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Aim. To examine the gestational glycemic profile and identify specific times during pregnancy that variability in glucose levels,
measured by change in velocity and acceleration/deceleration of blood glucose fluctuations, is associatedwith delivery of a large-for-
gestational-age (LGA) baby, in women with type 1 diabetes.Methods. Retrospective analysis of capillary blood glucose levels mea-
suredmultiple times daily throughout gestation in womenwith type 1 diabetes was performed using semiparametricmixedmodels.
Results. Velocity and acceleration/deceleration in glucose levels varied across gestation regardless of delivery outcome. Compared
to women delivering LGA babies, those delivering babies appropriate for gestational age exhibited significantly smaller rates of
change and less variation in glucose levels between 180 days of gestation and birth.Conclusions.Use of innovative statisticalmethods
enabled detection of gestational intervals inwhich blood glucose fluctuation parametersmight influence the likelihood of delivering
LGAbaby inmothers with type 1 diabetes. Understanding dynamics and being able to visualize gestational changes in blood glucose
are a potentially useful tool to assist care providers in determining the optimal timing to initiate continuous glucose monitoring.

1. Introduction

Pregnancy in women with type 1 diabetes mellitus is asso-
ciated with an increased risk of various adverse outcomes—
both for mothers and for their offspring. These morbidities
include preeclampsia, preterm delivery, cesarean section
delivery, and large-for-gestational-age (LGA) infant [1, 2].
Long-term adverse health outcomes in the offspring have
also been reported such as obesity, insulin resistance, beta
cell dysfunction, type 2 diabetes mellitus, and cardiovascular
dysfunction [3–5]. Management of pregnant women with
diabetes focuses on the importance of good glycemic control
before and during pregnancy, to decrease the frequency of
adverse outcomes for both infants and mothers [6, 7]. Track-
ing maternal glycemic control over the entire pregnancy has
provided insights into the effects of maternal glucose control
on various neonatal outcomes, including LGA babies [8].

LGA babies born to mothers with diabetes are likely to be
significantly overweight both in childhood and as adults,
putting them at risk of developing type 2 diabetes [9].

In recent years, advancement in technology has improved
diabetes self-management practices allowing monitoring of
blood glucose on both a programmed and continuous basis.
The sheer volume of data produced and the variability that
these data contain have proved challenging to analyze and
interpret. Regulation of glucose is a dynamic process that
varies in response to meals as well as gestational period. The
maternal glucose profile may be considered as measurement
of a continuous-time monitoring process whose outputs are
samples of functions or curves. Each curve alludes to blood
glucose oscillations that occur throughout the day and per-
haps at the same time on different days throughout preg-
nancy. In recent studies, glucose variabilities have been
attributed to both hyperglycemic spikes and hypoglycemic
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troughs [10, 11]. Both have been attributed to a wider range
of chronic and severe complications associated with diabetes
mellitus and hence can provide crucial information about
risk factors for the development of complications in diabetes.
Different methods, such as calculating the standard deviation
(SD), coefficient of variation (COV), and mean amplitude
of glycemic excursion (MAGE), are popular approaches to
measure and monitor fluctuations or glycemic excursions in
blood glucose levels [12]. These approaches, though compu-
tationally straightforward, have drawbacks in investigating
highly nonlinear profiles [13, 14]. For example, SD is sensitive
to outliers andmay overestimate themagnitude of a glycemic
excursion. Using COV, which is computed based on SD, or
using MAGE, which only takes peaks and nadirs at greater
than one SD, can also lead to misleading estimation of
glycemic excursions.

Vandyke et al. [15] used semiparametric mixed models
to assess time-specific differences in the glycemic profiles of
mothers with type 1 diabetes who delivered LGA and appro-
priate-for-gestational-age (AGA) babies. LGA and AGA pro-
files had greatest distinctions in the first and third trimesters
of pregnancy. The study showed that there is a difference in
slopes between glycemic profiles arising from LGA and AGA
births, suggesting that rate of change (i.e., velocity) and accel-
eration (or deceleration) of glucose levels vary throughout
pregnancy. Even though the above study estimated the mean
curvature in the entire glycemic profile, which avoided the
typical loss of information with using summary measures,
it did not examine the complex form of time and subject-
specific rates of change within the glucose profiles.

