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Abstract

The peptide hormone ghrelin plays a key role in regulating hunger and energy balance within the 

body. Ghrelin signaling presents a promising and unexploited target for development of small-

molecule therapeutics to treat obesity, diabetes, and other health conditions. Inhibition of ghrelin 

O-acyltransferase (GOAT), which catalyzes an essential octanoylation step in ghrelin maturation, 

offers a potential avenue for controlling ghrelin signaling. Through screening a small molecule 

library, we have identified a class of synthetic triterpenoids that efficiently inhibit ghrelin acylation 

by the human isoform of GOAT (hGOAT). These compounds function as covalent reversible 

inhibitors of hGOAT, providing the first evidence for involvement of a nucleophilic cysteine 

residue in substrate acylation by a MBOAT family acyltransferase. Surprisingly, the mouse form 

of GOAT does not exhibit susceptibility to cysteine modifying electrophiles revealing an important 

distinction in the activity and behavior between these closely related GOAT isoforms. This study 

establishes these compounds as potent small molecule inhibitors of ghrelin acylation and provides 

a foundation for the development of novel hGOAT inhibitors as therapeutics targeting diabetes and 

obesity.
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The increasing incidence of diabetes and obesity within the American population presents an 

urgent and growing threat to public health. The prevalence of type II diabetes has recently 

risen dramatically, with ~26 million adults and children suffering from diabetes and an 

estimated 79 million American adults classified as pre-diabetic as of 2011.1 The global 

situation is also foreboding, with 382 million people suffering from diabetes in 2013, a 

figure expected to increase to 592 million by 2035.2 These sobering statistics underscore the 

need for new therapeutic avenues to treat these diseases, particularly small-molecule based 

treatments to complement lifestyle modification and surgical approaches already being 

employed.

The peptide hormone ghrelin is a key component of a promising and unexploited target for 

development of small-molecule therapeutics to treat obesity, diabetes, and many related 

health conditions. Ghrelin is a 28-amino acid secreted peptide, discovered in 1999 by 

Kojima and coworkers,3 which has been implicated in a wide array of physiological 

pathways ranging from energy regulation to neurological processes (for examples and 

reviews, see 4–8). Ghrelin is perhaps most well-known for its ability to stimulate appetite.5 

Beyond hunger signaling, ghrelin has been linked to maintenance of body energy balance 

through regulation of fat mass and modulation of insulin signaling and glucose metabolism 

sensitivity, while des-acyl ghrelin and des-acyl ghrelin analogs block some of these 

effects.4, 9–15 In general, an increase in the level of acyl ghrelin inhibits glucose-stimulated 

insulin secretion,16–20 with studies suggesting the ratio of acyl to des-acyl ghrelin may be 

the controlling factor in modulating insulin sensitivity.13, 21, 22 Such a multi-input signaling 

system could explain the conflicting results reported in studies of the effects of acyl ghrelin 

on insulin sensitivity, with differing effects reported in different cell lines, healthy and obese 

humans, and in cases of type I diabetes as described in recent reviews.7, 11 Inhibition of 

GOAT-catalyzed acylation of ghrelin would not only decrease levels of acyl ghrelin, but 

increase levels of des-acyl ghrelin, and therefore caution must be taken when evaluating the 

potential benefits and hazards of such treatments in an organismal context.

Recent studies also suggest ghrelin signaling can play a developmental role in defining 

metabolic and body weight “set points” within the hypothalamus, as both elevated and 

depressed ghrelin levels in neonatal mice have been linked to metabolic dysregulation later 

in life.23 This suggests the potential for prophylactic inhibition of ghrelin signaling in infants 

with elevated ghrelin levels to reduce obesity and metabolic disturbances such as those 

observed in patients with Prader-Willi syndrome exhibiting hyperghrelinemia.24, 25 

However, studies such as that by Sominsky and coworkers demonstrate that disruptions of 

ghrelin signaling due to overeating early in life resolve in adult rats, indicating that the 
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connection between ghrelin signaling and metabolic regulation in adulthood remains to be 

fully defined.26 Such studies will be aided by the development of potent small-molecule 

agents for effectively modulating ghrelin signaling within organisms.27

Ghrelin-dependent pathways present attractive targets for drug development, as ghrelin 

requires multiple covalent modifications for biological activity.5 Ghrelin maturation involves 

a unique posttranslational modification of the third serine from the N-terminus of the 94-

amino acid ghrelin precursor des-acyl proghrelin, wherein this serine is acylated by an 

octanoyl (C8) fatty acid group (Figure 1a). Ghrelin O-acyltransferase (GOAT), the integral 

membrane enzyme shown to be responsible for acylation of both des-acyl proghrelin and the 

unacylated form of mature 28-amino acid ghrelin, was identified in 2008.28–30 While both 

acylated ghrelin and des-acyl ghrelin are present in blood serum, only the acylated form of 

ghrelin (hereafter referred to as “ghrelin”) can bind and activate signaling through its 

cognate GHSR-1a receptor.5 Ghrelin is the only substrate predicted for GOAT within the 

human proteome,28, 31 which reduces the potential for off-target effects due to the loss of 

GOAT-catalyzed acylation of other proteins upon inhibition of GOAT activity. The unique 

and essential nature of ghrelin octanoylation makes this modification an excellent target for 

inhibiting ghrelin activity.

