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Abstract

The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, 

permeable barrier allowing for selective absorption of nutrients, while restricting access to 

pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore 

required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements 

within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. 

Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial 

barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of 

soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects 

epithelial barrier properties and mucosal homeostasis by altering the structure and function of 

epithelial intercellular junctions through direct and indirect mechanisms. We review our current 

understanding of complex interactions between the intestinal epithelium and immune cells, with a 

focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss 

leukocyte–epithelial interactions, as well as inflammatory mediators that affect the epithelial 

barrier and mucosal repair. Increased knowledge of communication networks between the 

epithelium and immune system will lead to tissue-specific strategies for treating pathologic 

intestinal inflammation.
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The human intestinal mucosa is composed of a simple columnar epithelium, surface mucus 

layers, and underlying immune cell containing lamina propria (LP) and has an estimated 

surface area of 32 m2.1 Besides its essential role in the selective absorption of nutrients, 

water, and electrolytes, the intestinal epithelium provides a dynamic physical barrier that 

separates mucosal tissues from luminal commensal bacteria, pathogens, and dietary 

antigens. The intestinal epithelium, therefore, forms an important interface between the body 

interior and exterior. Intestinal epithelial cells (IECs) and LP immune cells coordinate the 
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development of an adaptive response that leads to either tolerance of food antigens and the 

commensal flora or response against pathogenic microbes.2

Delicate and complex interactions between epithelial cells, LP immune cells, and luminal 

microbiota determine mucosal homeostasis. Dysregulation of these interactions results in 

translocation of luminal antigens, immune responses, and epithelial barrier compromise that 

can perpetuate pathologic mucosal inflammation. For example, compromised epithelial 

barrier and accompanying excessive immune responses to gut microbiota contribute to the 

pathogenesis of inflammatory bowel diseases (IBDs).3 However, dysregulated barrier 

function is not the only factor that contributes to these types of disorders. Healthy relatives 

of patients with Crohn’s disease (CD) have increased intestinal epithelial permeability 

without disease, indicating that additional factors are required for pathogenesis.4,5 Despite 

these observations, disease severity correlates with mucosal recruitment of 

polymorphonuclear neutrophils (PMNs) that traverse the epithelium and disrupt barrier 

function. Furthermore, recruitment of leukocytes into the subepithelial space creates a local 

milieu enriched in soluble pro- and anti-inflammatory mediators that impair epithelial 

barrier function, which can perpetuate injury (inflammatory flares) while also promoting 

healing.6 We review mechanisms of epithelial barrier compromise during mucosal 

inflammation.

The mucus layer and luminal microbiota have important roles in regulating intestinal 

mucosal homeostasis and contribute to pathogenesis.7–9 Here we discuss the evidence 

supporting direct and indirect contributions of immune cells and inflammatory mediators to 

regulation of epithelial barrier function, emphasizing key structural components of the 

intestinal barrier, specifically, the intercellular junction molecular complexes.

Intercellular Junctions

The intestinal epithelium is dynamically renewed within a week. It is truly remarkable that 

barrier properties are not only maintained but modified as crypt-progenitor stem cells 

proliferate, differentiate, and are shed at the luminal surface (Figure 1A).10 Intestinal 

epithelial stem cells generate multiple cell lineages, including absorptive enterocytes (80% 

of the cells), mucus-producing goblet cells, enteroendocrine cells, and antimicrobial peptide-

producing Paneth cells. Microfold cells are found over mucosal lymphoid aggregates and 

mediate transcytosis of antigens across the epithelium. Intra-epithelial lymphocytes are 

found between IECs and have roles in immune regulation. IECs express pattern-recognition 

receptors that bind to highly conserved structures on commensal bacteria and pathogens. 

Pattern-recognition receptors activate intracellular signaling pathways that affect epithelial 

responses, such as generation of protein and lipid mediators, which are released into the 

epithelial milieu to regulate homeostasis.11,12 The contribution of epithelial cells to 

maintenance of immune tolerance in the gut has been a focus of a number of reviews and 

will not be discussed here.13

Epithelial barrier function is mediated by a series of intercellular junctions that include an 

apical tight junction (TJ), subjacent adherens junction (AJ), and desmosomes. Given their 

close structural and functional proximity, the TJ and AJ are collectively referred to as the 
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apical junctional complex (AJC). The backbone of intercellular junctions consists of 

transmembrane proteins that associate with cytoplasmic plaque proteins anchored to the 

cytoskeleton (Figure 1B).

Tight Junctions

TJs reside at the interface between the apical and basolateral plasma membrane domains. In 

addition to controlling the movement of fluids and solutes in the paracellular space, TJs 

contribute to the establishment of cell polarity.14,15 By electron microscopy, TJs are 

visualized as areas of close plasma membrane appositions between adjacent cells. Freeze-

fracture electron microscopy has identified anastomosing multi-strand structures at sites of 

intercellular contact that vary in different epithelia and endothelia.15 The complexity of TJ 

strands correlates positively with the tightness of the paracellular barrier. Three main 

families of transmembrane proteins constitute the TJ backbone: claudins, TJ-associated 

MARVEL domain-containing proteins, and members of the cortical thymocyte marker in 

Xenopus family, such as junctional adhesion molecules (JAMs).

Epithelial paracellular permeability is determined by a high-capacity, charge- and size-

selective pore pathway that is permeable for ions and small solutes with a molecular radius 

of <4 Å and a low-capacity, charge- and size-independent leak pathway that is involved in 

the paracellular trafficking of macromolecules.16,17 The pore and leak pathways are 

mediated by specific molecular constituents of the TJ.

Claudins—Claudins are required for TJ function and are part of a large family that 

contains 27 tetraspan integral membrane proteins in humans. They consist of 2 extracellular 

loop domains with cytoplasmic N- and C-terminal domains. Claudins oligomerize in cis and 

trans, offering diverse combinations and the complement of claudins in TJ strands influences 

cellular barrier function.18,19 Claudins regulate the TJ pore pathway by forming either 

anion-selective or cation-selective paracellular channels. Based on effects on epithelial 

permeability, they have been grouped into tight claudins (1, 3, 4, 5, and 18), which increase 

barrier tightness, and leaky claudins (2, 10, and 15), which contribute to increased 

paracellular permeability.20 A recent report on the crystal structure of claudin 15 has shed 

light on the molecular details of claudin dimerization and ion binding.21 Studies are needed 

to resolve higher-order structures of different claudin oligomers within TJ strands that 

control paracellular permeability.