Analysis of the first- and second-order rates of change is a
way to evaluate the dynamics of blood glucose fluctuations on
the gestational time scale. First-order rates of change, which
are obtained by taking the derivative of estimated glucose
trends over pregnancy, correspond to the velocity of glycemic
fluctuations. Large rates of change imply rapid blood glucose
fluctuations and hence a less stable system. Second-order
rates of change indicate how rapidly these fluctuations occur,
estimating them in terms of acceleration or deceleration.The
acceleration of glucose, which is computed as the derivative
of the glucose level, can be described as a change in glucose
velocity (rate of change) over time. Acceleration (and deceler-
ation) can be termed as a measure of variability, which indi-
cates the change in curvature of maternal glycemic profiles
across gestation. Identifying first- and second-order glucose
rates of change with respect to gestational time will be helpful
in allowing treatment to be targeted to precise points during
pregnancy.

We hypothesize that estimating glycemic variability in
terms of derivatives will provide better insight into hypo-
glycemia and hyperglycemia excursions, which have been
shown to be associated with various adverse outcomes and
chronic diabetes complications [16]. Measures of oxidative
stress, such as reactive oxygen species, which have been
associated with hyperglycemia, are closely related to glucose
peaks and fluctuating high- and low-glucose concentrations
[17].

Being able to estimate rate of change and acceleration in
glucose levels across specific gestational periods can provide

insight into glycemic fluctuation and risk of hyperglycemia
and hypoglycemia at specific gestational time periods on a
continuous basis.The purpose of this study is threefold: (1) to
develop a semiparametric mixedmodel [18] to assess the pre-
cise timing and degree of rapid fluctuations in the glycemic
profiles of mothers with type 1 diabetes; (2) to contrast
this novel approach with conventional glucose variability
calculations; and (3) to determine the extent to which these
specific fluctuations are associatedwith delivery of LGAbaby.

2. Methods

2.1. ParticipantCharacteristics and StudyVariables. Thestudy
methods and cohort characteristics have been described in
detail elsewhere [6]. Briefly, pregnant women or women
who were planning a pregnancy and had type 1 diabetes
were recruited and enrolled in the study. The women were
prospectively followed as part of a 17-year interdisciplinary
program of diabetes in pregnancy between 1978 and 1995 at
the University of Cincinnati Medical Center. The study sub-
jects were managed with intensive insulin therapy, involving
a split mixed-dose regimen of three to four injections per
day using short- and intermediate-acting insulin combined
with dietary regulation. After 1981, women were instructed to
check blood glucose concentrations 6–8 times a day: while
fasting, preprandially (before each meal), 90min postpran-
dially (after each meal), at bedtime, and occasionally at 3:00
AM. This analysis included women who used a reflectance
meter through pregnancy and delivered a singleton live fetus
beyond 32 weeks of gestation. The glucose measurements
recorded between gestational days 50 and 250 were included
in the study. Data from profiles corresponding to neonatal
death within 28 days of delivery or presence of a major con-
genital malformation were excluded from the study. Birth-
weight was measured within the first hour of delivery using
an electronic scale (Toledo Scale, Worthington, Ohio). LGA
was defined as birth weight greater than the 90th percentile
for gestational age, based on race- and gender-specific growth
curves. We estimated the rate of change and rate of accel-
eration (or deceleration) in mother’s glycemic profiles with
respect to gestational time for LGA and AGA outcomes sepa-
rately by taking respective first- and second-order derivatives
of the model equations. A semiparametric mixed effects
model using penalized regression splines with a cubic trun-
cated power basis was employed to provide smooth esti-
mates of the longitudinal glycemic profiles [19, 20]. Analyses
were implemented in SAS 9.4 (SAS Institute, Cary, NC).
Implementation is provided in the online supplement (see
the appendix, in Supplementary Material available online
at https://doi.org/10.1155/2017/2852913). We considered LGA
andAGAprofiles to have different trends across gestation and
characterized them as described below.

