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SUMMARY

Compositional measures of articular cartilage are accessible in vivo by magnetic resonance
imaging (MRI) based relaxometry and cartilage spin-spin transverse relaxation time (T2) has been
related to tissue hydration, collagen content and orientation, and mechanical (functional)
properties of articular cartilage. The objective of the current study was therefore to evaluate
subregional variation, and sex- and age-differences, in laminar (deep and superficial) femorotibial
cartilage T2 relaxation time in healthy adults. To this end, we studied the right knees of 92 healthy
subjects from the Osteoarthritis Initiative reference cohort (55 women, 37 men; age range 45-78
years; BMI 24.4+3.1) without knee pain, radiographic signs, or risk factors of knee osteoarthritis
in either knee. T2 of the deep and superficial femorotibial cartilages was determined in 16
femorotibial subregions, using a multi-echo spin-echo (MESE) MRI sequence. Significant
subregional variation in femorotibial cartilage T2 was observed for the superficial and for the deep
(both p<0.001) cartilage layer (Friedman test). Yet, layer- and region-specific femorotibial T2 did
not differ between men and women, or between healthy adults below and above the median age
(54y). In conclusion, this first study to report subregional (layer-specific) compositional variation
of femorotibial cartilage T2 in healthy adults identifies significant differences in both superficial
and deep cartilage T2 between femorotibial subregions. However, no relevant sex- or age-
dependence of cartilage T2 was observed between age 45-78y. The findings suggest that a
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common, non-sex-specific set of layer-and region-specific T2 reference values can be used to
identify compositional pathology in joint disease for this age group.
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Osteoarthritis Initiative; Healthy Reference; Knee

1. Introduction

Compositional and morphological changes are known to occur in human articular cartilage
with age-related structural pathology, such as osteoarthritis (OA) (Grushko et al., 1989;
Liess et al., 2002; Meachim, 1971; Meachim et al., 1977). Differences in the risk of
developing knee OA between women and men (Neogi and Zhang, 2013) may be suggestive
of potential differences in cartilage composition between sexes. Characterization of sex-
specific and age-related cartilage composition in healthy subjects is a prerequisite for
distinguishing between normal aging processes and disease related pathological alterations,
such as those occurring in OA.

One of the most robust techniques for the in vivo assessment of the cartilage composition is
the magnetic resonance imaging (MRI)-based spin-spin (transverse) (T2) relaxometry
(Dardzinski and Schneider, 2013; Mosher et al., 2011; Mosher and Dardzinski, 2004) and
cartilage T2 times have been reported to be associated with cartilage composition, in
particular hydration, collagen integrity and orientation (Baum et al., 2013; Liess et al., 2002;
Mosher and Dardzinski, 2004). Although not specific to a single compositional measure,
cartilage T2 was shown to correlate with histological grading (David-Vaudey et al., 2004; T.
Kim et al., 2014) and with the mechanical properties (Lammentausta et al., 2006; Mosher
and Dardzinski, 2004) of articular cartilage, providing a link between cartilage composition
and function. Therefore, cartilage T2 has gained interest as an imaging biomarker for “early
stages of OA (Baum et al., 2013; Joseph et al., 2011; Jungmann et al., 2013; Mosher and
Dardzinski, 2004), in which therapeutic intervention is potentially more successful than at
more advanced disease stages.

In accordance with marked differences in collagen orientation between the superficial and
deep cartilage layer (Glaser and Putz, 2002), cartilage T2 times have been shown to vary
substantially between the bone interface and cartilage surface in healthy cartilage
(Dardzinski and Schneider, 2013; Smith et al., 2001), and to differ between cartilage plates
in the knee (Dardzinski and Schneider, 2013; Joseph et al., 2015).

In vitro studies have reported change in human cartilage composition with age, such as a
decline of proteoglycan synthesis and content (DeGroot et al., 1999) and a reduction in
interstitial water content (Grushko et al., 1989). Biomechanical experiments have described
a reduction in compressive (Armstrong et al., 1979; Armstrong and Mow, 1982) and tensile
(Kempson, 1991) stiffness of cartilage with age, whereas other studies suggested cartilage
may become stiffer due to age-related alterations in matrix composition (Bank et al., 1998).
Early T2 relaxometry studies failed to identify sex-differences in cartilage T2 in young

Ann Anat. Author manuscript; available in PMC 2018 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wirth et al.

