Skip to main content
. Author manuscript; available in PMC: 2018 Jan 1.
Published in final edited form as: J R Stat Soc Ser C Appl Stat. 2016 Jun 27;66(2):313–328. doi: 10.1111/rssc.12164

Table 4.

Estimation and testing of α1 (truth is 0.5): heavy censoring dependent on Y.

Method Bias SD SE MSE Type 1 error Power
n = 100 No Censoring 0.0060 0.2709 0.2624 0.06892 0.052 0.524
Complete Case −0.3810 0.8527 0.8286 0.8317 0.091 0.098
Single Imputation1 0.1001 0.5021 0.4891
Multiple Imputation 0.1011 0.5216 0.5314 0.2926 0.055 0.152
Deletion Thresholding 0.0300 0.2476 0.2515 0.0641 0.059 0.129
Complete Thresholding −0.1049 0.2059 0.2045 0.0528 0.060 0.094
Reverse Survival2 0.062 0.227

n = 250 No Censoring 0.0001 0.1605 0.1605 0.0258 0.047 0.872
Complete Case −0.3256 0.5357 0.5186 0.3750 0.110 0.157
Single Imputation1 0.0732 0.3896 0.2837
Multiple Imputation 0.0999 0.3659 0.3319 0.1201 0.090 0.240
Deletion Thresholding 0.1399 0.1777 0.1868 0.0545 0.055 0.247
Complete Thresholding 1.3124 0.1643 0.1633 1.7491 0.054 0.151
Reverse Survival2 0.051 0.548
1

: MSE, type I error and power not reported due to invalid SE for single imputation

2

: bias, SD and SE not reported due to non-interpretability of estimate from reverse survival regression