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Classically, it has been hypothesized that reach-to-grasp movements arise from two discrete parietofrontal cortical networks. As part of
these networks, the dorsal premotor cortex (PMd) has been implicated in the control of reaching movements of the arm, whereas the
ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. Recent studies have shown that
such astrict delineation of function along anatomical boundaries is unlikely, partly because reaching to different locations can alter distal
hand kinematics and grasping different objects can affect kinematics of the proximal arm. Here, we used chronically implanted multi-
electrode arrays to record unit-spiking activity in both PMd and PMv simultaneously while rhesus macaques engaged in a reach-to-grasp
task. Generalized linear models were used to predict the spiking activity of cells in both areas as a function of different kinematic
parameters, as well as spike history. To account for the influence of reaching on hand kinematics and vice versa, we applied demixed
principal components analysis to define kinematics synergies that maximized variance across either different object locations or grip
types. We found that single cells in both PMd and PMv encode the kinematics of both reaching and grasping synergies, suggesting that this
classical division of reach and grasp in PMd and PMy, respectively, does not accurately reflect the encoding preferences of cells in those
areas.
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(s )

For reach-to-grasp movements, the dorsal premotor cortex (PMd) has beenimplicated in the control of reaching movements of the
arm, whereas the ventral premotor cortex (PMv) has been associated with the control of grasping movements of the hand. We
recorded unit-spiking activity in PMd and PMv simultaneously while macaques performed a reach-to-grasp task. We modeled the
spiking activity of neurons as a function of kinematic parameters and spike history. We applied demixed principal components
analysis to define kinematics synergies. We found that single units in both PMd and PMv encode the kinematics of both reaching
and grasping synergies, suggesting that the division of reach and grasp in PMd and PMy, respectively, cannot be made based on
their encoding properties. j

ignificance Statement

structures are involved in the generation of these movements
(Fattori et al., 2004; Grafton, 2010; Kaas et al., 2013). Recently,
much emphasis has been placed on understanding the behavior
of single cells in primary motor cortex (MI), one of the main
sources of cortical output to the spinal cord during reach-to-

Introduction
Reaching to grasp is a fundamental, ethologically relevant pri-
mate behavior (Kaas et al., 2013). Several cortical and subcortical
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grasp movements (Saleh et al., 2010, 2012, Mollazadeh et al.,
2011, 2014). The motor cortex, however, does not exhibit a clear
hierarchical organization with MI as the sole source of cortico-
spinal output (He et al., 1993; Dum and Strick, 2005). Rather, MI
is part of a network of cortical areas involved in the production of
reach-to-grasp movements. Two other cortical areas that are
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densely connected horizontally with MI are the dorsal and ventral
premotor cortex (PMd and PMy, respectively), which provide a
large proportion of cortical inputs to MI (Dum and Strick, 2005;
Dea et al., 2016).

The dual-channels hypothesis has posited that reach-to-grasp
movements arise from the temporal coordination of activity in
independent reaching and grasping brain networks (Jeannerod,
1988; Karl and Whishaw, 2013) In this framework, PMd, which
makes anatomical connections to superior parietal lobe, specifi-
cally area V6A (Fattori et al., 2010, 2012), has been considered
part of a dorsomedial parietofrontal reaching network involving
movements of the arm, whereas PMv, which makes anatomical
connections to inferior parietal lobe, specifically AIP and VIP
(Luppino et al., 1999; Borra et al., 2008), has been associated with
a dorsolateral parietofrontal grasping network and concerned
with distal aspects of the limb—namely, the hand (Dum and
Strick, 2005; Hoshi and Tanji, 2007; Grafton, 2010; Dea et al.,
2016). However, PM single unit spiking activities have been
shown to encode both grip type and target position/reach direc-
tion during reach-to-grasp movements in both PMd and PMv
(Stark et al., 2007; Lehmann and Scherberger, 2013). These pre-
vious studies considered grip type and target position/reach di-
rection as categorical variables. What is unknown is whether the
encoding of kinematic trajectories of reaching and grasping is
spatially segregated across the premotor cortex.

Here, we tested directly whether representations of reaching
and grasping kinematics were strictly segregated in PMd and
PMv. However, to address this, we had to account for the fact that
reaching for objects in different locations influenced, not only
proximal limb kinematics of the arm, but also distal kinematics of
the hand. Likewise, grasping different objects affected both hand
and arm kinematics. Therefore, we applied a novel dimensional-
ity reduction technique to dissociate anatomical representations
(i.e., based on encoding specific joints) from functional represen-
tations (i.e., encoding reach-related or grasp-related kinematic
synergies). We found no evidence of a strict segregation of reach-
ing and grasping activity in PMd or PMv. Instead, we observed
that both areas contained complete anatomical representations
of the upper limb and functional representations of both reach-
ing and grasping.

Materials and Methods

Neurophysiology

All surgical and experimental procedures were approved by the Univer-
sity of Chicago Animal Care and Use Committee and conformed to the
principles outlined in the National Institutes of Health’s Guide for the
Care and Use of Laboratory Animals (NIH publication no 86-23 revised
1985). Two rhesus macaques (Macaca mulatta) were implanted with
96-electrode Utah arrays in the PMd and PMv contralateral to their
working arm. Electrodes were 1.5 mm in length except for the array in
PMd of animal J (1.0 mm). Neural spiking activity from the electrodes
were amplified with a gain 0f 5000, band-pass filtered between 0.3 Hz and
7.5 kHz, and recorded digitally (14 bit resolution) using a Cerebus acqui-
sition system (Blackrock Microsystems). A threshold was set above the
noise floor on each channel (5.5 SDs) and, every time this threshold was
crossed, a 1.6 ms sample (sampled at 30 kHz) was recorded as a putative
spike waveform. These threshold crossings were subsequently sorted of-
fline using a semimanual clustering procedure (Offline Sorter, RRID:
SCR_000012; Plexon). Only sorted waveforms with a signal-to-noise
ratio (SNR) >3 were used in subsequent analyses. Here, the SNR is
defined as the peak minus the trough of the average waveform divided by
the average SD of the waveform across time.

