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Abstract

The trans-Atlantic slave trade brought millions of Africans to the New World. Advances in 

genomics are providing novel insights into the history and health of Africans and the diasporan 

populations. Recent examples reviewed here include the unraveling of substantial hunter-gatherer 

and “Eurasian” admixtures across sub-Saharan Africa, expanding our understanding of ancestral 

African genetics; the global ubiquity of mixed ancestry; the revealing of African ancestry in Latin 

Americans that likely derived from the slave trade; and understanding of the ancestral 

backgrounds of APOL1 and LPL found to influence kidney disease and lipid levels, respectively, 

providing specific insights into disease etiology and health disparities.

Introduction

Anatomically modern humans originated in Africa before migrating to populate the rest of 

the world in the last 100,000 years, hence the expression “we are all Africans beneath our 

skin” [1,2]. This generally accepted consensus begs the question of why is the global 

dispersion of some human populations out of Africa referred to as the “African Diaspora” 

and others are not? Who and from where are these groups that constitute the African 

Diaspora and how has their history shaped patterns of genomic variation, the distribution of 

fitness influencing mutations, and health? Here, we review recent data on these questions 

and explore how these data, especially the accelerated cataloging of global human genetic 

variation, are informing our understanding of the identities and health of these populations in 

their current homelands. We illustrate opportunities offered by the African Diaspora to study 

interactions of old genes with modern environments, thereby lending novel insights into 

disease etiology, ancestry-based disease gene mapping, and health disparities.

The African Diaspora – History and Definition

The term “African Diaspora” first appeared in the literature in the 1950s and has been 

broadly defined to include all global communities descended from the historic migrations of 

peoples from Africa since the 15th century [3,4]. This delineates it from the pre-historic Out-

of-Africa migrations that led to the peopling of the world. The African Diaspora has also 
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been more narrowly defined to include only the trans-Atlantic slave trade. This narrower 

definition, which emphasizes the important roles that blackness, slavery, colonialism, 

racism, and geography played in sustaining the trans-Atlantic slave trade, is the reason why 

some refer to the “African Diaspora” as the “Black Diaspora” [3,5]. The trans-Atlantic slave 

trade was the single largest immigration of Africans from the Old World to the New World. 

The first leg of the triangular trade involved ships from Europe carrying goods (e.g., iron, 

brandy, weapons, and gunpowder) that were traded for slaves in Africa. The second leg, 

termed the Middle Passage, involved the shipment of between 12 and 14 million enslaved 

Africans across the Atlantic Ocean to the Americas. The last leg was the transportation of 

goods (e.g., sugar, cotton, tobacco, rum, and molasses) from the Americas to Europe.

Most enslaved Africans were brought to European colonies in Latin America, while 3–5% 

were brought to the United States of America (USA) [6]. These enslaved Africans and their 

descendants in the USA represent the group “African Americans”. As with other diasporan 

populations and indeed most of the world populations [7], African Americans have multiple 

ancestries with lineages from Africa, Europe, Asia, and Native America among others. 

Hence, the term “African American” is not a genetically homogeneous entity as reflected in 

the fact that self-identified African Americans include individuals ranging from almost no 

African ancestry to almost no European ancestry [8,9] (Figure 1). In addition, cultural 

diversity abounds in the descendants of the African Diaspora as exemplified by Brazilians. 

With over 4 million slaves, Brazil has long been a melting pot of ancestries and cultures, as 

evidenced by the blending of African and European religions (Candomble, Catholicism), 

foods (Feijoada), music, and dance (Samba). A recent census indicates that about 50% of the 

~200 million Brazilians self-identify as persons of African ancestry or mixed ancestry [10]. 

These mixtures of ancestries, acquired over hundreds of years, have serious implications for 

national and global biomedical initiatives such as precision medicine because phenotypic 

appearances and self and group identification are unlikely to adequately capture the ancestral 

backgrounds of individuals that make up the African Diaspora.

