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Summary

The association between maternal age of onset of dementia and amyloid deposition (measured by 

in vivo positron emission tomography (PET) imaging) in cognitively normal older offspring is of 

interest. In a regression model for amyloid, special methods are required due to the random right 

censoring of the covariate of maternal age of onset of dementia. Prior literature has proposed 

methods to address the problem of censoring due to assay limit of detection, but not random 

censoring. We propose imputation methods and a survival regression method that do not require 

parametric assumptions about the distribution of the censored covariate. Existing imputation 

methods address missing covariates, but not right censored covariates. In simulation studies, we 

compare these methods to the simple, but inefficient complete case analysis, and to thresholding 

approaches. We apply the methods to the Alzheimer’s study.

1. Introduction

The risk of Alzheimer’s disease (AD) increases with age (Austin and Hoch, 2004) and with 

family history (FH), and in particular, younger parental age of onset (Jarvik et al., 2005, 

2008; Silverman et al., 2003, 2005). The e4 allele of the apolipoprotein E (APOE) genotype 

is a known component of the FH risk (Mayeux, 2010) and an interaction of APOEe4 effects 

and gender has been recognized (Miech et al., 2002). Some evidence for a maternal 

transmission factor for AD has been reported (Duara et al., 1993; Edland et al., 1996); 

however, this is not consistent after controlling for age and female longevity (Heggeli et al., 
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2012; Ehrenkrantz et al., 1999). To explore the biological basis of these risk factors, 

investigators have evaluated AD imaging endophenotypes in relation to maternal FH. AD-

like patterns of regional brain volume (Honea et al., 2010; Berti et al., 2011), F-

fluorodeoxyglucose (FDG) metabolism (Mosconi et al., 2007), and amyloid deposition, as 

imaged in vivo with Pittsburgh Compound B (PiB) (Mosconi et al., 2010), have been 

reported more frequently in non-demented subjects with maternal FH than in those with no 

FH or in those with paternal FH. Importantly, these features have been detected even after 

controlling for APOE e4 carrier status. To further investigate this observation, a study was 

conducted at Massachusetts General Hospital and Brigham and Women’s Hospital that 

investigated the relationship between maternal history of dementia and amyloid burden in 

offspring (Maye et al., 2016) over age 60.

Participants in this study completed parental history questionnaires that ascertained 

information about parental ages of dementia onset, other illnesses, and death. The primary 

statistical framework to be used to address the scientific question of interest is a linear 

regression model of expected amyloid in the offspring as a function of maternal age of 

dementia onset, offspring age, gender, education, and Clinical Dementia Rating (CDR) 

global score. However, as not all mothers experienced onset of dementia at the time of the 

offspring’s interview, their ages at onset are right censored by their ages at the offspring 

interview, or their ages at death, if this occurred prior to the interview. This introduces the 

analytical challenge of how to handle right censored covariates in a regression model.

While there is a large literature on the treatment of missing covariates in regression models, 

there is a more limited literature on the treatment of censored covariates, which present a 

structured form of missingness. Use of the censored covariates without any adjustment for 

the censoring is well known to lead to bias in the coefficients of interest (Rigobon and 

Stoker, 2009) and inflated type I error (Austin and Brunner, 2003). A simple approach is that 

of complete case analysis (Little and Rubin, 2002). This approach discards all subjects who 

have a censored covariate and fits the regression model using only those subjects whose 

covariate is uncensored. This is valid in our study as long as offspring amyloid is 

independent of age at censoring given age at maternal dementia and other covariates. It is 

potentially highly inefficient in the presence of even moderate censoring. The majority of the 

literature addresses the simple case of type I censoring, in which the covariate is censored by 

a fixed limit of detection such as might arise from an assay measurement. Early papers 

simply replaced the censored covariate with the limit of detection or some function of it 

(Moulton and Halsey, 1995; Liang et al., 2004; Lynn, 2001). While this may be reasonable 

when there is a natural limit (such as zero) and when the limit of detection is close to the 

natural limit, it may otherwise lead to substantial bias (Nie et al., 2010). Other approaches 

assumed parametric distributions for the censored covariate and replaced censored 

observations with the expectation of the covariate given that it lies below the limit of 

detection (Lynn, 2001; Richardson and Ciampi, 2003) or applied maximum likelihood 

estimation that accounts for the censoring (Lynn, 2001; Austin and Hoch, 2004; May et al., 