While the potential of ghrelin signaling as a therapeutic target has been discussed in the 

literature,5, 7, 9–11, 32 the lack of small molecule inhibitors with demonstrated potency in 

targeting this pathway in a cellular or organismal context has hampered evaluation of this 

approach. Our group and others have reported examples of GOAT inhibitors based on either 

mimics of ghrelin or screening of small molecule libraries (Figure 1b).30, 32–36 However, 

other than the GO-CoA-Tat inhibitor discussed below, none of these GOAT inhibitors has 

been reported to block ghrelin octanoylation in cell- or animal-based studies.33, 35, 36

The strongest evidence supporting the potential for GOAT inhibitors to modulate serum 

levels of acylated ghrelin comes from the work of Barnett and coworkers with their peptide-

based bisubstrate mimetic GO-CoA-Tat inhibitor.32 This inhibitor effectively inhibited 

GOAT in both cultured mammalian cells and mice, with treated mice demonstrating 

increased glucose tolerance and reduced weight gain.32 However, the pharmaceutical utility 

of GO-CoA-Tat is limited by its susceptibility to proteolytic degradation and its large size 

(MW ~3600 Da). The absence of readily available potent small molecule GOAT inhibitors 

remains the principal obstacle in validating ghrelin and ghrelin-related signaling pathways as 

treatment avenues.

To address this challenge in exploiting ghrelin signaling for therapeutic development and 

catalyze the creation of potent inhibitors of GOAT, we sought to identify “drug-like” small 

molecules with inhibitory activity against GOAT. Our screen of a library of small molecules 

with diverse structures revealed a new small molecule human GOAT (hGOAT) inhibitor, 

CDDO-Im, with subsequent structure-activity analysis revealing this compound and related 

molecules function as reversible covalent inhibitors of hGOAT. This class of compounds 

exhibits robust inhibition of ghrelin octanoylation by hGOAT, and effects reported in 

previous animal and clinical studies employing CDDO-family compounds support the 

potential for these compounds to impact ghrelin signaling.37–44 Our study establishes these 

McGovern-Gooch et al. Page 3

Biochemistry. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



synthetic triterpenoids as effective small molecule inhibitors targeting ghrelin signaling, 

provides the first evidence implicating a cysteine thiol group in the catalytic mechanism of a 

MBOAT family acyltransferase, and offers a foundation for continued development of novel 

hGOAT inhibitors as therapeutics targeting diabetes and obesity.

Experimental Procedures

General

Data plotting and curve fitting were performed with Kaleidagraph (Synergy Software, 

Reading, PA, USA). Methyl arachidonyl fluorophosphonate (MAFP) was purchased from 

Cayman Chemical (Ann Arbor, MI) as a stock in methyl acetate and diluted into DMSO 

prior to use. Octanoyl coenzyme A (octanoyl-CoA) was solubilized to 5 mM in 10 mM 

Tris–HCl (pH 7.0), aliquoted into low-adhesion microcentrifuge tubes, and stored at −80 

¼C. Acrylodan (Anaspec) was solubilized in acetonitrile, with the stock concentration 

determined by absorbance at 393 nm on dilution into methanol (ε = 18,483 M−1 cm−1 per 

manufacturer’s data sheet). Compounds were obtained as follows: compounds 1–5, gift from 

Gordon Gribble and Michael Sporn (Dartmouth University);45–50 compounds 6–8 and 15 
were provided by the Developmental Therapeutics Program (DTP/NIH); compounds 9–14 
and 16–17 were synthesized as described in the Supporting Information; estrone (15) was 

purchased from Cayman Chemical (Ann Arbor, MI); cyclohexenone (18) was purchased 

from Alfa Aesar (Ward Hill, MA). The GSSFLCNH2 peptide for fluorescent labeling with 

acrylodan was synthesized by Sigma–Genosys (The Woodlands, TX, USA) in the Pepscreen 

format. The GSSFLCNH2 peptide was solubilized in 1:1 acetonitrile : H2O and stored at −80 

¼C. Peptide concentration was determined spectrophotometrically at 412 nm by reaction of 

the cysteine thiol with 5,5'-dithiobis(2-nitrobenzoic acid) using ε412 = 14,150 M−1 cm−1.51