Population Structure and Genetic Diversity among African Populations

The landscape of population structure and genetic diversity of sub-Saharan Africans (SSA) 

was recently illuminated by two large international projects: the African Genome Variation 

Project (AGVP) [11] and the 1000 Genomes Project [12]. The AGVP data, generated from 

20 African ethno-linguistic groups, revealed previously unappreciated population structure, 

including regionally distinct patterns of admixture. Using principal components analysis, 

unsupervised cluster analysis, and the f3 test for admixture, evidence for substantial 

“Eurasian” and hunter-gatherer admixture was observed across SSA [11]. The timing and 

sources of admixture were regionally distinct, with admixture in West Africans dating to 

~9000 years ago and a source similar to present-day Khoe-San populations and with 

admixture in East Africans dating to ~3000 years ago and a source similar to Mbuti 

rainforest hunter-gatherer populations [11].

African populations are highly subdivided, with population structure across Africa currently 

recognized as 11 ancestries that correspond to a combination of geographic and linguistic 

separation: Khoisan in southern Africa; Central African, predominant in Pygmies; Hadza in 
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Tanzania; Western African, predominant in Mande-speaking peoples; West-Central African, 

predominant in both Bantu-speaking and non-Bantu-speaking peoples in the area from 

Ghana to Cameroon; and ancestries corresponding to speakers of Berber, Cushitic, Eastern 

Bantu, Omotic, Nilo-Saharan, and Southern Bantu languages [7,11,13]. By comparison, 12 

ancestries have been detected in the rest of world, including two that define north-to-south 

differentiation in Europe and one that encompasses Native American ancestry [7]. Genetic 

differentiation, measured by FST, between SSA ancestries can exceed that between pairs of 

non-African ancestries. For example, FST is 0.054 between Khoisan and Omotic ancestries, 

compared to 0.024 between Southern and Northern European ancestries or 0.042 between 

Arabian and Indian ancestries [7].

Higher levels of genetic diversity are observed among SSA. The number of variant sites per 

individual of SSA ancestry is ~5 million, compared to ~4.0–4.2 million variants per 

individual of East Asian, European, or South Asian ancestry [12]. The average rate of 

nucleotide differences of 1.2 per kilobase between a pair of Khoe-San individuals exceeds 

that of 1.0 per kilobase between an Asian individual and a European individual [14]. As a 

function of physical distance, linkage disequilibrium decays faster in SSA populations than 

in non-African populations [12], such that haplotypes are shorter in SSA. Lower burdens of 

runs of homozygosity tend to be observed in SSA ancestry populations, as well as in 

admixed populations [15], leading to lower risk of autosomal recessive diseases.

Genomic Profile of Contemporary Populations of the African Diaspora

In admixed African Americans, continental-level differences between Africans and 

Europeans can explain up to 8% of phenotypic variance across a range of anthropometric 

and cardio-metabolic traits [16]. Given the progress in delineating population structure at the 

sub-continental level described above, a deeper understanding of the fine-scale genetic 

structure in African Diaspora populations is needed. Western African ancestry is the 

predominant ancestry in the Mende people from Sierra Leone and Jola, Mandinka, and 

Wolof peoples from The Gambia [11,12]. West-Central African ancestry is the predominant 

ancestry in non-Bantu-speaking peoples such as the Ga-Adangbe peoples from Ghana and 

the Esan, Igbo, and Yoruba peoples from Nigeria [11,12]. Among Bantu-speaking peoples, 

genetic differentiation following the Bantu expansion gave rise to distinct ancestries in West-

Central Africa (found in Bamum and M’fang peoples in Cameroon and Kongo people from 

the Democratic Republic of the Congo), Eastern Africa (found in Baganda, Barundi, and 

Banyarwanda peoples from Uganda and Luhya and Kikuyu peoples from Kenya), and 

Southern Africa (found in Sotho and Zulu peoples from South Africa) [7,8,11]. At the Y 

DNA level, Western Africans have comparatively more E1b1a1a1f, whereas West-Central 

Africans have comparatively more E1b1a1a1g [12]. These findings of regional ancestry 

within continental Africa indicate that some degree of localization of African origin for 

African Americans and other diasporan Africans is possible.

The genomic profile of contemporary populations of the Americas reflects admixture that 

occurred among Europeans, Native Americans, and enslaved Africans in the New World. 

