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A B S T R A C T

Lenalidomide is an orally active immunomodulatory drug that has direct antineoplastic activity and
indirect effects mediated through multiple types of immune cells found in the tumor microenvi-
ronment, including B, T, natural killer (NK), and dendritic cells. Recently, the E3 ubiquitin ligase
cereblon was identified as a molecular target that may underlie the effects of lenalidomide on
tumor cells, as well as on cells in the tumor microenvironment. Decreases in cereblon attenuate
these effects and also confer resistance to lenalidomide. Tumoricidal effects of lenalidomide are
associated with reduced interferon regulatory factor 4, a downstream target of cereblon.
Lenalidomide stimulates proliferation and activation of NK cells, thereby enhancing NK cell–
mediated cytotoxicity and antibody-dependent cellular cytotoxicity. These effects appear to be
secondary to cytokine production from T cells. Lenalidomide has been shown to produce
synergistic effects in experimental models when evaluated in combination with rituximab,
dexamethasone, bortezomib, and B-cell receptor signaling inhibitors, consistent with mechanisms
complementary to these agents. These experimental findings have translated to the clinic, where
single-agent use displays durable responses in relapsed/refractory non-Hodgkin lymphoma, and
combination with rituximab and other agents leads to improved responses at first line and in
relapsed/refractory disease. The activity of lenalidomide is evident across multiple lymphoma
subtypes, including indolent and aggressive forms. The interaction among cell types in the
immune microenvironment is increasingly recognized as important to tumor cell recognition and
destruction, as well as to protection of normal immune cells, as reflected by lenalidomide studies
across multiple types of B-cell lymphomas.

J Clin Oncol 33:2803-2811. © 2015 by American Society of Clinical Oncology

INTRODUCTION

B-cell non-Hodgkin lymphoma (NHL) comprises
multiple clinico-pathologic subtypes, most com-
monly diffuse large B-cell lymphoma (DLBCL) and
follicular lymphoma (FL).1,2 First-line treatment
typically consists of immunochemotherapy, which
may be followed by rituximab-based maintenance
therapy for FL, or consolidation with autologous
stem-cell transplantation for mantle-cell lymphoma
(MCL).3 For patients with relapsed or refractory
NHL, a wide range of treatment options is available,
although consensus on the best approach and se-
quence remains to be determined.

Chemotherapy has a broad impact on both
malignant and healthy cells. Advances in delineating
pathways involved in cell signaling and tumor
growth have led to novel, molecularly-based treat-
ments.4 The advent of rituximab provided proof-of-
concept for targeted therapy in B-cell NHL. Since
then, numerous novel agents have been evaluated,
with favorable clinical activity portending im-
provements in patient outcome.5 One such agent

is lenalidomide, an oral, immune modulator. Its
antineoplastic effects include direct antineoplastic
activity, immunologic effects mediated by inhibi-
tion of tumor cell proliferation and angiogenesis,
and stimulation of cytotoxicity mediated by T cells
and NK cells.6-13 Herein, we provide a comprehen-
sive review of known mechanisms of action (MOAs)
of lenalidomide in B-cell NHL. Lenalidomide was
first approved for treatment of multiple myeloma,
and much work has focused on its activity in this
disease. Another immunomodulatory derivative of
thalidomide family member, pomalidomide, has
been approved for use in multiple myeloma, but it is
not being explored in preclinical or clinical studies in
lymphoma, and therefore this review focuses on le-
nalidomide only.

CEREBLON AS A DIRECT TARGET
FOR LENALIDOMIDE

Cereblon is a ubiquitously expressed E3 ubiquitin
ligase protein identified as the primary teratogenic
target of thalidomide,14 and cereblon is also a direct
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and therapeutically important molecular target for lenalidomide. Di-
rect binding of lenalidomide to endogenous cereblon isolated from
cell line extracts and to recombinant cereblon–DNA damage-binding
protein-1 complexes has been demonstrated in vitro.15 Ikaros and
Aiolos, zinc finger–containing transcription regulators of B- and
T-cell development, are selectively bound by cereblon.16-18 After di-
rect binding, lenalidomide activates cereblon’s E3 ligase activity,
resulting in the rapid ubiquitination and degradation of Ikaros and
Aiolos. Lenalidomide inhibits autoubiquitination of wild-type, but
not mutant, cereblon protein. Zhu et al19 found that transfection of
myeloma cell lines with lentiviral constructs targeting cereblon
was cytotoxic, and surviving cells with stable cereblon depletion
became lenalidomide resistant. Cereblon silencing in myeloma
cells attenuated the antiproliferative effect of lenalidomide, induc-
tion of tumor suppressor p21WAF-1 expression, and decrease in
interferon regulatory factor 4 (IRF4), and silencing in T cells de-
creased lenalidomide-induced interleukin (IL)-2 and tumor ne-
crosis factor � (TNF-�) production.

