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Abstract
AIM
To elucidate how high diet-induced endoplasmic reti-
culum-stress upregulates thioredoxin interacting protein 
expression in Müller cells leading to retinal inflammation. 

METHODS
Male C57Bl/J mice were fed either normal diet or 
60% high fat diet for 4-8 wk. During the 4 wk study, 
mice received phenyl-butyric acid (PBA); endoplasmic 
reticulum-stress inhibitor; for 2 wk. Insulin resistance 
was assessed by oral glucose tolerance. Effects of pal-
mitate-bovine serum albumin (BSA) (400 µmol/L) were 
examined in retinal Müller glial cell line and primary 
Müller cells isolated from wild type and thioredoxin 
interacting protein knock-out mice. Expression of thiore-
doxin interacting protein, endoplasmic reticulum-stress 
markers, miR-17-5p mRNA, as well as nucleotide-binding 
oligomerization domain-like receptor protein (NLRP3) 
and IL1β protein was determined.

RESULTS
High fat diet for 8 wk induced obesity and insulin 
resistance evident by increases in body weight and 
impaired glucose tolerance. By performing quantitative 
real-time polymerase chain reaction, we found that high 
fat diet triggered the expression of retinal endoplasmic 
reticulum-stress markers (P  < 0.05). These effects 
were associated with increased thioredoxin interacting 
protein and decreased miR-17-5p expression, which 
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were restored by inhibiting endoplasmic reticulum-
stress with PBA (P  < 0.05). In vitro , palmitate-BSA 
triggered endoplasmic reticulum-stress markers, which 
was accompanied with reduced miR-17-5p and induced 
thioredoxin interacting protein mRNA in retinal Müller 
glial cell line (P  < 0.05). Palmitate upregulated NLRP3 
and IL1β expression in primary Müller cells isolated from 
wild type. However, using primary Müller cells isolated 
from thioredoxin interacting protein knock-out mice 
abolished palmitate-mediated increase in NLRP3 and 
IL1β.

CONCLUSION
Our work suggests that targeting endoplasmic reticulum-
stress or thioredoxin interacting protein are potential 
therapeutic strategies for early intervention of obesity-
induced retinal inflammation. 

Key words: High fat diet; Palmitate; Endoplasmic-
reticulum-stress; Inflammation; Thioredoxin-interacting 
protein; Micro-RNA 17-5p
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Core tip: We previously showed that high fat diets (HFD) 
induced retinal inflammation and vascular dysfunction. 
These results were associated with an increase in 
thioredoxin interacting protein (TXNIP) at the mRNA 
and protein level. Here, we examined the mechanisms 
by which HFD triggers retinal TXNIP. Interestingly, we 
found that HFD/palmitate triggers ER-stress mediators 
including the inositol requiring enzyme 1, an RNAse that 
can degrade number of mRNAs including the microRNA; 
miR-17-5p and sustains TXNIP expression. Inhibiting 
ER-stress prevented the increase in TXNIP in vivo  and 
in Müller cells, the main glia in the retina. Deletion of 
TXNIP blunted NLRP-3 inflammasome and IL-1β release 
in Müller cells. 
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INTRODUCTION
Obesity, recently upgraded from a mere risk factor to 
a disease state, is affecting one third of United States 
population[1]. Clinical evidence showed that obesity not 
only can accelerate developing type-2 diabetes and 
cardiovascular complications, but also induce retinal 
microvascular abnormalities, which eventually leads to 
visual impairments[2,3]. High fat diets (HFD) together 
with the improper physical activity are the culprit in 

the obesity-induced pre-diabetes. Therefore, there is 
an urgent need to unravel the mechanisms involved 
in HFD-mediated neurovascular abnormalities. Our lab 
has previously shown that consumption of high caloric 
diet saturated fatty acids induced retinal inflammation 
and microvascular dysfunction via upregulating the 
expression of thioredoxin interacting protein (TXNIP); a 
regulator of the antioxidant thioredoxin; and activating 
NOD (NOD)-like receptor protein (NLRP3)-inflam-
masome[4]. Similar observations showed the contribution 
of TXNIP/NLRP3-inflammasome signaling pathway to 
the development of various disorders in other organs[5-7]. 
However, molecular mechanisms by which HFD triggers 
early TXNIP expression in the retina are still unclear.