Page 3

healthy participants (Mosher et al., 2004a), but reported T2 values to become longer with
advanced age in the superficial layer of patellar cartilage (Mosher et al., 2004b). In a cross
sectional study, skeletal maturation in children was reported to result in a sequential decrease
in cartilage T2 relaxation times that was sex-dependent (H. K. Kim et al., 2014). Following
adolescent athletes longitudinally, a decrease in cartilage T2 was confirmed in the deep
layers of the medial femorotibial compartment cartilages, that did not differ between males
and females (Wirth et al., 2014). No such compositional change during maturation was, in
contrast, observed in the superficial layers, or in the deep or superficial layers of knee
cartilages of mature athletes in the same study (Wirth et al., 2014).

Reference databases of normal values are an important prerequisite for the diagnosis or for
grading the disease severity. In osteoporosis, for instance, bone mineral density reference
data from young healthy subjects (t-scores) and from age-matched healthy subjects (z-
scores) are used to classify an individual as “normal”, “osteopenic” or “osteoporotic” and to
express the severity of osteoporosis. A recent paper provided reference data for knee
cartilage T2 in participants without (MRI) evidence of cartilage degeneration based on
WORMS (Peterfy et al., 2004) cartilage scorings (Joseph et al., 2015) and two studies
previously reported cartilage T2 times from larger subsamples of the OAI healthy reference
cohort (Pan et al., 2011; Wirth et al., 2016). However, two of these studies (Joseph et al.,
2015; Pan et al., 2011) examined “bulk” T2 averages throughout the full depth of the
cartilage instead of laminar cartilage T2 times and examined T2 times in the entire femur
without taking potential compositional differences between the central, weight-bearing part
and the non-weight-bearing parts of the femur into account, and none of these studies
assessed cartilage T2 times in subregions (e.g. central vs. peripheral) of knee cartilage
plates. In addition, the study by Joseph et al. involved subjects from the incident cohort of
the Osteoarthritis Initiative (OAI) with dedicated risk factors of incident OA, which can
therefore not be regarded as being strictly healthy (Joseph et al., 2015).

The objective of the current study was therefore, to provide MRI-based T2 relaxation time
reference data of layer- and subregion-specific knee cartilage composition in a cohort of

healthy adult reference subjects without knee pain, radiographic evidence of OA, and risk
factors of OA, and to study the relationship of the layer- and region-specific T2 times with
sex and age in cartilage laminae and subregions in this adult healthy reference population.

2. Material and methods

2.1 Study participants

The participants for this study were selected from the healthy reference cohort of the
Osteoarthritis Initiative (OAI; http://www.oai.ucsf.edu/, clinicaltrials.gov identifier:
NCT00080171)(Eckstein et al., 2012), a large epidemiological study designed to study the
incidence and progression of knee OA. All OAI participants provided written informed
consent, and the study was carried out in accordance with the IRB-approved OAI data user
agreement, approved by the Committee on Human Research of the Institutional Review
Board for the University of California, San Francisco (UCSF).

Ann Anat. Author manuscript; available in PMC 2018 March 01.


http://www.oai.ucsf.edu/
http://clinicaltrials.gov

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wirth et al.

Page 4

The OAI recruited 4796 participants aged 45-79 years, with (or with risk of) knee OA
(Eckstein et al., 2012). All participants were free of rheumatoid or other inflammatory
arthritis, bilateral end-stage knee OA, inability to walk without aids, and MRI
contraindications at the time of enroliment (Eckstein et al., 2012). For reference purposes,
the OAL also included a “non-exposed” reference cohort of 122 healthy participants. These
participants were free of clinical signs of knee OA (e.g. knee pain), were not exposed to risk
factors for developing knee OA (including obesity, knee injury, knee surgery, a family
history of TKA in a biological parent or sibling, Heberden’s nodes, or repetitive knee
bending during daily activities) and had no signs of radiographic abnormalities in either
knee according to the OAI clinical site readings (Eckstein et al., 2012). Of these 122
reference cohort participants, 23 were later found to have doubtful (Kellgren & Lawrence
grade [KLG] 1) or definite (KLG 2) radiographic OA in at least one knee based on central
radiographic readings performed by expert readers from Boston University (Eckstein et al.,
2012), resulting in 99 participants, who were confirmed to be bilaterally free of radiographic
OA. For the current study, we used data and MR images from 92 of the 99 participants that
also had at least one follow-up time point. This sample (n=92) comprised 37 men and 55
women, aged 54.7 + 7.5 years (range: 45 — 78 years) with a BMI of 24.4 + 3.1 kg/m2.