Claudins are expressed differentially along the length of the gastrointestinal tract as well as 

within the crypt-luminal axis. Claudins 2, 10, 13, and 15 are most frequently expressed in 

the crypt base, whereas claudins 3, 4, and 7 are expressed at the luminal surface22,23 (Table 

1). This topographic separation of intestinal claudins is perturbed during mucosal 

inflammation and has been proposed to contribute to barrier disruption in the inflamed gut. 

In addition to enrichment in TJs, some claudins (1, 3, 4, 5, and 7) localize in the lateral 

plasma membrane of differentiated enterocytes. Although little is known about the function 

of nonjunctional claudins, it is likely that lateral-membrane pools of claudins are essential 

for signaling events that control epithelial homeostasis. The intracellular C-terminal domain 

of claudins binds to TJ-associated PSD95–DlgA–ZO1 homology (PDZ)–containing 
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proteins, such as zonula occludens (ZO) proteins and multi-PDZ domain protein 1 (MPDZ 

or MUPP1). These interactions have been proposed to contribute to recruitment of scaffold 

and signaling proteins to TJs.24 Several recent studies using knockout mouse models have 

begun to dissect the roles of individual claudin isoforms. For example, deletion of claudin 7 

from intestinal epithelial cells in mice increased the paracellular flux of small molecules, 

such as the bacteria-derived N-formyl-L-methionyl-L-leucyl-L-phenylalanine peptides (438 

Da), resulting in mucosal inflammation.25,26 In agreement with several in vitro studies, 

knockout of leaky claudin-2 in mice decreased paracellular cation permeability in the small 

intestine.27,28 Claudin 2 knockout mice (Cldn2−/−) have exaggerated intestinal mucosal 

inflammation and susceptibility to colitis, whereas mice that overexpress a Cldn2 transgene 

are protected from experimental colitis, despite increased intestinal mucosal 

permeability.28,29 The apparent dissociation between the effects of claudin 2 on the mucosal 

barrier and those on intestinal inflammation indicates that claudin 2 regulates intestinal 

epithelial homeostasis by other, undetermined mechanisms.30 This concept is supported by 

the observation that claudin 15-knockout mice develop mega-intestine due to greatly 

increased intestinal epithelial cell proliferation.31 Double loss of claudins 2 and 15 is 

associated with defective nutrient absorption and lethality shortly after birth.32

Pathogenic bacteria of the gastrointestinal tract have been reported to target specific 

claudins, causing TJ disassembly and barrier defects. Clostridium perfringens enterotoxin 

(CPE), responsible for food poisoning in humans, was initially shown to bind claudins 3 and 

4, inducing internalization of those claudins from the TJ and compromising barrier 

function.33,34 Additionally, claudins 6, 7, 8, 9, and 14 have been shown to associate with 

CPE.35 Most recently, the crystal structure of the claudin 19–CPE complex identified the 

amino acids that mediate the interactions between CPE and specific claudins these 

observations provided insight into the mechanisms by which CPE disrupts cis and trans 

claudin interactions.36 Claudin-targeting CPE, or its derivative peptides, could reversibly 

open TJs and be used in transepithelial delivery of drugs. Analogous to CPE, Helicobacter 
pylori can induce the loss of claudins 4 and 5 from gastric epithelial TJs.37 In addition to 

interacting with bacteria, claudins can influence viral protein entry into cells. For example, 

claudin 1 functions as a co-receptor for hepatitis C virus.38

Tight Junction-Associated MARVEL Domain-Containing Proteins—Members of 

this tetraspan family of proteins include occludin, MARVELD2 (found at tricellular 

contacts), and MARVELD3.39 Occludin was the first identified TJ transmembrane protein, 

but there is controversy over its role in controlling epithelial barrier function. Well-

developed TJ strands were reported in occludin-deficient epithelial cells.40,41 Occludin-

deficient mice are viable, exhibiting normal intestinal epithelial-barrier function.42,43 

Synthetic peptides mimicking the first or second extracellular domain of occludin attenuate 

TJ assembly. However, other studies have reported that occludin expression can influence 

paracellular flux, which requires its C-terminal cytoplasmic domain.44–50

Analogous to occludin, co-expression of MARVEL (membrane-associating) domain 

containing 3 (MARVELD3) with claudin 1 increases the number of TJ freeze-fracture 

strands.51 MARVELD3 has been shown to affect cell behavior and survival by coupling TJs 

to MEKK1–JNK signaling.52 The tetraspan TJ-associated MARVEL domain-containing 
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proteins family members MARVELD2 and lipolysis-stimulated lipoprotein receptor 

containing an immunoglobulin-like domain, localize to tricellular TJs, and contribute to 

barrier regulation at these sites.53–55 TJ-associated MARVEL domain-containing proteins 

interact with intestinal pathogens that disrupt the intestinal epithelial barrier. For example, 

Shigella targets MARVELD2 and spreads throughout the intestinal mucosa via tricellular 

TJs.56 N-3-(oxododecanoyl)-homoserine lactone, a quorum-sensing molecule produced by 

intestinal Gram-negative bacteria, influences TJ barrier function by down-regulating 

MARVELD2 and occludin expression.57 Furthermore, lipolysis-stimulated lipoprotein 

receptor serves as an epithelial receptor for Clostridium difficile transferase and Clostridium 
perfringens iota toxin.58

Cortical Thymocyte Marker in Xenopus Family Proteins—The classical cortical 

thymocyte marker in the Xenopus family of adhesion molecules includes F11 receptor 

(JAM-A), JAM-B, and JAM-C. JAM proteins share a single transmembrane domain with 2 

extracellular immunoglobulin-like loops (V-C2-type Ig-domains) and a cytoplasmic tail (40–