2.2. Model Setup and Notation. First, we set up a semipara-
metric mixed model to examine glucose overgestation. The
observed glucose recordings from the 𝑖th pregnancy and 𝑗th
measurement observed at gestation 𝑡𝑖𝑗 can be expressed in the
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semiparametric mixed effects model, separately for LGA and
AGA profiles, as

𝑌LGA𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 + 𝛽2𝑡
2
𝑖𝑗 + 𝛽3𝑡

3
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∑
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(1)

The term LGA𝑖 indicates whether the subject delivered
LGAorAGAbaby (1 = LGA, 0=AGA).Thepolynomial terms
coefficients,𝛽0,𝛽1,𝛽2, and𝛽3, are for the respective, intercept,
slope, quadratic, and cubic terms to model global curvature
of the glycemic profile.The summed expression is comprised
of the knots at distinct locations𝐾𝑙 (𝑙 = 1, . . . , 𝐿) evaluated at
gestational time 𝑡𝑖𝑗 with corresponding coefficients 𝑏1, . . . , 𝑏𝑙.
The expression (𝑡𝑖𝑗 − 𝐾𝑙)+ is the positive part of the function
(i.e., max{0, 𝑡𝑖𝑗}). To account for variation for both between-
and within-subject terms, random intercept (𝛾0𝑖) and slope
(𝛾1𝑖) terms were included in the model. In accordance with
semiparametric model fitting strategy, the smoothing param-
eters are incorporated as random effects.We assumed that the
random effects are mutually independent and distributed as
𝑏𝑙 ∼ 𝑁(0, 𝜎2𝑏), 𝛾0𝑖 ∼ 𝑁(0, 𝜎

2
𝛾0
), 𝛾1𝑖 ∼ 𝑁(0, 𝜎2𝛾1), and measure-

ment error 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎2𝜀 ). For this analysis we considered the
same spline coefficients and the same degree of smoothing
for both LGA and AGA profiles (i.e., 𝑏LGA𝑙 = 𝑏

AGA
𝑙 and

Var(𝑏LGA𝑙 ) = Var(𝑏
AGA
𝑙 )).

Next, we computed the rate of change in glucose levels for
women with LGA and AGA births corresponding to the first-
order derivative with respect to gestation. More specifically,
rate of change, or velocity, can be thought of as change in glu-
cose levels over the whole gestational time period, indicating
the speed at which glucose levels are changing throughout
pregnancy.

The rate of change in glucose levels across gestation for
LGA𝑖 can be written as the first derivative of the model:

𝑑 (𝑌LGA𝑖𝑗 )
𝑑𝑡𝑖𝑗
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+
.

(2)

Similarly, the rate of change in glucose levels across
specific gestational periods for mothers with AGA babies can
be expressed as

𝑑 (𝑌AGA𝑖𝑗 )
𝑑𝑡𝑖𝑗
= 𝛽1 + 2𝛽2𝑡𝑖𝑗 + 3𝛽3𝑡

2
𝑖𝑗 + 3

𝐿

∑
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𝑏𝑙 (𝑡𝑖𝑗 − 𝐾𝑙)
2

+
. (3)

The acceleration/deceleration, or the second-order deriv-
ative with respect to gestation, was computed tomeasure how
fast (or slow) the velocity of glucose levels is changing across
gestation.

And the acceleration in glucose levels across gestational
time for LGA𝑖 is

𝑑2 (𝑌LGA𝑖𝑗 )
𝑑𝑡𝑖𝑗2

= 2𝛽2 + 6𝛽3𝑡𝑖𝑗 + 2𝛽22LGA𝑖 + 6𝛽32LGA𝑖𝑡𝑖𝑗

+ 6
𝐿

∑
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𝑏𝑙 (𝑡𝑖𝑗 − 𝐾𝑙)+ .

(4)

The acceleration in glucose levels for mothers with AGA
births is

𝑑2 (𝑌AGA𝑖𝑗 )
𝑑𝑡𝑖𝑗2

= 2𝛽2 + 6𝛽3𝑡𝑖𝑗 + 6
𝐿

∑
𝑙=1

𝑏𝑙 (𝑡𝑖𝑗 − 𝐾𝑙)+ . (5)

2.3. Comparison to Summary Measures of Glycemic Variabil-
ity. Second, we contrasted the semiparametric mixed model
approach with commonly used summary glycemic variability
measures, SD, COV, and MAGE [12]. Each measure was
computed for each participant and trimester and then com-
paredwith the acceleration (and deceleration) in glucose fluc-
tuations estimated from the semiparametric mixed model.
First, SD around a mean glucose level for each of the three
trimesterswas computed.Next, COVwas calculated by divid-
ing the SD by the mean of the corresponding glucose read-
ings. MAGE was computed to measure the average heights of
glucose excursions between peaks (highs) and nadirs (lows)
that exceed the SD for an individual within a given day. It gen-
erates a value for the variation around a mean glucose value
by summing the absolute rises or falls encountered. These
measures were compared between LGA and AGA groups for
each trimester using repeatedmeasure analysis of variance, in
order to contrast these longitudinal findings, which are typ-
ically used to make conclusions about glycemic fluctuations,
with results from the semiparametric mixed modeling.