MicroRNAs are small non-coding RNAs that control 
the translation and transcription of various genes via 
annealing to the complementary sequences in the 
3′ untranslated region of their target gene[8]. To date, 
several miR classes have been identified to be involved 
in development of obesity, diabetes and diabetic com-
plications[9]. Bioinformatic analysis of the TXNIP 3′ UTR 
identified 11 possible miRNAs that can regulate its expres
sion including miR-130/301, miR-128, miR-148/152, 
miR-135, miR-106/302, miR-17-5p/20/93.mr/106/519.
d, miR-128, miR-15/16/195/424/497, miR-106/302, 
miR-148/152. Nevertheless, levels of miR-17-5p have 
been reported to rapidly decline under stress condition 
resulting in enhancing TXNIP expression[10,11]. 

Unfolded protein response (UPR) is an adaptive 
response, which prevents the accumulation of misfolded 
proteins in the lumen of the endoplasmic reticulum 
(ER). The UPR is transduced by three major ER-resident 
stress sensors, namely Protein Kinase RNA-like ER 
kinase (PERK), activating transcription factor 6 (ATF6), 
and inositol requiring enzyme 1 (IRE1). However, when 
protein misfolding exceeds the capacity of the UPR an 
ER-stress will result that triggers programmed cell death. 
So far, ER-stress has been shown to play a critical role in 
the pathogenic progression of various chronic diseases 
including diabetic retinopathy (reviewed in[12-14]). Among 
UPR pathways, IRE1α, an ER bifunctional kinase/RNase 
has been shown to destabilize number of RNA and 
microRNA including miR-17-5p in pancreatic beta-
cells[10,11]. Several studies reported the impact of HFD 
and its related metabolite such as free fatty acid in 
inducing ER-stress[15-17]. In the current study we were 
trying to decipher the underlying mechanisms that link 
HFDmediated ERstress to retinal inflammation. Here, 
we tested the hypothesis that HFD-mediated ER-stress 
upregulates TXNIP mRNA expression via dysregulating 
miR175p resulting in retinal inflammation. 

MATERIALS AND METHODS
Animals
All animal experiments were conducted in agreement 
with Association for Research in Vision and Ophthalmology 
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statement for use of animals in ophthalmic and vision 
research, and Charlie Norwood VA Medical Center Animal 
Care and Use Committee (ACORP#15-04-080). 6-8 
wk old male C57BL6/J mice (Stock 000664, Jackson 
Laboratory, ME, United States) were used in the in vivo 
studies. For the long term study, mice were fed ad libitum 
with normal rat chow (7% fat) or HFD [36 g %, 251 kJ 
(60 kcal) %fat] (F2685 Bioserv, Frenchtown, NJ, United 
States) for 8 wk. For the short term study, mice were fed 
either normal diet (ND) or 60% HFD for 2 wk. Mice were 
then kept on HFD for additional 2 wk while receiving 
an ER-stress inhibitor [Phenyl-butyric acid (PBA), 100 
mg/kg] or vehicle. PBA was dissolved in DMSO/PBS and 
administered via oral gavage 5 d/wk. Mice were weighed 
weekly to track the increase in the body weight. 

Intra-peritoneal glucose tolerance test
Mice went overnight fasting, and their fasting plasma 
blood glucose was measured as the baseline. Then 
all mice received an intraperitoneal injection of glu-
cose (2 g/kg). Blood glucose levels were measured 
at different time points till 120 min after the glucose 
injection using a glucometer.