Reduced or undetectable levels of cereblon were found in
lenalidomide-resistant H929 and DF15R myeloma cells selected for
incubation with increasing lenalidomide concentrations over ex-
tended periods,15 and in patients with myeloma, lower cereblon levels
were associated with lenalidomide resistance.19 Translation of these
findings to lymphoma remains to be shown.

EFFECT OF LENALIDOMIDE ON MALIGNANT B CELLS

Lenalidomide exhibits in vitro and in vivo activity against malignant
lymphoma B cells,6,11,12,20,21 and in specific tumor types, including
DLBCL, FL, and MCL.10,13,22-24 Early preclinical evaluation showed
antineoplastic and antiproliferative effects on malignant B-cell lines
while sparing CD34� progenitor and normal B cells (Fig 1).11 Lena-
lidomide increased the percentage of cells arrested in the G0-G1 phase,
and there was a corresponding decrease in the S and G2-M phases.

Lenalidomide upregulated protein and mRNA levels of p21WAF-1, a
regulator of cyclin-dependent kinases (CDKs) important for G1-S
progression, and promoted binding of p21WAF-1 to CDK2, CDK4, and
CDK6 in malignant, but not normal, B cells. Upregulation of p21WAF-1

correlated with CDK inhibition, leading to hypophosphorylation of
retinoblastoma protein, subsequent G1 cell-cycle arrest, and decreased
cell proliferation. Lenalidomide inhibited protein kinase B (also
known as Akt) and GRB2-associated binding protein 1 phosphoryla-
tion and enhanced activator protein-1 expression, suggesting that it, in
part, exerts its antineoplastic and antiproliferative effects through ki-
nase signaling pathways.7 Lenalidomide downregulates expression of
checkpoint inhibitors, including programmed death-ligand 1 (PD-L1,
CD274) on the surface of lymphoma cells.29 Lenalidomide upregu-
lates expression of several genes involved in immune responses in
MCL cells, including CD86, CD40, CD58, and CD1c.22

Lenalidomide produces higher response rates in the activated B
cell–like (ABC) subtype of DLBCL.30,31 Lenalidomide preferentially
suppressed ABC DLBCL cell proliferation and delayed malignant
growth in a human tumor xenograft model, while minimally affecting
non-ABC DLBCL cells.24 The antineoplastic effects of lenalidomide in
ABC DLBCL cells were associated with downregulation of IRF4 and,
subsequently, B-cell receptor–dependent nuclear factor-�B (NF-�B)
activity. Conversely, IRF4 overexpression led to enhanced NF-�B
activation and a subsequent resistance to lenalidomide. Notably, cere-
blon expression was required for lenalidomide-induced downregula-
tion of IRF4 and inhibition of B-cell receptor–mediated NF-�B
signaling in ABC-type DLBCL cells.