2.2 MR imaging and femorotibial cartilage T2 analysis

The OAI acquired sagittal multi-echo spin-echo (MESE) MR images in one of the knees
(usually the right one) of all OAI participants (Figure 1) using 3T MRI scanner (Siemens
Magnetom Trio, Erlangen, Germany) and quadrature transmit/receive knee coils (USA
Instruments, Aurora, OH) (Eckstein et al., 2012; Peterfy et al., 2008). The slice thickness of
the MESE acquisitions was 3 mm, the field of view was 120 mm (matrix: 269 [phase] x 384
[frequency] interpolated to 384 x 384 pixels, in-plane resolution 0.3125 x 0.3125 mm), the
repetition time was 2700 ms, and the echo times were 10, 20, 30, 40, 50, 60, and 70 ms
(Peterfy et al., 2008).

The femorotibial cartilages, i.e. the medial and lateral tibia (MT/LT) and the central, weight-
bearing femoral part of the medial and lateral femoral condyles (cMF/cLF) were manually
segmented by an experienced reader (S.M) using the MESE MRIs (Wirth et al., 2014). The
tibial cartilage was segmented entirely, whereas the weight-bearing, central part of the
femoral condyles was defined as 75% of the distance between the inter-condylar notch and
the most posterior aspect of the condyles (Eckstein et al., 2009) (Fig. 1F).

Cartilage T2 times (in ms) were computed for each (segmented) voxel using a non-linear
method by fitting a mono-exponential decay curve to the measured signal intensities (Li and
Hornak Joseph P, 1994). The 15t echo (10 ms) was excluded from the fit, in order to reduce
the impact of stimulated echoes (Mosher and Dardzinski, 2004). Voxels with R2<0.66 for
the curve fitting were not included in the analysis, to avoid contribution from voxels with
low image quality (Wirth et al., 2014).

After computing bulk T2 times for each of the 4 segmented cartilage plates, the MT and LT
were each computationally divided into one central (C(MT/cLT), one external (eMT/eLT),
one internal (iMT/IiLT), one anterior (aMT/aLT), and one posterior (pMT/pLT) subregion,
using a previously published methodology for cartilage thickness measurements (Eckstein et
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al., 2014, 2012; Wirth and Eckstein, 2008) (Figure 1). Similarly, the cMF and cLF were
divided into central (ccMF/ccLF), external (ecMF/ecLF, and internal (icMF/icLF)
subregions (Wirth and Eckstein, 2008) (Figure 1). To account for the spatial association
between cartilage T2 times and tissue depth (Dardzinski and Schneider, 2013; Mosher and
Dardzinski, 2004), each of the four cartilage plates and 16 subregions was computationally
divided into a superficial and a deep layer after segmentation has been completed,
comprising 50% of the distance between the segmented cartilage surface and the bone
interface, respectively (Wirth et al., 2014). For reference purposes, we also report the
cartilage thickness for each cartilage plate and subregion, as determined from a
morphometry-specific cartilage imaging sequence described in an earlier publication
(Eckstein et al., 2010).

The average deep and superficial layer cartilage T2 times in the entire femorotibial joint
(FTJ) were computed as the average T2 times of all 4 cartilages (FTJ = Average(MT, LT,
cMF, cLF)). The average deep and superficial layer cartilage T2 times in the medial and
lateral compartment (MFTC/LFTC) were computed as the average deep and superficial layer
cartilage T2 times of the respective cartilages (MFTC = Average(MT, cMF), LFTC =
Average(LT, cLF)). The average deep and superficial layer cartilage T2 times in the
combined central subregion of the medial and lateral compartment (cMFTC/cLFTC) were
computed as the average deep and superficial layer cartilage T2 times of the respective
central subregions (cMFTC = Average(cMT, ccMF), cLFTC = Average(cLT, ccLF)).

2.2 Statistical analysis

All statistical analyses were performed using IBM SPSS 22 (IBM Corporation, Armonk,
NY). The deep and superficial layer T2 times in combined measures, cartilage plates, and
subregions were described using the mean, the standard deviation, and the 95% confidence
intervals.