2011; Rigobon and Stoker, 2007), or multiple imputation (Lynn, 2001). The first of these 

approaches leads to underestimation of the standard error, and all of them require correct 

specification of the distribution of the covariate. A recent paper (Kong and Nan, 2016) 

proposed a likelihood-based approach for limit of detection censoring. They employed a 
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semi-parametric accelerated failure time model for the censored covariate, which may be 

extended to the case of random censoring. It is a two-stage approach, which may suffer from 

some loss of efficiency. Alternative, distribution-free approaches for the case of type I 

censoring employ multiple imputation based on M-regression models that replaces censored 

observations with conditional quantiles given the observed data (Wang and Feng, 2012) or 

single imputation with the expected value of the covariate of interest among subjects for 

whom it was observed (Schisterman et al., 2006). The latter approach yields an unbiased 

estimator for the coefficient of interest, but can lead to slight overestimation of standard 

errors. A different approach is that of dichotomizing the potentially censored covariate to a 

binary covariate (Austin and Hoch, 2004; Rigobon and Stoker, 2009). This approach yields 

substantial bias in the coefficient of interest (Austin and Hoch, 2004; Rigobon and Stoker, 

2009). Other papers have treated the problem of censored covariates in the context of a 

censored outcome as a bivariate estimation problem (D’Angelo et al., 2008; Clayton, 1978).

In this paper, we consider the problem of randomly censored covariates in regression 

models, such as arise in our study with maternal age at onset of dementia. To our knowledge, 

there are no publications that treat randomly censored covariates (versus type I censored 

covariates), other than the inefficient complete case analysis and the inadequate substitution 

method (Nie et al., 2010). We consider two innovative approaches to this problem. First, we 

extend the single imputation methods (Lynn, 2001; Richardson and Ciampi, 2003) to the 

semi-parametric setting and do not make distributional assumptions about the covariate of 

interest. Second, we develop a proper multiple imputation approach that also does not 

impose distributional assumptions on the covariate of interest, but rather uses a Cox 

proportional hazards model for the distribution of the censored covariate given other 

covariates in the model. While multiple imputation methods and software exist for the 

problem of missing covariates, they do not handle the structured, partial missingness 

introduced by right censoring of covariates. We evaluate our approaches in simulation 

studies and in application to the Alzheimer’s disease study of the association between 

amyloid in offspring and maternal history of dementia.

2. Notation, model and current approaches

We consider the linear model,

(1)

where X is the covariate of interest (e.g., maternal age at onset of dementia), Z is a vector of 

other covariates, and ε is the random error. Additionally, X is observed only if X < C, where 

C is the censoring variable, which we assume is independent of X. In our example, C is 

maternal age last known by the offspring to be dementia-free. We additionally assume that ε 
is independent of (C,X,Z). While we consider right censoring, all of our developments apply 

as well to the case of a left censored covariate. The observed data are {Yi, Ti, Zi, Di}, i = 1, 

…, n, where n is the number of subjects in the sample, Ti = min(Xi,Ci) and Di = 1 if Xi ≤ Ci 

and Di = 0 if Xi > Ci. Motivated by the Alzheimer’s study, our primary goal is to make valid 
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inference about α1. However, there are situations in which inference for α2 is of interest, as 

well.

2.1. Complete case analysis

The complete case analysis discards all subjects with D = 0 and fits the linear regression 

model to the subjects with D = 1. This restricted regression satisfies the linear regression 

model based on the entire sample and thus yields unbiased estimators as long as Y is 

independent of C, conditional on (X,Z) (Little and Rubin, 2002), i.e.,

The obvious drawback of the complete case analysis is that it potentially sacrifices 

information by discarding subjects. The resulting impact depends on the amount of 

censoring present in the sample.

