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Background: Colorectal carcinoma (CRC) is the third most common cancer worldwide. Platinum-based anticancer compounds still
constitute one mainstay of systemic CRC treatment despite limitations due to adverse effects and resistance development.
Trabectedin has shown promising antitumor effects in CRC, however, again resistance development may occur. In this study, we
aimed to develop strategies to circumvent or even exploit acquired trabectedin resistance in novel CRC treatment regimens.

Methods: Human HCT116 CRC cells were selected for acquired trabectedin resistance in vitro and characterised by cell biological
as well as bioinformatic approaches. In vivo xenograft experiments were conducted.

Results: Selection of HCT116 cells for trabectedin resistance resulted in p53-independent hypersensitivity of the selected subline
against cisplatin. Bioinformatic analyses of mRNA microarray data suggested deregulation of nucleotide excision repair and
particularly loss of the ubiquitin ligase CUL4A in trabectedin-selected cells. Indeed, transient knockdown of CUL4A sensitised
parental HCT116 cells towards cisplatin. Trabectedin selected but not parental HCT116 xenografts were significantly responsive
towards cisplatin treatment.

Conclusions: Trabectedin selection-mediated CUL4A loss generates an Achilles heel in CRC cancer cells enabling effective
cisplatin treatment. Hence, inclusion of trabectedin in cisplatin-containing cancer treatment regimens might cause profound
synergism based on reciprocal resistance prevention.

Trabectedin (Yondelis, ecteinascidin 743) is a marine alkaloid
originally derived from the sea squirt Ecteinascidia turbinata
(Ganjoo and Patel, 2009; Vincenzi et al, 2010). The unique
mechanism of action of trabectedin is distinct from that of other
DNA-targeting anticancer agents. It binds to the N2 position of
guanines in the minor groove of GC-rich regions, bending the

DNA helix towards the major groove (D’Incalci and Galmarini,
2010). In addition to forming covalent interactions with DNA,
hence causing helix distortions and DNA damage, it also protrudes
from the minor groove, where it interferes with various DNA-
binding proteins. By this, trabectedin inhibits interaction of
important transcription factors such as E2F, SRF or NF-Y with
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the respective binding sites at target gene promoters (Bonfanti et al,
1999). Another important function of trabectedin is based on its
interference with nucleotide excision repair (NER) proteins such as
XPG, leading to the formation of cytotoxic ternary protein–DNA
complexes. These complexes are thought to inhibit efficient
recruitment of further repair factors, resulting in transcription-
and replication-coupled DNA double strand breaks and apoptosis
induction (Larsen et al, 2016). This illustrates that functional NER
is crucial for the action of trabectedin.

Nucleotide excision repair (NER) is a DNA repair mechanism
that eliminates a wide range of structurally unrelated DNA lesions,
including, amongst others, UV light-induced pyrimidine dimers,
bulky adducts, and intrastrand crosslinks caused by chemother-
apeutic agents such as cisplatin (Marteijn et al, 2014). This repair
mechanism comprises the recognition of helix distortions by
Xeroderma pigmentosum C (XPC) in conjunction with the
auxiliary factors DNA damage-binding proteins DDB1 and
DDB2 that associate with the cullin 4a (CUL4A)-containing E3
ubiquitin ligase complex CRL. Activation of the CRL complex leads
to ubiquitylation of several key target proteins such as XPC itself to
initiate removal of the DNA lesion. Defects in the NER pathway
are associated with a variety of disorders such as xeroderma
pigmentosum, resulting in predisposition to UV-induced skin
cancer but also in increased sensitivity towards alkylating agents
and platinum drugs (Marteijn et al, 2014). Interestingly, this is in
contrast to trabectedin, which is generally considered to be inactive
in a NER-deficient background (Zewail-Foote et al, 2001; Herrero
et al, 2006; Colmegna et al, 2014).

In the course of the last decades, remarkable activities have been
described for trabectedin in various cancer types (Larsen et al,
2016). This has paved the way for clinical approval of trabectedin
for patients with advanced soft tissue sarcoma who have failed or
who are not eligible for first-line treatment with ifosfamide and
anthracyclines as well as for combination with pegylated liposomal
doxorubicin in therapy-refractory, platinum-sensitive ovarian
cancer (Monk et al, 2010; Demetri et al, 2016; Moriceau et al,
2016). Besides these, there is also evidence for trabectedin efficacy
in other cancer types such as meningioma or colorectal carcinoma
(CRC; Paz-Ares et al, 2007; Preusser et al, 2012).