Behavioral task
Two male rhesus macaques were trained to perform a reach to grasp task
with their left hand while their heads were fixed. A robot (RV-1A-S11
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6-axis robot; Rixan Associates) presented each animal with objects (Fig.
1A) to grasp at four different spatial locations (Fig. 1B) in its peripersonal
space. The set of objects consisted of geometric shapes that were designed
to evoke a variety of different hand conformations when grasped. Object
and location pairings were varied randomly on a trial-by-trial basis to
minimize the amount of motor planning. In addition, the animal’s vision
was occluded between trials with a pneumatically controlled screen.
Once the vision screen was opened, the animal made a reach-to-grasp
movement to the target and held his grip for at least 500 ms to receive a
juice reward. During each movement, the animal was able to see his arm
and hand. Each object was attached to a shaft, the end of which was
attached to a cube with a magnet that allowed the experimenter to
quickly affix a different object to the end-effector of the robot on each
trial.

The precise set of objects that were presented to animal L consisted of
five different objects (cylinder, small disc, key, large disc, and ring) in
different orientations for a total of 11 different grasp conformations, or
grips (cylinder horizontal, cylinder out, cylinder vertical, small disc hor-
izontal, small disc out, small disc vertical, key, large disc horizontal, large
disc vertical, ring horizontal, and ring vertical). On average, the animal
completed 21 repetitions of each grip/location pairing, although some
combinations were less frequent than others due to the random sampling
of objects, with the minimum number of repetitions being five. Animal J
was presented with three objects (cylinder, small disc, and ring) to evoke
four different grips (cylinder out, small disc out, ring horizontal, and ring
vertical). On average, animal J completed 36 repetitions of each grip/
location pairing and all combinations were sampled at least 15 times.
Data from each monkey were recorded from one session each.

Motion capture and inverse kinematics

A 10-camera motion capture system (Vicon Motion Tracking System)
detected and recorded the 3D position of retroreflective markers glued to
the animal. A total of 30 markers were placed on the animal’s dorsal hand
and dorsolateral arm, enabling the tracking of 21 degrees of freedom in
the arm and hand (listed below). The motion capture system was also
used to monitor the position of the object and vision block screen. The
time series of 3D marker positions were low-pass filtered bidirectionally
(fourth-order Butterworth filter 15 Hz cutoff). All filtering and calcula-
tions are done in MATLAB (The MathWorks, RRID:SCR_001622) un-
less otherwise noted. To measure grasp aperture, we computed the
Euclidean distance between markers attached to the distal most aspects of
the thumb and index finger (D1 and D2, respectively).

To compute wrist speed, we differentiated numerically the positional
data of three markers on the animal’s wrist. After numerical differentia-
tion, wrist velocities were again low-pass filtered (using the same filter
design as before). Wrist speed was defined as the average tangential ve-
locity of the three wrist markers. Movement onset, derived from wrist
speed, was defined as the first moment that wrist speed exceeded 10% of
the maximum wrist speed. Reaction times were subsequently defined as
the difference in time between movement onset and release of the vision
block.

We used open-source software (Delp et al., 2007; Opensim, RRID:
SCR_002683) to infer joint angles from marker positional data. We esti-
mated joint angles for 21 degrees of freedom in the arm and hand
including: humerus flexion/extension, humerus abduction/adduction,
humerus rotation, elbow flexion/extension, wrist pronation/supination,
wrist abduction/adduction, wrist flexion/extension, 1 carpal-metacarpal
(CMC) flexion/extension, 1 CMC abduction/adduction, 1 metacarpal-
phalangeal (MCP) flexion/extension, 1 MCP abduction/adduction, 2
MCP abduction/adduction, 2 MCP flexion/extension, 2 proximal inter-
phalangeal (PIP) flexion/extension, 3 MCP flexion/extension, 3 MCP
abduction/adduction, 4 MCP flexion/extension, 4 MCP abduction/ad-
duction, 4 PIP flexion/extension, 5 MCP flexion/extension, 5 MCP ab-
duction/adduction, and 5 CMC flexion/extension. Inverse kinematics
were bidirectionally low-pass filtered with a 6 Hz cutoff.

Demixed principal components analysis
We used a novel dimensionality reduction technique, demixed principal
components analysis (dPCA), to identify kinematic synergies associated
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Methods. 4, Animals were trained to grasp a variety of geometric shapes including (left to right) ring (vertical), small disc (out), key, small disc (horizontal), and cylinder (horizontal).

These drawings depict static hand conformation during grasping of these objects. B, Target locations in relation to the starting position. Aerial view is shown at the top and side view at the bottom.
Blue circle denotes the starting position and white circles denote target locations. Red numbers in or near the target circles indicate the location numbers 1— 4. €, Drawing of animal J in rest position.
Pink dots correspond to the approximate placement of the infrared markers. D, Depiction of the arm in the same position asin Cin the Opensim software environment. E, F, Placement of electrode
arrays in animals L and J, respectively. CS, Central sulcus; AS, Arcuate sulcus; PCD, Precentral dimple.

with reaching, grasping, the interaction of reach and grasp, or synergies
that were common across all experimental conditions (Brendel et al.,
2011; Kobak et al., 2016). This analysis was motivated by two observa-
tions about the kinematics. First, on a given trial, there are often strong
correlations between the kinematics of different joints, suggesting that
most of the variance in the kinematics may be described by a few kine-
matic synergies, often estimated using PCA (Santello and Soechting,
1998; Mason et al., 2001). Second, the correlation patterns across joints
during reach-to-grasp movements depend upon the exact nature of the
movement; therefore, different experimental conditions may produce

different correlation patterns (Todorov and Ghahramani, 2004 ). Briefly,
the dPCA algorithm attempts to find linear combinations of kinematic
variables that explain the most variance, yet also vary only with a given
experimental condition.

We present a mathematical explanation of dPCA that closely mirrors
the description in (Kobak et al., 2016). Suppose that every trial e (of E
total trials) has an associated location I (of L possible locations) and grip
o0 (of O possible grips). Also suppose that, on every trial, we have recorded
the activity of J kinematic features at T different time points. We com-
puted the trial-average kinematic trajectory of every kinematic feature j
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Figure 2.