2.2. Substitution methods

The simplest version of the substitution approach replaces censored values with a function 

of the limit of detection, C, e.g., C, , 2C. Clearly this approach leads to biased 

estimation of α1; the extent of the bias depends on the extent of censoring and the severity of 

censoring (i.e., the distance between the limit of detection or random censoring value and 

the natural limit for X).

An alternative version in the context of right censoring replaces censored values with E(X|X 
> C), where this expectation is calculated assuming a parametric distribution for X (Lynn, 

2001; Richardson and Ciampi, 2003). The parameters of the distribution are estimated using 

the observed data in the presence of the right censoring. If the distribution of X is correctly 

specified, and for the simple linear regression model with no covariates other than X, this 

yields an unbiased estimator for α1, though its standard error is underestimated (Richardson 

and Ciampi, 2003). This could be applied to limit of detection censoring or to random 

censoring.

Yet another version (Schisterman et al., 2006), restricted to the case of limit of detection 

censoring and simple linear regression with no covariates other than X, replaces censored 

values with E(X|X < C), where this expectation is calculated empirically from the observed 

data as

It is somewhat non-intuitive that this approach produces an unbiased estimator for α1 

(though with biased standard error estimation); it does, however, yield biased estimation for 

α0.
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2.3. Threshold methods

A different approach is that of dichotomizing the potentially censored covariate to a binary 

covariate (Austin and Hoch, 2004; Rigobon and Stoker, 2009) that indicates presence of 

absence of the event. Two authors evaluated the considerable bias in estimation of α1 that 

arises from use of the estimate of the coefficient of a binary version of the censored 

covariate (Austin and Hoch, 2004; Rigobon and Stoker, 2009). However, they did not derive 

a bias correction and they did not investigate the properties of associated hypothesis tests. 

Qian et al. (2016) proposed two methods for estimation and inference after dichotomizing 

the time to event covariate relative to a threshold. The idea of this approach is to deal with 

the censoring by extracting information about the event time relative to the fixed threshold 

when it is available, and excluding observations for whom this is not possible. In the 

deletion threshold regression approach, subjects are coded as events if their events definitely 

occurred prior to the threshold and as non-events otherwise. Specifically, a threshold t* is 

selected and a derived binary covariate is constructed that indicates whether X ≤ t*, i.e., 

whether X is uncensored and observed to be less than t*, or whether X > t*, i.e., whether T = 

min(X,C) > t*. If C < X and C < t*, then the observation is deleted, as the relationship 

between X and t* is indeterminate. In the complete threshold regression approach, subjects 

are coded as events if their observation time preceded the threshold and as non-events 

otherwise. Specifically, a derived binary covariate is constructed that indicates whether T ≤ 

t* or T > t*. This binary covariate is less informative about X than the derived binary 

covariate of the first approach, but has the advantage of not deleting any observations. After 

the regression coefficient of the derived binary covariate is estimated through a linear 

regression model, a bias correction is used to estimate the regression coefficient of the 

original censored covariate.

3. Proposed Approaches

We propose a nonparametric and semi-parametric approach that apply to the setting of 

random censoring. The first approach modifies that of Richardson and Ciampi (2003) to be 

based on the Kaplan-Meier or Cox model estimator of the distribution of the censored 

covariate, rather than an assumed parametric distribution. The second approach employs 

proper multiple imputation, again based on the Kaplan-Meier or Cox model estimator for the 

censored covariates. We also present a “reverse survival regression” approach that reverses 

the roles of Y and X and fits a Cox model for the hazard for X given Y and Z.

3.1. Single Imputation

We consider a nonparametric version of the single imputation method proposed by 

Richardson and Ciampi (2003) and briefly described by Little (1992). In particular, in the 

case of simple linear regression with a right-censored covariate we impute the conditional 

expectation , which can be approximated using the 

trapezoidal rule as
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where S(.) is the survival function of X, τ is the upper limit of the support of X, and T(1) < 

T(2) < … < T(n) are the ordered, observed values of the covariate of interest (i.e., T = 

min(X,C)). In practice, we estimate S(·) with the Kaplan-Meier estimator of X, Ŝ(·), and we 

linearly interpolate Ŝ between observed event times to approximate the values of S at 

censored observations. For improved approximation of the integral of the Kaplan-Meier 

estimate, we treat the largest observation as uncensored even if it is censored (Datta, 2005). 