Colorectal carcinoma (CRC) is the third most commonly
diagnosed cancer worldwide (Torre et al, 2015). In the last decades,
the molecular pathogenesis of CRC has been elucidated in great
detail, which has resulted in the identification of numerous
mechanisms promoting tumorigenesis. Despite this, success in the
search for molecular therapy targets and predictive biomarkers has
been limited. To date, targeted therapies for treatment of CRC
include the small molecule multi-kinase inhibitor regorafenib as
well as monoclonal antibodies targeting vascular endothelial
growth factor A (VEGF-A; bevacizumab) and epidermal growth
factor receptor (cetuximab; Cohen et al, 2007; Lieberman, 2012; Li
et al, 2015). However, also in the case of targeted agents, clinical
benefit is often moderate and relapse occurs regularly (Stintzing,
2014). For these reasons, the use of chemotherapeutic agents such
as oxaliplatin and irinotecan still constitutes the standard
treatment for CRC and the mortality of this disease remains high
at B33% in developed countries (Torre et al, 2015). Therefore, it is
crucial that new therapeutic strategies are developed to improve
the outcome of patients suffering from this disease. In preclinical
studies, trabectedin has been described to exert strong cytotoxicity
in CRC cell lines either as single agent or in combination with
other anticancer compounds. However, also development of
acquired resistance has been described (Takebayashi et al, 2001a;
Stevens et al, 2008; Larsen et al, 2016).

Here we aimed to understand factors underlying unresponsive-
ness of CRC cells towards trabectedin and, further, to develop
strategies to deal with or even exploit these mechanisms
therapeutically. Therefore, we selected HCT116 human CRC cells

with a p53 wild-type and knock-out (KO) background for
resistance against trabectedin. Acquired HCT116 cell unrespon-
siveness towards trabectedin resulted in p53-independent and
stable hypersensitivity against the platinum compounds cisplatin
and carboplatin in vitro. Additionally, it resulted in cisplatin
responsiveness of the respective xenografts in vivo. Hence
combination regimens comprising cisplatin and trabectedin might
exert synergistic and durable responses based on reciprocal
resistance blockade.

MATERIALS AND METHODS

Cell culture. The human CRC cell lines HCT116 and its p53� /�
counterpart HCT116-p53KO were kindly provided by
Dr Vogelstein from John Hopkins University, Baltimore. HCT116
and HCT116-p53KO cells were cultured in McCoy’s medium (Sigma,
St. Louis, MO, USA) supplemented with 10% foetal calf serum (FCS,
PAA, Linz, Austria) and 2 mM glutamine (Sigma) at 37 1C and 5%
CO2. The human CRC cell lines DLD-1 and SW480 were obtained
from American Type Culture Collection (Manassas, VA, USA) and
cultured in RPMI-1640 supplemented with 10% FCS. Cells were
authenticated by array comparative genomic hybridisation (aCGH)
and regularly checked for Mycoplasma contamination (Mycoplasma
Stain kit, Sigma).

Drugs and chemicals. Trabectedin was obtained from Pharma-
mar (Madrid, Spain). TRAIL was purchased from Life Technol-
ogies (Carlsbad, CA, USA), Z-VAD-FMK from Enzo Life Sciences
(Lausen, Switzerland). Cisplatin, carboplatin, oxaliplatin and
novobiocin were purchased from Sigma.

Selection of HCT116 for acquired trabectedin resistance. The
trabectedin-resistant subline HCT116/Y1 and its p53� /�
counterpart HCT116-p53KO/Y1 were generated by in vitro
exposure to the drug. Cells were exposed to 100 nM trabectedin
for 24 h twice weekly for several months. Revertant cell lines of
both, HCT116/Y1 and HCT116-p53KO/Y1 cells, were generated
by removal of trabectedin selection pressure for 6 months and were
termed HCT116/Y1R and HCT116-p53KO/Y1R, respectively.
Resistance levels were constantly monitored by cell viability assay.

Cell viability assay. To determine cell viability in response to drug
exposure, 3� 103 cells were seeded in 96-well plates and allowed to
adhere for 24 h. Cells were exposed to drugs or UV irradiated.
After 72 h, cell survival was determined by the 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based colori-
metric vitality assay (EZ4U, Biomedica, Vienna, Austria) following
the manufacturer’s instructions. Dose–response curves were
generated by GraphPad Prism software (San Diego, CA, USA).
IC50 values were calculated expressing drug concentrations
resulting in a 50% reduction of viable cell number in comparison
to untreated controls.

