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ABSTRACT
Background: Clinical nutrition research often lacks robust markers
of compliance, complicating the interpretation of clinical trials and
observational studies of free-living subjects.

Objective: We aimed to examine metabolomics profiles in response
to 3 diets that differed widely in macronutrient composition during a
controlled feeding protocol.

Design: Twenty-one adults with a high body mass index (in
kg/m2; mean 6 SD: 34.4 6 4.9) were given hypocaloric diets
to promote weight loss corresponding to 10–15% of initial body
weight. They were then studied during weight stability while
consuming 3 test diets, each for a 4-wk period according to a
crossover design: low fat (60% carbohydrate, 20% fat, 20% pro-
tein), low glycemic index (40% carbohydrate, 40% fat, 20% pro-
tein), or very-low carbohydrate (10% carbohydrate, 60% fat,
30% protein). Plasma samples were obtained at baseline and at
the end of each 4-wk period in the fasting state for metabolomics
analysis by using liquid chromatography–tandem mass spec-
trometry. Statistical analyses included adjustment for multiple
comparisons.

Results: Of 333 metabolites, we identified 152 whose concen-
trations differed for $1 diet compared with the others, including
diacylglycerols and triacylglycerols, branched-chain amino
acids, and markers reflecting metabolic status. Analysis of
groups of related metabolites, with the use of either principal
components or pathways, revealed coordinated metabolic
changes affected by dietary composition, including pathways
related to amino acid metabolism. We constructed a classifier
using the metabolites that differed between diets and were able
to correctly identify the test diet from metabolite profiles in
60 of 63 cases (.95% accuracy). Analyses also suggest differ-
ential effects by diet on numerous cardiometabolic disease risk
factors.

Conclusions: Metabolomic profiling may be used to assess compli-
ance during clinical nutrition trials and the validity of dietary as-
sessment in observational studies. In addition, this methodology
may help elucidate mechanistic pathways linking diet to chronic
disease risk. This trial was registered at clinicaltrials.gov as
NCT00315354. Am J Clin Nutr 2017;105:547–54.

Keywords: dietary compliance, dietary composition, low-
carbohydrate diet, metabolomics, obesity, low-fat diet, glycemic
index, cardiometabolic risk factors

INTRODUCTION

Among the most important methodologic challenges in be-
havioral studies of diet and health is the difficulty in dis-
tinguishing efficacy from effectiveness. For instance, short-term
trials often demonstrate meaningful changes in body weight as a
consequence of macronutrient composition, but with few ex-
ceptions, the long-term trials do not (1–3). This inconsistency
might arise because differences in macronutrient composition
have only a transitory effect on the biological determinants of
body weight, because adherence to dietary prescriptions di-
minishes with time, or both. If the former, then the major sci-
entific effort currently devoted to the study of specific diets
would be better directed elsewhere. If the latter, then enhanced
behavioral and environmental interventions to promote adher-
ence to the most efficacious dietary prescriptions should yield
more effective long-term obesity treatment.

The challenges to achieving and documenting compliance in
long-term diet studies are substantial (4–6). Obstacles to be-
havioral changes include costs of purchasing food, time involved
in food preparation, and willingness to comply with dietary
recommendations many times a day for years. Moreover, mea-
sures of compliance tend to be biased (e.g., food recalls), lo-
gistically daunting (respiratory quotient), imprecise (nitrogen
excretion), or confounded by weight loss (serum lipids). Thus,
there is great need for reliable and convenient measures of
compliance in nutrition research. Newly developed methods for
determination of multiple serum metabolites, termed metab-
olomics, offer promise in this regard (7–11).
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Numerous studies have used metabolomics to characterize
dietary intakes, although these have$1 limitations, such as cross-
sectional observational design subject to confounding by non-
dietary factors, lack of control groups, small sample size, use of a
limited panel of metabolites, low resolution of profiling tech-
niques, and data analysis based exclusively on clustering methods
rather than single metabolites (12–27). The aim of the present
study was to conduct high-throughput metabolomics analysis of
plasma samples from a carefully controlled crossover feeding
study, unconfounded by weight loss, to determine whether a mo-
lecular “fingerprint” could distinguish individuals consuming 3 di-
ets differing in macronutrient composition. In addition, the study
provided an opportunity to examine potential physiologic mecha-
nisms through which diet affects risk for the metabolic complica-
tions of obesity.