Trial-averaged kinematics of the arm, wrist, and hand relative to movement onset (M0). A, Within-condition trial-averaged kinematics for three degrees of freedom in the arm (left

column), wrist (center column), and hand (right column) of animal J. Line style indicates object location and color indicates grip type. B, We found that the object can affect arm kinematics
significantly (top). Here, we computed the average humerus abduction over all object locations when grasping Cyl o (purple trace) and Ring h (green trace). Shaded area indicates =2 SEM. Similarly,
reach location can affect hand kinematics (bottom). Flexion in the metacarpophalangeal joint of the second digit (2 mcp flexion) was averaged over all objects and is shown for two object locations.
C, We computed the grasp aperture, defined as the distance between the distal-most thumb and index finger markers and plotted it relative to movement onset in both animals.

for each grip and location pairing denoted R;;,(f). We then gathered all
the trial-averaged kinematic trajectories into a single matrix, X of size ] X
LOT. We subsequently demeaned X such that the average of any kine-
matic feature over all locations, grips, and times was 0. It has been shown
previously that matrix X can be decomposed into independent parts
called marginalizations that satisfy the following:

X=X+ Xy + X + Xitor

where X, denotes the time-varying, but location- and grip-invariant part
of X, obtained by averaging X over all locations and grips as follows:

1 &0

X, =152 2 Xu

I=1o0=1

The location-dependent term, X,;, is obtained by averaging X — X, over
all grips and, similarly, the grip-dependent term, X, is obtained by
averaging X — X, over all locations. Finally, the location—grip interac-
tion, Xj,,, is obtained by computing X;,, = X — X, — X,; — X,,. [t is

important to note that every marginalization of X has the same dimen-
sion as X: ] X LOT.

Using the decomposition of X into its marginalizations, dPCA aims to
find directions in R’ that explain as much variance as possible, with the
additional constraint that this variance should come from only one mar-
ginalization. Unlike standard PCA, dPCA relaxes the assumption that all
the directions must be strictly orthogonal. Formulated as a constrained
optimization problem, dPCA seeks to find a direction ¢ in R’ to mini-
mize the following objective:

2
L= 24X, — Fy DXy,

where F,, is an encoder matrix with q columns, D, is a decoder matrix
with g rows, and ||®]|?; denotes the Frobenius norm of a matrix. An
efficient algorithm was proposed recently to solve this objective function
(Kobak et al., 2016).

To compute the cumulative variance explained by the first p dPCs, we
cannot simply add variances because the dPCs are not strictly orthogo-
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Figure3. dPCA.A, Scree plot of dPCA. The cumulative percentage of explained variance for a given number of dPCs is shown for
jointangles. Each individual component varies only along one task parameter. It can be reach related (R, red points), grasp related
(G, green points), condition independent (Cl, gold points), or an interaction between reach and grasp condition (I, blue points).
Marker shape (either square or triangle) indicates animal. Note that the scree plots are highly similar across animals. B, Percentage
of variance explained by the different task conditions in joint angle data. C, Visualization of kinematic synergies revealed by the
dPCA. The posture of the upper limb is shown at various projections along the largest condition independent synergy (top row), the
largest grasp synergy (middle row), and the largest reach synergy (bottom row). Data are from animal J.
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where [f;.,] is a matrix of the first p encoding
vectors, [d, ;] is a matrix of the first p decoding
vectors, and (@] is a transpose of a matrix. We
emphasize that the cumulative proportion of
variance explained by each component is based
off of the trial averaged data in the matrix, X.

Generalized linear model (GLM) analysis
Input features. We attempted to predict the in-
stantaneous probability of spiking in a given
single unit from many different combinations
of extrinsic covariates (i.e., kinematics and ex-
perimental factors) and intrinsic covariates
(i.e., neural signals).

Extrinsic covariates. We used the position
and velocity of 21 joints in the arm and hand at
various time lags as input features to our en-
coding model. We used eight different time
lags from —156 ms (i.e., spikes lag kinematics
by 156 ms) to 208 ms (i.e., spikes lead kinemat-
ics by 208 ms) in 52 ms steps. In total, there
were 168 (21 joints X 8 lags) positions and ve-
locities for a total of 336 kinematic features.
Other extrinsic features included kinematic
synergies identified via dPCA. Additional cate-
gorical variables indicating the reach location
and grip on a given trial were defined; intertrial
intervals were coded as one category in these
variables.

Intrinsic covariates. In addition to extrinsic
features, intrinsic features such as a given neu-
ron’s own spike history and the spike history of
other neurons may also contribute to a neuron’s
firing rate. To account for the fact that spike his-
tory may be relevant in different ways at different
time scales, we filtered binary spike trains with
raised cosine basis functions of the form:

y(t) = 0.5 cos(alog(t + ¢) — ¢) + 0.5,

for ¢t such that alog(t+¢) € [d—
¢ + | and 0 elsewhere (Saleh et al., 2012). We
specified three different values of ¢, the tempo-
ral peak of the cosine curve, to account for
short (16 ms), medium (44 ms), and long (108
ms) time scale spike history effects. Each basis
vector was convolved with the binary spike
train of a given neuron, thus giving rise to three
spike history vectors for every neuron.

Logistic regression

We used logistic regression to predict the prob-
ability that a neuron fired a spike in a small
time window (4 ms) based on previously de-
scribed input features. Mathematically, this
model may be expressed as follows:

M K

palt)

J
+Zﬁxm

where p, (1) is the probability that neuron # fires a
spike at time ¢, B, represents the baseline proba-

nal. Instead, the cumulative variance explained by the first p dPCsis given  bility that the cell will spike, X, (t — 7,) is the value of the k™ (of K) extrinsic
by the following: feature at time ¢ — 7., where 7, is the m™ (of M) lead or lag time (ranging

IX1E = 1X = [fi.p] [d1) X7

from 52, 104, and 156 ms leading and 52, 104, 156, and 208 ms lagging)
against the spike time at fand Xi(0)is the value of the j th (of J) intrinsic feature

2 > . . . . X
1115 at time ¢ with corresponding weights g ,, and B;, respectively.
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Figure4. Trial-averaged dPCA trajectories relative to movement onset. The temporal profile of the first four dPCs is shown for the various object locations and grips. Conventions are the same as
Figure 2. To the left of each dPCis an indication of whether itis a Cl, grasp (G), or reach (R). The components are ordered from top to bottom in terms of variance explained; that is, dPC1 explained

more variance than all others.