In some cases, this may provide a close approximation to the true survivor function, but in 

others, such as when the largest observed age is censored at an age well below the upper 

limit of the support of the age of interest, it will not. In effect, this amounts to a hybrid 

approach between subject specific conditional expectation single imputation, and a limit of 

detection substitution approach. Beyond our ability to estimate the conditional expectation 

from the data, we resort to a simple substitution.

For the case of multiple regression with additional covariates, Z, we use a Cox model based 

estimator of the adjusted survivor distribution in our approximation of the conditional 

expectation, E(X|X > C,Z) for imputation. In particular, we assume that h(x|z) = h0(x) 

exp(βz), where h(x|z) is the hazard function for X given Z = z evaluated at x, h0(x) is the 

baseline hazard function for X at Z = 0 and S0(·) is the baseline survivor function for X, and 

approximate E(Xj|Xj > Cj,Zj) as

In practice, we estimate the baseline survivor function using the method of Breslow (1972). 

This approach requires that X and C be independent conditional on Z. An alternative 

approach is based on a Cox model that conditions on Y, as well as Z; this is advisable if 

there is high partial correlation between Y and X given the observed portion of X (Little, 

1992).

3.2. Multiple Imputation

Multiple imputation was originally developed for the purpose of accounting for variability in 

imputed estimates of missing data (Rubin, 1987). Theoretical justification of multiple 

imputation has been established from both Bayesian and frequentist perspectives (Rubin, 

1987; Schafer, 1999). Under certain assumptions, multiple imputation mimics maximum 

likelihood estimation and thus yields consistent estimators (Kenward and Carpenter, 2007; 

Wang and Robins, 1998). These assumptions include correct full likelihood specification, 

which includes correct specification of the regression model for Y given (X,Z) and of the 

model for X given Z. Our semi-parametric model for X given Z should provide some 

robustness to our procedure (Lazzeroni et al., 1990). In our context of a censored covariate, 
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the consistency of the estimates also depends on independence of C and Y given (X,Z), as 

required for the complete case analysis, and of C and X given Z. Our simulation results 

(Section 4) demonstrate this with small bias when these assumptions are met (Tables 1 and 

2) and increased bias under dependence of C and Y (Tables 3 and 4). We note that the 

problem of a censored covariate is a highly structured imputation setting, which is not 

accommodated by generic software procedures that handle multiple imputation. Those 

procedures do not accommodate the special missing data structure of right censoring.

The general multiple imputation scheme consists of three steps: imputation, completed data 

analysis, and pooling. The imputation step involves first drawing the parameters of the 

posterior distribution of X given the observed data from their distribution (D’Angelo et al., 

2008), and then drawing M sets of imputed values for the missing data from their posterior 

distribution given the observed data. The first part of this imputation step is necessary to 

account for the fact that the parameters are unknown and their estimates have inherent 

variability. The completed data analysis involves performing the desired analysis on the M 
completed data sets. The pooling step involves combining the estimates from the M analyses 

into a single multiple imputation estimate and likewise combining the estimates of 

variability from the M analyses, along with the between imputation variability, into a single 

multiple imputation variance estimate.

In particular, our multiple imputation algorithm proceeds in the following steps:

1. Sample with replacement from the original data.

2. Apply the complete case analysis. This involves fitting model (1) using the 

uncensored observations to sample from the distribution of the coefficients (α0, 

α1, α2) and obtain estimates .

3. Fit a model to the sampled data for X given Z to estimate β and fβ(x|z), the 

model-based estimate of the density of X given Z, with corresponding survivor 

function, Sβ(x|z). Standard model fitting strategies should be employed to 

ascertain the best fitting model for X given Z. A proportional hazards model can 

be assessed through examination of Schoenfeld residuals (Schoenfeld, 1982) and 

through inclusion of interactions of covariates with time, and through use of 

other graphical and numerical methods (Lin et al., 1993). To protect against 

multiple testing, we favor a global interaction test. These methods suggest 

adjustments to covariate forms used in the model for improved fit of the data. 