2.4. Identifying Fluctuations Associated with LGA Births.
Lastly, we graphically examined results from the semipara-
metric mixed model for the fitted curves representing LGA
and AGA groups as follows. To reflect uncertainty in the esti-
mated rates of change in glucose over pregnancy, 95% point-
wise confidence intervals (CI) of first-order (velocity) and
second-order (acceleration/deceleration) glucose curveswere
constructed using bootstrap sampling. The resulting 95% CI
for each curve was used to examine differences between LGA
and AGA groups as well as significance of changes in velocity
and acceleration/deceleration. These results are subsequently
shown as figures.

3. Results

The analysis cohort was comprised of a total of 199 women
with type 1 diabetes with 246 pregnancies and 139,991 glucose
readings. Glucose concentration recording times and number
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Figure 1: The glucose readings (𝑦-axis, in mg/dL) of 5 randomly
selected women with type 1 diabetes are plotted against gestation
time (𝑥-axis, in days). These profiles show large variation both
between and within subjects during pregnancy.

sampled varied across women, with each woman having a
mean (range) number of recordings of 634 (10–2728). A ran-
dom sample of five women showed large within-subject and
between-subject variations in glucose levels over the gesta-
tional period (Figure 1).Duration of follow-up amongwomen
was 155 (62–182) days, between 7 and 36 weeks’ gestation.
Forty-three percent of the entire cohort had LGA infants.
Maternal age at pregnancy was similar between LGA and
AGA groups (26.5 (16–37) versus 27.0 (15–38) years).

For the semiparametric mixed model fitting, a total of 8
knots were selected, ranging from 76.67 to 247.99 gestational
days, using the quantile method described by Ngo and
Wand (2004). The fitted maternal glycemic profiles reflected
differences in glucose changing across gestational days for
LGA and AGA births (Figure 2). The COV, SD, and MAGE
estimates by each trimester and group are presented in
Table 1. For all three measures, there was a statistically sig-
nificant decline in glycemic variability stratified by LGA and
AGA groups over trimesters. The comparisons between LGA
and AGA groups for each trimester did not yield statistically
significant differences for any variability measures suggesting
similar glucose fluctuations between the groups.Thus, it may
be that the results from the standard methods are misleading
or yield insufficient information, as the findings do not differ-
entiate rates of progression in glucose intake forwomendeliv-
ering LGA versus AGA infant.

Themean glucose concentration for both groups declined,
with more attenuated decreases in the LGA group. Across
gestational time, mothers who had AGA babies had smaller
(i.e., less negative) rates of change or velocity in glucose
level, compared to those who had LGA births (Figure 3).
Greater velocity in glucose recordings for both AGA and
LGA occurred between 50 and 120 gestational days (AGA:
−1.62mg/dL/day to 0.09mg/dL/day; LGA: −2.02mg/dL/day
to 0.03mg/dL/day).The rate of change was acute between 150
and 250 gestational days, with amore rapid decline in glucose
levels for LGA births (−0.21mg/dL/day to −2.50mg/dL/day),
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Figure 2: Fitted glucose curves of women with type 1 diabetes based
on semiparametric regression modeling using penalized regression
splines to estimate the rate of change in glucose (𝑦-axis, mg/dL)
against gestation time (𝑥-axis, in days). The solid line represents
fitted maternal glycemic profiles of mothers who gave birth to LGA
infants; the dashed line represents fitted maternal glycemic profiles
of mothers who gave birth to AGA infants.

Table 1: Measure of glucose variabilities compared between LGA
and AGA babies across trimesters∗.

Measures of glucose variability AGA
EST (SE)

LGA
EST (SE)

Standard deviation
Trimester 1 80.13 (2.46) 74.64 (3.12)
Trimester 2 75.93 (2.29) 70.25 (3.00)
Trimester 3 67.19 (2.29) 62.72 (2.97)

Coefficient of variation
Trimester 1 55.66 (1.25) 52.36 (1.50)
Trimester 2 52.49 (1.14) 48.35 (1.39)
Trimester 3 49.72 (1.13) 44.14 (1.36)

MAGE
Trimester 1 175.38 (6.70) 166.89 (9.15)
Trimester 2 165.93 (6.45) 162.65 (8.94)
Trimester 3 158.73 (6.50) 155.31 (8.97)