50 residues) containing C-terminus class II PDZ-binding motif.59 Among the classical JAM 

proteins, JAM-A is expressed in IECs and has been implicated in several aspects of 

epithelial homeostasis, including barrier function, cell proliferation, and migration.60 Based 

on crystallographic structural studies, JAM-A is reported to form homodimers both in cis 

and in trans.61,62 JAM-A has an important role in the regulation of epithelial barrier 

function. Knockout mice and JAM-A–deficient human epithelial cells have barrier defects 

that are associated with increased expression of leaky claudins (claudins 10 and 15) and with 

alterations in the peri-junctional actin cytoskeleton.63–65 JAM-A–deficient mice do not have 

symptoms of intestinal disease because of mucosal compensatory and protective adaptive 

immune responses that are secondary to a leaky intestinal epithelial barrier.65 However, they 

have increased susceptibility to colitis, supporting a role for JAM-A in regulation of 

intestinal epithelial barrier function and mucosal homeostasis.64

JAM-A can interact through its C-terminal PDZ-binding motif with several TJ scaffold 

proteins, such as ZO proteins, par-3 family cell polarity regulator (PARD3/Par3), afadin, and 

MUPP1.59 Those molecular interactions mediate JAM-A regulation of TJ assembly, 

epithelial homeostasis, and barrier function. Furthermore, by associating with PARD3 and 

the polarity complex (Par3, PARD6A/Par6, and aPKC), JAM-A has been implicated in 

controlling cell polarity.66 It has been shown that JAMA forms a signaling complex through 

association with ZO-2, afadin, and PDZ-GEF1 to control activation of RAP2C, which in 

turn regulates epithelial permeability to high-molecular-weight solutes by modulating levels 

of RhoA and apical actomyosin cytoskeletal contraction.67 Furthermore, reovirus surface 

protein σ1 binds to the extracellular domain of JAM-A, resulting in the loss of TJ-associated 

JAM-A and increased permeability.67,68

Coxsackie and adenovirus receptor (CAR) is another cortical thymocyte marker in Xenopus 
family member that is closely related to the JAM proteins. CAR possesses a single 

transmembrane domain with 2 extracellular immunoglobulin-like loops (V-C2 type Ig 

domains) and a cytoplasmic tail (107 residues) containing a class I PDZ-binding motif at the 

C-terminus.69 CAR localizes in TJs, where it physically interacts with ZO-1 and MUPP1 to 

regulate epithelial barrier function.69 Loss of CAR does not affect the formation of the TJ 

Luissint et al. Page 5

Gastroenterology. Author manuscript; available in PMC 2017 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein complex in CARdeficient mice.70 However, CAR has been reported to control AJ 

stability by regulating E-cadherin (CDH1) at the cell surface, which is mediated by protein 

kinase C δ-dependent phosphorylation of CAR.71

Tight Junction Plaque and Signaling Proteins—More than 50 proteins have been 

identified in TJs, and the list is growing. PDZ domain-containing proteins, actin-binding 

proteins, signaling complexes (such as kinases, phosphatases, and small GTPases) associate 

with TJ transmembrane proteins and contribute to the formation of the TJ plaque by 

recruiting adapter proteins, signaling molecules, and transcriptional regulators.72,73 Among 

the PDZ domain-containing proteins, the membrane-associated guanylate kinase family of 

proteins ZO-1, ZO-2, and ZO-3 interact directly with the C-terminal PDZ-binding motif of 

claudins, JAM-A, and CAR.74 In contrast, the C-terminus domain of occludin binds to the 

guanylate kinase and acidic domains of ZO-1. Additionally, the ZO proteins serve as a link 

between TJ transmembrane proteins and the actomyosin cytoskeleton, with important roles 

in control of TJ function.75

In addition to ZO proteins, other PDZ domain-containing proteins in the TJ include scaffold 

proteins (such as afadin or ALL1-fused gene from chromosome 6 protein),76 MUPP1,77 

MAGI1,78 polarity complex proteins (Par3, Par6, scribble),79 and signaling proteins, 

including kinases (eg, atypical protein kinase C), phosphatases (PP2A, PTEN),80 and 

guanine nucleotide exchange factors that activate small GTPases (PDZ-GEFs67). 

Additionally, proteins that lack PDZ domains, such as cingulin bind to JAM-A, occludin, 

ZO-1, and the actin cytoskeleton.81–84 Small GTPases (RAP2, Rho, and Rac), kinases such 

as myosin light chain kinase (MLCK), and phosphatases (eg, PP2A, PTPN285), are recruited 

to the TJ via the scaffolding proteins and regulate peri-junctional actomyosin dynamics and 

barrier function.86,87

Adherens Junction and Desmosomes

The assembly and maintenance of the intestinal epithelial barrier is not limited to TJs, but 

depends on additive effects and crosstalk among TJs, AJs, and desmosomes.88–90 The AJ is 

an ancient junctional complex that initiates and maintains epithelial cell–cell contacts. The 

key transmembrane protein in the epithelial AJ is E-cadherin (CDH1), which mediates 

calcium-dependent homotypic intercellular adhesions. On the cytoplasmic face of the AJ, E-

cadherin associates with p120 (CTNND1), β-catenin (CTNNB1), and α-catenin (CTNNA1), 

forming a complex that is anchored to cortical actin filaments.91 An early study involving 

transgenic mice expressing a dominant-negative form of N-cadherin in the intestinal 

epithelium reported disruption of the mucosal barrier and the development of CD-like 

intestinal inflammation.92 In addition, studies involving conditional knockout mice with 

intestinal epithelial-specific deletion of E-cadherin93 or p12094 resulted in disruption of 

epithelial architecture and spontaneous mucosal inflammation.