Expression and enrichment of hGOAT and mGOAT

hGOAT and mGOAT were expressed and enriched in insect (Sf9) cell membrane fractions 

using a previously published procedure.15, 31, 52

Peptide substrate fluorescent labeling

Peptide substrates were labeled with acrylodan on a cysteine thiol and HPLC purified as 

previously reported.31, 52

hGOAT and mGOAT activity assays and analysis

hGOAT and mGOAT activity assays were performed using a modification of previously 

reported protocols.15, 31, 52 For each assay, membrane fraction from Sf9 cells expressing 

hGOAT or mGOAT was thawed on ice and passed through an 18-gauge needle 10 times to 

homogenize. Assays were performed with ~100 μg of membrane protein, as determined by 

Bradford assay. Membrane fraction was preincubated with 1 μM methyl arachidonyl 

fluorophosphonate (MAFP) and inhibitor or vehicle as indicated in 50 mM HEPES pH 7.0 

for 30 minutes at room temperature.53 Reactions were initiated with the addition of 500 μM 

octanoyl CoA and 1.5 μM fluorescently-labeled ghrelin mimetic, GSSFLCAcrylodan, for a 

total volume of 50 μL, and were incubated for 3 hours at room temperature in the dark. 

Reactions were stopped with the addition of 50 μL of 20% acetic acid in isopropanol, and 
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solutions were clarified by protein precipitation with 16.7 μL of 20% trichloroacetic acid, 

followed by centrifugation (1,000xg, 1 minute). The supernatant was then analyzed by 

reverse phase HPLC, as previously described.52 Data reported are the average of three 

independent determinations, with error bars representing one standard deviation.

Library screening

For screening from the Diversity Set IV library of small molecules, hGOAT octanoylation 

reactions were performed as described above with the addition of library compounds at 

concentrations of 10 and 100 μM, achieved by dilution of 10 mM compound stocks in 

DMSO received from the Developmental Therapeutics Program. Compounds that met 

criteria for inhibition (dose-dependent decrease in activity, <50% activity at 100 μM) were 

confirmed with a secondary screen using the same protocol.

Determination of IC50 values in in vitro hGOAT and mGOAT activity assays

For inhibition experiments, reactions were performed and analyzed as described in the 

presence of either inhibitor or vehicle (DMSO or ethanol) as appropriate.31 The percent 

activity at each inhibitor concentration was calculated from HPLC integration data using 

equations 1 and 2:

(1)

(2)

To determine the IC50 value, the plot of % activity versus [inhibitor] was fit to equation 3, 

with % activity0 denoting hGOAT activity in the presence of the vehicle alone:

(3)

Determination of inhibitor time dependence with hGOAT

To determine the time dependence of inhibition of hGOAT activity by CDDO-EA, assays 

were performed and analyzed as described above with the following two modifications: i) 

Membrane fraction was preincubated with 1 μM methyl arachidonyl fluorophosphonate 

(MAFP) in 50 mM HEPES pH 7.0 for 30 minutes at room temperature, followed by 

incubation with inhibitor or vehicle as appropriate for varying times (5, 10, 30, 60 minutes) 

prior to reaction initiation. ii) Reactions were incubated for 10 minutes at room temperature 
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in the dark, followed by addition of stop solution and reaction workup and analysis as 

described above.

Inhibitor reversibility assay

Undiluted homogenized membrane protein fraction containing hGOAT (protein 

concentration ~7 μg/μL) was incubated with 10 μM MAFP and 3 x IC50 of inhibitor or equal 

volume vehicle (DMSO or ethanol) for 30 minutes at room temperature. Following 

preincubation, the membrane fraction-inhibitor solution was diluted 10-fold into a reaction 

mixture containing 500 μM octanoyl CoA, 1.5 μM GSSFLCAcDan, 50 mM HEPES pH 7.0, 

and either vehicle or inhibitor (final concentration 3 x [IC50]) in a total reaction volume of 

50 μL. Reactions were incubated for 3 hours at room temperature in the dark and then 

analyzed as described above.

Results

Library screening reveals a new small molecule GOAT inhibitor

As described in the Introduction, the majority of reported GOAT inhibitors are substrate- or 

product-mimetic compounds. While effective to varying degrees in in vitro GOAT assays, 

many of these compounds appear to lack sufficient cell permeability to permit effective 

inhibition of ghrelin octanoylation in cell- or organism-based systems. To explore a broader 

expanse of chemical space for potential GOAT inhibitors, we utilized our fluorescence-based 

in vitro hGOAT activity assay to screen compounds from the Diversity Set IV library 

(Developmental Therapeutics Program, NCI/NIH) for inhibition of hGOAT (Figure 2).52 

This library consists of ~1600 compounds chosen to represent the molecular diversity of 

“drug-like” molecules within the DTP repository. Compounds were initially screened at 10 

and 100 μM, with those compounds exhibiting a dose-dependent decrease in activity and 

<50% activity at 100 μM verified by a secondary screen under the same conditions. For 

compounds passing both screens, we then obtained and assayed structurally related 

compounds from the DTP repository for inhibitory activity against hGOAT.