For several reasons, including where slaves disembarked and socio-cultural practices such as 

ancestry-positive assortative mating, the average percentage of African ancestry in the 
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Americas varies widely. Recent estimates range from 87% in African Caribbeans from 

Barbados, 75% in African Americans in Southwest USA, 19% in Puerto Ricans, 12% in 

Colombians in Medellín, 7% in people with Mexican ancestry in Los Angeles, and 4% in 

both Peruvians in Lima and Argentinians sampled from across Argentina [12,17] (Figure 1). 

African ancestry in the Caribbean appears consistent with two waves, the first from Western 

Africa followed by the second from West-Central Africa [18]. In Spanish-speaking South 

America, African ancestry averages 5% [19]. In Brazil, African ancestry varies from 51% in 

Salvador in the Northeast to 15% in Bambuí in the Southeast and 16% in Pelotas in the 

South [20]. Western African and West-Central African ancestries are more prevalent in 

Northeastern Brazil due to a larger proportion of disembarkation from Western and West-

Central Africa in Salvador whereas Eastern African ancestry is more prevalent in the 

Southeast and South due to a larger proportion of disembarkation from Mozambique in Rio 

de Janeiro [20]. Population structure in the Americas displays further complexity by the 

widely varied average percentage of Native American ancestry in these populations, with 

about 1% in African Caribbeans from Barbados, 4% in African Americans in Southwest 

USA, 15% in Puerto Ricans, 28% in Colombians in Medellín, 49% in people with Mexican 

ancestry in Los Angeles, and 78% in Peruvians in Lima [12] (Figure 1).

Genetic Signals of Natural Selection and Implications for Health and 

Disease

Genetic adaptations that took place across Africa, particularly against fatal pathogens and 

ecological forces, have resulted in elevated frequencies of alleles conferring survival 

advantages detectable in present-day African ancestry individuals on the continent and in the 

Diaspora (Table 1) [21–26]. Unfortunately, some of these alleles are maladaptive in modern-

day environments. The discordance between ancestral genetic background and modern-day 

environmental exposures became pronounced in the African Diaspora, contributing to the 

disproportionately high burden of some chronic diseases and health disparities in these 

groups.

A recent striking example of the evolutionary importance of genetic variants in populations 

of the African Diaspora, with implications for health disparities, is the link between kidney 

disease, African sleeping sickness, and two missense haplotypes called G1 (consisting of 

S342G and I384M) and G2 (delN388/Y389) in the gene Apolipoprotein L1 (APOL1) 

[27,28]. The initial studies that linked this genomic region to kidney diseases took advantage 

of the demographic history of African Americans by conducting admixture mapping [29,30]. 

The two renal disease risk haplotypes are present at relatively high frequency in individuals 

of recent African ancestry (especially from West-Central Africa where the trypanosome 

parasite is endemic) but are absent in Europeans and Asians. These observations, and the 

known trypanolytic activity of the variants against Trypanosoma brucei rhodesiense, have 

led to the hypothesis that these variants evolved in SSA and have risen to high frequency 

because they confer protection against a deadly form of African sleeping sickness [27]. 

Interestingly, these African-specific renal risk variants are also seen in the Americas as a 

result of admixture since the trans-Atlantic slave trade [28,31] (Figure 2). G1 and G2 

haplotypes recapitulate the molecular characteristics of APOL1 in Old World monkeys, and 
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innate immune activity afforded by APOL1 may extend beyond trypanosomes [32]. S342G 

has the highest frequency in West-Central Africa, whereas G2 is more evenly distributed and 

at lower frequency throughout SSA (Figure 2). S342G was the most differentiated locus 

(P=5.11×10−7) in a genome-wide comparison of the Western African Yoruba and the Eastern 

African Luhya ethnic groups, suggesting the role of positive selection in the evolution of the 

locus [32]. Clinically, kidney transplant failure is higher in recipients of donor kidneys from 

African ancestry individuals carrying APOL1 renal risk variants [33]. APOL1 high-risk 

genotypes (i.e., two risk alleles) explain an estimated 7–37% variance and 52–68% 

population attributable risk for different forms of end-stage kidney disease [34]. The APOL1 
variants have also been implicated in cardiovascular diseases (CVD) [35]. Individuals of 

African ancestry with the risk genotype display less protection against kidney disease from 

HDL compared to Europeans and Asians [36].

Ecological adaptations to tropical climate have also shaped the genetic structure of Africans. 