Data segmentation and assessing goodness of fit

Model goodness of fit (GoF) was quantified using the area under the
receiver operating characteristic curve (AUROC) (Hatsopoulos et al.,
2007; Saleh et al., 2010, 2012; Truccolo et al., 2010). We assessed GoF
using 10 folds of cross-validated test data and, unless otherwise noted, all
reported AUROC values are taken to be the median across cross-validation
folds. Each training fold was composed of at least 329 experimental trials and
intertrial activity between those trials. Because the folds were based on ex-
perimental trials rather than data points, the number of test and training data
points varied across folds; however, at least 531,747 and 1,541,496 data
points were in every fold in animals J and L, respectively.

Results

Kinematics of unconstrained reaching to grasp

We used a marker-based infrared motion tracking system com-
bined with an advanced biomechanical model of the primate
upper limb (Delp et al., 2007) to infer the kinematics of 21 joints
in the arm and hand as two rhesus macaques engaged in an un-
constrained reach-to-grasp task. We presented multiple grips at
different locations in the animal’s workspace designed to elicit a
diversity of prehensile movements that included both precision
and power grips (Fig. 1).

Differences in kinematics across experimental conditions
were evident at the level of individual joints (Fig. 2). From visual
inspection of Figure 2A, it can be seen that the different object
locations elicited different patterns of arm movement and the
different grip types elicited different patterns of hand movement.
Less obvious, however, is that the object to be grasped also influ-
enced arm kinematics and, to a lesser extent, the position of the
object in space influenced hand kinematics (Fig. 2B). These dif-
ferences at the level of single joints were also manifested in mul-
tijoint features. The average temporal profiles of grasp apertures
were qualitatively different across grips (Fig. 2C) and, quantita-
tively, the maximum grasp aperture over time was significantly
different across the four grasping conditions (Kruskal-Wallis
test, animal J: X with 3 df = 330.84, p < 0.01; animal L: X* with
3df =199.91, p <0.01). Similarly, we observed differences in the
peak wrist speed across object locations (Kruskal-Wallis test, an-
imal J: X with 3 df = 87.16, p < 0.01; animal L: X* with 3 df =
272.19, p < 0.01).

To control for the fact that both reaching and grasping affect
kinematics in the entirety of the upper limb, we used a novel
dimensionality reduction technique, dPCA, to identify function-
ally defined kinematic synergies. Each kinematic synergy (i.e.,
each dPC) could be reach related, grasp related, condition inde-
pendent (i.e., common to all experimental conditions), or an

interaction between reach and grasp (i.e., specific to a particular
experimental condition). As with other studies that have applied
dimensionality reduction techniques to kinematic data (Mason
etal., 2001; Mollazadeh et al., 2014; Schaffelhofer et al., 2015), we
found that a few functional kinematic synergies described the
majority of the variability in the kinematics. In both animals, we
found the eight components were sufficient to explain 90% of the
variance in joint angles (Fig. 3A), whereas 10 and nine compo-
nents were needed to explain 90% of the variance in joint angular
velocities in animals ] and L, respectively (result not shown). In
both animals, we observed that a substantial proportion of the
kinematic variance was common across all experimental condi-
tions and that grasping components explained more variance
than reaching components (Fig. 3B). Examples of the kinematic
synergies in animal L are shown in Figure 3C. The temporal evo-
lution of a subset of these kinematic synergies as a function of
time relative to the movement onset is shown in Figure 4 for both
animals. Although the convexity for animal J is flipped, dPCl1s for
both animals are condition independent, appear to resemble ap-
erture trajectories, and clearly indicate behavioral differences be-
tween the two animals: animal ] made much faster reaching
than animal L. Other grasp- or reach-specific dPCs show object-
and location-specific components such that trajectories associ-
ated with different locations formed clustered bundles that were
distinct for different objects (dPC3 G for animal J and dPC2 G
and dPC3 G for animal L) and trajectories associated with differ-
ent objects formed bundles that were distinct for different loca-
tions (dPC4 R for animal ] and dPC4 R for animal L).

Encoding of extrinsic features in premotor cortex

One session for each monkey was performed to collect single
unit-spiking activity from PMd and PMv arrays. We obtained
populations of task-related units: 51 and 34 units from PMd and
PMy, respectively, for monkey J and 29 and 22, respectively, for
monkey L. Figure 5 illustrates one example each for PMd and
PMyv single unit activities across different objects and different
locations.

We used GLM:s to develop encoding models of premotor cor-
tical single unit activity and compared the performance of these
models that explicitly accounted for the moment-by-moment
kinematic features against a more abstract, set-related represen-
tation of behavior. In this first class of model, we used the detailed
kinematics of 21 joints in the arm and hand at a variety of differ-
ent time lags to predict spiking activity (see Materials and
Methods for details). In contrast, the second class of model, the
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Exemplary single unit spiking activities of neurons in PMd (A) and PMv (B) for monkey L reaching to grasp different objects at different locations. Each raster plot corresponds to a

particular object and location combination and each peristimulus time histogram was computed for either one object over all locations or one location over all objects. Time 0 corresponds to

movement onset.

set-related model, assumed a single, constant firing rate for each
experimental condition. To assess model performance, the
AUROC was computed for each model.