A gain-of-function mutation of MYD88, an adaptor protein
mediating Toll-like and IL-1 receptor signaling,32 is commonly ob-
served in ABC DLBCL. MYD88 mutation promotes NF-�B and Janus
kinase/signal transducer and activator of transcription (STAT) 3 sig-
naling pathways to sustain ABC DLBCL viability, while also inducing
interferon beta (IFN-�) production and autocrine signaling, paradox-
ically promoting cell-cycle arrest and apoptosis.33 On treatment of
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Fig 1. Mechanisms of action of lena-
lidomide in lymphoma cells and the nodal
microenvironment.6,9-13,25-28 ADCC,
antibody-dependent cellular cytotoxicity;
Akt, protein kinase B; AP-1, activator pro-
tein 1; CDK, cyclin-dependent kinase;
Gab1, GRB2-associated binding protein 1;
IFN, interferon; IL, interleukin; NK, natural
killer; NLC, nurse-like cell; Rb, retinoblas-
toma; TNF, tumor necrosis factor.
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ABC DLBCL cells with lenalidomide, mRNA and protein levels of
IRF4 and SPi-B (an Ets family transcription factor) were reduced in a
cereblon-dependent manner. SPi-B acted together with IRF4 to pre-
vent IFN-� production, allowing survival and proliferation of ABC
DLBCL cells with MYD88 mutations. By blocking these transcription
factors, lenalidomide augmented IFN-� production and promoted
cytotoxicity against ABC DLBCL cells. The mRNA levels of CARD11,
a transcription factor regulating the activity of I�B kinase in the NF-�B
pathway, were reduced alongside IRF4 and SPi-B. Further examina-
tion of the pathways involved in lenalidomide’s cytotoxic activity in
ABC DLBCL cells showed decreased CARD11 and I�B kinase activity
(and, thus, reduced NF-�B activity) with accompanying IRF4 and
SPi-B downregulation.

MOAs OF LENALIDOMIDE IN THE LYMPH
NODE MICROENVIRONMENT

Recent studies have emphasized the importance of crosstalk between
malignant and surrounding nonmalignant cells within localized tu-
mor niches and the bone marrow.34 Cells in the tumor microenviron-
ment include macrophages, T cells, NK cells, dendritic cells, other
myeloid-derived cells, and stromal cells. These cells not only provide a
supportive network for tumor growth and progression but also can
promote antitumor immune responses. Gene expression profiling
(GEP) of 191 biopsy specimens from patients with FL who were
treatment naive identified two immune response signature patterns
(IR1 and IR2) predictive of survival.35 These signatures reflected the
biologic characteristics of nonmalignant immune cells rather than the
tumor cell of origin, and were independent of clinically prognostic
variables. IR1 comprised genes generally highly expressed in T cells,
whereas IR2 encompassed genes highly expressed in monocytes. The
two signatures ranked patients by survival-predictor scores with
clearly differentiated quartiles ranging from 13.6 to 3.9 years of sur-
vival time, illustrating unique biologic characteristics of the host im-
mune system microenvironment, their influence on tumors, and their
association with survival time.

Colocalization of FL cells with CD4� T cells and follicular den-
dritic cells within follicular structures is necessary to support tumor
cell proliferation.36 FL cells demonstrated reduced proliferative activ-
ity in interfollicular regions.37 Rather, FL cell proliferation depends on
the surrounding immune system to support growth.38,39 FL cells
adapt to a germinal center B-cell (GCB) –like phenotype, including
their dependence on immune cell interactions within the follicular
microenvironment. Immune cells are influenced by both positive
and negative regulatory molecules, governing whether antitumor
responses or supportive signals are available for tumor cell growth
and proliferation.

EFFECT OF LENALIDOMIDE ON T CELLS

T cells in the lymph node are influenced by the presence of lymphoma
and display altered GEP and decreased immune synapse (IS) forma-
tion and effector function. GEP analysis of highly purified CD4 and
CD8 tumor-infiltrating lymphocytes from baseline lymph node biop-
sies in 172 patients with FL who were treatment naive was altered
compared with healthy donor reactive tonsils and peripheral blood.40

Microarray analysis demonstrated multiple dysregulated genes in
both CD4 and CD8. Multivariable analysis revealed that levels of
expression of altered proteins on T cells were significantly prognostic
for overall survival time and time to transformation in FL, further
highlighting the role that lymphoma cells play in influencing the
immune microenvironment and how this can affect outcome.

Tumor-infiltrating CD4� and CD8� T cells from lymphoma
exhibit defective IS formation with antigen-presenting cells (APCs)
compared with age-matched healthy donors,10 resulting in impaired
antigen presentation.25,41 Ex vivo lenalidomide treatment of FL and
autologous T cells repaired the F-actin IS activity and recruited
tyrosine-phosphorylated protein independent of added antigen and
irrespective of the patient’s level of disease.10

When MCL and �� T cells were cocultured, lenalidomide
induced reorganization of the actin cytoskeleton and cell surface
markers and enhanced �� T-MCL cell IS formation, �� T-cell
expansion, and cytotoxicity against MCL cells. These findings sug-
gest that lenalidomide may have multiple mechanisms against
MCL cells, including increased CD1c expression and enhancement
of �� T cell–mediated cytotoxicity.