METHODS

Study sample and overview

Plasma (EDTA) samples were obtained during a feeding study of
weight-loss maintenance, reported previously (28). Supplemental
Figure 1 depicts the participant flow through the study. Briefly, 21
adults with BMI (in kg/m2) $27, aged 18–40 y, underwent a run-
in phase comprising weight monitoring for 4 wk, a hypocaloric
diet made entirely from food (not formula) in a metabolic kitchen
for w12 wk to achieve weight loss corresponding to 10–15% of
initial body weight, and weight stabilization for 4 wk. During a
subsequent test diet phase, participants consumed 3 diets prepared
in a metabolic kitchen, each for a 4-wk period, in random order.
To ensure balance and unpredictability, we prepared 30 assign-
ments for order of diet, comprising 5 replicates of the 6 possible
orders, grouped in Latin squares with random permutation within
and between squares. The assignments were stored in sealed en-
velopes to be opened in sequence. When a participant withdrew
after random assignment, we discarded the prescribed assignment.
Among 21 subjects completing the study, the 6 possible orders of
diet were uniformly distributed (P . 0.90 by Fisher’s exact test).

The test diets were identical in total energy content but differed
in macronutrient composition. With regard to energy distribution,
the low-fat diet (LF)11 had 60% carbohydrate, 20% protein, and
20% fat; the low–glycemic index diet (LGI) had 40% carbohy-
drate, 40% protein, and 20% fat; and the very–low carbohydrate
diet (VLC) had 10% carbohydrate, 60% protein, and 30% fat.
Participants consumed several meals each week under direct
observation. Mean weight did not differ across the test diet pe-
riods (LF: 91.5 kg, LGI: 91.1 kg, and VLC: 91.2 kg; P = 0.80).
We obtained plasma samples before weight loss and at the end of
each test diet period. The study was approved by institutional
review boards at Boston Children’s Hospital and Brigham and
Women’s Hospital, Boston (NCT00315354).

Measurement of metabolites

We measured 4 classes of plasma metabolites using liquid
chromatography–tandem mass spectrometry (LC-MS) (Q Exactive;

Thermo Scientific) (29): 1) amines and polar metabolites, such as
amino acids and respective metabolites, dipeptides, and other cat-
ionic metabolites; 2) central metabolites and polar metabolites,
such as sugars, sugar phosphates, organic acids, purines, and py-
rimidines; 3) free fatty acids and metabolites of intermediate po-
larity, such as bile acids and fatty acid oxidation products; and
4) polar and nonpolar lipids, such as lysophosphatidylcholines,
lysophosphatidylethanolamines, phosphatidylcholines, phosphati-
dylethanolamines, phosphatidylinositols, sphingomyelins, choles-
terol esters, diacylglycerols, and triacylglycerols. We analyzed
samples in random order and interspersed replicates of com-
mon pooled plasma samples as controls to allow normalization
as has been done in prior studies (30–32).

Data reduction

Peaks from the LC-MS data were detected and integrated by
using Progenesis CoMet software (v2.0; Nonlinear Dynamics).
Identification was initially conducted by matching measured
retention time and mass with known compounds (TraceFinder
v3.1; Thermo Fisher). Analytic performance and data quality
were assured by introducing both authentic reference standards
and synthetic internal standards into each LC-MS sample during
the extraction procedure. We removed from analysis those me-
tabolites that showed a high fraction of missing values (.10%),
high CV (mean O SD .20%), or correlation of missing data
with sample batch. We were able to proceed with analysis for
333 of the 356 metabolites for which we had data.

