delete chromosomal segments (46–48), or restore aberrant reading frames (49,50). 

This chapter will review how TALENs have been used to exploit NHEJ and HDR DNA 

repair processes to create highly specific changes to a desired gene.

Ousterout and Gersbach Page 2

Methods Mol Biol. Author manuscript; available in PMC 2017 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Development of TALENs

2.1. TALE DNA Recognition

In 2009, two landmark studies described the simple and modular TALE DNA-binding 

domain (15,14). These novel DNA-binding proteins are naturally occurring transcriptional 

activators from the plant pathogen Xanthomonas. As reported in these studies, the TALE 

DNA-binding domain consists of numerous tandem repeats, with each repeat specifying 

recognition of a single base-pair of DNA. Importantly, single base-pair recognition by each 

repeat is determined by alteration of only two hypervariable amino acids, termed repeat 

variable diresidues (RVDs), and each repeat appears to recognize DNA in a modular manner. 

This simple mode of DNA recognition was confirmed in structural studies of a naturally 

occurring TALE bound to its cognate DNA target (51,52). These discoveries were quickly 

expanded upon to create novel TALE proteins by engineering a custom RVD array to 

recognize a user specified DNA target (53–55). The only sequence requirement for TALE 

binding is that each target site be immediately preceded by a 5’-thymine for efficient DNA 

recognition, although more recently modified proteins have been developed to accept other 

nucleotides at this position (56,57). These novel DNA-binding domains were then fused to 

transcriptional activator domains (53,55), nuclease catalytic domains (11,55,54), epigenetic 

modifying domains (58,59), and recombinases (28) to generate an array of programmable 

enzymes for manipulating genes in complex genomes.

Although naturally occurring TALEs have a modular RVD recognition code, several studies 

have shown that some RVDs, specifically those targeting guanosine, display unexpected 

recognition of degenerate bases in the context of engineered TALE DNA-binding domains 

(55,60). However, more specific RVDs, such as NH or NK for recognition of guanosine, can 

result in significantly reduced activity of the re-engineered TALE protein (61,60,62). 

Recently, a publicly available webserver has been developed that generates TALE targets 

utilizing more specific RVDs predicted to have minimal impact on activity (63). Other 

publicly available webservers are available to assist in generating RVD arrays that are 

predicted to have high activity and specificity (64–66). Together, these studies demonstrate 

the overall robustness of TALE DNA recognition and its utility in generating highly active 

nucleases at novel targets of interest.

2.2. Assembly of RVD Arrays to Create Customized TALE DNA-Binding Domains

Synthesizing custom TALE DNA-binding domains requires contiguous assembly of many 

RVD repeats, each only differing by two amino acids, into a destination TALE array. The 

large number of repeats, typically 15–20, makes this process difficult with conventional 

recombinant DNA technology. To overcome this technical challenge, several approaches 

have been developed that iteratively assemble new TALE arrays in a highly efficient and 

rapid manner. Custom TALE arrays can be rapidly created from a relatively small library of 

plasmids using publicly available reagents utilizing ‘Golden Gate’ molecular cloning 

techniques to assemble new arrays within a few days (13,53). These methods are simple and 

only require reagents and equipment commonly found in molecular biology labs, although 

the overall throughput of assembly is limited. Other protocols are well-suited to high-

throughput generation of TALE arrays using solid-phase assembly (12,67) or ligation-
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independent cloning techniques (68). Notably, with the proper equipment, these high-

throughput assembly methods are able to generate dozens to hundreds of TALEN constructs 

in one day. Alternatively, TALE arrays can also be custom ordered and pre-validated through 

commercial sources such as Life Technologies, Cellectis Bioresearch, Transposagen 

Biopharmaceuticals, and System Biosciences.

2.3. TALE Nuclease Architectures

Conventionally, TALEN monomers are created as a fusion of the TALE DNA-binding 

domain to the non-specific endonuclease catalytic domain of FokI. Site-specific double-

strand breaks are created when two separate nuclease monomers bind to adjacent target 

DNA sequences on opposite strands in a tail-to-tail fashion, thereby permitting dimerization 

of FokI and cleavage of the target DNA (Figure 2). Thus, since FokI acts as a dimer, 

TALENs are designed in pairs to guide two separate FokI monomers to a desired target site. 

Several TALEN architectures have been described that demonstrate improved nuclease 

activity by truncating the C-terminus of the TALE DNA-binding domain (55,11,69). These 

studies also show that the translocation domain on the TALE N-terminus can be removed 

without impacting activity. Moreover, these truncations can be used to restrict the length of 

the sequence allowed between the TALEN monomers (55) and may be useful for restricting 

potential off-target mutagenesis. Directed evolution of the TALE DNA-binding domain has 

also yielded mutants that have higher observed gene editing activity against episomal and 

chromosomal targets (70). Alternate nuclease catalytic domains are also possible; for 

example, fusions of TALEs to monomeric meganucleases has recently been shown to 

improve targeting of these enzymes (32).