Alternative models, such as the accelerated failure time model, could be used. If 

the covariates X and Z are independent, or only weakly correlated, then model 

choice is not critical, as any model will be fit under an approximate null and will 

reduce to a Kaplan Meier based estimator for f(x). As we noted for single 

imputation (Section 3.1), we require a full estimate of the predictive density for 

X, fβ(x|z), which may not be available if there are censoring times that exceed 

the observed failure times. As we noted in Section 3.1, in this case we resort to a 

hybrid approach that utilizes substitution for event time generation that exceed 

our estimate of its distribution.
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4. Generate X from its predictive distribution, P(X = x|C = c,X > c, Y = y,Z = z). 

This is given by:

which, under the various independence assumptions, is equal to

We estimate this using the sampled coefficients from Steps 2 and 3 and the 

assumed linear and Cox models using:

Thus, we impute values for X by equating a Uniform(0,1) random variable to the 

conditional survivor distribution for X, which is given by

In practice, we use integration by parts to avoid direct estimation of the density 

function and the trapezoidal rule for estimation of integrals.

5. Fit a linear regression model of Y on the completed data (X,Z) and estimate the 

parameters of the model, , where the superscript m labels the 

estimates from the mth imputation.

6. Repeat Steps 1–5 M times.

7. Obtain multiple imputation estimates and variances, e.g., α̂
1 = ∑ α̂

1m/M and

where Var(α̂
1m) is the model-based analytical variance from the fit of the linear 

regression model to the mth imputed data set.
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We note that this multiple imputation algorithm could not be used in the case of limit of 

detection censoring, as there would be no observed data with which to semi-parametrically 

estimate the density of X|Z for X > C. In this case, a fully parametric model would be 

required.

3.3. Reverse survival regression

As an alternative approach to the test for association between Y and X, controlling for Z, we 

use the Cox proportional hazards model, h(x|y, z) = h0(x) exp(α̃
1y + α̃

2z), where h(x|y, z) is 

the hazard function for X given Y and Z and h0(x) is the baseline hazard function for X. This 

has the advantage of automatically and naturally handling the censored X, as it is the 

outcome, rather than covariate in the Cox model framework. Under the assumptions of 

model (1), and independence of C and X given Y and Z, we will justify that the test of H0 : 

α̃
1 = 0 based on this model that reverses the natural roles of Y and X yields a valid test for 

H0 : α1 = 0, where α1 is the effect of covariate X in model (1). However, the parameter from 

the Cox model, α̃
1, does not have a meaningful interpretation, as it reverses the natural 

chronological ordering.

First we show that α1 = 0 implies that α̃
1 = 0. This is seen by expressing the conditional 

density of X given Y and Z in terms of the conditional density of Y given X and Z using 

Bayes’ theorem. When α1 = 0, this leads to h(x|y, z) = k(x, z), for some function k(·), which 

implies that α̃
1 = 0. In particular,

which equals  when α1 = 0, which implies that α̃
1 = 0.

Second we show that α̃
1 = 0 implies that α1 = 0. If α̃

1 = 0, then h(x|y, z) = h0(x) exp(α̃
2z), 

which implies that for all x in the support of X,

Taking partial derivatives with respect to x of both sides of this equation yields that α1 = 0.

Since we use this approach only for the purpose of testing, the actual model used is less 

important, and must be valid only under the null hypothesis. In fact, even when proportional 

hazards holds for X|Z, as we assume for multiple imputation, it does not hold for X|(Y,Z). 

Nonetheless, as we have shown above, this provides a valid test of the null hypothesis 

regardless of likely violation of this proportional hazards assumption.