We log-transformed the measured metabolite concentrations
to mitigate skew and adjusted the log-transformed values for
baseline age, sex, measurement period, sequence of diets, and
weight loss during the run-in period by analysis of covariance. We
replaced any remaining missing concentrations with one-half the
minimum (log-transformed, covariate-adjusted). Data are expressed
in terms of change from pre–weight loss baseline for purposes of
tabulating and graphically illustrating the metabolite concentra-
tions. However, for all analyses, the statistical comparison of in-
terest was among post–weight loss test diets. Because these test
diets were administered in a randomized crossover fashion, causal
inferences can be made from the analyses. (In contrast, compari-
sons between pre–weight loss baseline and any of the test diets are
descriptive in nature and subject to confounding by weight loss
and other time-varying factors.) No adjustment for change in
weight during the test diet periods was made because mean weight
among the test diets differed by ,0.5 kg and within-subject var-
iance in weight was minimal (0.31% of the total variance). We
used SAS version 9.4 for all computations.

Differences by diet

For each metabolite and each test diet, we calculated the change
from baseline in log-transformed, covariate-adjusted metabolite
concentration. We performed an inverse normal transformation of
these changes to reduce the influence of outliers. We used the
independent-sample Student’s t test to compare the diets pairwise
and compared each diet against the other 2 diets. We used a
conservative Bonferroni adjustment to correct for multiple testing
fP , 2.5 3 1025 [0.05 O (6 comparisons 3 333 metabolites)]g.

To exploit the crossover design for maximal precision, we
additionally conducted repeated-measures ANOVA on the

11Abbreviations used: FHS, Framingham Heart Study; GI, glycemic

index; LC-MS, liquid chromatography–tandem mass spectrometry; LF, low-fat

diet; LGI, low–glycemic index diet; VLC, very-low-carbohydrate diet.
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log-transformed, covariate-adjusted metabolite concentrations
from all 4 measurement periods. We used an unstructured co-
variance matrix to allow for arbitrary correlation between periods
and applied a robust regression algorithm to detect and down-
weight outliers. From parameters of the fitted model, we esti-
mated the mean change from baseline for each diet and pairwise
differences between diets. To correct for multiple comparisons, we
applied the Holm step-down procedure with familywise type I
error rate controlled at 5%.We performed a similar analysis on the
14 factors formed by unsupervised principal components analysis.

Correlation between metabolites

Metabolites may fall into correlated pathways. To estimate the
overall correlation structure between the 333 metabolite con-
centrations, we calculated the Pearson correlation coefficient (r)
between all pairs of metabolite concentrations. We constructed a
heatmap (implemented in MetaboAnalyst v2.0) (33) that visu-
ally represents these pairwise correlations, revealing multiple
clusters of highly correlated metabolites. Therefore, we used
principal components analysis to construct a small number of
linear combinations of metabolites that account for the overall
patterns and variability seen in the complete data set. In un-
supervised analysis (ignoring the diet variable), we obtained 14
combinations (factors) that together captured 80.3% of the
variance in the full set of metabolites. We also conducted su-
pervised principal components analysis as implemented in
MetaboAnalyst v2.0 to identify combinations of metabolites
that discriminated maximally between the 3 diets.

Metabolic pathways

We used the Human Metabolome Database (34) to manually
annotate all metabolites showing association with diet compo-
sition to metabolic pathways. Further pathway-enrichment
analyses were performed by using MetaboAnalyst v2.0.
Fisher’s exact test was used to detect overrepresentation of
metabolites among 80 human metabolic pathways from the
Kyoto Encyclopedia of Genes and Genomes database (35).

Predicting diet from metabolite profiles

Using the 63 individual changes from baseline (21 partici-
pants3 3 diet groups, calculated as in method 1 above), we built
Bayesian network classification models (36) to determine how
accurately the diet type for an individual sample could be pre-
dicted using the metabolite measurements. We used WEKA
software (v3.6.11) (37) to construct a classifier for discrimi-
nating between all 3 diets and 3 additional classifiers to dis-
criminate the diets in a pairwise fashion. All classifiers were
BayesNet models learned by using the K2 search algorithm (36)
with WEKA’s default settings. To quantitate the accuracy of the
approach, we omitted each data point in turn from the sample
and built a classifier from the remaining data to predict the
identity of the diet in the omitted sample. Accuracy was cal-
culated as the percentage of correct predictions.