Local temperature-induced adaptive genetic changes may be one mechanism involved in 

hypertension and differences in salt sensitivity in humans [37]. Heat-adapted people, 

particularly members of the African Diaspora, have greater risk of hypertension due to 

exposures of the modern world (e.g., increased salt intake) interacting with ancestral 

susceptibility [37]. Consistent with this hypothesis, signals of selection have been detected 

in ATP1A1, AQP2, and CSK genes previously implicated in hypertension and 

osmoregulation [11]. The ancestral allele of the CSK locus displaying high differentiation 

among African populations is strongly correlated with hypertension risk and its frequency is 

inversely correlated with latitude [11]. These findings support the hypothesis that adaptation 

to climate produced a latitudinal cline in hypertension susceptibility. If validated with more 

mechanistic studies, these observations could provide significant insight into the 

pathogenesis of hypertension. However, the ubiquity of exposure to environmental risk 

factors for hypertension at the global level is likely to make validating this hypothesis 

difficult; some of the highest rates of hypertension have been observed in non-African 

Diaspora populations [38].

Climatic adaptations in low latitude and high ultraviolet radiation (UVR) regions of the 

tropics are thought to have maintained dark skin pigmentation to protect against UVR-

induced DNA damage and folate photolysis [39]. After modern humans migrated out of 

Africa, the challenges of producing vitamin D in the skin from the low UVR outside of the 

tropics were met by natural selection acting on mutations producing skin depigmentation 

more than 30,000 years ago [40]. Dark skin pigmentation is maladaptive in low UVR 

environments, potentially contributing to health disparities in diseases associated with 

vitamin D deficiency including several forms of cancer and cardiometabolic diseases [41]. 

Future mechanistic studies are needed to disentangle the effects of the ancestral alleles of 

genes selected for skin pigmentation from those of dietary and lifestyle changes leading to 

vitamin D deficiency and related co-morbidities.

Novel insights into disease etiology have also been gained by comparing diasporan 

populations to their ancestral populations in SSA and by characterizing local admixture at 

disease risk loci. A recent study found that the association between the LPL SNP rs328 and 

lipid levels was stronger and the levels of HDL cholesterol were higher among African 
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Americans with predominantly European ancestry than among those with African ancestry 

at this locus [42]. Lipid levels and their association with the LPL variant in African 

Americans with two African ancestry alleles at this locus were similar to those of West 

Africans despite widely different lifestyles and diets [42]. Another example of disease-

associated alleles introduced to the Americas during the trans-Atlantic slave trade is the 

LEPRE1 c.1080+1G>T allele that causes type VIII osteogenesis imperfecta, so far found 

only in African Americans and West Africans [43]. This LEPRE1 mutation arose in West 

Africa more than 650 years ago and was transported to the Americas during the trans-

Atlantic slave trade. Approximately 0.4% of African Americans and 1.5% of Nigerians and 

Ghanaians are heterozygous carriers [43].

Call for Large-Scale Deep Sequencing across the African Continent and the 

Diaspora

Earlier genotyping arrays were less efficient for interrogating the genomes of African 

ancestry populations [44] due to the fact that greater genetic variation is seen in present-day 

Africa populations than in populations outside of the continent, resulting in an increased 

number of haplotypes, lower levels of linkage disequilibrium (LD), more divergent patterns 

of LD, and more complex patterns of population substructure [11–13]. For example, our 

recent whole-genome sequencing effort in 320 SSA identified about 30 million variants [11], 

of which up to a quarter were unobserved in other populations from the 1000 Genomes 

sequencing project [12], indicating a need for large-scale deep sequencing of diverse 

populations across SSA and a need for a better genotyping array. Although some efforts 

have been made to address these concerns, including the recent development of the Infinium 

Multi-Ethnic Genotyping Array (MEGA) and the Affymetrix® Axiom® Genome-Wide Pan-

African (PanAFR) Array, there remains a need for the development of a pan-African 

genotyping array that captures a larger proportion of common genetic variation across 

diverse African populations [11]. To achieve this goal, the H3Africa consortium has joined 

with the Wellcome Trust Sanger Institute, Illumina, and others to develop a genotyping array 

by interrogating whole-genome sequences from over 4,000 Africans sampled across the 

continent. There is also a need for improvements in algorithms for ancestry inference from 

whole-genome sequence data. Methodological issues include accounting for uncertain 

genotypes [45,46], linkage disequilibrium and phase [47], low-coverage sequence reads 

[48], and inadequate or missing source populations.