Across all animals, brain areas, and types of model, we found
that the median AUROC values across cells were significantly
greater than the chance level of the AUROC, 0.5 (Fig. 6A; Wil-
coxon signed-rank test, all p < 0.01). In both animals, we ob-
served that kinematics better predicted activity in PMd compared
with PMv (Fig. 6A; Mann—Whitney U test, animal J: Z = 2.85,
p < 0.004; animal L: Z = 4.12, p < 0.01). The set-related models
also predicted activity in PMd better than PMv in animal L (Fig.
6A; Z = 4.75, p <0.01), but not in animal J (Z = 1.59, p > 0.05).
In both animals and brain areas, we found that encoding models
based on kinematics better predicted spiking activity than the
set-related models (Fig. 6B; Wilcoxon signed-rank test, animal J

PMd: Z=5.74,p < 0.01; PMv: Z = 4.98, p < 0.01; animal L PMd:
Z = 3.45, p < 0.01; PMv: Z = 4.11, p < 0.01). We computed
AUROC for each kinematic lead/lag, but there was no clear indi-
cation of an optimal lead/lag time for either of the two cortical
areas (results not shown).

Having established that whole arm kinematics were predictive
of spiking activity in PMd and PMyv, we subsequently considered
which aspects of the kinematics were important. The dual-
channels hypothesis posits that PMd is concerned with the prox-
imal aspect of the limb, whereas PMv is related to the distal
aspect. We tested the extent to which anatomical segments of the
limb were represented in both areas. Encoding models were fit
using only arm kinematics (i.e., shoulder and elbow kinematics)
or only hand kinematics (i.e., wrist and fingers). We found evi-
dence that both arm and hand kinematics were predictive of
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spiking in each area because the median
AUROC across neurons was significantly 1
>0.5 (Fig. 7A; Wilcoxon signed-rank test,
all p < 0.01). However, in isolation, this
finding does not provide strong evidence
against the dual-channels hypothesis.
For example, a cell that truly encodes
only arm kinematics may appear to also
encode hand kinematics simply because
of correlations between arm and hand
kinematics.

We performed a control analysis to
ensure that any putative encoding rela-
tionship was not a product of kinematic
correlations. In this analysis, we sub-
tracted off either arm or hand AUROC
from the AUROC of the full model con-
taining both arm and hand kinematics
(Fig. 7B). Returning to the previous ex-
ample, if a cell encodes only arm kinemat-
ics, then the difference between the full
model AUROC and the arm AUROC
should be 0. However, the difference be-
tween the full model AUROC and the
hand AUROC should be positive because
this example cell truly encodes arm kine-
matics, which the full model contains. In
real data, cells that had a positive differ-
ence between full model AUROC and
hand model AUROC were classified as en-
coding arm kinematics. Similarly, cells
with positive differences between full
model AUROC and arm model AUROC
were classified as encoding hand kinemat-
ics. These classifications were not mutu-
ally exclusive. We found that both arm
and hand kinematics were effective pre-
dictors of single premotor cortical neuron
activity. We observed (Table 1) that 82%
of PMd and 79% of PMyv cells for monkey
J and 100% of PMd and 95% of PMyv cells
for monkey L encoded arm kinematics,
56% of PMd and 53% of PMv cells for
monkey J and 75% of PMd and 76% of
PMy cells for monkey L encoded hand ki-
nematics, whereas 42% of PMd and 41%
of PMv cells for monkey J and 75% of
PMd and 71% of PMv cells for monkey
L encoded both arm and hand kinemat-
ics, respectively. The dual-channels hy-
pothesis would predict that cells encode
either arm kinematics or hand kinemat-
ics; that is, that they were anticorrelated.
However, the proportion of cells that
encoded both arm and hand kinematics
simultaneously was not significantly
different from what would be expected if both arm and hand
kinematics were encoded statistically independently (bino-
mial test, By 4971, = 62, p > 0.05); that is, the presence of
encoded arm kinematics does not affect the encoding of hand
kinematics and vice versa.

We subsequently tested whether the arm and hand were rep-
resented preferentially in PMd and PMyv, respectively, by sub-
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Encoding models that include kinematics predict spiking activity better than set-related models. 4, We fit encoding
models using either set-related activity or kinematics to each neuron in our sample and measured the AUROC across 10 folds of
cross-validated data. Here, each point corresponds to the median AUROC across folds as a function of animal (triangles or squares)
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better than set-related activity models in PMd and PMv in both animals (significance codes: ***p << 0.0005, see main text for

tracting the AUROC of the hand-only from the arm-only models.
We found that arm kinematics were represented preferentially in
the PMd of both animals because the median AUROC differences
were significantly >0 (Fig. 7C; Wilcoxon signed-rank test, animal
J: Z =251, p <0.02; animal L: Z = 3.35, p < 0.01). Arm kine-
matics was also represented preferentially in the PMv of animal J
(Z=12.57,p <0.01), but not in animal L (Z = —0.41, p > 0.05).
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Figure 7.  Comparing encoding performance of models based on an anatomical division of

the upper limb. 4, We fit GLMs using either arm or hand (including wrist) kinematics. For each
model type and animal, the distribution of median AUROCs across folds is shown as raw data

J. Neurosci., February 15,2017 - 37(7):1733-1746 « 1741

Table 1. Percentage (number of neurons/total number) of neurons encoding arm,
hand, or both arm and hand kinematics by area and animal

PMd PMv

Animal J Animal L Animal J Animal L
Arm 82% (41/50) 100% (16/16) 79% (27/34) 95% (20/21)
Hand 56% (28/50) 75% (12/16) 53% (18/34) 76% (16/21)
Arm + hand 42% (21/50) 75% (12/16) 41% (14/34) 71% (15/21)

In the previous analysis, we showed that both PMd and PMv
encode both arm and hand kinematics. Although this finding is
seemingly in contradiction to the dual-channels hypothesis, one
possibility is that the hand representation in PMd is in the service
of reaching and the arm representation in PMv is in the service of
grasping. Therefore, we tested explicitly whether there is any
preferential encoding of single unit activities of PMd and PMv
neurons using functional representations of prehensile move-
ments revealed by dPCA. Specifically, we fit encoding models
using only reaching components or only grasping components of
the dPCA analysis. We found that both reach and grasp kinematic
synergies predicted spiking activity in both PMd and PMv (Fig.
8A; Wilcoxon signed-rank test, all p < 0.01).