Correlating macronutrient intake from metabolite profiles

We analyzed correlation patterns between metabolite profiling
and dietary intake data from 1840 individuals in the Framingham

Heart Study (FHS) Offspring Cohort at the fifth examination
(1991–1995). These data were obtained through the National
Center for Biotechnology Information Genotypes and Phenotypes
database with accession number phs000007.v19.p7. Both the
study samples and the data collection procedures have been
previously described in detail (30–32). Briefly, the metabolite
profiling data consist of measurements for 217 metabolites gen-
erated from LC-MS profiling of fasting plasma samples. Quality
control and analysis of metabolite concentrations were similar to
the feeding study, with the following steps: 1) removal of any
metabolites with.25% missing data, 2) log-transformation of the
remaining metabolites, 3) adjustment for age, sex, and fasting
duration, 4) replacement of missing values with one-half the
minimum adjusted value for each metabolite, and 5) rank-based
inverse normal transformation to calculate metabolite z scores.

The dietary intake data consist of daily macronutrient values
(grams per day) and the glycemic index (GI) calculated from a
self-reported food-frequency questionnaire asking about each
participant’s dietary habits during the past year. We calculated
the percentage of energy intake from each macronutrient and
performed rank-based inverse normal transformation on both the
macronutrient percentages and GI to generate z scores that are
robust against outliers.

For each of the 103metabolites that were measured in FHS and
that differed between $1 pair of diets in the feeding study, we
calculated the Spearman correlation between the metabolite and
each of the macronutrients or GI. Directional consistency was
assessed as described in Supplemental Table 4; for example,
if a metabolite was higher in the VLC and the LGI than in the
LF, then it should also be associated with higher protein and fat
intake and lower carbohydrate intake and GI. Overall consis-
tency of a metabolite was determined by giving priority to the
macronutrient with the most significant correlation in FHS. For
some metabolites, only a prediction of protein was possible, and
this was used to assess directional consistency.

Disease risk

For each diet, we examined the direction of change in the
concentrations of the metabolites that have been shown to predict
the risk of type 2 diabetes (31, 32, 38–42). We annotated each
metabolite by whether the change by diet was in the direction
that increased or decreased risk of disease.

RESULTS

Differences by diet

We identified 152 metabolites for which change in concen-
tration from baseline varied significantly between diets by
repeated-measures analysis; an analysis using t tests and pairwise
comparisons yielded similar results (Supplemental Table 1).
Metabolites displayed different characteristic profiles of variation
across the 3 diets (as depicted with illustrative examples in Figure 1).
Many diacylglycerols and triacylglycerols, such as C54:5 tri-
acylglycerol (TAG), showed a linear trend across diets, with high
concentrations for the LF and low concentrations for the VLC
samples; others such as b-hydroxybutyrate, showed the opposite
trend. In some cases, such as with dimethylglycine, glutamine or
C60:12 TAG, statistically significant nonlinear patterns were
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observed. Some metabolites discriminated 1 diet from the other
2; for instance, certain carnitines, branched-chain amino acids,
asparagine, certain cholesteryl esters, a-hydroxybutyrate, pro-
pionate, and sorbitol for the VLC; 4-pyridoxate, certain tri-
acylglycerides, allantoin, trimethylamine-N-oxide, 2-aminoadipate,
serine, and alanine for the LF; and cytosine, certain triacylglycerides,
hydroxyproline, hippurate, 5-aminolevulinic acid, and pipecolic acid
for the LGI. The most common pattern was that the metabolite
concentration with the LGI was between the concentrations with
the LF and VLC (105 of 152 metabolites), whereas the VLC least
frequently had the intermediate concentration (19 of 152 metab-
olites). In addition to variation by diet, individual variation dif-
fered; for instance, it was higher for C60:12 TAG than C54:5 TAG.