2.4. Enhancement of Nuclease Activity

Several improvements have been made to enhance the specificity of the FokI chimeric 

nucleases. A major advance was the identification of mutations that require 

heterodimerization of the nuclease pairs (71–73), thereby preventing potential 

homodimerization of nuclease monomers at unintended target loci. Furthermore, 

introduction of distinct obligate heterodimer mutations can be used to create two 

independent TALENs by preventing unexpected interactions between monomers from either 

pair (48). Introduction of inactivating mutations to the FokI domain on one of the two 

nuclease domains in each pair can be used to generate targeted nickases. The single-strand 

nicks generated by these enzymes facilitate high levels of HDR but do not stimulate error-

prone NHEJ repair (74,75). TALE nickases therefore display significantly reduced 

mutagenesis at off-target loci. Finally, directed evolution was utilized to find mutations that 

enhance the activity of FokI in a target site-independent manner (76).

2.5. Relaxation of the 5′-Thymine Targeting Requirement

The range of DNA sequences that can be targeted by TALEs is constrained by a strict 

requirement of a thymine base at the zero base position (N0) (55). The crystal structure of a 

natural TALE protein suggests that there is a cryptic repeat domain in the N-terminus of the 

protein that specifically recognizes thymine (51,52). Novel TALE architectures have been 

developed to overcome this requirement by engineering this region of the TALE N-terminus 

to recognize alternative bases at this position (56,57) or by utilizing TALE-like domains 
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from related plant pathogens (77,78) that naturally recognize guanine at the N0 position. 

However, DNA-binding activity of these TALE architectures may be reduced, especially for 

targets with adenosine and cytosine bases at the N0 position. Further work in this area may 

yield TALE scaffolds that can readily target sequences with any base at the N0 position with 

high efficiency.

2.6. Targeting Methylated DNA

The methylation status of the target DNA locus is known to impact DNA binding of TALE 

proteins, particularly with chromosomal targets directly containing 5′-methylated cytosine 

(5mC) (79,80). As a result, DNA methylation can significantly reduce or completely 

eliminate TALE binding. Methylation analysis of a target loci can be used to generate 

TALENs targeted to open chromatin, however this further restricts the utility of TALENs for 

site-specific gene modification. Global demethylation of a target genome using chemical 

modifiers such as 5’-aza-2’-deoxycytidine can rescue TALE binding (79), however these 

methods are commonly associated with undesirable toxicity. More attractive methods have 

been developed that substitute specific RVDs in TALE proteins to efficiently bind particular 

methylated and/or demethylated cytosines in the target sequence. Thus, TALE proteins can 

be re-engineered either to be insensitive to cytosine methylation by using the N* RVD that 

binds to both cytosine and 5mC (81) or by utilizing RVDs that specifically recognize 5mC 

(NG) or cytosine (HD) (82). By substituting these particular RVDs, TALENs can be 

engineered to target these sites with high efficiency. It is also noteworthy that TALEs have 

been shown to target regions that are insensitive to DNase I, indicating that these proteins 

are able to access sites located in heterochromatin (83). These studies were performed in 

dividing cells, and future work is necessary to determine the role of DNA replication in 

facilitating access to these target sites.

2.7. Delivery of TALENs

TALEN monomers are readily delivered by DNA expression cassettes or directly as mRNA 

by conventional transfection methods. However, the size of TALEN monomers and the 

highly repetitive array of RVD sequences presents a significant challenge to viral delivery of 

TALEN constructs, thereby potentially limiting their utility in some gene editing 

applications. Adenovirus presents an attractive delivery vehicle for delivering gene 

constructs encoding both TALEN monomers (84), although adenovirus has limited tropism 

in some cell types and is highly immunogenic. Interestingly, this study also demonstrated 

that lentivirus was unable to deliver intact TALEN gene cassettes, due to rearrangements in 

the TALEN coding region caused by the repetitive structure of RVD arrays. This limitation 

was overcome by development of recoded TALEN constructs, termed re-TALEs, that can be 

efficiently expressed by lentiviral delivery (20), although this method may require 

reoptimization and synthesis of each new TALE gene. In contrast to DNA or mRNA 

delivery, direct protein delivery of TALENs can be achieved by utilizing cell penetrating 

peptides covalently bound to purified TALEN proteins (85). This method enables efficient 

genome editing in cells without the risk of spontaneous integration of the TALEN DNA 

expression construct into the genome that can be caused by non-viral and viral gene delivery. 