Following screening, we identified the most promising candidate molecule from the 

Diversity IV library as a synthetic oleanate triterpenoid, 1-[2-cyano-3,12-

dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im, 1) (Figure 2c) which inhibits 

hGOAT activity with an IC50 of 38 ± 6 μM. A structurally related molecule methyl 2-

cyano-3,12-dioxooleana-1,9(11)dien-28-oate (CDDO-Me, 2) also exhibits inhibitory activity 

against hGOAT (Figure 3).

Verification of CDDO scaffold activity against hGOAT

CDDO-Im and CDDO-Me belong to a class of orally available semisynthetic triterpenoids 

based on oleanolic acid.54 These compounds have demonstrated antiangiogenic and 

antitumor activities in animal cancer models by modulating multiple signaling pathways 

including the Nrf2 and NF-κB pathways.54–57 Given the inhibition of hGOAT by CDDO-Im 

and CDDO-Me, we determined the inhibitory activity of three other CDDO compounds with 

various carboxyl substituents (compounds 3–5, Figure 3) against hGOAT using the in vitro 
hGOAT activity assay.52 Of these five CDDO compounds, all but the acid 5 served as 
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inhibitors of hGOAT-catalyzed ghrelin octanoylation with the methyl ester and ethyl amide 

derivatives (CDDO-Me 2 and CDDO-EA 3) demonstrating the most potent inhibition of 

hGOAT (Figure 3). The lack of inhibition exhibited by the parent CDDO bearing a 

carboxylate may reflect a general intolerance for negatively charged groups within the 

hGOAT active site and substrate binding sites. Substrate selectivity studies have revealed 

hGOAT does not accept peptide substrates bearing negatively charged side chains or C-

terminal acids. 30, 31, 52

Structure-activity analysis of the CDDO scaffold

These CDDO-derived compounds contain several functional groups that could be 

responsible for activity against hGOAT (Figure 4): the triterpenoid scaffold; the α-

cyanoenone (ring A); or the α,β-unsaturated ketone (ring C). Given the multiple potential 

pharmacophores within the CDDO family compounds and our lack of knowledge regarding 

the structure and chemical nature of the hGOAT active site and substrate binding sites, we 

sought to determine the structure-activity parameters defining CDDO-based inhibitor 

potency against hGOAT by evaluating structural analogues. The natural product triterpenoid 

compounds ursolic acid (6) and oleanic acid (7, from which CDDO is derived) exhibit 

negligible inhibition of hGOAT activity at concentrations up to 100 μM. These compounds 

lack the activated α-cyanoenone group shown to be essential for CDDO derivative activity 

in previous studies targeting receptor signaling.54, 58 However, as both molecules also bear 

unsubstituted carboxylate groups their lack of hGOAT inhibition could reflect the inability 

of hGOAT to bind negatively charged molecules.30, 31 To separate these factors, we 

determined the ability of the triterpenoid taraxerol (8) to inhibit hGOAT. Taraxerol shares the 

same scaffold and 3-hydroxyl group as ursolic and oleanic acid but lacks the carboxylic acid. 

Taraxerol also fails to inhibit hGOAT acylation activity at concentrations up to 100 μM, 

which suggests hGOAT inhibition by CDDO is not primarily due to the triterpenoid scaffold 

structure.

Based on the proposed mode of action for CDDO derivatives binding to their targets through 

modification of reactive cysteine residues, we hypothesized the α-cyanoenone moiety 

present in the A ring of CDDO derivatives (green, Figure 4) is required for hGOAT 

inhibition. This group has been shown to covalently modify nucleophilic thiols in a range of 

protein targets in a reversible manner.59, 60 To examine the effect of a Michael acceptor 

group on hGOAT inhibition, we synthesized a series of minimally functionalized steroid 

derivatives featuring an α,β-unsaturated ketone in a position analogous to that in CDDO-EA 

(compounds 9-11, Figure 4). All three of these molecules inhibit hGOAT activity, with the 

inhibitor potency scaling with the level of activation of the enone towards nucleophilic 

addition from the most activated α-cyanoenone 9 (IC50 = 8 ± 2 μM) to the non-activated 

enone 11 (IC50 = 170 ± 60 μM). We note the α-cyanoenone 9 inhibits hGOAT with potency 

nearly identical to CDDO-Me 2 and CDDO-EA 3, indicating the complete triterpenoid 

scaffold and associate functional groups in the CDDO derivatives are not essential for 

binding and inhibition of hGOAT.

