Skip to main content
. Author manuscript; available in PMC: 2018 Jan 1.
Published in final edited form as: J R Stat Soc Ser C Appl Stat. 2016 Jun 27;66(2):313–328. doi: 10.1111/rssc.12164

Table 3.

Estimation and testing of α1 (truth is 0.5): light censoring dependent on Y.

Method Bias SD SE MSE Type 1 error Power
n = 100 No Censoring 0.0060 0.2709 0.2624 0.0689 0.052 0.524
Complete Case 0.0484 0.3702 0.3619 0.1333 0.050 0.348
Single Imputation1 −0.0104 0.3199 0.3016
Multiple Imputation 0.0087 0.3003 0.3199 0.0709 0.048 0.366
Deletion Thresholding −0.0375 0.2306 0.2342 0.0563 0.055 0.119
Complete Thresholding −0.0343 0.2117 0.2151 0.0474 0.052 0.102
Reverse Survival2 0.048 0.416

n = 250 No Censoring 0.0001 0.1605 0.1605 0.0258 0.047 0.872
Complete Case 0.0368 0.2278 0.2222 0.0507 0.051 0.690
Single Imputation1 −0.0174 0.3301 0.1819
Multiple Imputation 0.0222 0.2144 0.2103 0.0447 0.046 0.722
Deletion Thresholding 0.1278 0.1544 0.1539 0.0400 0.048 0.377
Complete Thresholding 1.2149 0.1335 0.1352 1.4938 0.046 0.251
Reverse Survival2 0.049 0.754
1

: MSE, type I error and power not reported due to invalid SE for single imputation

2

: bias, SD and SE not reported due to non-interpretability of estimate from reverse survival regression