Determination of DNA platination levels by inductively coupled
plasma mass spectrometry. HCT116 and HCT116/Y1 cells
(3� 105) were seeded in six-well plates and exposed to 10 mM or
25 mM cisplatin at 37 1C for 4 and 24 h. DNA was isolated and DNA
platination levels were determined by ICP-MS using an Elan 6100
(PerkinElmerSciex Instruments, Boston, MA, USA) as previousely
described (Heffeter et al, 2010). Results are expressed as platinum
amount per milligram of DNA. Data were analysed using
GraphPad Prism software.

Modified alkaline comet assay (single-cell gel electrophoresis
assay). To assess the levels of cisplatin-induced DNA crosslinking,
DNA migration from nuclei of cells treated with increasing
concentrations of cisplatin was studied using the modified alkaline
comet assay (Tice et al, 2000; Zheng et al, 2005). Cells (5� 105)
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were seeded in six-well plates and allowed to adhere for 24 h. Cells
were treated with the indicated concentrations of cisplatin for 1 h,
followed by an 8 h recovery phase in drug-free medium, allowing
for cisplatin DNA interstrand crosslinks to form. Then, cells were
exposed to 50 mM H2O2 for 1 h to induce constant numbers of
random DNA strand breaks. Sample preparation and single-cell gel
electrophoresis assay (SCGE) were performed with some mod-
ifications as previously described (Heffeter et al, 2009). Cell pellets
were re-suspended in LMPA (0.5%, Gibco, Paisley, UK) and
transferred to slides pre-coated with NMPA (1.0%, Gibco, Paisley,
UK). Lysis (100 mM EDTA, 2.5 M sodium chloride and 10 mM
Trizma base, with freshly added 1% Triton X-100 and 10% DMSO,
pH 10.0) was carried out for at least 60 min at 4 1C. After 30 min
unwinding under alkaline conditions (pH413), electrophoresis
was carried out for 30 min (300 mA, 1.0 V cm� 1, at 4 1C) and
neutralisation was performed twice for 8 min. Air-dried slides were
stained with ethidium bromide (20 mg ml� 1). The percentage of
DNA in the tails was measured by use of a computer aided image
analysis system (Comet IV, Perceptive Instruments Ltd., Burry St.
Edmunds, UK) under a fluorescence microscope (Nikon EFD-3,
Tokyo, Japan) using 25-fold magnification. For each experimental
point, three slides were prepared from each sample and 50 nuclei
were evaluated from each slide. Statistical analyses were performed
using GraphPad Prism software.

Confocal laser-scanning immunofluorescence microscopy. Cells
(5� 104) were seeded in eight-well chamber slides (BD Falcon,
Franklin Lakes, NJ, USA) and allowed to adhere for 24 h. Following
24 h cisplatin treatment, cells were fixed with ice-cold methanol/
acetone for 10 min and blocked with phosphate-buffered saline
(PBS) containing 20% FCS for 1 h. Fixed cells were incubated with
rabbit anti-phospho-H2AX antibody (Ser139, Cell Signaling
Technology, Danvers, MA, USA) diluted 1:100 in PBS with 1%
FCS for 1 h at room temperature. After washing, cells were
incubated with the goat anti-rabbit secondary antibody (Sigma) for
1 h, conjugated with fluorescein isothiocyanate, diluted 1:1000 in
PBS containing 1% FCS. Nuclei were counterstained with 40,6-
diamidino-2-phenylindole (DAPI) before mounting. Images were
acquired on a LSM700 confocal laser scanning microscope (Zeiss,
Jena, Germany) using a � 40 immersion oil lens and Zen2010
software (Zeiss).

Western blot analysis. Protein extracts were prepared from total
cell lysates and separated by sodium dodecyl sulphate–
polyacrylamide gel electrophoresis (SDS–PAGE). Proteins were
blotted onto polyvinylidene difluoride membranes (PVDF,
Thermo Fisher Scientific, Waltham, MA, USA). The p53 antibody
was purchased from Thermo Fisher Scientific. Antibodies against
CUL4A, phosphoH2AX (Ser139), p21 and Bax were obtained from
Cell Signaling Technology. �-actin (AC-15) was obtained from
Sigma. The anti-HA antibody (3F10) was purchased from Roche
(Basel, Switzerland). Horseradish peroxidase (HRP)-conjugated
secondary antibodies were obtained from Santa Cruz Biotech
(Dallas, TX, USA) and were used as 1:10 000 working dilutions.