Coordinated changes in metabolite concentrations

Analysis of the pairwise correlations between metabolites
revealed groups of metabolites with similar patterns of response
across diets (Supplemental Figure 2). To characterize these
groupings further, we conducted unsupervised principal com-
ponents analysis to generate 14 distinct factors. Essentially,
these factors are different groups of metabolites that show
similar patterns across the diets. For each metabolite, the factor
most closely associated with that metabolite is shown in Sup-
plemental Table 2 and Supplemental Figure 3. Ten of the
factors varied significantly across diets. As with the individual
metabolites, these factors exhibited different characteristic pro-
files of variation across diets, indicating that altered dietary

composition produced characteristic coordinated changes in
related classes of metabolites. For example, factor 1, comprising
amino acids and their derivatives, carnitines, ceramides, and
several other small molecules, increased linearly from the LF to
LGI to VLC; by contrast, factor 2, comprising, phospholipids
and shorter diacylglycerols and triacylglycerols, decreased from
the LF to LGI to VLC.

Some coordinated changes in metabolites reflect known
pathways: of 80 well-characterized human metabolic pathways
described in the Kyoto Encyclopedia of Genes and Genomes
database, 7 were enriched in metabolites that changed with diet
(Supplemental Table 3). The majority of the enriched pathways
are involved in amino acid metabolism (for example, aminoacyl–
transfer RNA biosynthesis or glycine, serine, and threonine
metabolism). In total, 25 unique metabolites within known path-
ways were highlighted by this enrichment analysis.

Predicting diet from metabolite profiles

The coordinated effects of diet on pathways and groups of
metabolites suggested that combinations of metabolites might
distinguish the diets from each other. To test this possibility, we
withheld the data for each sample in turn and used the data from
the remaining samples to construct 4 Bayesian network clas-
sifiers: 1 designed to distinguish each diet from the others (LF
compared with LGI compared with VLC), and 3 designed to
distinguish pairs of diets (LF compared with LGI, LF compared
with VLC, and LGI compared with VLC). We then applied each

FIGURE 1 Patterns of metabolite response to diet. Examples of 8 metabolites demonstrating significant differential responses to 3 weight-loss maintenance
diets administered to 21 young adults in a randomized crossover trial. Metabolites were selected to illustrate contrasting patterns of responses. Vertical axes show
relative change from pre–weight loss metabolite concentration. Boxes indicate means and 95% CIs. Lines connect covariate-adjusted data for individual partic-
ipants, omitting outliers detected by robust regression procedure. Bracketed diets did not differ significantly according to repeated-measures ANOVA on log-
transformed, covariate-adjusted metabolite concentrations. P tests the hypothesis of equal mean concentration across all 3 diets, adjusted for multiple comparisons
by Holm step-down procedure. Adj, adjusted; LF, low-fat diet; LGI, low–glycemic index diet; TAG, triacylglycerol; VLC, very–low carbohydrate diet.
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classifier to the data from the withheld sample to determine
whether the classifiers could correctly identify which diet the
individual had consumed when the sample was obtained.

For the most difficult task, distinguishing each diet from the
others, the classifier succeeded in naming the correct diet with
95% accuracy (Table 1). Consistent with this high level of
accuracy, a principal component analysis showed good cluster-
ing of the samples from each diet (Figure 2, Supplemental
Figure 4). The accuracy for distinguishing pairs of diets was at
least as high, ranging from 95% to 100% (Table 1). We also
performed 5-fold cross validation, using 80% of data to train
models and 20% of data to test predictions in each fold. The
resulting prediction accuracies were slightly lower, as expected
with smaller training sets, but still comparable (data not shown).

To assess generalizability to a population-based study in-
volving self-reported diet, we also examined the associations
between diet and metabolites in the FHS. Of the 103 diet-
associated metabolites that were measured in FHS, 33 metabo-
lites showed correlations with $1 macronutrient after Bonfer-
roni’s correction for multiple testing (Supplemental Table 4). For 26
of these, the metabolite concentrations differed most between the
LF and the VLC, and the direction of effect was consistent in the
FHS data for 25 of the 26 metabolites. Among the other 7 me-
tabolites, predictions related to dietary protein could be made, and
these were all directionally consistent in FHS. A general pattern of
directional consistency was also seen for an additional 45 metabo-
lites that showed nominally significant (P , 0.05) correlations in
FHS.