Although there is a considerable literature on the effects of lena-
lidomide on T-regulatory cells (Tregs), little has been published on
lymphoma. In a murine model, lenalidomide was associated with
reduced numbers of systemic Tregs, as well as myeloid-derived sup-
pressor cells in tumor-bearing, but not naive, mice.42 In a phase II
study, Tregs were increased in the peripheral blood of patients with
MCL compared with that of healthy volunteers, and they rose more
after lenalidomide treatment.43

EFFECT OF LENALIDOMIDE ON NK CELLS

NK cells are important contributors to the innate immune response,
with vital roles in clearing viruses, regulating dendritic cells, and
rejecting malignant cells.25 Lenalidomide treatment increased NK
cell number, enhanced NK cell–induced cytotoxicity against cell
lines,26 and enhanced antibody-dependent cellular cytotoxicity
(ADCC). The effects of lenalidomide-induced NK cell cytotoxicity
and ADCC may be mediated indirectly via IL-2 production by T
cells, as shown via the abrogation of NK cytotoxicity when IL-2 was
inhibited with IL-2 antibody.26

Lenalidomide enhanced NK cell–mediated ADCC in several
rituximab-treated NHL cell lines; the effects were dependent on ritux-
imab binding to Fc-� receptors and either IL-2 or IL-12 production.12

Lenalidomide may stimulate NK cells by enhancing Fc-� receptor
signaling, which, in turn, elevates phosphorylated extracellular signal-
regulated kinase and enhanced granzyme B and Fas ligand expression,
contributing to enhanced ADCC.12

EFFECT OF LENALIDOMIDE ON DENDRITIC CELLS

Dendritic cells are APCs that are key messengers between the innate
and adaptive immune systems, and function by processing and pre-
senting antigens on their surface for recognition by T cells. Lenalido-
mide enhances expression of major histocompatibility complex class I
and CD86 on bone marrow–derived murine dendritic cells, promotes
uptake of tumor antigens by these APCs, and increases the efficiency of

Lenalidomide Mechanisms in B-Cell NHL

www.jco.org © 2015 by American Society of Clinical Oncology 2805



antigen presentation to naive CD8� T cells.44 The enhancement of
dendritic cell function by lenalidomide may be important during
immunosurveillance of cancer cells. Moreover, these findings suggest
that lenalidomide may be useful in dendritic cell–based vaccines. The
impact of lenalidomide on stromal cells, angiogenesis, and myeloid-
derived suppressor cells, which have all been studied in myeloma, has
yet to be fully addressed in studies in lymphoma.

EFFECT OF LENALIDOMIDE ON NORMAL HEMATOPOIESIS

Lenalidomide spares CD34� hematopoietic progenitor cells; indeed,
lenalidomide has been shown to increase expansion of leukaphereses-
derived CD34� cells.11,45 The mechanism of lenalidomide-induced
neutropenia has been associated with loss of PU.1, a key transcription
factor involved in granulopoiesis.45 Downregulation of PU.1 resulted
in transient arrest of neutrophil maturation alongside accumulation
of immature myeloid precursors and subsequent neutropenia.