Note. EST: estimate, SE: standard error; MAGE: mean amplitude of glycemic
excursion, excursions > 1 SD from the mean. ∗AGA and LGA comparisons
with respect to variability measures were not statistically significant at 0.05.

compared to AGA births (−0.002mg/dL/day to −1.54mg/dL/
day).Themost rapid rate of change in glucose levels occurred
between 230 and 250 gestational days for both AGA and
LGA with a more rapid decline for the LGA births (AGA:
−0.51 to −1.54mg/dL/day; LGA: −1.20 to −2.50mg/dL/day).
The pointwise 95% confidence band for rate of change (or
first-order derivative) of glucose readings reflected nonover-
lapping regions between LGA and AGA groups for the first
trimester, suggesting that the velocity of glucose readings
was different for AGA and LGA births (Figure 3). However,
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Figure 3: Glucose velocities for women with type 1 diabetes accord-
ing to LGA (solid line) andAGA (dashed line) birth outcomes. Rates
of change in glucose for each group were calculated based on the
first derivative (𝑦-axis, mg/dL/day) against gestation time (𝑥-axis, in
days). The overlapping region in 95% pointwise confidence interval
indicates the gestational time period in which both LGA and AGA
have similar rates of change in glucose readings. It is illustrated
here that women delivering LGA infants have more rapid decline
in glucose velocity.

for the second trimester, the confidence bands overlapped,
reflecting the rates of change in glycemic levels were similar
for LGA and AGA groups. During the third trimester the
confidence bands did not overlap, meaning that the glycemic
levels velocity was different, with an increasing rate of change
in glucose reading for the LGA compared to the AGA group.

The extents of rapid changes in glucose, as measured by
acceleration and deceleration, were similar initially for both
LGA and AGA groups (Figure 4). Glucose curves in both
groups tended to accelerate (i.e., glucose velocity was increas-
ing) for the first 150 days of gestation. Glucose levels decel-
erated in both groups roughly for the rest of gestation. The
deceleration in glucose during the third trimester was more
attenuated for women with LGA compared to AGA births,
suggesting higher risk of hypoglycemia for the former group.
The narrow confidence bands for rate of change and accelera-
tion were due to relatively large number of observations in
our study.

4. Discussion

Development of the fetal pancreas occurs during the end
of the first trimester and beginning of the second, with
insulin production evident by midpregnancy [21]. It has
been demonstrated in the sheep model that maternal glucose
fluctuations induce fetal insulin secretion. Insulin clamp
studies showed that bursts of hyperglycemia, rather than con-
stantly maintained levels of hyperglycemia, induced signifi-
cant increases in fetal arterial plasma insulin levels [22]. This
shows the effect of maternal glucose transported across
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Figure 4: Patterns of acceleration and deceleration in glucose
according to LGA (solid line) and AGA (dashed line) birth out-
comes. Rates of change in glucose for each group were calcu-
lated based on the second derivative (𝑦-axis, mg/dL/day2) against
gestation time (𝑥-axis, in days). Portions of each curve that are
above zero imply acceleration, while portions of each curve that are
below zero mark deceleration. The overlapping regions in the 95%
pointwise confidence intervals indicate periods in which glycemic
levels for both groups had similar acceleration or deceleration. (It
should be noted that women delivering LGA infants had increased
acceleration early in pregnancy and increased deceleration later in
pregnancy compared with women delivering AGA infants.)

the placenta emphasizing the importance of fluctuations in
maternal glucose levels, which we have termed as velocity
and acceleration/deceleration, on fetal insulin secretion. In
addition, this excess of fetal insulin secretion can, in turn, lead
to excessive fetal growth and delivery of LGA infant [23].

Using a novel statistical approach, we have demon-
strated that time-specific fluctuations in velocity and accel-
eration/deceleration (or change in velocity) of glucose levels
differed across gestational age and betweenwomen delivering
LGA and AGA infants. These findings were not indicated in
the conventional summary measures of glucose variability.
There was a steeper rate of change (or velocity) in glucose
concentration between 150 and 250 gestational days for LGA
group compared to AGA group.Themeasurement of acceler-
ation by the second-order derivative with respect to gestation
time provided instantaneousmeasures of glucose fluctuations
over the entire pregnancy period.The acceleration in glucose
levels displayed sharp decline in the first and third trimester
for both LGA andAGA groups. During the first trimester, the
acceleration on glucose levels was lower for AGA compared
to LGA group, suggesting a potential risk of developing hypo-
glycemia for the former. The rebounds from hypoglycemia
occurred for both groups in the second trimester, with a lower
rate for LGA group. After that, there was a decline in glucose
concentration for both groups, following a steady state and
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a sharp trough in glucose levels for LGA, suggesting risk of
developing hypoglycemia during the third trimester.