Effect of diet on metabolites that predict disease risk

Multiple metabolites that have been linked to risk of type 2 di-
abetes (31, 32, 38–42) showed strong or moderate associations with
diet, including amino acids (isoleucine, leucine, valine, tyrosine,
serine and glutamine), lipids (C18:2 lysophosphatidylethanolamine

(LPE), C22:6 LPE, C56:9 TAG, C58:10 TAG, and C60:12 TAG),
and others (2-aminoadipate, betaine, and C3 carnitine) as depicted
in Supplemental Figures 5 and 6. The concordance between the
metabolite profile that predicts type 2 diabetes risk and the diet-
associated changes varied across classes of metabolites. For amino
acids, concentrations with the LGI more closely resembled the
protective risk profile for future type 2 diabetes risk, whereas
for some other metabolites, the LF and VLC suggested pro-
tective effects.

DISCUSSION

Using a controlled, crossover feeding study as a benchmark of
dietary compliance, we identified metabolomic profiles that
characterized each of 3 diets differing in macronutrient com-
position and with high levels of confidence could distinguish
which diet an individual participant had consumed. These effects
were independent of body weight and time-varying confounding
because the test diets were initiated after weight loss, weight was
stable during the diets, and diet order was randomized.

A large number of metabolites, nearly half of the total examined,
varied significantly with dietary composition (by using stringent
statistical criteria and a relatively low number of participants),
highlighting the broad impact of dietary composition on metabolic
pathways. These metabolites fall conceptually into $3 categories,
including those present in food, those formed through microbial
action in the gastrointestinal tract, or those produced endogenously
in response to diet. Some metabolites may originate directly from
specific foods, such as food additives (sorbitol; propionate, an
antifungal agent; and gentisate, a derivative of benzoic acid),
fatty acids from high-fat foods such as butter (myristic acid),
meats and plants (dietary cholines such as betaine, sarcosine,
and dimethylglycine), and beverages (hippurate from tea and
juices). Other substances are likely produced or transformed by gut
microbiota, such as hydroxyphenylacetate, indole-3-propionate,

TABLE 1

Combinations of metabolites accurately identify the type of diet being consumed1

Classifier Accuracy, % Misclassifications Metabolites most strongly contributing to classifier

3-way (LF vs.

LGI vs. VLC)

95 LF misclassified as LGI (1), LGI

misclassified as LF (1), VLC

misclassified as LF (1)

4-pyridoxate, C2 carnitine, C34:4 PC, C5 carnitine,

C50:4 TAG, C52:5 TAG, C54:4 TAG, C56:9 TAG,

C58:9 TAG, GABA, allantoin, cytidine, cytosine,

gentisate, hippurate, indole-3-propionate, indoxylsulfate,

pipecolic acid, sorbitol, thiamin, threonine, valine

LF vs. LGI 95 LF misclassified as LGI (2) 11-HETE, 4-pyridoxate, C36:4 DAG, C42:0 TAG,

C50:4 TAG, C56:9 TAG, GABA, alanine, allantoin,

cytidine, cytosine, hippurate, hydroxyproline, thiamin

LF vs. VLC 98 VLC misclassified as LF (1) 4-pyridoxate, C34:3 PC, C34:4 PC, C5 carnitine,

C52:5 TAG, C52:6 TAG, C54:5 TAG, C54:8 TAG,

C56:10 TAG, C9 carnitine, GABA, allantoin,

aminoisobutyric acid, b-hydroxybutyrate, gentisate,

indole-3-propionate, indoxylsulfate, leucine, propionate,

sorbitol, thiamin, threonine, uracil

LGI vs. VLC 100 None C18:2 LPE, C2 carnitine, C20:4 CE, C34:0 PC,

C34:4 PC, C48:3 TAG, C5 carnitine, C54:4 TAG,

C5:1 carnitine, C60:12 TAG, b-alanine, creatine,

cytosine, hippurate, indole-3-propionate, indoxylsulfate,

pipecolic acid, sorbitol

1 Metabolites shown are those that most strongly contributed to the classifier for the comparison shown in the left-hand column. GABA, g-aminobutyric