EFFECT OF LENALIDOMIDE ON INFLAMMATORY CYTOKINES

Cytokines secreted by hematopoietic and nonhematopoietic cells are
important factors for mediating innate and adaptive immune re-
sponses. Lenalidomide decreases the production of several proinflam-
matory cytokines (eg, TNF-�, IL-1, IL-6, and IL-12) and increases
production of anti-inflammatory cytokine IL-10.46,47 Modulation of
these cytokines within the nodal microenvironment likely influences
inflammatory responses, supports tumor growth and metastasis, and
contributes to chemoresistance. The role of IL-6 was examined in
preclinical studies of human MCL cells cocultured with peripheral
blood mononuclear cells (PBMCs) or bone marrow–derived mono-
nuclear cells.48 IL-6 receptor ligation initiates a downstream kinase
signaling cascade (eg, STAT3, Ras, phosphoinositide 3-kinase [PI3K]/
Akt) to promote tumorigenesis. In some MCL cells, IL-6 secretion
provides an autocrine growth signal. Bone marrow stromal cells se-
crete high levels of IL-6, and PBMCs secrete both IL-6 and the soluble
gp80 IL-6 receptor subunit.48 Because both stromal cells and PBMCs
may be found in the MCL microenvironment, they may provide a
paracrine source of IL-6 for supporting MCL growth. Consistent
with this hypothesis, IL-6/gp80 knockdown effectively allows
chemotherapy-induced apoptosis to occur on exogenous addition of
IL-6 or gp80, rather than supporting tumor growth and proliferation.
In line with IL-6 signaling, STAT3 phosphorylation and constitutive
activation are dependent on autocrine and paracrine feedback loops
for IL-6. The ability of lenalidomide to reduce IL-6 and STAT3 activity
may provide mechanisms for reducing signaling within the MCL
microenvironment, thereby inhibiting MCL cell growth and resis-
tance to chemotherapy and promoting apoptosis.

Lenalidomide also stimulates production of IL-2 and other
cytokines, including IFN-� and TNF-�, and induces T-cell prolif-
eration in the absence of CD28 stimulation.25,46,49 Because T-cell
receptor and costimulatory signals are required for IL-2 production,
these observations suggest that lenalidomide may activate
costimulatory-dependent signaling normally triggered by CD28.
Consistent with this hypothesis, lenalidomide increases tyrosine phos-
phorylation of CD28 in the intracellular domain of T cells in the
absence of costimulatory molecules, and stimulates NF-�B activation

downstream from CD28.50 Moreover, lenalidomide promotes nu-
clear translocation and binding of nuclear factor of activated T cells 2
and activator protein-1 to the IL-2 promoter, a process dependent on
PI3K signaling, leading to enhanced IL-2 production.26

Although IL-2 and IL-12 are not required for monocyte-
mediated cell lysis and ADCC for synergistic activity between lenalido-
mide and rituximab, enhancement of ADCC by lenalidomide is
associated with increased cytokines on NK cells, including IL-8,
monocyte chemotactic protein-1, RANTES (regulated on activation,
normal T cell expressed and secreted), inducible protein-10,
granulocyte-macrophage colony-stimulating factor, and with de-
creased IL-6.

COMBINATIONS OF LENALIDOMIDE WITH
OTHER TREATMENTS

Lenalidomide may enhance or act synergistically with other treat-
ments with complementary MOAs. Lenalidomide with dexametha-
sone and rituximab has been shown to synergistically inhibit growth
and induce apoptosis of established MCL cell lines and ex vivo MCL
cells from patients with relapsed or refractory MCL.13,23 Mechanisti-
cally, lenalidomide enhanced dexamethasone-induced G0-G1 cell-
cycle arrest through an intrinsic mitochondrial pathway of apoptosis,
evidenced by increased Bcl-2 phosphorylation; upregulation of the
proapoptotic proteins Bax, BAD, and Bim; activation of caspase-3 and
-9; and cleavage of poly(ADP-ribose) polymerase (Table 1). Lenalido-
mide enhanced rituximab-induced apoptosis by upregulating c-Jun
N-terminal protein kinase phosphorylation and activating the
mitochondrial-derived apoptotic pathway.13 In addition, lenalido-
mide increased the number of NK cells 10-fold and augmented
rituximab-dependent NK cell–mediated cytotoxicity by increasing
CD16 expression on a subset of NK cells considered key effector cells
for ADCC in PBMCs. This increase was positively associated with
elevated IFN-�, TNF-�, and perforin expression. These preclinical
findings translated into prolonged survival for severe combined im-
munodeficient mice inoculated with Mino MCL cells and treated with
combined lenalidomide and rituximab; overall tumor burden was
decreased two-fold (P� .01), and survival time significantly improved
versus control or treatment with either single agent (P � .05). Further
examination of tumor growth mechanisms demonstrated that after 21
days of treatment, lenalidomide increased the number of splenic NK
cells 10-fold.