In-vitro studies
The rat retinal Müller glial cell line (rMC-1) was obtained 
originally from V. Sarthy (Department of Ophthalmology, 
Northwestern University, Chicago, IL, United States)[18]. 
Primary mouse Müller Cells from WT and TKO mice were 
isolated and cultured as described previously[19]. Cells 
were grown to confluency in complete media (DMEM, 
10% vol/vol. FBS, 1% vol/vol. penicillin/streptomycin). 
Sodium palmitate (Cat.# P9767; Sigma-Aldrich, St. 
Louis,MO, United States) was dissolved in 50% ethyl 
alcohol, then added drop-wise to preheated 10% 
endotoxin- and fatty acid-free BSA (Cat.# 22070017; 
Bioworld, Dublin, OH) in DMEM at 50 ℃ to create an 
intermediate stock solution of palmitate coupled to BSA 
(PalBSA). Confluent cells were switched to serumfree 
medium for overnight then were treated for 6 h with 
Pal-BSA solutions (400 µmol/L final concentration). 
Equal volumes of 50% ethyl alcohol with BSA alone 
served as control. In another set of rMC-1, cells were 
serum starved for 4 h then treated with PBA (1 mmol/L, 
Cat.#P21005, Sigma-Aldrich) or IRE1α inhibitor (STF-
083010, 50 µmol/L) for 2 h then palmitate was added 

and kept overnight.

Quantitative real-time PCR
A one-step quantitative RT-PCR kit (Invitrogen) was used 
to amplify 10 ng retinal mRNA as described previously[4]. 
PCR primers (Table 1) were obtained from Integrated 
DNA Technologies (Coralville, IA, United States). Quantita-
tive PCR was conducted using StepOnePlus qPCR system 
(Applied BioSystems, Life Technologies). The percent 
expression of various genes was normalized to 18S.

Micro-RNA detection
MirVana PARIS kit (Cat.# AM1556, Invitrogen) was used 
for miRNA isolation according to manufacturer’s protocol. 
Reverse transcriptase reactions; including samples and 
no-template controls; were run using TaqMan® Micro-
RNA Reverse Transcription Kit (Cat.# 4366596, Applied 
Biosystems) as described previously[20]. PCR amplification 
was performed using TaqMan® Universal PCR Master 
Mix (Cat.# 4324018, Applied Biosystems) according to 
manufacturer’s protocol. The percent expression of miR-
17-5p was normalized to U6.

Western blot analysis
Retinas were isolated and homogenized in cell disrup-
tion buffer as described previously[21]. Müller cells were 
harvested by scraping thoroughly with cell scraper 
after the addition of cell disruption buffer. Samples (25 
µg protein) were separated by sodium dodecyl sulfate 
polyacrylamide gel electrophoresis and transferred to a 
nitrocellulose membrane. Membranes were probed with 
the primary antibodies; anti-TXNIP (Cat.# K0205-3 MBL 
Abacus ALS Australia and Cat.# 403700, Invitrogen, 
Grand Island, NY), anti-NLRP-3 (Cat.# LS-B4321, 
LifeSpan Biosciences, Inc, Seatle, WA), anti-IL1β (Cat.# 
ab9722, Abcam, Cambridge, MA, United States) then 
reprobed with housekeeping gene; anti-GAPDH (Cat.# 
5174, Cell Signaling, Danvers, MA, United States), 
anti-tubulin (Cat.# ab4074, Abcam, Cambridge, MA, 
United States) or anti-actin (Cat.# a5060, Sigma-
Aldrich) to confirm equal loading. The primary antibody 
was detected using a horseradish peroxidase (HRP) 
and enhanced chemiluminescence. The films were 
scanned and the band intensity was quantified using 
densitometry software version 6.0.0 Software from 
alphaEaseFC (Santa Clara, CA) and expressed as relative 

  Gene Forward Reverse 

  18 S CGCGGTTCTATTTTGTTGGT AGTCGGCATCGTTTATGGTC 
  XBP1 ACACGCTTGGGAATGGACAC CCATGGGAAGATGTTCTGGG
  XBP1-SPLICED GAGTCCGCAGCAGGTG GTGTCAGAGTCCATGGGA
  PERK AGTCCCTGCTCGAATCTTCCT TCCCAAGGCAGAACAGATATACC
  IRE1α GGGTTGCTGTCGTGCCTCGAG TGGGGGCCTTCCAGCAAAGGA
  ATF6 TGCCTTGGGAGTCAGACCTAT GCTGAGTTGAAGAACACGAGTC
  CHOP CTGGAAGCCTGGTATGAGGAT CAGGGTCAAGAGTAGTGAAGGT
  TXNIP AAGCTGTCCTCAGTCAGAGGCAAT ATGACTTTCTTGGAGCCAGGGACA

Table 1  The sequence of the polymerase chain reaction primers used in the experiments
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optical density (OD).