Cell cycle analysis. Cells (5� 105) were incubated in six-well
plates and treated with different concentrations of cisplatin. After
48 h, cells were collected and fixed with ice-cold 70% ethanol. Cells
were treated with RNase (0.2 mg ml� 1, Sigma) and DNA was
stained using propidium iodide (PI, 0.01 mg ml� 1, Sigma). Cell
cycle distribution was determined by flow cytometry using FACS
Calibur (Becton Dickinson, Palo Alto, CA, USA). Resulting DNA
histograms were analysed using FlowJo software (Ashland, OR,
USA).

Annexin V/propidium iodide staining and FACS analysis. Cells
were treated for 24 h with the indicated cisplatin concentrations.
To determine early apoptosis (Annexin V, BD Biosciences) and cell
death (propidium iodide; PI) induction, cells were trypsinized,

stained with APC-labelled Annexin V or PI and subjected to FACS
analysis (FACS Calibur). The extent of apoptosis/cell death
induction was analysed by FlowJo software.

Array comparative genomic hybridisation. Indirect aCGH was
performed on 4� 44K oligonucleotide-based microarrays (Agilent,
Santa Clara, CA, USA) as previously described (Mathieu et al,
2012). Genome-wide relative gene doses of HCT116/Y1 cells were
compared with those of the parental HCT116 cell line. DNA
labelling and hybridisation was performed according to the
manufacturer’s instructions.

Whole-genome gene expression array. Transcriptional profiles of
cells were determined performing a 4� 44K whole genome
oligonucleotide gene expression array (Agilent) as described
previously (Laszlo et al, 2015). Data were analysed by GeneSpring
software, filtering signalling intensity values according to sufficient
(raw expression values 420) and significant differences in
expression (as determined by unpaired t-test—Benjamini–Hoch-
berg correction, P-value cutoff: 0.05). In parallel, the whole dataset
was subjected to gene set enrichment analysis (GSEA) and
normalised in R software by the Robust Multi-array
Average normalisation approach (http://www.broadinstitute.org/
gsea/msigdb/index.jsp).

siRNA knockdown of CUL4A. Cells (5� 105) were transfected
with 50 nM of CUL4A siRNA (Dharmacon, Lafayette, LA, USA) or
an equimolar concentration of scrambled siRNA (Dharmacon)
using XFect siRNA Transfection Reagent (Clontech, Mountain
View, CA, USA) according to the manufacturer’s recommenda-
tions. Downregulation of CUL4A expression was monitored at the
protein level by western blot 48 and 72 h post transfection.

Ectopic CUL4A overexpression by transient plasmid transfec-
tion. For ectopic overexpression, 5� 105 cells were transiently
transfected with 1 mg CUL4A- or eGFP-encoding expression
vectors using Lipofectamine2000 reagent (Thermo Scientific)
according to the manufacturer’s recommendations. pcDNA3-
HA2-CUL4A was a gift from Yue Xiong (Addgene plasmid #
19907; Hu et al, 2008). The eGFP-encoding expression vector
pEGFP-N3 was kindly provided by Michael Grusch (Institute of
Cancer Research, Medical University of Vienna) and served as
transfection control. 48 h post transfection, cells were seeded for
cell viability assay and CUL4A overexpression was verified by
western blot.

In vivo xenograft growth and therapy. Animal experiments were
authorised by the Ethics committee of the Medical University of
Vienna and carried out according to the guidelines of the
Federation of Laboratory Animal Science Associations (FELASA)
as well as to the Arrive guidelines for animal care and protection,
also strongly considering the strategies to replace, reduce, and
refine (’3R’). Animals were removed from study upon excessive
tumour burden (41.5 cm diameter), tumour ulceration or animal
weight loss (415% compared with pre-treatment weight), in
accordance with the guidelines for the welfare and use of animals
in cancer research, as well as meeting the FELASA guidelines’
definition of humane endpoints (Workman et al, 2010). Sixteen
8-week-old female CB-17 scid/scid (SCID) mice were obtained
from Harlan Laboratories (San Pietro al Natisone, Italy). For
xenograft experiments, 1� 106 HCT116 or HCT116/Y1 cells as
well as their p53� /� counterparts (diluted in RPMI) were
injected subcutaneously into the right flank. Five days
after engraftment, mice received 3 mg cisplatin/kg bodyweight
(dissolved in 100 ml serum-free RPMI) intravenously. Treatment
was repeated every 7 days for 4 weeks. Animals in the control
group received solvent (RPMI). Bodyweight was measured
regularly and tumour growth was monitored by caliper
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measurement. Tumour volume was calculated using the formula
(length�width2)/2.