A critical common mechanism that regulates the assembly and stability of AJ and TJ 

involves interactions with the cortical actin cytoskeleton. AJ and TJ cytosolic plaques 

contain a number of actin-binding proteins (α-catenin, vinculin, ZO family, afadin, and 

cingulin) that anchor junctional complexes to underlying F-actin bundles.95,96 Studies that 
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used either pharmacologic or genetic tools to disrupt actin filaments demonstrated an 

important role of the actin cytoskeleton in controlling AJ and TJ function.96,97 A key 

mechanism that regulates peri-junctional actin cytoskeleton dynamics and AJ/TJ biogenesis 

involves the activity of nonmuscle myosin II (NM II) motor protein. NM II stabilizes 

cytoskeletal structures by bundling actin filaments and mediates cytoskeletal rearrangement 

by generating forces for filament movement.98 Both inhibition and activation of NM II 

disrupts the epithelial barrier and triggers AJ and TJ disassembly.99–101 Likewise, recent 

studies using knockout and transgenic mouse models revealed that both the inhibition of the 

actin motor, via the intestinal epithelial-specific knockout of NM IIA,102 and overactivation 

of NM II, via the overexpression of constitutively active MLCK in the intestinal 

epithelium,103 resulted in increased intestinal permeability. These findings suggest that 

balanced NM II activity controls integrity of the gut barrier.

Desmosomes (DMs) provide mechanical strength to the epithelium. DM transmembrane 

cadherins include desmoglein and desmocollin proteins. Among the 7 DM cadherins (4 

desmogleins and 3 desmocollins), human IECs express only desmoglein 2 and desmocollin 

2, which associate with plaque proteins, including plakophilin and plakoglobin, which in 

turn bind to the desmoplakin that anchors the DM protein complex to intermediate 

filaments.104 Although little is known about the role of DM proteins in controlling the 

intestinal epithelial barrier, important regulatory roles for the adhesive structures of the DM 

are easy to envision because the intestinal epithelium is under substantial mechanical stress 

(stretching and compression) generated by peristaltic movement of the gut.

Effects of Inflammation

Mucosal inflammatory diseases are typically associated with compromised epithelial barrier 

function. It is generally believed that the trafficking of immune cells in concert with the 

release of different mediators represent key mechanisms of barrier disruption in the inflamed 

intestinal mucosa. Furthermore, it is increasingly appreciated that the luminal microflora 

promotes mucosal inflammatory responses, especially under conditions of altered epithelial 

permeability (recently reviewed in Donaldson et al105). We summarize the direct effects of 

leukocytes, as well as the indirect effects of mediators released by leukocytes and epithelial 

cells, on the epithelial barrier and homeostasis.

Direct Effects of Leukocytes

Leukocyte transepithelial migration—PMNs are the first responders to infection or 

mucosal injury, responding to transepithelial gradients of microbial and cell-derived 

chemoattractants. In addition to microbe-derived chemoattractants, such as formylated 

peptides, the engagement of epithelial pattern-recognition receptors by luminal antigens 

results in the release of inflammatory cytokines and chemokines, such as interleukin (IL)1, 

IL6, IL8, tumor necrosis factor (TNF), interferon (IFN) gamma, and CCL2, leading to the 

recruitment and activation of leukocytes. Neutrophils, for example, emigrate from blood 

vessels, reach the sub-epithelial space, and migrate across the epithelial monolayer toward 

the intestinal lumen.
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Although the transendothelial migration of leukocytes has been studied extensively,106 many 

details of the molecular mechanisms that promote neutrophil transepithelial migration 

(TEpM) are unclear. Lack of understanding of the molecular details of TEpM is surprising, 

because disease symptoms and pathologic epithelial permeability are closely correlated to 

this event. In vitro approaches, involving Transwell inserts with polarized epithelial 

monolayers cultured on permeable filters, have been used to characterize interactions 

between PMN and epithelia.107 Epithelial monolayers cultured on the underside of 

Transwell filters have been used to model PMN-mediated TEpM in a physiologically 

relevant basolateral to apical direction. These studies have increased our understanding of 

the effects of PMN–epithelial interactions on barrier function and wound healing (Figure 

2A). Monoclonal antibody–based approaches, along with Transwell-based PMN 

transmigration assays, have been used to study events that control PMN TEpM. In vitro 

approaches and complementary in vivo observations have confirmed that large-scale PMN 

TEpM results in the disruption of barrier function through the creation of 

microdiscontinuities in the epithelium108,109 (Figure 2B). There are circumstances, however, 

where TEpM does not result in barrier compromise, which would suggest that, under certain 

conditions, PMN-epithelial signaling events might actually preserve barrier function.110

Current TEpM studies highlight a multistep process involving adhesive interactions between 

surface proteins (receptors) on IECs and counter-receptors on neutrophils (Figure 3). 

Sequential steps encompass initial adhesion to the basal membrane, migration between cells, 

and subsequent interactions of the post-migrated PMNs with the apical epithelial surface. 

Compared with leukocyte diapedesis across endothelia, which can be transcellular (through 

the cell body), or paracellular (between the cells), neutrophil TEpM occurs only via the 

paracellular route in a basolateral-to-apical direction. To migrate through the paracellular 

space, PMNs must sequentially cross DM, AJ, and TJs before reaching the intestinal lumen.

The initial step in TEpM involves the adhesion of PMNs to the basal aspect of the 

epithelium through interactions between integrins (integrin subunit αM [ITGAM or CD11b] 

and integrin subunit β2 [ITGB2 or CD18]) and fucosylated ligand(s) that have not yet been 

identified.107,111 Although the integrin CD11b/CD18 on PMNs appears to be an important 

mediator of early steps in the transmigration response, there have been reports of adhesion 

independent of this integrin, which varies with chemoattractant signals and epithelial 

types.112 The rate of PMN migration along the paracellular space is regulated by the 

epithelial transmembrane glycoprotein CD47, which binds to leukocyte signal regulatory 

protein α.113,114 Unlike antibody-mediated ligation of CD11b/CD18, which results in 

sustained inhibition of TEpM, blockage of CD47 delays TEpM but does not diminish the 

total number of transmigrated PMNs.