4. Simulations

We conducted several simulations to evaluate and compare the performances of the standard 

analysis when there is no censoring with the complete case analysis, threshold regression, 
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single imputation, multiple imputation and reverse survival regression under a range of 

sample sizes and degree of censoring, as well as under independent versus dependent 

censoring. We also investigated the performance under a scenario in which the requisite 

assumption (for multiple imputation) of proportional hazards for X|Z was violated. We did 

not compare to substitution methods as they are known to be biased and suboptimal, and in 

some cases, intended for limit of detection and not random censoring (Schisterman et al., 

2006). We used a fixed threshold of 0.056 for the threshold methods under light censoring 

and a threshold of 0.054 under heavy censoring, and M = 20 imputations for the multiple 

imputation. We assumed the true linear regression model to be given by model (1), with (α0, 

α1, α2) = (1, 0.5, 0.25). We generated X ~ Weibull(3/4, 1/4), C1 ~ Weibull(1/2, q), C2 ~ 

Weibull(1, q), ε ~ (0, 0.99), and Z ~ Bernoulli(0.5), with q = 2 and q = 0.35 to obtain light 

censoring (10–20%) and heavy censoring (40%), respectively. For our independent 

censoring scenarios, we set C = C2. For our dependent censoring scenarios, we set C = C1 if 

Y > 1.1 and C = C2 if Y ≤ 1.1 and we set q = 2 for light censoring and q = 0.3 for heavy 

censoring. Under this dependent censoring scenario, the complete case analysis is not valid, 

as C is not independent of Y given (X,Z). Likewise, the multiple imputation approach is not 

valid as it relies on the complete case analysis as well as on the assumption of independence 

of X and C given Z, which does not hold under this censoring model. The single imputation 

and threshold approaches are likewise not valid. The reverse survival regression method is 

valid, as it requires only independence of X and C given (Y,Z), which is satisfied by this 

model. We note also that the proportional hazards model for X|(Y,Z) assumed by the reverse 

survival regression is not satisfied. As we noted in Section 3.3, and as we validate in our 

simulations, this does not matter for the purpose of hypothesis testing.

We generated 5000 replications to assess type I error and 1000 replications for power, bias, 

and standard error estimation. We report the simulation estimate of the bias of α̂
1 (Bias), the 

simulation based standard deviation (SD), the average of the standard error based on the 

completed data set (SE), the averaged mean squared error (MSE), the estimated type I error 

rate based on the Wald test and the estimated power based on the Wald test. We do not report 

MSE, type I error or power for the single imputation method, as the standard error for this 

method is underestimated. We do not report bias or standard errors or MSE for the reverse 

survival regression method, as this method does not provide an estimate of α1.

Table 1 lists the simulation results for the independent, light censoring scenario, under which 

all methods are valid and are expected to display reasonable performance. The bias is small 

for all methods, and decreases with increased sample size. The standard deviations of the 

threshold method estimators are smaller than those from other methods, with the complete 

case standard deviation being the largest for n = 250 and the second largest for n = 100, at 

which the single imputation standard deviation is largest. The simulation standard deviations 

are comparable to the average of the analytical standard errors, except for the single 

imputation method, for which the within sample standard errors are biased downward. The 

type I error rates are all close to the nominal level of 0.05. The no-censoring entries in the 

tables provide the benchmark for power. The multiple imputation approach achieves higher 

power than the complete case approach, but is surpassed by the reverse survival approach.
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Table 2 lists the simulation results for the independent, heavy censoring scenario. As 

expected, the biases are larger than seen in Table 1, under light censoring. The multiple 

imputation approach achieves lower bias than the complete case analysis. The multiple 

imputation standard errors are considerably lower than those of the complete case analysis, 

though the threshold method standard errors are the lowest among all methods. As for the 

case of light censoring, the type I error is close to the nominal 0.05 for all methods and the 

power of the multiple imputation method beats that of the complete case, but is surpassed by 

that of the reverse survival regression method.

Tables 3 and 4 list the simulation results for the dependent censoring scenario, under which 

only the reverse survival regression method is valid. The inappropriateness of the complete 

case, imputation and thresholding methods are especially apparent in the presence of the 

heavy censoring of Table 4. In that scenario, inflated type I errors and large biases are 

evident. The reverse survival regression method maintains the nominal 0.05 level of 

significance for n = 250 and has reasonable power.

