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Summary

The cumulative incidence is the probability of failure from the cause of interest over a certain time 

period in the presence of other risks. A semiparametric regression model proposed by Fine and 

Gray (1999) has become the method of choice for formulating the effects of covariates on the 

cumulative incidence. Its estimation, however, requires modeling of the censoring distribution and 

is not statistically efficient. In this paper, we present a broad class of semiparametric 

transformation models which extends the Fine and Gray model, and we allow for unknown causes 

of failure. We derive the nonparametric maximum likelihood estimators (NPMLEs) and develop 

simple and fast numerical algorithms using the profile likelihood. We establish the consistency, 

asymptotic normality, and semiparametric efficiency of the NPMLEs. In addition, we construct 

graphical and numerical procedures to evaluate and select models. Finally, we demonstrate the 

advantages of the proposed methods over the existing ones through extensive simulation studies 

and an application to a major study on bone marrow transplantation.
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1. Introduction

Competing risks data arise when each study subject can experience one and only one of 

several distinct types of events or failures. A classical example of competing risks is death 

from different causes. In addition, patients who undergo an invasive surgical procedure to 

treat a particular disease, such as bone marrow transplantation for the treatment of leukemia 

(Kalbfleisch and Prentice (2002), chapter 8), may experience relapse of that disease or death 

related to the surgical procedure itself. Another example of competing risks is infection with 

a pathogen such as HIV-1 (Hudgens et al., 2001), whereby infection with one viral subtype 

precludes infection with other subtypes.

Competing risks data may be analyzed through the cause-specific hazard or cumulative 

incidence function. The cause-specific hazard function is the instantaneous rate of failure 

from a specific cause at a particular time given that the subject has not experienced a failure 
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of any cause up until that point, and the cumulative incidence function measures the 

probability of occurrence of a specific failure type over a certain time period (Kalbfleisch 

and Prentice (2002), chapter 8). These two approaches are complementary: the cause-

specific hazard is an instantaneous risk function whereas the cumulative incidence 

characterizes the subject's ultimate clinical experience. Standard survival analysis methods, 

such as the log-rank test and proportional hazards regression, can be applied to the cause-

specific hazard function. The way in which covariates affect the cause-specific hazards may 

not coincide with the way in which they affect the cumulative incidence (Andersen et al., 

2012).

Statistical methods have been developed to make inference about the cumulative incidence. 

Gray (1988) proposed a nonparametric log-rank-type test for comparing the cumulative 

incidence functions of a particular failure type among different groups. In the regression 

setting, Fine and Gray (1999) proposed a semiparametric proportional hazards model for the 

subdistribution of a competing risk. This model has become the method of choice with 2,000 

citations and been incorporated into the statistical guidelines of the European Group for 

Blood and Marrow Transplantation (Iacobelli, 2013).

The Fine and Gray methodology has important limitations, however. First, it requires the 

modelling of the censoring distribution and may yield invalid inference if the censoring 

distribution is mis-modeled. Second, the estimation is based on the inverse probability of 

censoring weighting, such that the estimators are statistically inefficient and numerically 

unstable. Third, the model is restricted to the proportional subdistribution hazards structure, 

which may not hold in practice, and there are no model-checking tools. Fourth, the cause of 

failure needs to be known for every subject. Finally, joint inference on multiple risks is not 

provided.

Jeong and Fine (2006, 2007) proposed parametric regression models for the cumulative 

incidence function and derived maximum likelihood estimators. Their approach does not 

model the censoring distribution. However, it is difficult to parametrize failure time 

distributions, especially when there are multiple failure types. Incorrect parametrization can 

lead to erroneous inference.