To test, whether cartilage composition differed significantly between femoraotibial
subregions within each cartilage plate, non-parametric Friedman tests were applied to
superficial and deep cartilage, respectively. To explore the specific pattern of the subregional
deep and superficial cartilage T2 times, subregional T2 was compared to the average T2 in
the same cartilage plate, using a non-parametric Wilcoxon signed rank tests. The
significance level was set to p=0.01 for this explorative analysis, to account for the multiple
parallel comparisons.

To determine whether deep and superficial cartilage T2 times differed between and men and
women and between participants in the youngest (45 — 48 years) and oldest (58 — 78 years)
quartile, non-parametric Mann-Whitney-U tests were used. The primary analytic focus for
these two comparisons was the deep and superficial cartilage T2 time in the entire FTJ.
Cartilage T2 times in the MFTC and LFTC were considered a secondary focus. Cartilage T2
times in individual cartilage plates and subregions were considered exploratory. The
significance level was adjusted to p=0.0083 (p=0.05/6) to account for the six parallel
comparisons (2 layers, 3 analytical measures).
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Cartilage T2 was consistently longer in the superficial than in the deep layer, and longer in
femoral than in tibial cartilage (Table 1). The superficial vs. deep layer T2 ratio ranged from
1.22 +£0.09 (95% ClI: [1.20, 1.23]) in cLF to 1.37 £ 0.07 (95% ClI: [1.35, 1.38]) in LT.

3.1. Subregional distribution of deep and superficial layer cartilage T2 times

The T2 values differed significantly between cartilage subregions, both for the superficial
and for the deep cartilage layer (p<0.001). In the superficial layer, cartilage T2 times were
longer in the central femoral subregions when compared to the total cartilages plate (Table 1
& Figure 2). In the LT, T2 times were shorter in the central subregion than for the entire
cartilage plate, but were longer in the posterior subregion (Table 1 & Figure 2). Longer T2
times than average were also observed in the external subregions of both the MT and the LT,
and in the internal subregion of the cMF (Table 1 & Figure 2). In contrast, shorter T2 times
than average were observed in the internal subregions of both the MT and LT, and in the
external subregions of both the cMF and cLF (Table 1 & Figure 2).

In the deep layer, the cartilage T2 times were generally shorter than average in the central
subregions (Table 1 & Figure 2). Shorter T2 times were also observed in the internal
subregion of the MT and the external subregion of the cMF. Longer T2 times than average
were observed in the external subregions of MT, LT, and cLF, in the internal subregions of
LT, cMF, and cMF, and in the posterior subregions of both MT and LT (Table 1 & Figure 2).

The strongest deviations of superficial layer cartilage T2 times from average were observed
in the ecMF (=5.0 +2.8 [-5.6, —4.4] ms) and eLT (+3.8 +3.5 [3.1, 4.5] ms), and those of
deep layer T2 in ccMF (-4.3+2.2 [-4.7, —3.8] ms), cLT (-4.3+1.8 [-4.7, —=3.9] ms) and
icCMF (+5.4+3.5 [4.7, 6.1] ms, Table 1 & Figure 2).

3.2. Sex differences in cartilage T2 times

Cartilage T2 averaged across the total femorotibial joint did not differ significantly between
men and women in either the superficial (45.6+2.1 [44.9, 46.3] ms vs. 45.3 £2.5 [44.6, 45.9]
ms, p=0.26, Table 2) or deep cartilage layers (35.5+1.7 [34.9, 36.1] ms vs. 36.0+1.8 [35.5,
36.5] ms, p=0.32, Table 3). In the MFTC, the superficial T2 times tended to be longer in
men (46.2+2.7 [45.3, 47.1] ms) than in women (45.1+2.9 [44.3, 45.9] ms), but the difference
did not reach the adjusted significance level (p=0.029, Table 2). Deep layer LFTC T2 times,
in contrast, tended to be longer in women (35.7£2.0 [35.2, 36.3] ms) than in men (34.8+1.7
[34.2, 35.4] ms), but again the difference did not meet the adjusted significance level
(p=0.018, Table 3).

In the exploratory analyses, significant differences between men and women were observed
in the superficial layer of the MT (Table 2), specifically in aMT (Table 2), and in the deep
layer of iLT and icLF (Table 3).