Conclusions

The history of the African Diaspora as defined in this opinion piece is complex, dynamic 

and continuous. With Africa at its root, members of the Diaspora developed multifaceted 

religious, cultural, and socio-political characteristics to adapt and survive in their new 

environments. As demonstrated above, genomics is beginning to facilitate better 

understanding of these multilayered stories and their implications for human history and 

health. However, more comprehensive sampling and genetic characterization of the 

populations of the African Diaspora and their ancestral homelands is urgently needed if 

these groups are to benefit from genomic medicine.
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Figure 1. 
Individual admixture proportions from New World samples [12]. The six samples are 

African Caribbean in Barbados (ACB), People with African Ancestry in Southwest USA 

(ASW), Puerto Ricans in Puerto Rico (PUR), Colombians in Medellín, Colombia (CLM), 

People with Mexican Ancestry in Los Angeles, California (MXL), and Peruvians in Lima, 

Peru (PEL). Conditional on eight ancestries, yellow corresponds to Western African 

ancestry, aquamarine corresponds to West-Central African ancestry, blue corresponds to 

Southern European ancestry, orange corresponds to Northern European ancestry, purple 

corresponds to Native American ancestry, red corresponds to South Asian ancestry, green 

corresponds to East Asian ancestry, and black corresponds to Southeastern Asian ancestry. 

Rotimi et al. Page 13

Curr Opin Genet Dev. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Summing the Western and West-Central African ancestries, the range of individual 

admixture proportion across these six samples goes from 0% to 97.8%. Similarly, the range 

of individual admixture proportion for Native American ancestry goes from 0% to 100%.
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Figure 2. 
Geographic distribution of Trypansoma brucei and APOL1 risk variants. (A) Cumulative 

incidence from 1990 to 2014 of human African trypanosomiasis due to Trypansoma brucei 
gambiense (gHAT) and Trypanosoma brucei rhodesiense (rHAT) [75]. Uganda is the only 

country reporting trypanosomiasis due to both subspecies, with a higher cumulative 

incidence of gHAT. (B) Global frequency distribution of the G allele of the S342G mutation 

[11,12,28,49,76–78]. The Esan in Nigeria have the highest frequency (49.5%). (C) Global 

frequency distribution of the G2 deletion [12,28,32,49,77]. Bantu-speaking people in South 

Africa (Herero, Ovambo, Pedi, Sotho, Tswana, and Zulu) have the highest frequency 

(21.4%).
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Table 1

Examples of natural selection with implications for human health

Adapted Genes Beneficial Trait Negative Outcome References

APOL1 Protection against Human African 
Trypanosomiasis (HAT)

Kidney disease [27–36,49]

ATP1A1, AQP2, CSK Climate adaptation Hypertension and osmoregulation [11,37,38]

PPARA Energy metabolism during prolonged 
food deficiency

None known to date [50]

CIC, PAFAH1B3, LIPE, 
BHLHE41

High altitude adaptation None known to date [25,26]

LARGE, IL21 Confers protection against the Lassa 
virus

None known to date [51]

DMD Confers protection against the Lassa 
virus

1) Increased replication of vaccinia virus. 2) 
Duchenne and Becker muscular dystrophy

[52]

DARC Confers resistance to P. vivax Benign ethnic neutropenia [53–59]

HBB Confer incomplete resistance to lethal 
forms of malaria

Sickle Cell Trait and Sickle Cell Disease [60–65]

Regulatory deficiencies of 
HBA and HBB

Confers incomplete resistance to lethal 
forms of malaria

α and β thalassemia [66,67]

CCR5 Δ32 deletion Confers HIV protection 1) CCR5 Δ32 are at higher risk for tick-borne 
encephalitis. 2) Fully functional CCR5 reduces 
symptoms from infection with West Nile virus

[68–71]

LCT Lactase persistence None known to date [21,72,73]

AMY1 Increased copies of the gene in areas 
where starch is consumed

None known to date [74]
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