In this paper, we develop semiparametric regression methods that avoid the aforementioned 

limitations of the existing methods. Specifically, we formulate the effects of covariates on 

the cumulative incidence function using a flexible class of semiparametric transformation 

models, which encompasses both proportional and non-proportional subdistribution hazards 

structures. We allow the cause of failure information to be partially missing. We derive 

efficient estimators for the proposed models through the NPMLE approach, which does not 

involve modelling the censoring distribution. We construct simple and fast numerical 

algorithms based on the profile likelihood (Murphy and van der Vaart, 2000) to obtain the 

estimators. We establish the asymptotic properties of the estimators through modern 

empirical process theory (van der Vaart and Wellner, 1996) and semiparametric efficiency 

theory (Bickel et al., 1993). Our approach allows for joint inference on multiple risks, which 

is desirable because an increase in the incidence of one risk decreases the incidence of other 

risks. We also develop numerical and graphical procedures to evaluate and select models.
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There is some literature on the NPMLEs for semiparametric models with censored data 

(e.g., Murphy et al., 1997; Kosorok et al., 2004; Scheike and Martinussen, 2004; Zeng and 

Lin, 2006, 2007). Our setting is unique in that the regression parameters and infinite-

dimensional cumulative hazard functions are all intertwined due to the the constraint that the 

sum of the cumulative incidence functions must not exceed one. Because of this constraint, 

existing asymptotic arguments, such as the general theory of Zeng and Lin (2007), do not 

directly apply. A further complication arises from the missing information on the cause of 

failure. To tackle these challenges, we use novel techniques to prove the asymptotic 

properties, especially the consistency. In addition, we develop novel numerical algorithms 

through the profile likelihood so as to avoid direct maximization over high-dimensional 

parameters. Finally, we extend the martingale residuals for traditional survival data to 

competing risks data and study the theoretical properties of the cumulative sums of residuals 

so as to provide objective model-checking procedures.

The rest of this paper is organized as follows. In Section 2, we introduce the models, 

describe the estimation approach, and present the asymptotic results. We also define 

appropriate residuals and use the cumulative sums of residuals to develop model-checking 

techniques. In Section 3, we conduct simulation studies to assess the performance of the 

proposed methods in finite samples and to make comparisons with existing methods. We 

provide an application to a major bone marrow transplantation study in Section 4. We make 

some concluding remarks in Section 5.

2. Methods

2.1. Model Specification

We are interested in estimating the effects of a set of covariates Z on a failure time T with K 
competing causes. We characterize the regression effects through the conditional cumulative 

incidence functions

where D indicates the cause of failure. We formulate each Fk through a class of linear 

transformation models:

(1)

where gk is a known increasing function, Qk(·) is an arbitrary increasing function, and βk is a 

set of regression parameters.

To allow time-dependent covariates, we consider the conditional subdistribution hazard 

function
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which pertains to the hazard function of the improper random variable 

, where I(·) is the indicator function, and Z consists of time-

dependent external covariates (Kalbfleisch and Prentice (2002), chapter 6). Clearly, Fk(t; Z) 

= 1−exp{−Λk(t; Z)}, where . We specify that

(2)

where Gk is a known increasing function, and Λk(·) is an arbitrary increasing function. The 

choices of Gk(x) = x and Gk(x) = log(1 + x) yield the proportional subdistribution hazards 

model (Cox, 1972) and the proportional (subdistribution) odds model (Bennett, 1983), 

respectively. If the covariates are all time-independent, then equation (2) can be expressed in 

the form of (1). Transformation models without competing risks have been studied by Cheng 

et al. (1995), Chen et al. (2002), Lu and Ying (2004), Yin and Zeng (2006), and Zeng and 

Lin (2006, 2007), among others.

2.2. Parameter Estimation

Suppose that T is subject to right censoring by C. Then we observe  and  instead of T and 

D, where , and . Let ξ indicate, by the values 1 versus 0, 

whether or not the cause of failure is observed. We set ξ to 1 if . For a random sample 

of size n, the data consist of ( , ξi, , Zi) (i = 1, …, n). Under the missing at random 

(MAR) assumption, the likelihood function for  and Λ ≡ (Λ1, ⋯, ΛK) 

takes the form

(3)

where Fk(t; Z, β, Λ) denotes the conditional cumulative incidence function under model (2). 

Here and in the sequel, f′(t) = df(t)/dt for any function f.

To obtain the NPMLEs, we treat Λk as a right-continuous step function with jump size 

Λk{t} at time t. Then the calculation of the NPMLEs is tantamount to maximizing (3) with 

respect to β and  for . The maximization can be implemented 

through optimization algorithms, as described by Zeng and Lin (2007).