Using other steroid derivatives, we have demonstrated inhibition of hGOAT exhibits both 

chemo- and regioselectivity. Removal of the electron-poor alkene leads to loss of inhibition 
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as shown by compound 12. Incorporation of an α-bromo ketone as a potential electrophile in 

compound 13 was similarly unable to support inhibition. Migration of the α,β-unsaturated 

ketone to the other side of ring A (compound 14) similarly abrogates inhibition of hGOAT, 

with the additional alkyl substituent not expected to impact binding to hGOAT based on the 

tolerance for the larger triterpenoid scaffold in inhibitors 1-4. Furthermore, the lack of 

hGOAT inhibition exhibited by estrone (15) indicates a planar A ring within a steroid 

scaffold is insufficient for inhibition of hGOAT, with the electrophilic enone required for 

activity. These findings indicate hGOAT inhibition requires the presence of a specifically 

located Michael (conjugate) acceptor group, which is consistent with modification of an 

enzyme-bound nucleophile within a defined binding pocket on hGOAT.

The equivalent potency of CDDO-EA (3) and α-cyanoenone 9 indicate the distal E ring and 

carboxyl substituent of CDDO-EA are not required for binding to hGOAT. We determined 

the contribution of the steroid scaffold (purple, Figure 4) to hGOAT binding by measuring 

inhibition by cyclohexenone and cyclohexenone derivatives (compounds 16–18) which 

mimic the A ring substitutions of compounds 9–11. Both α-cyanocyclohexenone 16 (IC50 = 

1.2 ± 0.2 mM) and α-bromocyclohexenone 17 (IC50 = 500 ± 100 μM) inhibit hGOAT less 

potently than their steroid analogues 9 and 10, respectively, while cyclohexenone 18 does 

not inhibit hGOAT activity at concentrations up to 1 mM. Therefore, the steroid scaffold 

contributes substantially to inhibitor potency against hGOAT as demonstrated by the ~150-

fold enhancement in context of α-cyanoenones 9 and 16. This enhancement likely arises 

from a combination of both increased inhibitor association with hGOAT (better binding) and 

a decrease in inhibitor reactivity with other microsomal protein targets (reduced 
competition) due to greater steric congestion from the quaternary center adjacent to the 

electrophilic β-carbon in α-cyanoenone 9.58

Inhibitor structure-function analysis supports a functionally essential cysteine in hGOAT

The requirement for an α,β-unsaturated ketone and the increased activity of the triterpenoid 

and steroid α-cyanoenone compounds suggests these compounds could block hGOAT 

function through alkylation of a nucleophilic cysteine residue involved in hGOAT catalysis. 

We established the ability of cysteine alkylation to inactivate hGOAT by enzyme incubation 

with N-ethylmaleimide (NEM), a common thiol-modifying reagent (Figure 5b). NEM 

efficiently inhibits hGOAT, consistent with the involvement of a functionally essential 

cysteine residue in ghrelin octanoylation by hGOAT. Should covalent inhibition of hGOAT 

by CDDO-EA (3) involve rapid formation of a noncovalent enzyme-inhibitor complex 

followed by a slower alkylation of a cysteine sidechain thiol by the α-cyanoenone 

electrophile,59 CDDO-EA (3) and related compounds should display time dependent 

inhibition of hGOAT. Reaction monitoring of hGOAT activity using a shorter time course 

(10 minutes versus 3 hours) and variation of inhibitor preincubation time reveals CDDO-EA 

(3) exhibits such time-dependent inhibition behavior (Figure 5c), consistent with a covalent 

inhibition mechanism. However, the length of the required reaction time relative to the 

potential preincubation times and the apparent reversibility of cysteine alkylation by CDDO-

EA (see below) render measurement of kinact and Ki values impractical with available 

assays.
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Previous studies of α-cyanoenones in reaction with thiol nucleophiles such as cysteine show 

that these molecules act as covalent reversible inhibitors, with a retro-Michael elimination 

facilitated by the increased acidity of the α-hydrogen geminal to the cyano group.59, 61 We 

determined the reversibility of hGOAT inhibition by the α-cyanoenone compounds 3 and 9 
by enzyme pretreatment with each inhibitor at three times the measured IC50 concentration, 

followed by a 10-fold dilution into either reaction buffer or buffer containing the same 

inhibitor concentration as the pretreatment. (Figure 5d). NEM exhibits classical irreversible 

hGOAT inhibition, with no increase in hGOAT activity following inhibitor dilution. An 

established GOAT inhibitor, [Dap3]octanoyl-ghrelin (1-5)-NH2, serves as an control for 

reversible inhibition as expected for a product mimetic non-covalent inhibitor.30, 31 Both 

CDDO-EA (3) and α-cyanoenone 9 display reversible hGOAT inhibition, consistent with 

previously reported reversibility of CDDO compounds.59 Taken together, the susceptibility 

of hGOAT to treatment with NEM and the observed pattern of reversible and irreversible 

hGOAT inhibition by these Michael acceptors support the requirement for one or more 

cysteine residues to participate in hGOAT catalysis of ghrelin octanoylation (Figure 5a).