Again, we performed a control analysis to verify that both
reaching and grasping kinematic synergies were encoded in the
spiking activity of premotor cortical cells. We assessed the extent
to which a full model containing both reach and grasp synergies
outperformed a model containing only reach or only grasp (Fig.
8B). Here, we found (Table 2) that 69% of PMd and 56% of PMv
cells for monkey J and 93% of PMd and 91% of PMv cells for
monkey L encoded reaching kinematics, whereas 88% of PMd
and 65% of PMv cells for monkey J and 97% of PMd and 91% of
PMy cells for monkey L encoded grasping. The proportion of
cells that simultaneously encoded both reach and grasp (monkey
J: 67% of PMd and 53% of PMv cells and monkey L: PMd 90% of
PMd and 91% of PMv cells, respectively) was significantly more
frequent than would be expected under chance if reach and grasp
were independent (binomial test, By g5, 136 = 98, p < 0.01). Al-
though many cells encoded both reach and grasp simultaneously,
subtracting the AUROC of the reach and grasp models revealed
there was a preferential representation of reaching in the PMv of
animal ] and PMd of animal L because, as a population, the
difference in AUROC between the reach-only and grasp-only
models was significantly different from 0 (Fig. 8C, Wilcoxon
signed-rank test, animal J: Z = 3.58, p < 0.01; animal L: Z = 3.75,
p<0.01).

Finally, we considered the relationship between the anatomi-
cal and functional kinematic features encoded by each cell. To
this end, we compared the difference of arm and hand model
AUROGC: to the difference of reach and grasp model AUROC:.
Under the classical model, we might assume that PMd cells en-
code the kinematics of the arm preferentially and prefer the ki-
nematics of reaching and, correspondingly, that PMv cells prefer
the hand and grasping (Fig. 9A). Such a simplistic relationship,
however, does not appear to capture the patterns that we ob-

<«

(left column; each point corresponds to a cell) and interquartile range + median (vertical and
horizontal lines, respectively). B, Median AUROCs were compared between the full model that
included all kinematic terms and reduced models that contained only arm or only hand kine-
matics. C, Distribution of differences in arm and hand AUROCs. We found that arm kinematics
were encoded preferentially by PMd in both animals and also in PMv in animal J because a
significant proportion of cells preferred arm kinematics in those two areas (significance codes:
*p << 0.05, **p << 0.005; see main text for additional statistics).
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Figure8. Comparing encoding performance of models based on a functional division of the

upper limb. A, We fit GLMs using either reach or grasp kinematic synergies. For each model type
and animal, the distribution of median AUROCs across folds is shown as raw data (left column)
and interquartile range + median (vertical and horizontal lines, respectively). B, Median
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Table 2. Percentage (number of neurons/total number) of neurons encoding
reaching, grasping, or both reaching and grasping kinematics by area and animal

PMd PMv

Animal J Animal L Animal J Animal L
Reaching 69% (35/51) 93% (27/29) 56% (19/34) 91% (20/22)
Grasping 88% (45/51)  97%(28/29)  65% (22/34)  91% (20/22)
Reaching + grasping ~ 67% (34/51)  90% (26/29)  53% (18/34)  91% (20/22)

served in our data because we observed several cells that preferred
both hand and reach or arm and grasp in both PMd and PMv
(Fig. 9B). These results indicate that anatomical encoding prefer-
ences are not clearly related to functional encoding preferences
because we failed to reject the null hypothesis that functional and
anatomical encoding preferences were statistically independent
(x* test of independence, X?with 1df = 3.03, p > 0.05).

We additionally considered the strength of anatomical and
functional representations in each area. Specifically, we sought to
determine whether anatomical or functional relationships were
more strongly encoded in a given area. We computed the loga-
rithm of the ratio of the arm AUROC and reach AUROC (Fig.
9C) or the hand AUROC and the grasp AUROC (Fig. 9D). If this
number is negative, then that would indicate that functional ki-
nematic synergies predict spiking activity better than the anatom-
ical features; however, if this number is positive, then the
anatomical features predict spiking activity better than functional
kinematic synergies. In both PMd and PMv, we found that ana-
tomical features were more strongly encoded compared with
functional synergies because the logs of AUROC ratios were pos-
itive (Wilcoxon signed-rank test, all p < 0.01). However, the
degree to which anatomical features were preferred differed be-
tween areas. We found that anatomical features were significantly
more strongly represented in the activity of PMd cells compared
with PMv (Fig. 9C,D; Mann—Whitney U test, arm/reach: Z =
3.87, p < 0.01, hand/grasp: Z = 2.64, p < 0.01).

Encoding of intrinsic features in premotor cortex
Since extrinsic features were not the sole predictors of spiking
activity, we also explored how intrinsic features were encoded in
premotor cortex. We compared the encoding performance of the
full kinematic model to the full intrinsic; that is, the spike history
model. The spike-history model contained information about
the spike histories of all other simultaneously recorded neurons
at a variety of temporal scales (Fig. 10; see Materials and Methods
for details). We found that spike history was an effective predictor
of spiking activity (Fig. 10A; Wilcoxon signed-rank test, animal J
PMd: W =91, p <0.01; PMv: W = 78, p < 0.01; animal L PMd:
Z=4.7,p<0.01 PMv: Z = 4.1, p < 0.01). In animal ], we found
spike history predicted PMd activity significantly better than
PMv (Mann—-Whitney U test, Z = 2.20, p < 0.03), but there was
no difference in animal L across areas (Z = —0.33, p > 0.05). In
addition, spike history better predicted spiking activity than the
kinematics in all areas (Fig. 10B, all Bonferroni corrected p <
0.011).