We propose an explicit algorithm to compute the NPMLEs for time-independent covariates 

with fully observed causes of failure. Let tk1 < ⋯ < tkmk be the distinct failure times of cause 

k. Denote dkj = Λk{tkj} for j = 1, ⋯ mk and k = 1, ⋯, K. Let t1 < ⋯ < tm be the distinct 
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failure times regardless of cause with tm+1 = ∞, and let δ1, ⋯, δm and d1, ⋯, dm be the 

corresponding causes and jump sizes, respectively. Write  and 

, which pertain to Λk at times tj and tkj, respectively. Then the log-likelihood 

can be written as

(4)

where , and Z(kj) denotes the covariate vector for the subject having the kth 

cause of failure at time tkj.

We construct the profile likelihood (Murphy and van der Vaart, 2000) of β by “profiling out” 

Λ. This task is complicated by the fact that ∂ln(β, Λ)/∂d = 0 is a system of nonlinear 

equations of d ≡ (d1, ⋯, dm)T. From those equations, however, we can express dkj as a 

function of the dl's corresponding to the failure times preceding tkj. That is, we can write

(5)

where q is some data-dependent function. This equation defines a recursive formula to 

compute dkj (j = 2, ⋯, mk) given β and dk1 (k = 1, ⋯, K); see Section S.1 in the 

Supplementary Materials.

Write αk = dk1, α = (α1, ⋯, αK)T, and θ = (βT, αT)T. Then  can 

be calculated by the recursive formula given in (S.2) of the Supplementary Materials. The 

profile log-likelihood  can be computed as well. The first and second 

derivatives of pln(θ) involve the derivatives of Λ with respect to θ; they can be obtained 

through the recursive formula by differentiating both sides of (5) with respect to θ. We can 

then use the Newton-Raphson algorithm to obtain the NPMLE of θ, denoted by . We set the 

initial value of β to 0 and the initial value of αk to 1/mk.

To accommodate unknown causes of failure, we construct an EM algorithm by treating the 

 associated with ξi = 0 as missing data. The complete-data log-likelihood is precisely (4). 

In the E-step, we compute , which can be expressed as
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In the M-step, we maximize the weighted version of (4) with the weights wik and 1 for ξi = 

0 and ξi = 1, respectively.

Remark 1. In the iterations of the algorithm, the overall survival function 

 may become zero or negative. To improve the convergence of 

the algorithm, one may impose a small positive number on the survival function as a 

“buffer” to force it to be strictly positive, along the lines of Groeneboom and Wellner (1992, 

page 70). We have not encountered non-positive survival function estimates in our numerical 

experiences, so we have not actually used any buffer. If one directly maximizes the 

likelihood, the constraint would automatically be satisfied. Another way to incorporate the 

constraint is to decompose the cumulative incidence function using the mixture cure model 

representation of Lu and Peng (2008).

2.3. Asymptotic Properties

We assume the following regularity conditions:

(C1) The true value of β, denoted by β0, lies in the interior of a compact subset of the 

Euclidean space , where p is the dimension of β; the true value of Λk, denoted 

by Λk0, is continuously differentiable with  on [0, τ] for some 

constant τ > 0.

(C2) The components of Z(·) are uniformly bounded and have bounded total variation 

with probability one, and if βTZ(t) = d(t) almost surely for some constant 

function d for all t ∈ [0, τ], then β = 0 and d(t) = 0.

(C3) With probability one, there exists a constant δ0 such that Pr(T ≥ τ|Z) ≥ δ0 > 0 

and Pr(C ≥ τ|Z) = Pr(C = τ|Z) ≥ δ0 > 0.

(C4) The function Gk is four-times differentiable with Gk(0) = 0 and , and 

for any c0 > 0,

(6)

(C5)
With probability one, 

for some ξ0 > 0.

Remark 2. Conditions (C1)–(C3) are standard regularity conditions in survival analysis. (C4) 

is satisfied by the Box-Cox transformations Gk(x) = {(1 + x)γ − 1}/γ (γ ≥ 0). Equation (6) 

is not satisfied by the logarithmic transformations Gk(x) = r−1 log(1 + rx) (r ≥ 0). However, 

this equation, which ensures that  stays bounded, is used only in proving the 

consistency of the NPMLEs, and the proof actually goes through for the logarithmic 

transformations by the partitioning device described in the technical report of Zeng and Lin 

(2006). Condition (C5) ensures that the MAR assumption holds.
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The following theorem on the consistency of the NPMLEs is proved in Section S.2 of the 

Supple-mentary Materials.