Statistical analysis
All the data are expressed as mean ± SD or SEM. 
Differences between ND vs HFD and control vs palmi-
tate were tested using two-sample t tests. One-
way ANOVA followed by Bonferroni post-hoc multiple 
comparisons to assess significant differences between 
3 or more groups (Graphpad-Ver.6). For body weight 
and blood glucose measurements, area under the 
curve (AUC) across all the time points was calculated. 
A series of 2 gene (WT vs KO) × 2 treatment (TRT) 
(no vs yes) ANOVAs with interaction were used to 
determine the effect of palmitate on NLRP3 and IL1β. A 
Bonferroni post-hoc multiple comparison test was used 
for significant interactions. Significance for all tests was 
determined at alpha = 0.05.

RESULTS
HFD/palmitate triggered ER-stress markers in retina and 
Müller cells
Several studies showed that HFD or palmitate triggers 
ER-stress in different organs and cell types[17,22-24]. 
Therefore, we checked the levels of various ER-stress 
markers in the retina isolated from mice fed with HFD, 
and rMC1 treated with palmitate. HFD for 8 wk induced 
obesity and impaired glucose tolerance indicated by an 
increase in body weights (Figure 1A) and glucose levels 
(Figure 1B) across the different time points compared 
to ND. We also found that HFD induced an increase in 

XBPS1 and ATF6 mRNA levels only, while, there was 
no change in XBP1, PERK, CHOP and IRE1α (Figure 
1C). In order to study the role of Müller cells in HFD-
induced inflammation, rMC-1 were treated with 400 
µmol/L palmitate coupled to bovine serum albumin (Pal-
BSA) for 6hr. Palmitate; a saturated fatty acid that is 
increased in plasma following a HFD[25]; significantly 
upregulated IRE1α, PERK, ATF6 and CHOP (Figure 1D). 

HFD/palmitate induced TXNIP upregulation and miR-17-
5p dysregulation in retina and Müller cells
Our lab has previously reported that HFD and palmitate 
can induce TXNIP mRNA expression in whole retina 
and retina endothelial cells respectively[4]. However, 
the upstream events by which HFD/palmitate trigger 
TXNIP expression are still unclear. In agreement with 
the previous study, we found that 8 wk of HFD and 
palmitate led to an upregulation of TXNIP mRNA levels 
in whole retina and Müller cells (Figure 2). These results 
were associated with miR-17-5p dysregulation in both 
whole retina and Müller cells (Figure 2).

PBA mitigated HFD-mediated ER-stress
To verify the role of ER-stress in HFD-induced TXNIP 
upregulation, mice were fed either ND or HFD for 2 wk. 
Then mice were kept on HFD for additional 2 wk while 
receiving PBA; an ER-stress inhibitor. Body weights were 
not changed by the HFD or PBA treatment (Figure 3A). 
However, blood glucose tolerance was significantly less in 
mice fed with HFD compared to ND after intra-peritoneal 
glucose tolerance test (Figure 3B). HFD-induced insulin 
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resistance suggested by marked increase in the area 
under the curve remained unaffected by inhibiting ER-
stress with PBA (Figure 3C). HFD for 4 wk induced 
expression of retinal ER-stress markers mRNA including 
the RNAse IRE1α, ATF6 and PERK which were restored 
by PBA treatment to control level (Figure 3D).

ER-stress inhibition prevented HFD-induced TXNIP 
upregulation and miR-17-5p dysregulation
To establish a causal relationship of the role of ER-stress 
miR-17-5p and TXNIP expression, we assessed their 
expression in animals that were treated with ER-stress 
inhibitor PBA. As shown in Figure 4A, intervention with 
PBA treatment in HFD partially but significantly increased 

retinal miR-17-5p compared to untreated HFD. HFD 
triggered TXNIP mRNA and protein expression compared 
to ND, which were significantly inhibited in HFDanimals 
treated with PBA (Figure 4B-D). To establish a causal 
relationship of the role of ER-stress and activation of 
IRE1α in palmitate-induced TXNIP expression, rMC1 
were treated for 2 h with PBA or IRE1α inhibitor prior to 
the addition of palmitate. As shown in Figure 4, inhibiting 
ER-stress or IRE1α markedly reduced the increase in 
TXNIP protein expression in palmitate-treated cells. 