Little is known about how PMNs migrate across inter-cellular junctions, but migration 

across TJs appears to involve interactions between epithelial TJ-associated CAR and JAM-

like (JAML) protein on neutrophils.115 Unlike transendothelial migration, the role of JAM-A 

in regulating TEpM is unclear.63

Once PMNs have crossed TJs, they gain access to the apical or luminal aspect of the 

epithelium. Adhesive interactions of post-migrated PMNs with the apical surface have been 
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reported and might serve to not only retain PMNs within intestinal crypts but also to elicit 

epithelial functional responses. PMNs have been shown to bind apically expressed epithelial 

molecules CD44v6 and CD55 (decay accelerating factor), which have been implicated in 

neutrophil detachment from the apical surface. Specific leukocyte counter receptors have not 

been identified. The selective expression of intercellular adhesion molecule 1 on the apical 

membrane of IECs binds PMN CD11b/CD18 to activate signals that increase epithelial 

permeability through the MLCK-dependent contraction of the peri-junctional actomyosin 

ring; this leads to recruitment of additional neutrophils to promote inflammation.116

Proteolytic and Non-Proteolytic Opening of Epithelial Junctions by 
Polymorphonuclear Neutrophil—Activated neutrophils release an arsenal of proteases, 

including elastase, proteinase, and matrix metalloproteinases that have potent effects on 

epithelial barrier function. The effects of protease release by migrating PMNs are not 

necessarily detrimental. There is evidence that proteolytic events have important roles in 

guiding TEpM in a regulated and polarized manner. During TEpM, PMN contact with the 

basolateral epithelial membrane results in elastase and proteinase-3–dependent cleavage and 

activation of the protease-activated receptors (PAR) 1 and PAR2, leading to signaling events 

that activate MLCK-dependent contraction of the actomyosin cytoskeleton, thereby 

increasing paracellular permeability.117 The end result is PAR1- and PAR2-dependent 

facilitation of TEpM in the physiologically relevant basolateral–apical direction, but not in 

the reverse direction.

The PMN serine proteinase elastase promotes cleavage of E-cadherin, thereby contributing 

to the disruption of AJ complexes and increasing the paracellular space.118 Although it is 

logical to assume that the disruption of AJ complexes would help pave the way for 

transmigrating PMNs, such cleavage events result in proliferative signals that are important 

for epithelial repair.119 There is evidence that analogous PMN-dependent proteolytic events 

occur at the level of the DM, which can facilitate TEpM. Matrix metalloproteinase 9 and 

disintegrin and metalloproteinase domain containing protein 10 induce the cleavage of the 

DM cadherin desmoglein 2, resulting in the disruption of DM complexes and impaired 

intestinal epithelial-barrier function.120

Functional Responses to Transepithelial Migration of Polymorphonuclear 
Neutrophil—An increasing number of studies highlight examples of inflammatory and 

pro-resolution signals that occur in the epithelium at various stages of PMN transmigration 

in response to intimate epithelial contact with PMNs. For example, although JAML mediates 

passage of PMN across TJs, it is also shed from activated PMNs in a zinc-containing 

endopeptidase-dependent manner. The shed ectodomain binds to epithelial CAR, leading to 

inhibition of epithelial proliferation and wound healing.121 Soluble JAML, released from 

migrating leukocytes, impedes epithelial restitution and promotes inflammation. That 

observation might be relevant to pathologic human conditions, such as active ulcerative 

colitis (UC), in which poorly healing colonic ulcers are associated with massive PMN 

infiltration and, presumably, abundant cleavage of JAML. Therapeutic strategies might be 

developed to target the JAML–CAR receptor–ligand interaction.
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In an analogous fashion, there are examples of epithelial protective signals generated by 

direct interactions between PMNs and epithelial cells. Post-migrated PMNs that are in close 

contact with the apical epithelial surface release 5′ adenosine monophosphate, which is 

converted to adenosine through the action of an apically expressed ectonucleotidase CD73. 

Adenosine is a potent inducer of electrogenic chloride secretion that causes diarrhea and 

might represent a purging response to flush the intestine of noxious agents and 

microbes.122,123 Post-migrated PMNs also bind epithelial intercellular adhesion molecule 1, 

resulting in pro-restitutive signals. The engagement of epithelial intercellular adhesion 

molecule 1 enhances intestinal wound healing through the activation of Akt signaling via β-

catenin.116 That observation is analogous to proliferative responses observed in the lung 

after PMN elastase-mediated cleavage of E-cadherin, which require β-catenin, during 

TEpM.119 Neutrophil TEpM therefore has temporal effects on epithelial function, which 

increases further leukocyte recruitment and stimulates reparative responses.

Indirect effects of inflammation on the epithelial barrier, mediated by inflammatory 
cytokines

Epithelial barrier defects are a common manifestation of different gastrointestinal disorders, 

including IBD and celiac disease. Correlation of a leaky gut epithelium with liver 

pathogenesis and systemic disorders, such as diabetes and allergies, have been proposed but 

are not yet well understood. In recent years, there has been an increased appreciation of 

molecular mechanisms regulating disruption of the epithelial barrier in the inflamed gut and 

the role played by inflammatory cytokines (Figure 4).

In chronic inflammatory diseases of the intestinal mucosa, the gut epithelium is exposed to a 

multitude of inflammatory cytokines secreted by activated immune cells.124,125 A large 

complement of immune mediators has been identified in the mucosa of patients with IBD, 

varying with the disease type and activity. High mucosal levels of IFNγ, TNF, IL6, IL22, 

and IL17 have been reported in people with CD. Increased mucosal release of IL13, IL5, and 

IFNγ has been observed in people with UC.6 Therapeutic strategies for those disorders 

involve combinations of antibodies and receptor inhibitors to dampen the immune response 

and promote repair. Such therapeutic antibodies against cytokines include infliximab, 

adalimumab, certolizumab, etanercept, fontolizumab, and ustekinumab.126–132 Given the 

complement of cytokine changes during pathogenesis of CD and UC, it is not surprising that 

such therapies have been effective in select individuals only. Strategies to analyze the 

cytokine and chemokine profiles of patients with IBD might be developed to create 

combined personalized therapies.