Immunohistochemistry. Tumour tissues were formalin-fixed,
paraffin-embedded and sectioned at 4mm. Tissue sections were
deparaffinised and rehydrated. Tissue sections were treated with
Heat Induced Antigen Retrieval (HIER) for 10 min in 10 mM
citrate buffer (pH 6.0), incubated with rabbit mAb anti-phospho-
H2AX (Ser139, 1:100) for 1 h, or with Ki67 mouse mAb (Dako,
Glostrup, Denmark, 1:100) for 30 min, followed by treatment with
Ultravision Labelled HRP polymer (UVLP, Dako, Glostrup,
Denmark, incubation time 15 min). Antibody binding was
visualised with DABþ chromogen and sections were counter-
stained with hematoxylin (Sigma). To visualise histology as well as
live and dead cells, tissue sections were stained with hematoxylin
and eosin (H&E, Sigma).

Statistical analysis. Data are expressed as mean±s.d. The values
given show one representative experiment out of at least three
independent experiments performed in triplicates. Results were
analysed using GraphPad Prism software. Statistical analyses were
performed using t-test or two-way analysis of variance (ANOVA)
or Logrank Test. To examine differences between drug treatment
responses, Bonferroni post-tests were conducted. P-values below
0.05 were considered as statistically significant and marked with
stars: * Po0.05; **Po0.01; ***Po0.001.

RESULTS

Selection of HCT116 cells for acquired trabectedin resistance
results in stable hypersensitivity towards cisplatin. The human
CRC cell line HCT116 shows marked sensitivity towards
trabectedin with an IC50 value in the low nanomolar range.

Long-term culturing of HCT116 cells in the presence of trabectedin
resulted in pronounced unresponsiveness towards the selection
drug in the generated subline (designated HCT116/Y1, Figure 1A).
To detect potentially altered responsiveness of HCT116/Y1 cells
towards other anticancer agents, we performed a cross-cytotoxicity
screen, testing the activities of various drugs approved for the
treatment of colorectal cancer as well as other chemotherapeutic
agents (Supplementary Table 1). No cross-resistance against any of
the tested compounds was observed. In contrast, we identified
HCT116/Y1 cells to be strongly hypersensitive towards the
platinum compounds cisplatin and carboplatin, shifting the IC50

value in the case of cisplatin into a sub-micromolar range
(Figure 1B). This distinct effect proved to be stable, as removal
of trabectedin selection pressure from HCT116/Y1 cells over 6
months did not result in reversal of cisplatin hyperactivity
(HCT116/Y1R, Figure 1B). Furthermore, we generated a trabecte-
din-selected subline of the isogenic HCT116 p53� /� counterpart
(HCT116-p53KO). This subline (HCT116-p53KO/Y1) also exhib-
ited strong and stable hypersensitivity towards cisplatin (Supple-
mentary Figure S1A), indicating that p53 signalling is not essential
in cisplatin hyperactivity in trabectedin-selected cells. Both,
HCT116/Y1 and HCT116-p53KO/Y1 cells, exhibited strongly incr-
eased cell death rates after 24 h cisplatin treatment as compared
with their parental counterparts (Figure 1C, Supplementary Figure
S1B, respectively). Of note, hypersensitivity towards platinum-
based chemotherapeutic agents appeared to be cisplatin specific, as
the activity of oxaliplatin was widely unaltered in the trabectedin-
selected sublines as compared with parental cell lines (Figure 1D,
Supplementary Figure S1C).

HCT116/Y1 cells exhibit impaired G2/M cell cycle arrest and
increased apoptosis induction upon cisplatin treatment. Con-
sequently, we investigated whether hypersensitivity of HCT116/Y1
cells is associated with alterations in the cell cycle distribution upon
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(B) Hypersensitivity of HCT116/Y1 cells and their revertant subline (6 months drug-free) towards cisplatin, determined by MTT assay. ***Po0.001,
two-way ANOVA, Bonferroni post-test. (C) Cell death induction of HCT116 and HCT116/Y1 cells, analysed by PI staining and FACS after 24 h
cisplatin treatment. **Po0.01, unpaired t-test. (D) Viability of oxaliplatin-treated HCT116 cells and their trabectedin-selected subline, analysed by
MTT assay.