3.3. Age-related differences in cartilage T2 times

Cartilage T2 averaged across the total femorotibial joint did not differ significantly between
participants in the youngest versus participants in the oldest quartile in either the superficial
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(45.8+3.1 [44.4, 47.1] ms vs. 45.7 £1.8 [44.9, 46.4] ms, p=0.94, Table 4) or the deep
cartilage layer (36.3+2.2 [35.3, 37.2] ms vs. 35.9+1.5 [35.2, 36.5] ms, p=0.27, Table 5).
Also, no significant age differences were observed in the medial and lateral femorotibial
compartment, cartilage plates, and subregions (Tables 4 & 5) or when comparing deep and
superficial cartilage T2 times between participants older and younger than the median age of
54 years (data not shown).

4. Discussion

This is the first study to characterize subregional (layer-specific) compositional differences
in femorotibial cartilage by MRI spin-spin (transverse) relaxation time (T2) in healthy
adults, and to relate T2 systematically throughout different subregions and layers with sex
and age. The study identified significant differences in both superficial and deep cartilage T2
between subregions, whereas no relevant sex- or age-dependency was observed for the age
range of adult healthy subjects examined here. These findings suggest that men and women,
and subjects aged 45—-78 years may be pooled in analyses of subregional and layer specific
cartilage T2, if these are acquired in truly healthy knees without symptoms, signs or risk
factors of OA.

The limitations of the current study are that cartilage T2 was examined in only two layers,
each comprising 50% of the full cartilage thickness, whereas histologically, at least 3 zones
can be identified based on the collagen orientation and other structural features, that cover
various percentages of the cartilage thickness (Glaser and Putz, 2002). However, the in plane
resolution of 0.3125 mm (and 3 mm slices thickness) of the MESE sequence precluded the
analysis of a higher number of cartilage laminae, in view of cartilage thickness values of < 2
mm in some of the peripheral femorotibial subregions. Yet, a strength of the study was the
use of 3T MRI that permitted acquisition of MESE images at a high in-plane resolution
(Peterfy et al., 2008). Another limitation is the small sample size, but the subjects included
were rigorously selected to be free of symptoms, signs and risk factors of knee OA, and thus
can be viewed as “super-normals” when compared to reference groups commonly used in
epidemiological studies. Finally, limitations arise from the number of parallel comparisons
that had to be performed in exploring potential differences between regions, and for the
comparison between men and women, and youngest vs. oldest subjects, but the significance
level was adjusted to account for the parallel tests, and a clear hierarchical set of tests was
defined upfront for the comparison between men and women, and youngest vs. oldest
participants.

When taking the average of the deep and superficial T2 times as an approximation of the
bulk T2 times in the cartilage plates, the bulk T2 times observed in the tibial cartilages were
up to 3ms longer and the bulk T2 times observed in the central medial femur were up to 4
ms shorter than the medial femoral condyle T2 times reported by Pan et al. for a different
subset of participants from the OAI reference cohort (Pan et al., 2011). These differences
can potentially be attributed to methodological factors including different segmentation
methods or the inclusion of the 15t echo for the calculation of the cartilage T2 times in the
study by Pan et al. (Pan et al., 2011), whereas in the current study, the 15t echo was excluded
to reduce the impact of stimulated echoes (Mosher and Dardzinski, 2004).
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Cartilage T2 relaxation times are known to depend on the orientation of the collagen fibers
relative to the main magnetic field (magic-angle effect) (Mosher and Dardzinski, 2004), in
particular in the deep, radial zone (Xia et al., 2002). In the current study, we have calculated
the vector normal to the subchondral bone surface area as an approximation of the collagen
orientation in the deep layer, to estimate the impact of the angular dependency between the
collagen orientation and the orientation of the main magnetic field on subregional T2 times
(data not shown). The orientation of the central, external, and anterior subregions in the main
magnetic field was observed to be similar to the orientation of the respective entire cartilage
plates, whereas somewhat larger angles were observed for the posterior and the internal
subregions. When compared to the laminar T2 times in the respective entire cartilage plates,
we observed both shorter and longer T2 times in subregions with similar orientations (e.g.
internal subregions) indicating that the orientation of the subregions relative to the main
magnetic field is unlikely to explain the variation between subregional T2 times. This can
probably be attributed to the fact that the average angles observed for the subregions (4° -
26°) were much smaller than the magic angle (54.7°), where the cartilage T2 times reach
their maximum (Xia et al., 2002). Previous studies have also shown that the relative
proportion of radial, transitional, and superficial cartilage varies between the central and the
peripheral parts of the cartilages (Clark, 1991) and that the composition and biomechanical
properties differ between areas of high and low weight-bearing (Akizuki et al., 1986; Gomez
et al., 2000; Xia, 2000). The observed spatial pattern of subregional cartilage T2 times is
therefore most likely caused by a combination of the above effects, but the specific
contribution of these effects needs to be quantified in future studies. It is also worth noting
that the combined central medial femorotibial compartment displayed longer cartilage T2
than the combined central lateral femorotibial compartment, with the medial compartment
commonly taking more of the load transfer compared with the lateral one (Johnson et al.,
1980). We have no reasonable explanation, however, as to why, from a biomechanical point,
femoral cartilage subregions displayed substantially longer T2 than tibial subregions, both
for the superficial and for the deep cartilages.