The intestinal epithelium responds to a broad array of cytokines that influence homeostasis 

(proliferation, differentiation, and apoptosis) and barrier function. Inflammatory cytokines 

compromise epithelial barrier function by several mechanisms, including increased epithelial 

apoptosis.133 However, cytokines have major effects on epithelial barrier function, even in 

the presence of apoptosis inhibitors, supporting a role of additional mechanisms that 

contribute barrier compromise during inflammation.134
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Decreased Expression of Junctional Proteins Under Conditions of 
Inflammation—Mucosal inflammation is frequently associated with the decreased 

expression of junctional proteins. For example, decreased expression of different molecular 

junctional constituents has been documented in the intestinal mucosa of patients with IBD, 

especially within the inflamed areas of the gut.135,136 Several studies have demonstrated that 

in vitro exposure of epithelial cells to IFNγ and TNF decreases protein levels of occludin, 

ZO-1, E-cadherin, and p120.137–140 However, other studies have not observed such 

cytokine-dependent effects.141 These differences are likely related to the complement and 

duration of cytokine exposure.

One mechanism that likely contributes to a leaky intestinal epithelial barrier in the inflamed 

gut is claudin switching. The mechanism involves decreased expression of several tight 

claudins, such as claudins 4 and 7, and the upregulation of leaky claudins, such as claudins 2 

and 15. In vitro model systems have shown that TNF and IL13 increase the expression of the 

pore-forming TJ protein claudin 2.142,143 Additionally, IL6 and IL17 affect expression of 

claudin 2.144,145 Most TJs contain a number of claudin family members that have distinct 

compatibility profiles, which affect their ability to associate with each other and, ultimately, 

paracellular ion and water permeability. It is therefore not surprising that increased 

expression of a single claudin can affect the balance of other claudin members within TJs 

and thus alter paracellular permeability. Studies have been performed to better understand 

complex claudin dynamics in inflammation. For example, interferon gamma-induced 

increases in claudin 2 affect dynamics of barrier-forming claudin 4 through competitive 

interactions between claudins 2 and 4 for residence within the TJ.146 In an analogous 

fashion, loss of JAM-A in mice results in compromised intestinal epithelial barrier in 

parallel with increased expression of the pore-forming claudins 15 and 10.64

Trafficking of Junction Proteins—Stimulation of junctional protein endocytosis can 

disrupt the intestinal epithelial barrier in response to inflammatory mediators.147 IFNγ and 

TNF induce selective endocytosis of the TJ proteins occludin, claudin 1, claudin 4, and 

JAM-A in the intestinal epithelium, in vitro and in vivo.148,149 More robust stimuli, such as 

oxidative stress and extracellular calcium depletion, induce AJ disassembly and E-cadherin 

internalization.150,151 The types of endocytic pathways that are involved in TJ protein 

internalization in the inflamed intestinal epithelium depend on the inciting stimulus as well 

as cell type. IFNγ for example, mediates the endocytosis of TJ transmembrane proteins by 

macropinicytosis, whereas TNFα promotes endocytosis of occludin by caveolar-mediated 

pathways.148,149,152

It should be noted that activation of the endocytic molecular machinery alone is not 

sufficient to induce junctional disassembly, which is facilitated by rearrangements of the 

perijunctional actin cytoskeleton.97 Such cytoskeletal rearrangements can be induced by 

increased F-actin turnover and NM II activity.100 NM II activation is especially important for 

cytokine-induced AJC disassembly and mediates IFNγ–induced macropinocytosis and the 

TNF-induced caveolar endocytosis of TJ proteins.149,153 Activation of NM II in intestinal 

epithelial cells exposed to cytokines involves phosphorylation of regulatory myosin light 

chain (RMLC), mediated by activation of RhoA GTPase and the downstream Rho-

associated kinase, which inhibits myosin light chain phosphatase activity.154 The other 
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pathway involves activation of MLCK, which directly phosphorylates Ser18 and Thr19 of 

RMLC.155 Activation of RMLC signaling has been observed in response to exposure of 

epithelial cells to cytokines, including IFNγ, TNF, IL13, and IL1B; this results in AJC 

remodeling and compromised barrier function.156

In vivo models of intestinal inflammation have verified findings from in vitro studies of the 

RMLC, emphasizing the importance of those regulatory pathways in the control of actin-

myosin dynamics and barrier function during inflammation. Consistent with the requirement 

for balanced NM II activity in the maintenance of a normal intestinal epithelial barrier, 

barrier integrity also requires a balance of Rho signaling via Rho-associated kinase. 

Activation and the inhibition of Rho GTPase induces TJ disassembly and IEC barrier 

disruption.157,158

Trans interactions between integral membrane AJ and TJ proteins inhibit junctional 

endocytosis.159 The disruption of those interactions would therefore be expected to 

accelerate the disassembly and internalization of junctional complexes. In the inflamed gut, 

this is likely to be accelerated by the protease-mediated cleavage of adhesive AJ and DM 

proteins.160 For example, IL1B and TNF promote the cleavage of the extracellular domains 

of intestinal epithelial desmoglein 2, desmocollin 2, and E-cadherin in a disintegrin and 

metalloproteinase domain containing protein 10 and matrix metalloproteinase 9–dependent 

manner.120 Such cadherin-cleaved ectodomains have signaling properties that influence 

epithelial homeostasis. In addition to perturbing intercellular adhesion, shed desmoglein 2 

and E-cadherin ectodomains have been shown to promote epithelial proliferation by 

activation of HER2 and HER3 signaling. Cadherin ectodomain fragments have been 

detected in the inflamed intestinal mucosa of mice with colitis, as well as in the mucosa of 

people with UC, suggesting potential utility as biomarkers of active inflammation.161

A much less appreciated mechanism that might contribute to intestinal barrier disruption in 

the inflamed gut involves attenuated trafficking of proteins to the AJC. Because components 

of epithelial junctions are synthesized in the endoplasmic reticulum and delivered to the 

plasma membrane via multistep, vesicle-mediated exocytosis,91 it is reasonable to assume 

that defects in the trafficking machinery might contribute to epithelial barrier compromise 

during inflammation. Reticulon 4 (RTN4 or NOGO-B) is a structural endoplasmic reticulum 

protein that affects protein movement from the endoplasmic reticulum to the Golgi, vesicle 

formation, and trafficking of proteins such as E-cadherin and α-catenin. Decreased reticulon 