Theorem 1. Under Conditions (C1)–(C4),  and  are strongly consistent, 

i.e.,

almost surely, where ∥ · ∥ denotes the Euclidean norm.

Remark 3. A major challenge in proving this theorem is that the Λk's are defective (i.e., 

Λk(τ) cannot be arbitrarily large) and constrained by the condition that 

. To overcome this technical difficulty, we show that lim infn 

.

Let BV1 denote the space off unctions on [0,τ] that are uniformly bounded by 1 and with 

total variation bounded by 1. Write  and , which is the K-

product space of BV1. Let  and . Then we can identify (β, Λ) 

as elements in , which is the space of bounded functions on , by 

. Likewise, we identify  as random elements in 

 such that

The following theorem on the distribution of the NPMLEs is proved in Section S.3 of the 

Supplementary Materials.

Theorem 2. Under Conditions (C1)–(C4),  converges weakly to a 

zero-mean Gaussian process in . In addition,  is semiparametric efficient in the 

sense of Bickel et al. (1993).

This theorem implies that  is asymptotically multivariate zero-mean normal and 

 converges to a multivariate zero-mean Gaussian process on 

[0, τ]⊗K, the K-product space of [0, τ]. In the special case of no missing cause of failure, the 

covariance matrix of  can be estimated by the upper left block of , 

which is a natural by-product of the algorithm. In the general case, we estimate the 

covariance matrix by inverting the information matrix for β and the nonzero dkj's. This 
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approach also provides variance estimation for the ; see Section S.4 in the 

Supplementary Materials for justifications.

Since Λk(t) is positive, we construct its confidence interval by using the log transformation: 

, where  is the estimated standard error of , 

and z1−α/2 is the upper (1 − α/2)100th percentile of the standard normal distribution. To 

estimate Λk(t; z) for covariate value z, we subtract z from Z; then Λk(t) corresponds to Λk(t; 
z). Inference on Fk(t; z) follows from the simple relationship Fk(t; z) = 1 − e−Λk(t;z).

2.4. Model Checking

The class of models given in (2) requires specification of the following components: the 

functional form of each covariate; the link function, i.e., the exponential regression function; 

the proportionality structure, i.e., the multiplicative effect of the regression function within 

the transformation; and the transformation function Gk. To check these components, we 

define appropriate residuals and consider cumulative sums of residuals. We assume for now 

that the causes of failure are fully observed. We define  and 

. Then the following process is centered at zero

(7)

where , and

We obtain the residual process  by replacing (β, Λ) in (7) with the NPMLEs.

Let Mki denote the value of Mk for the ith subject, and let Zji denote the jth component of Zi. 

To check the functional form of the jth covariate, we consider the cumulative sum of 

residuals over this covariate:

To check the link function, we consider the cumulative sum over the linear predictor:

To check the transformation function Gk, we take the cumulative sum over its argument:
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To check the proportionality for the jth covariate, we consider the “score” process

where  is the jth component of

which pertains to the score function of βk based on the data available up to time t. Finally, to 

assess the overall fit of the model, we consider the process

All above processes are special cases of the multi-parameter process

where f is some function. We use Monte Carlo simulation to evaluate its null distribution. 

Specifically, we define

where (Q1, ⋯, Qn) are independent standard normal variables, and 

are described in Section S.5 of the Supplementary Materials. We show in that section that 

the conditional distribution of  given the observed data  (i = 1,…, n) is 

asymptotically the same as the distribution of Wkn.

To approximate the null distribution of Wkn, we simulate the distribution of  by 

repeatedly generating the normal random sample (Q1, ⋯, Qn) while holding the observed 

data fixed. To visually inspect model mis-specification, we compare the observed residual 

process with a few, say 20, realizations from the simulated process. We can also perform 

formal goodness-of-fit tests by calculating the p-values for the suprema of the residual 
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processes based on a large number, say 1000, realizations. We establish the consistency of 

the supremum tests in Section S.5 of the Supplementary Materials.

To accommodate missing causes of failure, we re-define the mean-zero process Mk(t; β, Λ). 