Furthermore, previous evidence suggests that protein delivery of gene editing nucleases may 

reduce off-target activity by limiting the duration of nuclease exposure (86).
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3. Applications in Basic Science and Biotechnology

Conventional genetic engineering methods involve the addition of new genes to cellular 

genomes by random integration of foreign genetic material into the chromosomal DNA. In 

contrast, genome editing using engineered nucleases enables precise manipulation at nearly 

any desired locus with high efficiency. Importantly, genome editing can generate a variety of 

genetic mutations without leaving any exogenous DNA sequences in the target genome. The 

development of high-throughput TALE assembly methods, in combination with high success 

rates of engineering highly active TALEN pairs, has resulted in the unprecedented ability to 

manipulate any gene of interest in a diverse array of organisms (Table 1). As one example of 

the breadth of TALEN assembly and applicability, libraries of TALENs have been generated 

to target 18,740 human protein-coding genes (80).

A powerful application of the TALEN technology is to rapidly and efficiently generate 

cellular models of human disease or to interrogate disease-related mutations or genes. This 

approach has been exploited to create disease-associated genetic mutations in somatic and 

stem-cell models for a variety of human diseases (87). Notably, in this study, few if any 

TALEN-associated off-target mutations were detectable in many of the modified cell 

populations. High-throughput TALEN assembly was also used to interrogate a large panel of 

genes related to epigenetic regulation or cancer, with successful modification of >85% of 

targeted genes (12). The ease of TALEN technologies has enabled researchers to rapidly 

generate large genomic deletions to quickly interrogate microRNA function (88,89). These 

notable examples demonstrate that TALENs are a versatile tool to interrogate and study 

small and large genetic elements in complex genomes.

TALENs have also enabled rapid gene modification to efficiently generate transgenic species 

or to knockout genes of interest. This has enabled the study of a variety of genes of interest 

in a diverse range of organisms, including mice (90,91), rats (92), pigs (93), cows (93), 

zebrafish (47,94,95), C. elegans (96,97), newts (98), silkworm (99), flies (100), mosquitos 

(101), and frogs (102). In addition, genome engineering is an exciting method to address 

challenges in plant engineering (103,104). Many plant genes are arranged in tandem arrays, 

making it difficult to selectively alter single genes to study or impart new gene function. The 

ability of TALENs to discriminate between relatively few mismatches makes this technology 

particularly powerful for altering specific gene arrays. An example of this approach is the 

application of TALENs in rice to generate disease resistance, as well as the rapid 

modification of numerous other genes (105). Other studies have demonstrated that TALENs 

are a powerful platform to rapidly modify plant genes, including Arabidopsis thaliana (106), 

barley (107), and Brachypodium (105).

4. Applications for Gene Therapies

Gene therapies using designer nucleases has shown promise to correct the genetic basis of 

human diseases (2,1). The significant advances made in the efficiency and precision of novel 

genome engineering technologies across the past decade has led to the development of 

TALENs targeted to numerous genes related to a range of human diseases (Table 1). In 

contrast to gene replacement therapies, genome editing can directly correct mutations 
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associated with disease. For example, we developed TALENs to generate small insertions 

and deletions to restore the reading frame of the dystrophin gene as a novel method to 

correct the molecular basis of Duchenne muscular dystrophy (50). TALENs have also been 

used to correct mutations associated with epidermolysis bullosa (108), sickle cell disease 

(109,110), beta-thalassemia (111), xeroderma pigmentosum (112), and alpha-1 antitrypsin 

deficiency (113) by homologous recombination and to correct mitochondrial DNA disorders 

(114) by deletion of aberrant sequences.

Beyond correction of mutant genes, gene editing strategies have been developed to modify 

genes in order to modulate disease phenotypes. ZFNs targeted to the gene encoding the HIV-

coreceptor CCR5 are currently in clinical trials and have laid the groundwork for genome 

editing as a novel treatment modality (44,115). Studies have demonstrated that TALENs can 

also introduce efficient mutations to CCR5 (55,11,116,117) and present an alternative gene 

editing technology for this application. TALENs have also been designed to target and 

eliminate hepatitis B viral genomes from human cells (118,119). TALENs have been utilized 

to disrupt the myostatin gene (120), the loss of which leads to hypertrophy of skeletal 

muscle that could be used to treat a range of diseases, including muscular dystrophies. 

Collectively, these studies show that TALENs are a powerful technology to generate a 

variety of gene modifications to correct human diseases.