Inhibition of GOAT-catalyzed ghrelin acylation by cysteine alkylation differs between the 
human and mouse GOAT isoforms

Currently, there are no literature reports regarding the ability of small molecule GOAT 

inhibitors reduce ghrelin acylation in vivo, with only the peptide-based bisubstrate mimic 

GO-CoA-Tat shown to lower acyl ghrelin levels in cells and animal models.32, 64 The 

majority of in vitro assays for GOAT activity utilize the mouse isoform of GOAT (mGOAT) 

in either an enzyme- and cell-based format,15, 30, 32, 33, 62, 65–69 with mGOAT and hGOAT 

exhibiting a high level of amino acid sequence homology (79% identity, 92% similarity; 

Figure 6). Only one example of a direct comparison of inhibitor potency between these 

closely related enzyme isoforms has been reported, with the [Dap3]octanoyl-ghrelin (1–5)-

NH2 inhibitor exhibiting similar activity against hGOAT and mGOAT.15, 30 As previously 

reported cell lines utilized to investigate ghrelin acylation and GOAT activity utilize 

mGOAT,15, 32, 69, 70 the ability of these synthetic triterpenoids to inhibit mGOAT must be 

established at the enzyme level prior to cell-based studies.

We first tested the ability of CDDO-EA 3 to block mGOAT-catalyzed acylation of our 

fluorescent GSSFLCAcDan peptide substrate, which mimics the N-terminal sequence of both 

human and mouse ghrelin. The mouse isoform of GOAT (mGOAT) is inhibited by CDDO-

EA 3 less potently than hGOAT, with an ~8-fold higher IC50 value in a side-by-side assay 

(Figure 6a). To investigate the basis for this loss of inhibitor potency against mGOAT, we 

determined the impact of other cysteine modifying molecules on mGOAT acylation activity 

through treatment with N-ethyl maleimide and comparison of the steroid derivatives α-

cyanoenone 9 and ketone 12 utilized in analysis of hGOAT (Figures 6b–c). In both cases, 

mGOAT exhibits substantially reduced susceptibility to inhibition to the presence of 

electrophilic inhibitors compared to hGOAT. In the comparison of α-cyanoenone 9 and 

ketone 12, the presence of the cyanoenone Michael acceptor does not enhance mGOAT 

inhibition, in marked contrast to hGOAT. This suggests the cysteine residue required for 

enzyme activity in the human enzyme is not present in mGOAT, not required for mGOAT 

catalysis, or is resistant to modification by alkylating agents. A Clustal Omega alignment of 
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the hGOAT and mGOAT sequences reveals a number of cysteine residues in the human 

enzyme that are not conserved in mGOAT (Figure 6d, yellow highlights),71 with the 

majority of these non-conserved cysteines lying outside the conserved MBOAT domain in 

the C-terminal sequence of GOAT.62, 72–74

Discussion

Motivated to move beyond substrate- and product-mimetic inhibitors for modulating ghrelin 

acylation, we have identified a family of synthetic triterpenoids that function as small 

molecule inhibitors of ghrelin octanoylation by hGOAT. By comparison between the human 

and mouse isoforms of GOAT, this study establishes these highly homologous enzymes 

exhibit dramatically different susceptibility to treatment with inhibitors bearing cysteine-

reactive electrophilic functional groups. While several classes of small molecule inhibitors 

of GOAT have been reported in the scientific and patent literature,33, 35, 36 the CDDO 

derivatives and associated compounds reported herein bear no resemblance to known GOAT 

inhibitors and provide new opportunities for developing probes of hGOAT-catalyzed ghrelin 

octanoylation and potential therapeutic agents targeting ghrelin signaling.

Structure-activity analysis of the CDDO-type inhibitors provides the first suggestion for the 

involvement of a functionally essential cysteine in hGOAT-catalyzed ghrelin acylation, and 

suggests these synthetic triterpenoids may function as the first reported mechanism-based 

inhibitors targeting GOAT. The regioselective requirement for an α,β-unsaturated ketone, 

with inhibitor potency scaling with enone reactivity towards nucleophilic addition, is 

consistent with inhibitor alkylation of an hGOAT cysteine residue acting as a Michael donor. 