4 expression has been observed in the intestinal mucosa of people with CD and in IL10-

knockout mice with spontaneous colitis.162 Another study highlighted the role of a polarity 

protein Par3 in the regulation of TJ protein occludin trafficking and barrier function that was 

disrupted after exposure to inflammatory cytokines.163

Inflammation and Restoration of Mucosal Barrier Function

Although the deleterious effects of neutrophils on tissue homeostasis are commonly 

emphasized, the arrival of neutrophils and monocytes to sites of inflammation initiates anti-

inflammatory signals that promote resolution. Specifically, leukocytes and epithelial cells 

promote resolution of inflammation by releasing factors such as annexin 1, resolvins, 
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lipoxins, maresins, and protectins. These are released in a spatiotemporal manner and signal 

via G-protein–coupled receptors to coordinate resolution of inflammation and repair. 

Recruitment of additional neutrophils stimulates clearance of dead PMNs and microbes by 

macrophages and promotes repair of the epithelial barrier.164–166 Resolvin E1 reduces 

leukocyte infiltration, decreases inflammatory cytokines (Il12 subunit p40 and TNF), and 

prevents development of colitis in mice given 2,4,6-trinitrobenzene sulfonic acid.167 

Engagement of the chemerin chemokine-like receptor 1 by Resolvin E1 inhibits recruitment 

of PMNs and mediates clearance of neutrophils, via induction of the anti-adhesion protein 

CD55.168 The release of such mediators does not appear to impair normal antimicrobial 

functions of PMNs because decreased infiltration is associated with increased phagocytic 

function.169,170

Similarly, highly regulated spatiotemporal interactions among mucosal cytokines, including 

inflammatory and anti-inflammatory mediators, not only serve in host defense but also 

ensure epithelial barrier repair. Resolution of inflammation and repair are active at specific 

times, in a spatially restricted manner, to ensure recovery of epithelial barrier function. 

During inflammation and repair, abundant inflammatory and anti-inflammatory mediators 

are released into the epithelial milieu and subsequently bind epithelial receptors to exert 

biologic responses. Concentrations of such mediators in the immediate vicinity of the 

epithelium are not known. However, it is reasonable to assume that during mucosal 

inflammation, recruitment of large numbers of leukocytes would result in greatly increased 

subepithelial levels of inflammatory mediators that are far higher than observed in the blood 

or bulk tissue.

Inflammatory cytokines can have detrimental effects on the epithelial barrier, although they 

also stimulate the synthesis of mediators that help restore mucosal homeostasis. The overall 

effects of cytokines on the epithelial barrier are a complex combination of their direct effects 

on the epithelium and their effects on innate and adaptive immune cells. Given the crucial 

role of immunity in host protection, the double duty of cytokines in eradication of pathogens 

and fortification of the epithelial barrier might have conserved evolutionary advantages. For 

example, inflammatory cytokines increase expression of casein kinase 2α by intestinal 

epithelial cells,171 which protects IECs from apoptosis by influencing caspase 9 and caspase 

3 activity.172 In addition, creatine kinase phosphorylates and facilitates TJ occludin 

assembly, thereby contributing to TJ remodeling and barrier regulation.173 In keratinocytes, 

creatine kinase has been reported to phosphorylate α-catenin and E-cadherin,174 thereby 

strengthening intercellular adhesion.175 As another example, production of IL23 during 

intestinal inflammation has been reported to induce production of IL17A and IL22, which in 

turn promote recruitment of innate and adaptive immune cells, host defense, and mucosal 

homeostasis.176 Although IL17A is considered to be an inflammatory cytokine, it also 

protects the barrier via changes in occludin.177,178 It is, however, unclear how IL17A affects 

AJC protein remodeling and barrier function.

Another cytokine that is potently induced by IL23 is IL22.179,180 This cytokine is up-

regulated after gastrointestinal infection or damage and promotes tissue regeneration, barrier 

formation, and antimicrobial defense.181 IL22 effects are mediated by binding to the 

IL22RA1–IL10R2 receptor complex on epithelial cells resulting in STAT3 activation, 
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induction of cellular proliferation and, ultimately, barrier fortification.181–183 Although IL22 

is produced by innate lymphoid cells and Th22 lymphocytes,179 recent evidence suggests 

that, in response to IL23 and TNF, infiltrating PMNs are also significant producers of IL22, 

promoting antimicrobial defense, including the antibacterial peptides RegIIIβ and S100A8, 

and the restitution of colonic epithelial integrity during acute colitis.176 Thus, inflammatory 

cytokines that are associated with intestinal inflammation and barrier damage can also 

paradoxically contribute to barrier repair and fortification.

The dynamic interactions between inflammatory cytokines and barrier function were 

highlighted in recent studies that demonstrated a role for the IL36 receptor (an IL1 family 

member) in promoting intestinal epithelial barrier repair through recruitment of neutrophils 

and release of IL22.184,185 The protective effects of IL36 ligands in the epithelium might 

depend, in part, on IL22-mediated induction of the antimicrobial peptides S100A8/9 and 

regenerating islet-derived 3 gamma (REG3G). IL10 is also involved in the epithelial 

restitution induced during intestinal inflammation. IFNγ has been reported to induce 

intestinal epithelial cell expression of the IL10 receptor and signaling, resulting in barrier-

protective effects.186–190 Cytokines mediate induction of barrier protective antimicrobial 

peptides, which highlights a critical balance that must be maintained between the mucosa 

and luminal microbiota. Similarly, the luminal microbiota play key roles in regulation of 

epithelial homeostasis. Microbial composition and products modulate epithelial barrier 

function by acting directly on IECs (as reported for microbial-derived short-chain fatty 

acids191) or indirectly, by contributing to the recruitment of immune cells that produce IL17 

and IL22.192,193

There is accumulating evidence that certain inflammatory cytokines contribute to barrier 

protection. These functions need to be considered when developing therapies that target 

inflammatory cytokines for the treatment of intestinal inflammation.