The reference values reported in the current study were based on normal-weight OAI healthy
reference cohort participants aged 45 to 78 years, which had no signs or risk factors for
developing knee OA. Although no significant association was observed between age and
cartilage T2 times in the current study, reference values for other, younger cohorts may
potentially differ from the reference values reported in the current study. The age of the
participants included in the current study, however, covered the age range typically analyzed
in knee osteoarthritis studies. Cartilage T2 times for cohorts with different BMI
characteristics will most likely also differ from the reference values reported here, given that
previous studies reported significant associations between BMI and cartilage T2 times
(Joseph et al., 2015; Serebrakian et al., 2015). Obesity has, however, been identified as an
important risk factor for developing knee OA (Felson et al., 1997) and cohorts with higher
BMI should therefore not be used as basis for providing normal reference values.

Previous reports have been inconsistent with regard to reporting sex- and age-differences in

cartilage T2. Our present study shows that, if strictly healthy (i.e. supernormal) subjects are

studied, no significant association of cartilage T2 with sex or age are observed. In particular,
the variation between men and women, and that of older vs. younger adults was much
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smaller than that between cartilage layers (superficial vs. deep), between plates (femoral vs.
tibial), and between subregions. The inconsistent findings previously reported (H. K. Kim et
al., 2014; Mosher et al., 2004a, 2004b) may be due to OA related structural pathology, in
particular cartilage lesions, becoming more frequent with age, even in the absence of
radiographic signs of knee OA (Guermazi et al., 2012). Hence, the age-dependency of
cartilage T2 observed in previous studies may be due to cartilage pathology rather than
normal cartilage aging, and may not be observed when risk factors of knee OA are
rigorously eliminated. Similar considerations apply to sex-differences previously reported
for cartilage T2, given that women have a higher prevalence of knee OA than men (Neogi
and Zhang, 2013). The lack of sex-differences as well as that of an age-dependence in
cartilage T2 across the age range studied here greatly simplifies the identification of
pathological compositional change of cartilage T2 in joint disease (OA), as it suggests that
the same reference values can be used for men and women and for an age range of 45-78
years that applies to most studies of knee OA.

In conclusion, this is the first study to report subregional, layer-specific compositional
variation in femorotibial cartilage T2 (spin-spin/transverse) relaxation time in healthy adults,
and the first study to report significant differences between femorotibial subregions in both
the superficial and deep cartilage layers. No relevant sex- or age-dependency of cartilage T2
was, however, detected between age 45 and 78, suggesting that a common set of layer-and
region-specific T2 reference values can be used for this age range to identify compositional
pathology in joint disease.
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Fig. 1.
Sagittal multi-echo spin-echo (MESE) images showing the cartilages in the medial

compartment; A) — D) MESE images acquired at echo times of 10, 30, 50, and 70 ms; E)
Color-coded T2map; F) T2 map as in E), showing the femoral region of interest (ROI) and
the segmented cartilage of the medial tibia (MT) and the central medial femur (cMF) divided
into the superficial (red) and deep (blue) cartilage layers.
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Fig. 2.
Difference between laminar subregional cartilage T2 times (mean £ SD difference in ms)

and the cartilage T2 times in the superficial (S) and deep (D) layers of the respective total
cartilages (mean £ SD in ms).The 3D illustration also shows the central (c), external (e), and
internal (i) subregions of the central part of the medial (cMF) and lateral (cLF) femur and
the central (c), external (e), internal (i), anterior (a), and posterior (p) subregions of the
medial (MT) and lateral (LT) tibia.
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