Knocking out TXNIP abolished palmitate induced 
inflammation in Müller cells
We recently showed that HFD induced expression 
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of TXNIP in Müller cells, which was associated with 
increased TXNIP-NLRP3 inflammasome interaction as 
well as the expression of cleaved caspase-1 and IL-1β[4]. 
Therefore, to dissect the role of TXNIP in palmitate-
mediated inflammation in Müller cells, primary Müller 
cells from both WT and TKO mice were used. Primary 
Müller cells were serum starved overnight then treated 
with 400 µmol/L palmitate coupled to bovine serum 

albumin (Pal-BSA) for 6 h. We found that palmitate led to 
an increase in NLRP3 and IL1β protein expression in cells 
isolated from WT but has no effect on cells isolated from 
TKO mice (Figure 5).

DISCUSSION
Central obesity and insulin resistance are hallmarks 
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of metabolic syndrome that comprises dyslipidemia, 
hypertriglyceridemia, hyperinsulinemia, hypertension, 
and reduced HDL cholesterol. Changes in lipid profile 
and accumulation of free fatty acids are highly significant 
in all forms of diabetes pointing to its possible link with 
inflammation and vascular complications (reviewed 
in[26]). Several studies showed the role of free fatty 
acids mainly palmitate in inducing pro-inflammatory 
response[27,28]. It should be noted that thorough under-
standing of the interaction between vascular and non-
vascular cells is crucial for the management of retinal 
dysfunction. Müller cells are the principal glial cell found 
in the retina, which span the entire retinal layers and 
considered as resident innate immune cells (reviewed 
in[29]). Because of their unique morphology, Müller cells 
are considered a signaling hub that senses minute 
changes in retinal milieu, connecting retinal neuronal 
with retinal endothelial cells. In the current study we 
were interested in unraveling the mechanisms through 
which HFD leads to retinal inflammation. We also 
highlighted the critical role of Müller cells after the insult 
with the free fatty acid palmitate, which hasn’t been 
reported so far. The main findings of this study are that 
(1) HFD or palmitate induced ER-stress dysregulates 
miR-17-5p in retina and Müller cells; (2) ER-stress 
triggers TXNIP expression in retina and Müller cells 
and (3) amplified TXNIP levels activate NLRP3, which 
contributes to inflammation.

Müller cells are considered major sources of inflam
matory mediators, which become activated in response 
to various insults[19,30-32]. We and others have shown 
the increase of TXNIP expression in glial Müller cells 
due to chronic hyperglycemia[33-35] or HFD[4]. TXNIP is a 
physiological inhibitor of the thioredoxin system, which 
is one of the main antioxidant defense mechanisms in 
our body. TXNIP acts via binding to thioredoxin, making 
it unable to bind with other proteins (reviewed in[36]). In 
addition to the ability of TXNIP in inducing inflammatory 
cytokines via activating nuclear factor kB, it can act as a 
direct activator of NOD-like receptor protein (NLRP3)[34,37]. 
NLRP3-inflammasome is a component of the innate 
immune system responsible for initiating obesity-induc-
ed inflammation[38]. TXNIP-NLRP3 interaction results 
in NLRP3 complex assembly and auto-activation of ca-
spase-1, which eventually processes pro-IL1β into its 
mature form leading to inflammation[38,39]. Recent stu-
dies showed that HFD and palmitate trigger ER-stress in 
various organs and cell types[17,22-24]. However, the link 
between HFD/palmitate-induced ER-stress and TXNIP 
expression in Müller cells is yet to be determined. Here, 
we observed significant activation of the unfolded protein 
response ER-stress chaperons in retinas from 8-wk 
HFD mice (Figure 1). We also observed no difference 
in mRNA level of IRE1α an ER-stress marker and a 
bifunctional kinase/Rnase in HFD. However, there was 
an increase in the splicing of XBP1; IRE1α downstream 
target; evident by 3.5-fold increase in spliced XBP-1 in 
HFD compared to ND, which suggests IRE1α activation. 
Interestingly, treatment of Müller cells with palmitate; 