Several studies have demonstrated that having glycemic
fluctuations is a deterministic factor for hyperglycemic and
hypoglycemic excursions. In recent years continuous glucose
monitoring systems have emerged as an effective technology
with an ability tomonitor glucose trends over time. Involving
large amount of data, continuous glucosemonitoring systems
provide information about frequency of fluctuations about
blood glucose levels [24]. However, the unbalanced nature of
blood glucose data results in large magnitude of within- and
between-patient variabilities. The semiparametric regression
approach in our study improved our understanding of veloc-
ity and acceleration of maternal glycemic profiles on preg-
nancy outcomes.The estimation of derivatives providedmore
accurate information on periods in which glucose has higher
variation, compared to use of summary measures. An inter-
esting feature of acceleration/deceleration in glucose levels
was detecting gestation-specific recurrence of risk of develop-
ing hypoglycemia associated with mother’s glycemic profiles.

Intervening when data indicate that glucose levels are
outside of the target area of normal ranges to control the
glycemic fluctuations delays several complications associated
with diabetes. It is possible that attenuated changes in glucose
are a reflection of insulin delivery. Future analysis is needed
to understand the potential role of this therapy in glucose
curtailment.The acceleration, which measures the variability
in glucose concentration, may provide a timely warning of
severe hyperglycemia or hypoglycemia. The estimates could
serve as a prognostic aid to monitor glucose across the
gestational period, thus increasing patients’ and clinicians’
abilities to take timely actions in a more accurate manner
and hence improving pregnancy outcomes. The velocity and
acceleration in glucose fluctuations may guide the clinicians
to detect the time of intervention for continuous glucose
monitoring. By precisely identifying specific time points with
continuous modeling, the first- and second-order derivatives
of glucose fluctuations will yield additional information that
might contribute to developing risk model at different stages
of pregnancy. Our approach showed that, at the early stage
of pregnancy, glucose monitoring will be useful for both
LGA and AGA and that at the end stage of pregnancy it is
very important to monitor the glucose levels, especially to
minimize the risk of LGA birth. Such information was not
evident from any of the traditional glucose variability indices.

There are some limitations to the current study. Although
the original protocol directed multiple daily measurements
of glucose, it is difficult for a subject to check glucose at
the precise moment of a hypo- or hyperglycemic excursion.
Rapid changes in blood glucose levels may not be reflected
in these measurements, which often occur at the end of an
excursion. Thus, the measurements may not always reflect
the precise level of fluctuations and may show lower readings
instead. In that case, the rate of change and acceleration
(or deceleration) estimates may involve underestimation of
change in glucose fluctuations. This study did not include
covariate adjustment. Future work should aim to estimate the
effects of fixed and time-varying predictors on the glucose
readings to explain the causal inference and improve our

understanding of fluctuation in maternal glucose profile on
pregnancy outcome. Also, use ofmultilevel models to analyze
cases of multiple pregnancies from the same women could be
investigated using semiparametric regression modeling.

5. Conclusions

Our study is consistent with fetal sheep clamp studies demon-
strating the role of maternal glucose variability during fetal
development.We demonstrate the increased sensitivity of the
more sophisticated statistical approach to analyzing multiple
glucosemeasurements, which can also be applied to informa-
tion from continuous glucose monitoring. We showed that
first- and second-order derivatives of glycemic levels with
respect to gestational time, termed as velocity and accelera-
tion in glucose readings, are useful to explain variability in
maternal glycemic profiles with LGA and AGA births and
detect gestational periods when they are different. We were
able to identify specific gestational periods where rate of pro-
gression in maternal glucose concentration differed between
LGA andAGAgroups.The time-specific detection of velocity
and acceleration (or deceleration) in glucose levels can be
effective in monitoring risk for hyperglycemic (or hypoglyce-
mic) events. Responding in a timelymanner to high- and low-
glucose alerts, the clinicians can significantly reduce glucose
fluctuations and keep the glucose readingswithin target range,
thereby improving pregnancy outcome.
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