We wanted to identify which temporal scale of intrinsic activ-
ities led to the best encoding performance. We fit models using

<«

AUROCs were compared between the full model that included both reach and grasp synergies
and reduced models that contained only reach or only grasp synergies. C, Distribution of differ-
ences in reach and grasp AUROCs. We found that reach kinematic synergies were encoded
preferentially by PMvin animal J and by PMd in animal L (significance codes: ***p << 0.0005 see
text for additional statistics).
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Comparing anatomical and functional representations in premotor cortex. We compared the differences of arm and hand AUROCs with the differences of reach and grasp AUROCs to

determine whether there was a systematic relationship such that cells that encoded arm kinematics preferentially likewise encoded reaching synergies and, similarly, cells that encoded hand
kinematics preferentially likewise encoded grasping synergies. A, Expected results based on the dual-channels hypothesis. PMd would be concerned exclusively with arm kinematics and reaching,
whereas PMv would be concerned with hand kinematics and grasping. There would be a segregation of both function and anatomy between PMd and PMv. B, Actual results based on observed data.
A x? test of independence revealed no significant relationship between functional and anatomical encoding preferences. €, Comparing the relative encoding performance of anatomical and
functional models. Here, we show the distribution of the logarithm of the ratio of arm and reach model AUROCs. If the log of this ratio is positive, then the arm model had a higher AUROC than the
reach model and vice versa for negative values. We found that both PMd and PMv are better predicted by anatomical features rather than functional features, but this preference is stronger in PMd
(see main text for additional statistics). D, Same conventions as C, but using hand and grasp models.

each of the three different temporal scales and found that the
longest temporal scale (108 ms) led to the best encoding perfor-
mance in both animals regardless of cortical area (Fig. 10C). We
subsequently wondered if the information at each temporal scale
was totally redundant or if using spike history at multiple tempo-
ral scales led to superior predictive ability. Accordingly, we com-
pared the AUROC at the best temporal scale for each cell and
compared it with the AUROC of the full spike history model
including all temporal scales (Fig. 10D). In the PMd of animal J,
we observed that there was no significant difference between the
AUROC of the full spike history model and the model at the best
lag (Wilcoxon rank-sum test, PMd: W = 69, p < 0.11). In con-
trast, spike history at multiple spatial scales better predicted spik-
ing activity in the PMv of both animals (animal J: W = 69, p <
0.02,animal L: Z = 4.11, p < 0.01) and the PMd of animal L (Z =
3.30, p < 0.01).

Discussion

dPCA

We applied a novel dimensionality reduction technique, dPCA
(Kobak et al., 2016), to identify kinematic synergies associated
with either reaching or grasping during an unconstrained pre-
hensile movement task. In both animals, we observed that a few
functionally defined kinematic synergies accounted for most of
the variance in the data. Moreover, reaching and grasping syner-

gies each explained a large proportion of the kinematic variance.
In contrast, comparatively little variance was due to interactions
between reaching and grasping conditions, supporting the de-
composition of kinematics into reaching and grasping submove-
ments (Jeannerod, 1984; Haggard and Wing, 1995).

Although this method provides a promising avenue for gain-
ing insight into prehensile movements, there are some limita-
tions to the approach. Chiefly, the relationship between the
demixed kinematic synergies and muscle synergies currently re-
mains unknown. Using a similar approach to our current
method, instantaneous lengths of 50 musculotendon units were
estimated and it was found that eight PCA components were
sufficient to explain >95% of variance, whereas at least 11 com-
ponents were needed in the joint angle space to capture the same
amount of variance for monkeys performing reach-to-grasp
(Schaffelhofer et al., 2015). Recent work has argued that the en-
coding preferences of primary motor cortical neurons reflect
muscle synergies evoked by intracortical microstimulation
(ICMS) (Overduin et al., 2014). In complementary work, it was
demonstrated that decoding joint kinematics from units on elec-
trodes that evoked movements of that joint when stimulated led
to better decoding performance compared with a simple random
allocation (Best et al., 2014). The kinematic synergies identified
by dPCA, however, arose from our experimental design. In future
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Encoding properties of intrinsic features and comparing spike history with kinematics in premotor cortex. 4, We found that spike history from all cells at multiple temporal scales

effectively predicted spiking activity (see main text for statistics). Each point corresponds to a cell from a given animal (shape) and cortical area (color). Lines next to each column of data indicate
interquartile range and median. B, We compared the performance of the spike history model to the full kinematic model and observed that, generally, spike history was a more effective predictor
of spiking activity than kinematics. €, Median AUROC across cross-validation folds as a function of basis function, cortical area, and animal. In both areas, the longest spike history term had the best
encoding performance. D, Distribution of the differences in AUROC between the full spike history model and a model based on the best single basis function (lag). To the right of each data column

are the median and interquartile ranges of the data.

work, we address the similarity between kinematic synergies in-
ferred using dPCA and kinematic or muscle synergies character-
ized via ICMS.

At amore technical level, dPCA is limited in that it is based on
trial-averaged data and fails to account for trial-to-trial variation
within an experimental condition. An additional limitation is
that it does not support the use of continuous variables as condi-
tions. That is, object locations were not treated as positions in
Euclidean space, but rather as discrete covariates. Finally, on in-
dividual trials, the scores of the dPCs often exhibited strong
moment-by-moment correlations, suggesting that, even though
reach and grasp were decoupled across conditions, there may
remain some strong correlation within a condition.

Implications for cortical control of reach to grasp

We used GLMs to develop encoding models of spiking activity in
premotor cortex based on intrinsic and extrinsic features. We
found evidence that challenged the dogmatic view of premotor
cortical organization centered around discrete reaching (dorso-
medial) and grasping (dorsolateral) pathways. In particular, we
demonstrated that there was a complete anatomical representa-
tion of the upper limb in PMd. This finding is consistent with
previous studies that used ICMS to study motoric representa-

tions in PMd and further work showing that firing rates of PMd
neurons are modulated by changes in grasping condition (Raos et
al., 2003, 2004; Fattori et al., 2010). Additional work has demon-
strated that whole arm kinematics can be decoded from PMd
ensemble activity (Bansal et al., 2012). Our work complements
that study by showing that single cells encode complex, whole-
arm kinematics. Furthermore, our finding is consistent with
studies on single units from area V6A, which is a part of the
dorsomedial reaching network, illustrating that the dorsomedial
pathway is also involved in hand preshaping and grip formation
and may play a central role for all phases of reach-to-grasp move-
ments (Fattori et al., 2010, 2012). Similarly, in PMv, we also
found a complete representation of the upper limb, although, in
absolute terms, it was weaker than in PMd. This result is consis-
tent with previous reports that ICMS of PMv occasionally evoked
arm movements (Godschalk et al., 1981, 1985; Hocherman and
Wise, 1991; Stark et al., 2007).