Specifically, we replace Nk(t) in (7) by , 

where . The rest of the development 

follows from the arguments in Section S.5 of the Supplementary Materials.

3. Simulation Studies

We conducted extensive simulation studies to evaluate the proposed and existing methods. 

We set K = 2 and Z = (Z1, Z2)T, where Z1 is binary with Pr(Z1 = −1) = Pr(Z1 = 1) = 0.5, and 

Z2 is Un(−1, 1). We let Λk(t) = ρk (1 − e−t), where ρk > 0. We assumed fully observed causes 

of failure except for the simulation studies described in the last paragraph of this section.

First, we compared the NPMLE with the Fine and Gray (1999) (FG) method under 

proportional subdistribution hazards models. We let the censoring time be the minimum of a 

Un(5, 6) variable and an Exp(0.1) variable. We set β1 = 0, β2 = (0.5, 0.5)T, ρ1 = 0.1, and ρ2 

= 0.75, 1.1, and 1.5, corresponding to 50%, 40%, and 25% censoring, respectively. The 

algorithm was deemed convergent when the Euclidean distance between the β values of the 

current and previous iterations was less than 10−4 and the number of iterations did not 

exceed 100. Convergence rates for the NPMLE with sample sizes 100, 200, and 500 were 

approximately 99.5%, 99.8%, and 99.9%, respectively. For most (> 98.6%) of the simulated 

datasets, convergence criteria were met with 3 to 10 iterations. It took about 1 second and 

0.5 second on a Dell Inspiron 2000 machine to analyze one dataset with n = 200 for the 

NPMLE and FG methods, respectively.

The results for the estimation of β11 are summarized in Table 1. For both methods, the 

estimators are virtually unbiased and the standard error estimators reflect the true variations 

well. Thus, the confidence intervals have accurate coverage probabilities. However, the 

standard error of the FG estimator is always larger than that of the NPMLE. The difference 

is more pronounced when there are more events of the second type and lower censoring rate 

because FG models the censoring distribution while discarding the information in the second 

type of event.

We evaluated the NPMLE further under different transformation models. We considered the 

family of logarithmic transformations Gr(x) = r−1 log(1 + rx), in which r = 0 and 1 

correspond to the proportional subdistribution hazards and odds models, respectively. We set 

ρ2 = 0.75 and varied the value of β1 while fixing β2 at (0.5, 0.5)T. The results for the 

estimation of β1 are shown in Table S.1 of the Supplementary Materials. The NPMLE 

performs very well under all transformation models.

We also considered estimation of the cumulative hazard functions Λk under β1 = β2 = 0. The 

results for Λ1(t) are summarized in Table S.2 of the Supplementary Materials. The 
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parameter estimators are virtually unbiased, the standard error estimators are accurate, and 

the confidence intervals have correct coverages.

We evaluated the FG method further under mis-specified censoring distributions. We used 

the set-up for Table 1 with ρ2 = 0.75 but let the censoring time be the minimum of a Un(3, 6) 

variable and an Exp(exp(ηZ1)) variable, where η = 1 or 2. Thus, the censoring distribution 

depends on the first covariate in a non-proportional hazards manner. In the FG method, the 

censoring distribution is estimated by the Kaplan-Meier estimator. Fine and Gray (1999) 

suggested to use the proportional hazards model for the censoring distribution but did not 

derive the corresponding variance estimators. Table 2 compares the NPMLE, the original FG 

estimator, and the modification based on the proportional hazards modelling of the censoring 

distribution, denoted by FG*. FG has considerable bias and the bias becomes greater as the 

censoring distributions become more uneven. For FG*, the bias is smaller but still 

appreciable relative to the standard error, especially when the sample size is large. For both 

FG and FG*, the mean square error is considerably larger than that of the NPMLE.

Next, we compared our NPMLE to the parametric MLE of Jeong and Fine (2007). We used 

the set-up of Table 1 with ρ2 = 0.75 but set β1 = β2 = 0. In this setting, Λ1 and Λ2 are 

correctly modeled by the parametric method. As shown in Table S.3 of the Supplementary 

Materials, the parametric MLE tends to be more efficient than the NPMLE; however, the 

efficiency gain is rather moderate.