To evaluate the robustness of the multiple imputation procedure under violation of 

proportional hazards of X|Z, we simulated data as for the analyses reported in Tables 1 and 

2, with the exception of X, which we simulated from a Weibull distribution with shape equal 

to 0.6+0.9Z and scale equal to 1/4. This induces a log hazard for X of

which clearly is not a proportional hazards model for binary Z. In a separate simulation of 

5000 observations of (X,Z) we verified that under this model, the proportional hazards 

assumption is strongly violated using martingale residuals (p < 0.0001). In Supplementary 

Table S.1 it is seen that under light censoring, the multiple imputation estimate under the 

misspecified proportional hazards model results in a 25% increase in bias relative to the 

complete case estimate and slightly lower power. In Supplementary Table S.2 under heavy 

censoring, the bias of the multiple imputation estimate is increased by 50% relative to the 

complete case bias for n = 250, though no difference is seen for n = 100. The power for n = 

250 is about twice that of the complete case analysis due to a decreased standard error. The 

type I error in all cases is just slightly above the nominal level of 0.05. This example 

reinforces the importance of fitting an appropriate model for X|Z within the multiple 

imputation procedure, but also suggests that incorrect use of a proportional hazards model 

still may produce a valid test that preserves the type I error.

5. Association between myloid in offspring and maternal history of 

dementia

In an Alzheimer’s disease study conducted at Massachusetts General Hospital and Brigham 

and Women’s Hospital, the association between amyloid deposition, as measured through in 

vivo imaging with Pittsburgh Compound B (PiB), and maternal age of onset of dementia, 

was of interest (Maye et al., 2016). However, as not all mothers were known to have had 

onset of dementia at the time of the offspring interview, their ages at onset were right 
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censored by their ages at the last time they were known by their offspring to be dementia-

free. One hundred and forty seven participants were enrolled in the study, which was 

approved by the Partners Human Research Committee. All participants were evaluated with 

interviews, cognitive testing and informant interviews, and judged to be either cognitively 

normal with Clinical Dementia Rating [CDR] 0 (Morris, 1993) (N=104) or mildly impaired 

(N = 43; CDR 0.5). None of the participants had any neurological or medical illness or any 

history of alcoholism, drug abuse, or head trauma. All scored 11 or lower on the Geriatric 

Depression Scale [GDS] (Yesavage et al., 1982), 22 or higher on the Mini Mental State 

Examination [MMSE] (Folstein et al., 1975) and 93 or higher on the American National 

Adult Reading Test [AMNART] (Ryan and Paolo, 1992).

A parental history questionnaire yielded information about 141 mothers of participants. Age 

of dementia onset was reported for 42 of these mothers and it was right censored for 99 

(70%) of them. The median age of follow up without dementia for these 99 mothers was 83 

(with 25th percentile of 71.5 and 75th percentile of 89). The median age of onset of 

dementia was 92 (see Figure 1). Thus, these mothers are likely to contribute important 

information to the estimate of association due to their advanced ages without dementia. 

Using complete case analysis, multiple imputation (M = 20), and the two threshold 

regression approaches (using an age threshold of 75), we fitted a linear regression model to 

the continuous outcome measure of amyloid, as a function of maternal age of onset of 

dementia, with adjustment for offspring age, gender, CDR and education. We obtained 

similar results with a threshold of 70 (not shown), and did not obtain stable results for 

smaller thresholds. We confirmed that the data did not reject proportional hazards for age of 

onset given the covariates through a global test of interaction between the covariates in the 

model and log age of onset, which supported our multiple imputation modeling (Step 3 in 

Section 3.2). We also applied the reverse survival regression approach and fit a Cox 

proportional hazards model with maternal age at dementia as the possibly right censored 

outcome, and amyloid as the primary covariate, along with adjustment for age of offspring 

(thresholded at 81, the third quartile of the distribution), gender, CDR and education. 

Readers may contact Dr. Folefac Atem (Folefac.D.Atem@uth.tmc.edu) for software 

assistance.