one of the most abundant saturated fatty acids in 
plasma that is significantly increased following HFD[25]; 
led to an increase in all ER-stress markers at the mRNA 
level including IRE1α (Figure 1). Among UPR pathways, 
IRE1α has been shown to degrade key cell regulators 
such as the neuronal cue, netrin in the retina[39,40] and 
miR-17-5p in pancreatic beta-cells[10,11]. MiR-17-5p is 
a small noncoding RNAs that binds predominantly to 
the 3′UTR of TXNIP leading to downregulation of its 
expression[10]. Indeed, HFD and palmitate resulted in a 
significant decrease in miR175p in the total retina and 
Müller cells, respectively, an effect that coincided with 
TXNIP upregulation (Figure 2). These findings support 
the link between HFD, ER-stress and TXNIP upregulation 
in Müller cells. 

Epidemiological studies showed a significant reduc
tion in miR-17-5p in omental fat and blood from obese 
non-diabetic subjects compared to lean subjects[41,42]. 
In the current study, we showed that HFD or palmitate 
dysregulated miR-17-5p in retina and Müller cells (Figure 
2). Interestingly, retinal miR-17-5p expression is not 
affected by hyperglycemia or diabetes compared to 
normal glycemic controls (data not shown). In agree-
ment, Lerner et al[10] reported similar insensitivity of miR-
17-5p to high glucose treatment in pancreatic beta cells. 
These findings shed light on the selective sensitivity of 
miR-17-5p to degrade in response to HFD and palmitate. 
Taken together, our findings suggest that HFDinduced 
ER-stress uniquely triggers TXNIP expression via dys-
regulating miR-17-5p. 

To dissect the role of ER-stress in regulating TXNIP 
expression, PBA was added to cultured rMC1 prior to 
palmitate treatment. PBA is an FDA approved drug for 
the clinical management of urea cycle disorder. PBA is a 
chemical chaperone that stabilizes protein conformation 
and in turns ER-folding (reviewed in[43,44]). Indeed, 
treating the cells with PBA a general ER-stress inhibitor 
showed a trend decrease in TXNIP expression. Similar 
findings were obtained by the use of a selective IRE1α 
inhibitor (Figure 4). However, the observed reduction 
didn’t reach significance, which could be due to the small 
sample size. We overcame this limitation, by treating 
mice kept on HFD with PBA for 2 wk. We showed that 
inhibiting ER-stress significantly blunted the increase 
in TXNIP observed in HFD group (Figure 4), without 
altering insulin resistance (Figure 3). Next step we tried 
to verify the role of TXNIP in inflammatory response 
in Müller cells. Building on our previous findings that 
silencing TXNIP reversed palmitate-induced IL1β release 
and eventually cell death in endothelial cells[4], we 
isolated primary Müller cells from WT and TKO mice 
then exposed them to palmitate. We demonstrated 
that palmitate led to an increase in NLRP3 and IL1β 
expression in WT and has no effect on TKO (Figure 5), 
which indicates that TXNIP is responsible for inflam-
mation in Müller cells. These results lend further support 
to prior findings that manifest the critical role of IL1β in 
mediating vascular injury in the pathogenesis of diabetic 
retinopathy. Kowluru et al[45] showed that injecting IL-1β 
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into the vitreous of normal rats increased cell apoptosis 
similar to what is observed in diabetes. Deletion of IL1β 
receptor prevented autocrine loop of inflammation[46] and 
protected retinas from diabetes-induced development of 
acellular capillaries[47]. 

In summary, clinical and experimental studies have 
repeatedly reported the contribution of inflammation 
to the pathogenesis of diabetic retinopathy (reviewed 
in[48,49]). Similarly, suppression of inflammation has 
shown protective effects via decreasing leukostasis, 
blood-retinal barrier breakdown and the acellular 
capillaries formation[50]. Here, we provide preliminary 
evidence that exposure to high fat diet and palmitate 
trigger retinal ER-stress and glial TXNIP expression and 
render the retina vulnerable to inflammation. Early 
intervention of ER-stress or TXNIP presents potential 
therapeutic strategy in obesity-induced inflammation in 
diabetic retinopathy.
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