We conducted additional studies to assess the bias of the parametric method under mis-

specified failure distributions. We used the proportional subdistribution hazards models and 

set β1 = (0.5, 0)T and β2 = 0. We let λk(t) = 0.5t exp(−t2/2) and used the same censoring 

distributions as in Table 1. As shown in Table S.4 of the Supplementary Materials, the 

estimation for the cumulative hazard function is severely biased.

To show that the estimation of β can also be biased, we considered a more wiggly hazard 

function, i.e., λk(t) = 0.15{1 + cos(πt)}. We set β1 = (0.5, 0)T and β2 = 0 and focused on the 

estimation of β11. As shown in Table S.5 of the Supplementary Materials, the parametric 

method underestimates β11. The bias is considerable relative to the standard error, especially 

when the sample size is large.

Then, we assessed the robustness of the NPMLE for the risk of interest to model mis-

specification on other risks. We used the set-up of Table 1 with ρ2 = 0.75. We generated data 

under the proportional subdistribution hazards and odds models for the first and second 

risks, respectively, but fit the proportional subdistribution hazards models to both risks. As 

shown in Table S.6 of the Supplementary Materials, mis-specification of the second risk has 

little impact on the inference on the first risk.

We also evaluated the performance of the goodness-of-fit tests in the set-up of Table 1 with 

ρ2 = 0.75, β1 = (0.5, 0)T, and β2 = (0, 0)T. We evaluated the type I error of the supremum 

tests for the first risk at the nominal significance level of 0.05. We simulated 10,000 datasets 

with n = 100 and used 1,000 normal samples to calculate the p-value. For checking the 

functional form of Z1, the exponential link function, the transformation function, the 

proportionality on Z1, and the overall fit, the empirical type I error rates were found to be 
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0.051, 0.059, 0.062, 0.042, and 0.048, respectively. Thus, the asymptotic approximations for 

the supremum tests are accurate enough for practical use.

Finally, we considered missing causes of failure. We generated the missing indicators for 

non-censored subjects from the logistic model

We set γ = 0 and −0.2, which correspond to missing completely at random (MCAR) and 

MAR, respectively. We used the set-up of Table 1 with ρ2 = 0.75, β1 = (−0.5, 0)T, and β2 = 

(0, 0)T. We compared the NPMLE with the FG complete-case analysis (i.e., excluding 

subjects with missing causes of failure). The complete-case analysis is expected to be biased 

even under MCAR because only non-censored subjects may be excluded due to missing 

causes of failure. (The causes of failure are naturally unknown for censored subjects, such 

that censored subjects are always included in the analysis. Since shorter failure times are 

more likely to be censored than longer failure times, the subjects with non-missing causes of 

failure are not representative of all subjects.) The results for the estimation of β11 are 

summarized in Table 3. The NPMLE remains unbiased. The FG estimator is biased, 

especially under MAR. In addition, the FG estimator is substantially less efficient than the 

NPMLE.

4. A Real Example

We present a major study on bone marrow transplantation in patients with multiple myeloma 

(MM) (Kumar et al., 2011). The standard treatment for MM is autologous hematopoietic 

stem cell transplantation (auto-HCT). An alternative treatment, allogeneic hematopoietic cell 

transplantation (allo-HCT), is less commonly used because of its high treatment-related 

mortality (TRM). However, recent advances in medical care have lowered TRM rates of 

allo-HCT (Kumar et al., 2011). To evaluate the effects of various risk factors on clinical 

outcomes after allo-HCT for MM, we consider data collected from years 1995–2005 by the 

Center for International Blood and Marrow Transplantation Research (CIBMTR). The 

CIBMTR is comprised of clinical and basic scientists who confidentially share data on their 

blood and bone marrow transplant patients with the Data Collection Center located at the 

Medical College of Wisconsin; it provides a repository of information about results of 

transplants from more than 450 transplant centers worldwide.

The database contains 864 patients, among whom 376 received transplantation in 1995–

2000 and 488 received transplantation in 2001–2005. The two competing risks are TRM and 

relapse of MM. A total of 297 patients experienced TRM, and 348 experienced relapse. Risk 

factors include cohort indicator (transplantation years 1995–2000 or 2001–2005), type of 

donor (unrelated or HLA-identical sibling donor), history of a prior auto-HCT (yes or no), 

and time from diagnosis to transplantation (≤ 24 months or > 24 months).