Kinematically, we demonstrated that arm kinematics were af-
fected by grasping condition and hand kinematics were affected
by reaching condition, so whereas we demonstrated that whole
arm representations were present in both PMd and PMy, that was
insufficient to argue against our null hypothesis that reach and
grasp were processed in independent pathways. We used a novel
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dimensionality reduction technique to dissociate reaching from
grasping and found that single neurons in PMd and PMv encoded
both reaching and grasping kinematic synergies. Moreover, across
the entire population of recorded cells, we found no relationship
between anatomical and functional representations. That is, the an-
atomical preferences of a cell (i.e., whether it was biased toward arm
or hand kinematics) were not related to its functional preferences
(i.e., whether it preferred reach or grasp synergies).

Differences between PMd and PMv

In this work, we compared the encoding properties of neurons
simultaneously recorded in the PMd and PMv of two rhesus
macaques. By using this simultaneous recording paradigm, our
results were not confounded by potential behavioral differences
across sessions.

In both animals, we observed that movement kinematics were
more strongly represented in PMd compared with PMv. One
potential explanation for this finding is that PMd is seemingly
more directly related to motor output. Pyramidal cells in layer V
of PMd comprise ~10% of fibers from the frontal lobe in the
corticospinal tract (Dum and Strick, 1991) and ICMS of PMd is
known to elicit arm movements (Weinrich and Wise, 1982;
Weinrich et al., 1984). Consistent with this interpretation, we
found that spiking activity in PMd was generally better predicted
by anatomical features rather than functional kinematic syner-
gies. PMv, too, sends projections to spinal cord, but it largely
projects to the upper cervical spinal segments (He et al., 1993).
Recent work using ICMS has shown that PMv acts on spinal cord
primarily through facilitation of MI (Cerri et al., 2003; Shimazu
et al., 2004).

In both animals, we observed that, although single cells in
PMd encode whole arm kinematics, they exhibit a preferential
encoding of arm kinematics. This is consistent with the classical
studies of PMd implicating it in the control of reaching move-
ments (Weinrich and Wise, 1982; Weinrich et al., 1984; Kurata
and Tanji, 1986; Riehle and Requin, 1989; Pesaran et al., 2006).

In PMv, however, we observed no consistent bias for either
arm or hand kinematics or grasp or reach kinematics even though
some previous studies illustrated a causal influence of PMv lesion
to a grasp deficit (Fogassi et al., 2001). In addition, in PMv, we
found that spike history at multiple time scales was a better pre-
dictor of spiking activity than a single timescale. This suggests
that PMv may be more influenced by several internal processes
operating at different timescales and may also explain why kine-
matics were not strongly represented in PMv. An alternative pos-
sibility is that these types of unconstrained movements are not
the most effective drivers of activity in PMyv, but rather a different
class of movement altogether may be represented (Wise, 2006;
Lehmann and Scherberger, 2013; Bonini etal., 2014). It should be
noted that the PMv arrays were placed on or close to the convex-
ity of the inferior arm of arcuate sulcus. Therefore, we were not
sampling from neurons in the sulcus, particularly F5p, and were
likely recording from neurons in F4 as well as F5 divisions of PMv
(Matelli et al., 1985).

Interanimal differences

We observed some differences in behavior between the two ani-
mals. Animal ] had faster reaction times than animal L and gen-
erally executed faster movements that were qualitatively more
stereotyped. Although the movements were executed at different
speeds and with different reaction times, we observed many sim-
ilarities in the dPCA analysis across the two animals, suggesting
that the kinematic synergies that we identified were robust across
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a naturalistic range of self-selected movement speeds. In future
work, it could be investigated whether the same set of dPCA
synergies predicts movement kinematics at a variety of speeds by
having an animal engage in a reach-to-grasp task with an explicit
speed cue.

An additional difference in the kinematics between the two
animals was their resting posture. In animal L, resting grasp ap-
erture was proportionately much larger than in animal J. Indeed,
the grasp aperture was maximal at the rest position for some trials
in animal L. In contrast, animal ] maintained a more closed ap-
erture during the rest epoch. This finding may explain why the
temporal profiles of the largest dPC in each animal are different.
The temporal profile of the largest CI dPC in animal J was a
bell-shaped curve, reflecting that the hand opened and closed
during the reach-to-grasp movement. In contrast, the temporal
profile of the largest CI dPC in animal L was a sigmoidal curve,
corresponding to the fact that his hand started opened and grad-
ually conformed to the shape of the object to be grasped. Finally,
the animals adopted qualitatively different strategies to grasp the
ring object successfully. Grasp aperture of the ring object in ani-
mal ] followed a biphasic profile that was absent in animal L.

At the neural level, there were also several differences between
the two animals. We observed that arm (compared with hand)
kinematics were represented preferentially in PMv of animal J,
but not animal L. One potential explanation for this finding is
based on array placement. Although an attempt was made to
place the arrays in approximately the same location in both ani-
mals, a large blood vessel constrained our placement of the PMv
array in animal J. In both animals, we saw a preferential repre-
sentation of the arm in PMd. However, animal J’s PMv array was
inserted much closer to its PMd array because of the aforemen-
tioned blood vessel compared with animal L. Accordingly, the
arm representation in the PMv of ] may be stronger because it is
closer to PMd.

In summary, we used GLM framework to characterize encod-
ing properties of single neurons in PMd and PMv with kinematic
inputs that were computed using a novel dPCA technique to
dissociate anatomical representations of arm and hand from
functional representations of reach and grasp. We showed that
kinematics were more prominently encoded in PMd responses
compared with PMv. More importantly, there was no consistent
preference for arm versus hand or for reach versus grasp kinematics
in either PMd or PMv. By considering the encoding of kinematic
trajectories, our findings extend but are consistent with the results in
a previous study (Stark et al., 2007), which demonstrated that the
encoding properties of PMd and PMv neurons often show mixing
between reach and grasp, suggesting that these two cortical areas
may serve functionally as a neural substrate for coordination be-
tween reach and grasp during prehension.
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