The results of these analyses are presented in Table 5. The estimates from the different 

methods are reasonably close and qualitatively similar; they all suggest a decrease in 

amyloid of about 0.05–0.1 units for every increase of 10 years in maternal onset. The actual 

difference between the complete case estimate (−0.0098) and the multiple imputation 

estimate (−0.0049) could be due to imperfect estimation of the density of X|Z due to 

incomplete estimation of the survivor function for age at onset (Figure 1) or to violation of 

the independent censoring assumption, both of which are required for the multiple 

imputation. Although the Kaplan Meier estimate in Figure 1 does not drop below about 

50%, it does extend to about age 100. As our imputation procedure treats the largest 

censored age as a dementia onset age, and since this largest age is extremely old, this “fix” 

should not be problematic. However, it is possible that it is contributing to a bias in the 

estimate of α1. Although the actual reverse survival regression log hazard ratio estimate is 

not meaningful, its sign is informative about the direction of the association; it is positive, 

which is consistent with an association between higher amyloid in offspring and earlier 
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onset of dementia in mothers. Consistent with the results from the simulations, the reverse 

survival regression approach yielded the most significant association between offspring 

amyloid and maternal age of onset of dementia (p=0.001). The multiple imputation p-value 

is 0.01, similar to that of the deletion threshold method, while the complete case p-value is 

0.05. The multiple imputation standard error is less than half that of the complete case 

standard error, which suffers from deletion of 70% of subjects. While we cannot test for 

independent censoring, we might be concerned that death prior to onset of dementia would 

not qualify as an independent censoring event. In this case, we need to view our Cox models 

as models for the cause specific hazard for dementia that are conditional on being alive. We 

discuss alternative approaches in the Discussion.

6. Discussion

We have developed a multiple imputation method to accommodate randomly censored 

covariates in a regression model. Our method is semi-parametric, in that it uses the 

parametric assumptions on the linear regression model of interest in conjunction with the 

semi-parametric Cox model for the censored covariate. It performs well in simulations, 

exhibiting superior performance to the complete case analysis. However, it has lower power 

for testing for association between the outcome and the censored covariate than the reverse 

survival regression approach, while requiring stronger assumptions for validity. Nonetheless, 

it has the important advantage of providing a consistent estimator for the association 

parameter, α1. The reverse survival regression approach does not yield a meaningful 

estimator. Multiple imputation is not uniformly better than the threshold methods, though it 

has the important advantage of not requiring selection of the threshold, t*.

Motivated by the Alzheimer’s study, we have focused exclusively on estimation and testing 

of α1, which measures the association between maternal age of onset and amyloid in the 

offspring. In other settings, the coefficients for all covariates in the linear model may be of 

scientific interest. Under correct model specification and the assumptions of independence 

of censoring, we expect these estimators following multiple imputation of the censored 

covariate to have good properties, as well.

One extension of our method is to allow for a mixture model for maternal onset of dementia, 

to accommodate the possibility that some individuals will never experience onset of 

dementia. Currently, we treat all mothers who were not observed with dementia as right 

censored. Another consideration is a more complex treatment of some censoring events as 

competing risks for the event of dementia onset through use of the cumulative incidence 

function and subdistribution hazard regression (Fine and Gray, 1999). Another extension of 

potential interest is to multiple censored covariates. This situation would arise if the 

covariates included ages of onset of multiple conditions for a single individual, for example. 

This could also be handled by an expanded multiple imputation algorithm or threshold 

methods. A simple test based on reverse survival regression would require estimation of a 

more complicated frailty model. Another important extension is to alternative regression 

models, such as logistic regression and Cox regression. In these nonlinear regression settings 

the threshold method will not be applicable, but the multiple imputation and the reverse 

survival regression will be.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Kaplan-Meier Estimator of the distribution of mother’s age of dementia onset.
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Table 5

Application to study of amyloid and maternal age of onset of dementia.

Method Estimate (α̂1) SE p-value % deleted

Complete Case −0.0098 0.0050 0.057 70.2%

Multiple Imputation −0.0049 0.0019 0.010

Deletion Thresholding −0.0085 0.0034 0.012 24.8%

Complete Thresholding −0.0082 0.0049 0.094

Reverse Survival1 0.001

1
: estimate and SE not reported by reverse survival regression due to non-interpretability of the estimate
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