Conclusions

The intestinal epithelial barrier is at the interface between luminal microbes and the mucosal 

immune system and, therefore, helps maintain mucosal homeostasis. This barrier is not only 

determined by complex interactions between many TJ proteins, but is also regulated by 

proteins within other intercellular junction complexes. Precise regulation of barrier function 

and efficient repair after injury are essential for preventing pathologic inflammation. During 

mucosal inflammation, recruited leukocytes directly interact with the epithelium, resulting in 

the release of inflammatory mediators, which have potent effects on barrier function and 

mucosal homeostasis. Cytokines released into the epithelial milieu target intercellular 

junction proteins and alter barrier function. Spatiotemporal release of pro-inflammatory and 

anti-inflammatory mediators, as well as pro-resolution proteins and lipids ensure restoration 

of mucosal homeostasis. Increasing our understanding of the mechanisms of inflammation-

dependent alterations in epithelial permeability will provide new ideas for development of 

therapeutics to improve mucosal healing and barrier function during disease.
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AJ adherens junction

AJC apical junctional complex

CAR Coxsackie and adenovirus receptor

CD Crohn’s disease

CPE Clostridium perfringens enterotoxin

DM desmosome

IBD inflammatory bowel disease

IEC intestinal epithelial cell

IFN interferon

IL interleukin

JAM junctional adhesion molecule

JAML junctional adhesion molecule–like

LP lamina propria

MLCK myosin light chain kinase

MUPP-1 multi-PDZ domain protein 1

NM II nonmuscle myosin II

PAR protease-activated receptor

PDZ PSD95–DlgA–ZO1

PMN polymorphonuclear neutrophil

RMLC regulatory myosin light chain

TEpM transepithelial migration

TJ tight junction
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TNF tumor necrosis factor

UC ulcerative colitis

ZO zonula occludens
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Figure 1. 
Structure of the intestinal mucosa and intercellular junction complexes. (A) The intestinal 

mucosal barrier is composed of a monolayer of columnar epithelial cells that is separated 

from luminal contents by mucus and is in close contact with a lamina propria containing 

immune cells, capillaries, and lymphatic vessels. In the small intestine, the epithelium is 

folded to form luminal structures termed villi and crypts, while the colon lacks villi and only 

has crypts. The epithelium is continuously renewed with progenitor stem cells in the crypt 

base that proliferate, differentiate, and migrate along the crypt–luminal axis followed by 

regulated cell death at the luminal surface. The epithelium includes absorptive enterocytes, 

mucus-producing goblet cells, enteroendocrine cells, and antimicrobial peptides-producing 

Paneth cells. AMPs, antimicrobial peptides; IEL, intraepithelial lymphocyte. (B) Epithelial 

intercellular junctional complexes consist of an apical junctional complex (comprising TJs 

and subjacent AJs) followed by DMs. The TJ and AJ is associated with an underlying 
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perijunctional actin-myosin cytoskeleton, while DM associates with intermediate filaments. 

TJ, AJ, and DM complexes include transmembrane proteins that associate with TJ-

associated scaffold and signaling molecules as indicated. aPKC, atypical protein kinase C; 

CLMP, CAR-like membrane protein; MAGI-1, membrane-associated guanylate kinase; 

Par-3/Par-6, partitioning defective 3/-6.
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Figure 2. 
In vitro and in vivo models of neutrophil trans-epithelial migration. (A) Schematic of an in 

vitro model of PMN TEpM across a monolayer of intestinal epithelial cells in response to a 

chemoattractant (such as N-formyl-L-methionyl-L-leucyl-L-phenylalanine peptides, 

leukotriene B4 or CXCL1). Epithelial cells are grown on collagen-coated Transwell filters 

with pore sizes sufficient for PMNs to migrate through and in an inverted conformation 

designed to model the physiologically relevant polarity of migration, from basolateral to 

apical. Transmigrated PMN are collected in the bottom of the well and quantified. (B) In 

vivo “ileal loop” model of PMN TEpM. A vascularized 2–4 cm long ileal portion of the 

small intestine near the ileo–cecal junction is exteriorized and ligated at both ends without 

compromising the blood supply. Chemoattractant is injected into the lumen to induce PMN 

migration. The loop content is collected and PMN quantified by flow cytometry, while ileal 

loop mucosa can be analyzed histologically.
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Figure 3. 
Multistep model of neutrophil transepithelial migration across intestinal mucosa. Migration 

of neutrophils out of blood vessels and across the epithelium during mucosal inflammation 

is a multistep process involving many surface adhesion molecules on the epithelium and 

neutrophils: (1) basolateral adhesion, (2) transmigration, and (3) apical adhesion. In 

addition, neutrophils secrete proteases that promote cleavage of E-cadherin, desmoglein-2, 

and JAML. TJs contains CAR, which binds to JAML. AJs contain E-cadherin. DMs contain 

desmoglein-2 (Dsg-2). ADAM10, Disintegrin and metalloproteinase domain containing 

protein 10; AMP, adenosine monophosphate; DC, dendritic cell; ICAM-1, intercellular 

adhesion molecule-1; Mϕ, macrophage; MMP, matrix metalloprotease; NETs, neutrophil 

extracellular traps; SIRPα, signal-regulatory protein α.
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Figure 4. 
Schematic representation of the epithelial responses to pro- and anti-inflammatory 

cytokines. The imbalance between pro-inflammatory and anti-inflammatory cytokines is a 

hallmark of chronic gut inflammation, such as in inflammatory bowel disease. Overall, pro-

inflammatory cytokines increase intestinal paracellular permeability, while anti-

inflammatory cytokines and pro-resolving mediators stimulate epithelial repair and barrier 

function. Interestingly, some pro-inflammatory mediators, such as IL17A, IL23, IL36γ, and 

IFNγ have been reported to promote barrier protective responses (see text). Molecular 

mechanisms to be identified. Dsg-2, desmoglein-2.
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