Catalytic involvement of a cysteine in ghrelin acylation by hGOAT, while defining a new 

mode of inhibition targeting this enzyme, also presents an opportunity to potentially identify 

the location of the active site within an MBOAT-family acyltransferase. hGOAT contains a 

total of 16 cysteine residues (Figure 5a), with several of these cysteines lying in the 

conserved C-terminal “MBOAT” domain within hGOAT.62, 72, 74 Mutational analyses of the 

three protein-modifying members of the MBOAT family (Hhat, PORCN, and GOAT) have 

revealed functionally required residues but none have implicated cysteine residues as 

functionally essential.30, 62, 65, 73, 75–77 While Hhat and PORCN contain palmitoylated 

cysteine residues,73, 77 our findings provide the first evidence supporting an enzymatic 

cysteine residue involved in MBOAT-catalyzed protein acylation. One intriguing possibility 

involves formation of an octanoyl acyl-enzyme intermediate involving a cysteine residue 

within GOAT in the course of transferring the octanoyl group to ghrelin (Figure 7), similar 

to the ping-pong mechanism proposed for protein palmitoylation by DHHC-family 

palmitoyltransfersases.78, 79 While the involvement of a cysteine residue directly in hGOAT-

catalyzed ghrelin acylation is intriguing, the lack of evidence supporting a functionally 

essential cysteine residue in mGOAT could also support a model wherein the cysteine 

residue responsible for inhibition in hGOAT provides an adventitious site for covalent 

modification by inhibitors in or near the hGOAT active site. Studies to determine the identity 

and role(s) of functionally required cysteine residues within hGOAT are currently underway 

and will be reported in due course. Additionally, the marked difference in the ability of 

cysteine modifying electrophiles to inhibit hGOAT and mGOAT also underscores the 
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importance of evaluating potential GOAT inhibitors against the human form of GOAT 

during compound screening and validation.

Our discovery of synthetic triterpenoid inhibitory activity against GOAT reveals an exciting 

and unanticipated mode of action for these compounds, several of which have been 

investigated in clinical trials.38, 54 Previous studies of CDDO derivatives as potential 

therapeutics have focused on controlling inflammation and oxidative stress in multiple 

tissues through modulation of multiple cell signaling pathways.54, 55 Inhibition of ghrelin 

acylation could explain multiple outcomes observed in rodent and human studies with these 

compounds, given ghrelin’s known roles in regulating body energy balance and glucose 

metabolism.4, 9, 11, 32, 80 These outcomes observed during rodent and human studies 

utilizing CDDO derivatives, such as effects on fat deposition, weight loss, reduction of 

insulin resistance, and improved glucose tolerance, have been predicted as potential effects 

of modulating ghrelin signaling.37–41

Given the established impact of CDDO derivatives on cell signaling, the broad-ranging 

effects of these synthetic triterpenoids present a challenge in using these compounds to 

reduce active ghrelin concentrations. Moreover, the deleterious side effects observed in the 

BEACON clinical trial utilizing bardoxolone methyl (CDDO-Me, 2) reinforce the 

importance of specifically targeting ghrelin acylation without impacting additional 

physiological pathways.38, 81 The in vitro potency of the relatively unfunctionalized a–

cyanoenone steroid 9 illustrates the potential for synthetic modification of this molecular 

framework to develop new chemical tools for studying GOAT function and ghrelin 

signaling. Compounds containing the pharmacophores identified in this study can also be 

designed to combine aspects of these CDDO derivatives with elements involved in ghrelin 

recognition by GOAT to maximize both potency and specificity.31, 52, 65

Identifying potent GOAT inhibitors is an essential step towards validation and exploitation 

of the ghrelin-GOAT system for therapeutic targeting. In this work, we demonstrate that 

synthetic triterpenoids containing a α-cyanoenone moiety can efficiently block ghrelin 

acylation by hGOAT through a covalent reversible inhibition mechanism involving cysteine 

alkylation. This susceptibility to treatment with cysteine modifying electrophiles is not 

observed in the mouse form of GOAT, revealing an important distinction in the activity and 

behavior of these closely related enzyme isoforms. Previous and ongoing clinical trials 

employing CDDO-type molecules have established the suitability of these orally available 

compounds for human studies, and our findings strongly suggest ghrelin signaling and 

associated physiological pathways should be directly monitored in clinical studies 

employing these compounds. We are hopeful our discovery of this new class of small 

molecule hGOAT inhibitors will accelerate inhibitor development targeting ghrelin 

octanoylation, potentially leading to therapeutics for treating diabetes, obesity, and other 

health conditions impacted by ghrelin signaling.
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Figure 1. Ghrelin O-acyltransferase (GOAT) as a target for blocking ghrelin signaling
a) Ghrelin octanoylation catalyzed by GOAT. b) Structures of reported GOAT inhibitors. 