BRITISH JOURNAL OF CANCER CUL4A loss in trabectedin/cisplatin synergism

492 www.bjcancer.com | DOI:10.1038/bjc.2016.449

http://www.bjcancer.com


cisplatin-induced DNA damage. FACS analysis of HCT116 cells
treated with cisplatin for 48 h revealed a massive, dose-dependent
G2/M cell cycle phase arrest, reaching a maximum at 10 mM

(Figure 2A, left panel). In parallel, the fraction of cells in S-phase
was strongly reduced. In contrast, changes in cell cycle distribution
of cisplatin-treated HCT116/Y1 cells were markedly less pro-
nounced (Figure 2A, right panel). This indicates an impaired
capability of the subline to initiate DNA damage response
following exposure to cisplatin resulting in reduced cell cycle
arrest. However, treatment with 10 mM cisplatin resulted in strong
upregulation of the DNA damage sensors and cell cycle gate-
keepers p53 and p21 in both, parental and HCT116/Y1 cells
(5.4-fold vs 5.2-fold for p53 and 1.3-fold vs 8.5-fold for p21,
respectively; Figure 2B). Interestingly, HCT116/Y1 cells exhibited

slightly elevated basal levels of the pro-apoptotic factor Bax.
Cisplatin treatment resulted in strong upregulation of Bax in both
cell lines. This effect seemed distinctly stronger in HCT116/Y1 cells
(1.6-fold vs 3.3-fold, respectively; Figure 2B). Accordingly, FACS
analysis of Annexin V-stained cells revealed massive apoptosis
induction in HCT116/Y1 cells treated for 24 h with cisplatin,
whereas this effect was only minor in the parental line (Figure 2C).

Furthermore, we found the trabectedin-selected subline to
be hypersensitive to TRAIL-mediated apoptosis (Figure 2D).
In contrast, cotreatment with the pan caspase inhibitor Z-VAD-
FMK distinctly desensitised HCT116/Y1 cells towards cisplatin
(Figure 2E). This effect was also seen in the parental line, albeit
to a lesser extent as compared with the selected subline (1.56-fold
vs 2-fold, respectively). Taken together, this suggests that
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pro-apoptotic cascades are hyperactivated in HCT116/Y1 cells
favoring cisplatin-mediated cell death.

Exposure of HCT116/Y1 cells to cisplatin results in stronger
DNA platination and impaired DNA damage repair. The
observed hypersensitivity of HCT116/Y1 cells towards cisplatin
prompted us to investigate whether increased cytotoxicity is
accompanied by an altered intracellular accumulation of the drug.
Indeed, ICP-MS analysis of genomic DNA isolated from cells

treated with cisplatin for 24 h revealed enhanced platination levels
in the HCT116/Y1 subline as compared with parental cells
(Figure 3A). In parallel, incubation of HCT116/Y1 cells with
increasing concentrations of cisplatin for 1 h followed by an 8 h
recovery phase before DNA strand break-inducing H2O2 treatment
led to a significant, dose-dependent decrease in comet tail
intensities. This effect could not be observed in the parental cells
(Figure 3B). This indicates that 8 h after cisplatin exposure,
HCT116/Y1 cells exhibit strongly elevated levels of DNA
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interstrand crosslinks as compared with the parental cells. In line
with this, treatment of cells with 10 mM and 50 mM cisplatin resulted
in strong DNA-damage recognition in HCT116/Y1 cells as
indicated by enhanced histone H2AX phosphorylation levels
(Figure 3C and D). Altogether, this indicates that, despite initial
damage recognition, successful repair of cisplatin-mediated DNA
lesions is impeded in HCT116/Y1 cells as compared with its
parental cell line.

The NER-associated ubiquitin ligase CUL4A is downregulated
in cisplatin-hypersensitive HCT116/Y1 cells. Next, we addressed
the question whether selection of HCT116 cells for trabectedin
resistance resulted in gene-dose changes on a genomic level and
whether these potential alterations have a role in the propensity of
HCT116/Y1 cells to higher levels of cisplatin-induced DNA
damage and cell death. Surprisingly, genome-wide aCGH analysis
revealed no additional gene-dose alterations in HCT116/Y1 cells as
compared with their parental cell line (Supplementary Figure 2).