We first fit the proportional subdistribution hazards models for both risks and compare our 

method with the FG method. As shown in Table 4, the two methods produce considerably 
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different results. The differences are largely attributed to uneven censoring distributions. By 

fitting a proportional hazards model to the censoring distribution with the same set of 

covariates, we find that cohort indicator, prior auto-HCT, and waiting time increase the 

censoring rate. Thus, the FG estimates of their effects are biased downward for both risks. 

By contrast, donor type decreases the censoring rate, such that the FG estimates of its effects 

on the two risks are biased upward. At the significance level of 0.05, waiting time is 

associated with both risks under the NPMLE method but is not associated with either risk 

under the FG method. The more recent cohort (years 2001–2005) has a significantly lower 

incidence of TRM but higher incidence of relapse. Transplantation involving an unrelated 

donor significantly increases the risk of both TRM and relapse. Prior auto-HCT reduces the 

risk of TRM but increases the risk of relapse. We test the global null hypothesis that waiting 

time does not affect TRM or relapse. The p-value of the  test is <0.001, so that the null 

hypothesis is strongly rejected.

We also fit the proportional cause-specific hazards models, and the results are shown in 

Table S.7 of the Supplementary Materials. The parameter estimates are quite different from 

their counterparts in Table 4, but the signs are the same. Thus, the covariate effects on the 

cause-specific and subdistribution hazards are in the same directions, but with different 

magnitudes.

Next, we consider the family of transformation functions Gk(x) = r−1 log(1 + rx) (k = 1, 2). 

We fit 4 pairs of models with r = 0 or 1 for the two competing risks. We label the choices of 

r = i (i = 0, 1) for TRM and r = j (j = 0, 1) for relapse as Model 2j + i + 1. To evaluate these 

transformations, we use the supx,t |Wktr(x, t)| test for k = 1, 2. The p-values, based on 1000 

realizations, for testing the transformation functions for TRM under Models 1–4 are 0.035, 

0.543, 0.029, and 0.382, respectively, and the corresponding p-values for testing the 

transformation functions for relapse are 0.056, 0.045, 0.282, and 0.307. These results 

suggest that the proportional subdistribution hazards assumption is not appropriate for TRM 

and relapse. We also fit the models with r ranging from 0 to 2. As shown in Figure S.1 of the 

Supplementary Materials, the log-likelihood is maximized at r = 0.8 for TRM and r = 1.3 for 

relapse, which would be the combination selected by the Akaike information criterion. The 

selected combination is close to Model 4 (i.e., proportional odds models for both risks), 

which we adopt for ease of interpretation.

The results from Model 4 are summarized in Table 5. These results differ markedly from the 

NPMLE results in Table 4, and the interpretations of the regression effects are quite 

different. We assess the proportionality assumption using the sup |Wkp| test. The p-values are 

0.297, 0.123, 0.687, and 0.673, respectively, for the effects of cohort indicator, donor type, 

history and waiting time on TRM; the corresponding p-values for relapse are 0.818, 0.361, 

0.352, and 0.940. Thus, the proportionality assumption holds on all covariates. The p-value 

for the omnibus test is 0.412, indicating overall goodness of fit.

To compare the predictions from the initial proportional subdistribution hazards models and 

the chosen proportional odds models, we show in Figure 1 the estimated cumulative 

incidence functions for the two cohorts with HLA-identical sibling donor, no history of prior 

auto-HCT treatment, and waiting time ≤ 24 months. The two pairs of models yield rather 
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different estimates, especially for relapse. Thus, proper choice of the transformation function 

is crucial to accurate prediction of the incidence of competing risks.

5. Discussion

Our work represents the first likelihood-based approach to semiparametric regression 

analysis of cumulative incidence functions with competing risks data. It offers major 

improvements over the pioneer work of Fine and Gray (1999). First, it does not require 

modelling of the censoring distribution, such that the inference is valid regardless of the 

censoring patterns. Second, it provides flexible choices of models for covariate effects, 

accommodating both proportional and non-proportional subdistribution hazards structures. 

Third, it provides efficient parameter estimators. Fourth, it allows for missing information on 

the cause of failure. Fifth, it performs simultaneous inference on multiple risks. Finally, it 

provides graphical and numerical techniques to evaluate and select models. These 

improvements have important implications in actual data analysis, as demonstrated in the 

simulation studies and real example.