acid; LF, low-fat diet; LGI, low–glycemic index diet; TAG, triacylglycerol; VLC, very–low carbohydrate diet.
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and trimethylamine-N-oxide (43). Among endogenously gener-
ated metabolites, some suggest potential actions of diet on pathways
related to diabetes (Supplemental Figures 5 and 6), inflammation
(e.g., LTB4, 11-HETE and allantoin, g-aminobutyric acid) (44–
46), and energy metabolism (uridine, creatine) (47, 48). Although
these associations cannot be viewed as causal, specific to all diets
with similar macronutrient composition, or necessarily of bi-
ologically important magnitude, they may help elucidate the re-
lation between dietary composition and chronic disease and
stimulate additional mechanistically oriented research.

Few feeding studies, in which compliance can be reasonably
ascertained, have examined metabolomic changes with macro-
nutrient composition or GI. Barton et al. (13) compared low- and
high-GI diets in a 28-d crossover trial and reported that one
metabolite, kynurenate, differed statistically after adjustment for
multiple comparisons. Kynurenate is an N-methyl-D-aspartate
receptor antagonist with putative antiinflammatory effects. We
did not find a diet effect (after adjustment for multiple com-
parisons) involving kynurenate in the present study, but several
other potential markers or mediators of inflammation differed
significantly across dietary treatments in a consistent manner,
including LTB4, allantoin, and g-aminobutyric acid. Bondia-
Pons et al. (14) examined postprandial changes in metabolites
following consumption of a low-insulinotropic rye bread with
high-insulinotropic white wheat bread using a crossover design.
Among 255 metabolites assessed, 26 showed significant differ-
ences between meal conditions, including amino acids, amino
acid–derived compounds, tricarboxylic acid cycle metabolites,
and organic acids. We did not observe a similar pattern of re-
sponse, although differences in study design confound a direct

comparison. Thus, the paucity of metabolomic feeding studies
and heterogeneity between studies with regard to design and
dietary treatments emphasize the need for further investigation
of a generalizable fingerprint for macronutrient intake.

The primary limitation of this study, as suggested above, relates
to generalizability. Here, we showed how metabolomic profiling
could be used to assess compliance with studies of dietary com-
position focused on macronutrients, and in addition, generated
hypotheses relating diet to health. But the specific results of this
study would not translate directly to other research. Diets differ in
many biologically important ways beyond macronutrient compo-
sition, and all eating plans described as LF, LGI, or VLC will not
necessarily affect metabolomic profiles in similar ways. (This
limitation would apply broadly to the outcomes of many diet studies
beyond metabolomics.) In addition, metabolomic responses may
differ between study populations as a consequence of age, sex,
metabolic health, or other factors. Furthermore, because of the
short-term nature of the intervention, we do not know how stable
the observed metabolomic profiles would remain over the long
term. Thus, these findings should be considered proof of prin-
ciple. Even so, the consistent results obtained in an entirely
independent cohort (FHS) based on self-report of people con-
suming self-prepared diets provide some reassurance in this
regard. As additional metabolomic data from diverse studies
accrue, we may be able to identify a generalizable fingerprint
common to any diet that shares specific features, potentially
providing a method to predict an individual’s diet from metab-
olomic analysis. For now, investigators using this approach
would need to generate metabolomic profiles specific for their
diets, with individuals representative of their study population.

In conclusion, metabolomics offers a promising approach to
assess adherence in outpatient behavioral diet studies with
substantial advantages over conventional dietary recall meth-
odology and laborious or imprecise single-endpoint biomarkers.
Routine use of metabolomic profiles for this purpose has potential
to improve interpretation of behavioral weight loss studies with
null findings (a substantial proportion of the total), by helping
distinguish between lack of differential efficacy between diets
compared with nonadherence. Ultimately, this distinction has
direct relevance to improving the design of more effective
interventions.
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