This prompted us to perform whole-genome gene expression
arrays to detect altered mRNA expression patterns. In search of
transcriptional alterations potentially underlying cisplatin hyper-
sensitivity, we compared gene expression data of HCT116 and
HCT116/Y1 cells by GSEA. Of note, we identified enrichment of
the gene ontology (GO) term ‘NER’ within the Kyoto Encyclopedia
of Genes and Genomes (KEGG; Figure 4A and B). In this context,
it has to be stated that defective NER has been reported to
potentiate cisplatin activity (Welsh et al, 2004). Indeed, analysis of
this GO term in our GSEA dataset revealed transcriptional
downregulation of several genes encoding key NER factors in
HCT116/Y1 cells including POLE4, DDB2, POLD4 and—most
potently—CUL4A (Figure 4A). Subsequent analysis on the single
gene level revealed CUL4A to be strongly downregulated in HCT116/
Y1 cells both at mRNA and protein levels (Figure 4C and D). CUL4A
encodes an E3 ubiquitin ligase involved in the initiation of repair of—
amongst others—UV- and cisplatin-induced DNA lesions (Sugasawa,
2009). In line with this, HCT116/Y1 cells proved to be significantly
more sensitive towards UV irradiation than the parental cells
(Figure 4E). Furthermore, NER inhibition by novobiocin significantly
sensitised parental HCT116 cells against cisplatin, whereas this effect
was not observed in the trabectedin-selected subline (Figure 4F).
Taken together, this suggests that downregulation of CUL4A, together
with several other NER proteins, has a functional role in HCT116/Y1
cell hypersensitivity towards cisplatin.

Transient knockdown of CUL4A sensitises HCT116 cells to
cisplatin. To investigate whether CUL4A indeed has a role in
cisplatin sensitivity of HCT116 cells, we performed transient
knockdown experiments. Here, exposure to 50 nM CUL4A siRNA
resulted in distinct downregulation of CUL4A protein levels 48 and
72 h post-treatment and in a significantly increased sensitivity
towards UV-irradiation (Figure 5A and B). Importantly, partial
knockdown of this protein led to a significant sensitisation of
HCT116 cells to cisplatin (Figure 5C). This effect was also observed
upon silencing of CUL4A in two additional CRC cell lines SW480
and DLD-1 (Supplementary Figure S3A and B, respectively).
Furthermore, we aimed at elucidating whether restoration of
CUL4A expression levels in HCT116/Y1 cells has an impact on
cisplatin sensitivity. We thus re-established CUL4A expression in
HCT116/Y1 cells by transient plasmid DNA transfection
(Figure 5D). Indeed, ectopic CUL4A overexpression resulted in a
significant loss of cisplatin sensitivity in comparison to cells left
untransfected or transfected with an eGFP-encoding control
plasmid (Figure 5E, 1.4-fold increased IC50 values). Altogether,
these data show that CUL4A is an important factor counteracting
cisplatin-mediated cytotoxicity.

Trabectedin selection confers hypersensitivity of HCT116 cells
to cisplatin in vivo. As a next step, we investigated whether the

hypersensitivity of trabectedin-selected HCT116 cells towards
cisplatin could also be exploited therapeutically in vivo. Therefore,
we established subcutaneous tumour xenografts of HCT116 cells
and their respective subline in SCID mice. Indeed, treatment of
HCT116/Y1-derived xenografts with 3 mg kg� 1 cisplatin resulted
in significantly reduced tumour growth, whereas growth of
tumours derived from parental HCT116 cells was not affected by
cisplatin (Figure 6A). A similar effect could be observed in mice
bearing p53� /� HCT116 and HCT116/Y1 tumour counterparts
(Supplementary Figure S4). Cisplatin-treated mice bearing
HCT116/Y1 tumours survived significantly longer than mice
bearing parental tumours but also compared with the untreated
cohort (Figure 6B). Immunohistochemical analysis of tumour
tissue sections showed significantly increased phosphorylation of
histone H2AX indicating elevated levels of DNA damage in
cisplatin-treated HCT116/Y1 tumours as compared with their
parental counterparts (Figure 6C and D).

DISCUSSION

Platinum-based chemotherapy constitutes the most widely used
treatment modality for cancer (Wheate et al, 2010). Cisplatin is
commonly used as a chemotherapeutic agent against a wide variety
of carcinomas (Apps et al, 2015). Furthermore, it forms the basis of
numerous combination treatment strategies. Cisplatin introduces
monoadducts, intra- and interstrand DNA as well as DNA–protein
crosslinks, thus inhibiting DNA replication and gene transcription,
eventually leading to apoptosis induction (Galluzzi et al, 2014).

Nucleotide excision repair is a versatile DNA repair pathway
that eradicates bulky lesions induced by a range of unrelated DNA
noxae, including cisplatin-induced helix distortions (Martin et al,
2008). In fact, the NER status has been shown to predict the
sensitivity of cancer cells towards cisplatin in various studies
(Kelland, 2007; Bowden, 2014). This is illustrated by the fact that,
on the one hand, cisplatin resistance of ovarian and lung cancer
cells is accompanied by increased DNA repair capacity and, on the
other hand, that hypersensitivity of testicular cancers towards
cisplatin is a result of NER deficiency (Johnson et al, 1994; Koberle
et al, 1999; Welsh et al, 2004). Trabectedin—besides merely
interacting with DNA—is believed to exert its cytotoxic activity by
formation of ternary complexes with DNA-binding NER proteins,
thus impeding effective DNA repair (D’Incalci and Galmarini,
2010). Accordingly, trabectedin was found to exert more potent
cytotoxicity in a hyperactive NER background, as encountered for
example in cisplatin-resistant cells (Damia et al, 2001).