5. Discussion

Over the past five years, the rapid advancement of genome editing technologies has led to 

widespread adoption of various gene editing platforms for a diverse range of applications 

(2,1,3–6). TALEN technologies have made effective gene editing tools accessible to nearly 

any researcher at low cost. The robustness of this technology has enabled researchers to 

rapidly and efficiently interrogate a large number of genes in a range of organisms (Table 1). 

Importantly, TALENs have impressive observed specificity and several advances in this field 

have further improved the fidelity of this approach (60,56,57,63,61,121). The specificity and 

efficiency of these approaches may be further improved as second-generation technologies 

are developed, such as TALE recombinases (28) and single-chain TALE-meganuclease 

fusions (32,33). The easily programmable TALE DNA binding domain has also been a boon 

to creating other synthetic enzymes to regulate gene expression (83,122,53) and the 

epigenome (59,58). Although the recent advent of CRISPR/Cas9-based genome engineering 

tools has provided an alternative facile method for gene editing (7,123,124), there are many 

differences between the two technologies and various applications could benefit from the 

strengths of each approach. Collectively, TALENs and other TALE-based gene modifying 

tools have introduced publicly available, low cost, efficient, and rapid gene modification that 

is accessible to any lab and has enabled studies for a remarkable variety of applications.
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Figure 1. 
Mechanisms of DNA repair following nuclease-induced double-strand breaks. (A) In the 

absence of a DNA repair template, the break is repaired by non-homologous end joining, 

which is an error prone process and can lead to small insertions or deletions. Alternatively, 

two adjacent nuclease-induced breaks can be used to excise the intervening chromosomal 

DNA from the genome. (B) If a DNA repair template is provided with homology to the 

target site surrounding the break, it will be used to guide homology-directed repair. In this 

way, particular small changes to the DNA sequence or the insertion of whole gene 

expression cassettes can be directed to specific genome target sites.
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Figure 2. 
TALEN architecture and structure. (A) The TALE DNA-binding domain consists of the 

array of RVDs engineered to recognize specific sequences, along with fixed N- and C-

terminal domains (orange), fused to the catalytic domain of the FokI endonuclease (blue). 

(B) Schematic of the TALEN structure, with TALEs (orange, PDB 3UGM) fused to the FokI 

domain (blue, PDB 2FOK) on DNA (green).

Ousterout and Gersbach Page 15

Methods Mol Biol. Author manuscript; available in PMC 2017 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ousterout and Gersbach Page 16

Table 1

Examples of biotechnology applications of TALEN-mediated gene modification

Type of modification Organism Genes Refs

Gene disruption Human CCR5 (55,11,116,117)

Human MSTN (120)

Human Hepatitis B virus (118,119)

Pig LDL receptor (93)

Bovine ACAN12, p65 (93)

C. elegans ben-1, rex-1, sdc-2 (97)

C. elegans, Pristionchus pacificus, 
Caenorhabditis species 9

ben-1, smo-1, rex-1, sdc-2, unc-119 (96)

Rice OsSWEET14 (97)

Newt P. waltl tyrosinase (98)

Silkworm BmBlos2 (99)

Rat IgM (92)

Mouse Pibf1 (125)

Arabidopsis thaliana ADH1, TT4, MAPKKK1, DSK2B, and 
NATA2

(106)

Drosophila ry, y, Psf2, Sld5, Pcd, CG12200, CG7224, 
CG11594

(100)

Barley HvPAPhy_a (107)

Rice OsDEP1, OsBADH2, OsCKX2, OsSD1, (105)

Brachypodium BdABA1, BdCKX2, BdSMC6, BdSPL, 
BdSBP, BdCOI1, BdRHT, BdRHTA1

(105)

Mosquito (A. gambiae) TEP1 (101)

Frog noggin, ptf1a/p48, ets1, hhex, vpp1, foxd3, 
sox9, and grp78/bip

(102)

Gene substitution and/or addition Human OCT4, PITX4, AAVS1 (10)

Zebrafish th (tyrosine hydroxylase), fam46c, smad5 (126)

Drosophila ry (100)

C. elegans, Pristionchus pacificus, 
Caenorhabditis species 9

ben-1, smo-1, rex-1, sdc-2, unc-119 (96)

Mouse Sry, Ury (90)

Gene deletion or inversion Human Various microRNAs (88)

Arabidopsis thaliana GLL22a, GLL2b (106)

Mouse Various microRNAs (91)

Zebrafish Multiple genes and noncoding regions (47)

Gene correction Human DMD (50)

Human COL7A1 (108)

Human HBB (109–111)

Human APOB, SORT1, AKT2, PLIN1 (87)

Human XPC (112)
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Type of modification Organism Genes Refs

Human Mitochondrial DNA (114)

Human AAT (113)
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