Because an increase in the incidence of one risk reduces the incidence of other risks, it is 

necessary to take into account all other risks when interpreting the results on one particular 

risk. Thus, it is desirable to model all risks even when one is interested in only one of them. 

Our simulation results show that the inference on one risk is robust to model mis-

specification on other risks. The FG method only models the risk of interest and thus seems 

to involve fewer model assumptions. However, it requires modelling the censoring 

distribution, which is of no scientific interest at all. As shown in our simulation studies, mis-

specification of the censoring distribution may bias the inference. In addition, the estimated 

inverse weights can be quite unstable under heavy censoring.

For maximizing the nonparametric likelihood, many authors have resorted to optimization 

algorithms. Due to the high dimensionality of the argument, such algorithms are slow and 

their convergence is not guaranteed. We have developed a recursive formula to compute the 

profile likelihood and its derivatives. Our strategy greatly reduces the dimension of the 

problem and is fast and stable.

For notational simplicity, we have assumed that the covariates are the same for all risks. All 

theoretical results hold when covariates are risk-specific, i.e., dependent on k. Our 

formulation accommodates time-dependent covariates, but only external time-dependent 

covariates (Kalbfleisch and Prentice (2002), chapter 6) are allowed. A common example of 

such covariates is time×covariate interaction; other examples include temperature, 

particulate levels, and precipitation. For internal time-dependent covariates, the relationship 

between the cumulative incidence function and the subdistribution hazard function does not 

hold, and the likelihood does not conform to (3). The FG method is also restricted to 

external covariates (Latouche et al., 2005).

In our analysis of the CIBMTR data, deaths after relapse were excluded from the definition 

of TRM. This practice differentiates treatment-related mortality unequivocally from disease-

related mortality and has been commonly adopted in the analysis of transplantation data 
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(e.g., Scheike and Zhang, 2008; Kumar et al., 2011). For analysis of all-cause mortality and 

relapse, however, semicompeting risks models (e.g., Peng and Fine, 2007; Lin et al., 2014), 

in which death is not censored by relapse, are more appropriate and make fuller use of data.

In some applications, the events are asymptomatic, such that the event times are only known 

to lie between monitoring times. For example, in the HIV clinical trial cited in Section 1, 

blood tests were performed periodically on study subjects for evidence of HIV-1 sero-

conversion (Hudgens et al., 2001). We plan to extend our work to handle such interval-

censored competing risks data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimated cumulative incidence of TRM and relapse for a subject with HLA-identical 

sibling donor, no prior auto-HCT treatment, and waiting time ≤ 24 months. The black and 

red curves indicate years 1995–2000 and 2001–2005, respectively; the dashed and solid 

curves pertain to the proportional subdistribution hazards and odds models, respectively.
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Table 4

Proportional subdistribution hazards analysis of the bone marrow transplantation data

NPMLE FG

Est SE p-value Est SE p-value

TRM

Years 2001–2005 −0.543 0.132 <0.001 −0.578 0.139 <0.001

Unrelated donor 0.476 0.126 <0.001 0.521 0.128 <0.001

Prior auto-HCT −0.451 0.162 0.005 −0.463 0.153 0.003

TX > 24 months 0.296 0.123 0.017 0.248 0.135 0.065

Relapse

Years 2001–2005 0.518 0.129 <0.001 0.401 0.122 0.001

Unrelated donor 0.293 0.101 0.004 0.330 0.122 0.007

Prior auto-HCT 0.399 0.116 0.001 0.351 0.125 0.005

TX > 24 months 0.310 0.121 0.018 0.216 0.123 0.078
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Table 5

Proportional odds analysis of the bone marrow transplant data

Est SE p-value

TRM

Years 2001–2005 −0.582 0.123 <0.001

Unrelated donor 0.504 0.108 <0.001

Prior auto-HCT −0.420 0.143 0.003

TX > 24 months 0.217 0.126 0.084

Relapse

Years 2001–2005 0.353 0.116 <0.001

Unrelated donor 0.337 0.088 <0.001

Prior auto-HCT 0.314 0.123 0.002

TX > 24 months 0.343 0.138 0.013
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