In CRC, platinum compounds constitute a mainstay of
chemotherapeutic intervention (Stein and Arnold, 2012). However,
it is currently unknown whether trabectedin might enhance
efficacy of platinum drugs in this cancer type. In the current
study, we thus elucidated the effects of trabectedin selection and,
hence, acquired trabectedin resistance of CRC cells on responsive-
ness towards platinum compounds. We found strong and stable
hypersensitivity of trabectedin-selected HCT116 cells against
cisplatin. Gene expression profiling revealed downregulation of
several NER pathway members, above all of the ubiquitin ligase
CUL4A. Consequently, we identified this DNA repair factor to
have a key role in hypersensitivity of HCT116/Y1 cells towards
cisplatin. We were able to show that interference with CUL4A
expression levels clearly altered the cytotoxic activity of cisplatin.
On one hand, this was illustrated by partial cisplatin sensitisation
of parental HCT116 and two other colon cancer cell lines upon
siRNA-mediated CUL4A knockdown. On the other hand,
HCT116/Y1 cells were desensitised against cisplatin upon ectopic
overexpression of CUL4A. The observed acquired NER deficiency
is in accordance with a recent publication by Colmegna et al.,
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reporting the downregulation of several NER-associated factors in
myxoid liposarcoma and ovarian carcinoma cell models in
response to trabectedin selection, which also resulted in hyper-
sensitivity towards platinum drugs as well as UV irradiation

(Colmegna et al, 2015). Another study described inverse correla-
tion of cisplatin and trabectedin sensitivity of ovarian and
CRC cell models with defects of various NER proteins (Stevens
et al, 2008).
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In general, data on the relationship between NER functionality
and sensitivity towards platinum compounds are conflicting, as
several studies also reported high expression of NER proteins in a
cisplatin-responsive background (Stevens et al, 2005; Weaver et al,
2005). Nevertheless, downregulation of multiple NER factors

associated with enhanced sensitivity towards platinum drugs has
been described in NSCLC, testicular, and also in CRC cell lines
(Rosell et al, 2003; Rabik and Dolan, 2007; Stubbert et al, 2010).
These factors primarily concern ERCC1, XPG (ERCC5) as well as
XPF (ERCC4), all involved in the NER-associated DNA incision
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process (Takebayashi et al, 2001b; Bowden, 2014). Interestingly,
analysis of our cell model by gene expression arrays revealed no
alterations in expression of all these factors. In contrast, the here
reported downregulation of CUL4A expression as a consequence of
cancer cell selection against trabectedin has to our knowledge so far
neither been reported nor associated with cisplatin hypersensitiv-
ity. Thus far, high CUL4A levels have only been described as a
predictive marker for trabectedin response in breast cancer and a
publication by Yang et al. reported transient knockdown of
CUL4A to sensitise lung cancer cells towards cisplatin (Garcia et al,
2013; Yang et al, 2014). Our work thus provides evidence that
downregulation of the NER factor CUL4A due to selection for
trabectedin resistance is a novel mechanism to sensitise CRC cells
against cisplatin. Additionally, it strengthens the assumption that
CUL4A expression level represents a biomarker to predict cisplatin
responsiveness.

Importantly, HCT116/Y1 cells were also hypersensitive towards
the cisplatin analogue carboplatin (Supplementary Table 1;
Supplementary Figure S5). As this was not the case for oxaliplatin,
we hypothesise that hypersensitivity of trabectedin-selected
HCT116 CRC cells is specific for cisplatin- and carboplatin-
induced DNA lesions, which are distinct from those formed by
oxaliplatin (Bowden, 2014). Supporting this hypothesis, a report

of Colmegna et al. describes a concomitant sensitisation of
trabectedin-selected myxoid liposarcoma and ovarian carcinoma
cell models against cisplatin and carboplatin (Colmegna et al,
2015).

In conclusion, our data suggest CUL4A downregulation-
mediated NER deficiency as a novel mechanism inducing
both trabectedin resistance and collateral cisplatin hyper-
sensitisation. Hence, inclusion of trabectedin in platinum
compound-containing treatment regiments should reciprocally
counteract resistance development and, consequently, impede
therapy failure.
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