Ahx denotes aminohexanoate; Tat denotes a Tat peptide sequence (-YGRKKRRQRRR).
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Figure 2. Screening of Diversity IV library compounds reveals a novel small molecule hGOAT 
inhibitor
a) Fluorescence-based hGOAT activity assay used for compound screening. B) Protocol for 

screening assay to identify hGOAT inhibitors; b) Structure of CDDO-Im (1), the initial hit 

from the Diversity IV library; c) Inhibition of hGOAT octanoylation activity by CDDO-Im 

(1). Reactions were performed and analyzed to determine percent activity as described in the 

inhibitor assay protocol included in the Experimental section. Error bars reflect the standard 

deviation from a minimum of three independent measurements.
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Figure 3. Multiple CDDO derivatives effectively inhibit hGOAT
Structures and IC50 values for CDDO derivatives with substitutions at the carboxyl group at 

position 28: R = imidazole (CDDO-Im, 1); R = methyl ester (CDDO-Me, 2); R = ethylamide 

(CDDO-EA, 3); R = trifluoroethylamide (CDDO-TFEA, 4); R = carboxylic acid (CDDO, 5).
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Figure 4. Structure-activity analysis reveals multiple pharmacophores contribute to synthetic 
triterpenoid inhibition of hGOAT
Compounds tested as inhibitors of hGOAT octanoylation activity, organized by overall 

hydrocarbon skeleton family (triterpenoid, steroid, or cyclohexane parent structure) and 

colored to reflect potential pharmacophores (α,β-unsaturated ketone, green; steroid scaffold, 

purple; CDDO derivative functional groups in rings C-E, orange) Measured IC50 values are 

provided for each compounds, with lower limits established based on compound solubility 

and lack of inhibition observed at the highest experimentally accessible concentration. 

Errors reflect standard deviations from a minimum of three determinations. Reactions were 

performed and analyzed to determine percent activity and IC50 values as described in the 

inhibitor assay protocol included in the Experimental Section. Synthetic protocols for 

compounds 9-18 are provided in the Online Materials and Methods and Supplementary 

Information sections.
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Figure 5. hGOAT inhibition profile supports the involvement of a catalytically essential cysteine 
residue
a) Topological model of hGOAT, with cysteine residues highlighted in yellow. The 

conserved functionally essential residues N307 and H338 are denoted in red. This model 

was constructed by comparison to the experimentally developed topology model for mouse 

GOAT using the Protter online server.62, 63 b) Inhibition of hGOAT octanoylation activity by 

N-ethylmaleimide (NEM, structure shown in inset). c) Time dependence of hGOAT 

inhibition by CDDO-EA (3). hGOAT activity was measured as a function of preincubation 

time in the presence of 30 μM CDDO-EA. Inset: IC50 values for CDDO-EA (3) inhibition of 

hGOAT activity as a function of inhibitor preincubation time. d) Inhibitor dilution assays 

reveal irreversible hGOAT inhibition by NEM and reversible inhibition by CDDO-EA (3) 

and α-cyanoenone steroid 9. Dap-C8 denotes the GS(octanamide-Dap)FL product-mimetic 

GOAT inhibitor used as a control for reversible inhibition.30, 31 Errors bars reflect the 

standard deviation from a minimum of three determinations.
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Figure 6. hGOAT and mGOAT exhibit dramatically different susceptibility to inhibition by 
cysteine modifying agents
a) Inhibition of hGOAT and mGOAT octanoylation activity by CDDO-EA 3; hGOAT, filled 

circles; mGOAT, open circles. b) Inhibition of hGOAT and mGOAT octanoylation activity 

by N-ethylmaleimide (NEM). hGOAT, black bar; mGOAT, white bar. c) Inhibition of 

hGOAT (left) and mGOAT (right) octanoylation activity by α-cyanoenone 9 and ketone 12. 

α-cyanoenone (compound 9, black bar); ketone (compound 12, white bar), treatment with 

ketone 12. d) Clustal Omega alignment of hGOAT and mGOAT sequences. Cysteine 

residues are indicated in bold, with cysteines conserved in both isoforms highlighted in gray 

and cysteine residues unique to hGOAT highlighted in yellow. Reactions were performed 

McGovern-Gooch et al. Page 23

Biochemistry. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and analyzed to determine percent activity and IC50 values as described in the Experimental 

section. Error bars reflect the standard deviation from a minimum of three independent 

measurements.
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Figure 7. A potential mechanism for hGOAT-catalyzed ghrelin octanoylation employing a 
cysteine acyl-enzyme intermediate
Following formation of an octanoyl-enzyme intermediate, transfer of the octanoyl group to 

the serine acylation site near the N-terminus of ghrelin can be catalyzed through 

involvement of a general base such as the conserved and functionally essential H338 

histidine residue within hGOAT.30, 65
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