The synergistic effects of lenalidomide with anti-CD20 monoclo-
nal antibodies appear to be independent of CD20 expression and
density on the surface of different types of lymphoma cells.27,51 In a
severe combined immunodeficient mouse xenograft model bearing a
disseminated Raji lymphoma, administration of lenalidomide signif-
icantly increased the number of circulating CD49b� NK cells from
day 5 to day 10, whereas depleting NK cells with anti–IL-2 receptor
monoclonal antibody before inoculation with lymphoma cells abro-
gated the antitumor effects of lenalidomide with or without ritux-
imab. In a subsequent study, lenalidomide increased the infiltration of
NK cells into tumor sites compared with vehicle-treated animals.
Notably, infiltration was directed into the central part of the tumor in
lenalidomide-treated animals but confined to the tumor periphery in
control animals.51 In an effort to explore other cellular effects in the
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immune microenvironment, NK cell activity was associated with den-
dritic cell stimulation and alterations in the dendritic cell cytokine
milieu, as shown by increased monocyte chemotactic protein-1,
TNF-�, and IFN-�, collectively augmenting rituximab-mediated
ADCC. Lenalidomide also exhibited antiangiogenic activity in the Raji
xenograft model, as shown by significantly decreased tumor mi-
crovessel density compared with vehicle-treated animals (50 v 109
vessels/5 low-power fields; P � .009).

The ability to augment NK cells and enhance rituximab-
mediated cytotoxic mechanisms suggests that lenalidomide may also
work cooperatively in combination with monoclonal antibodies for
other surface antigens. Targeting other cell surface antigens provides
alternative pathways to engage, as well as strategies for overcoming
potential adaptive or acquired resistance to rituximab (Table 1).55 In
preclinical studies, ex vivo chronic lymphocytic leukemia (CLL) cells
enhanced NK-mediated ADCC when lenalidomide was combined
with XmAb5574 (MOR208), a humanized monoclonal antibody tar-
geting CD19 found on the surface of normal and transformed B cells
and involved in B-cell receptor signaling.52 Another example is CD40,
a member of the TNF receptor superfamily mainly expressed on B cells
and other APCs (eg, dendritic cells and macrophages).55 Lenalido-
mide increased CD40 expression and enhanced the direct cytotoxicity
of anti-CD40 monoclonal antibody SGN-40 in CLL cells.53 Moreover,

lenalidomide enhanced anti–CD40-mediated ADCC after treatment
with NK cells or PBMCs isolated from patients with CLL.

Given its unique MOAs, lenalidomide is expected to provide
complementary effects with treatments other than monoclonal anti-
bodies. As mentioned previously, lenalidomide acted synergistically
with dexamethasone in promoting growth inhibition and apoptosis
in MCL cells.23 Similarly, lenalidomide synergistically enhanced
bortezomib-induced cytotoxicity and apoptosis in FL and MCL
cells.54 Lenalidomide also displayed synergistic activity in combina-
tion with ibrutinib, a Bruton’s tyrosine kinase inhibitor, which blocks
B-cell receptor signaling.33 Ibrutinib reduced IRF4 levels in ABC
DLBCL cells, but when evaluated in combination with lenalidomide,
IRF4 was decreased to undetectable levels. Lenalidomide and ibrutinib
acted synergistically in inducing ABC DLCBL cell cytotoxicity in vitro,
and the combination was effective in arresting tumor growth of OCI-
Ly10 ABC DLBCL xenografts. These findings underscore the feasibil-
ity of lenalidomide combinations with other B-cell receptor pathway
inhibitors, including the PI3K� inhibitor idelalisib and the spleen
tyrosine kinase inhibitor entospletinib (GS-9973). Because check-
point control inhibitors show activity in lymphoma, and because
lenalidomide downregulates expression of PD-L1 on the surface of
lymphoma cells,29 there is a rationale for exploration of combining
lenalidomide with anti–PD-1 or anti–PD-L1 antibodies to attempt to
fully block the pathway.

TRANSLATION OF PRECLINICAL DATA TO CLINICAL STUDIES

The MOAs of lenalidomide identified in experimental studies appear
to translate into therapeutic relevance in the clinical setting, both as
monotherapy and in combination with other agents. Single-agent
lenalidomide produced durable responses in patients with relapsed/
refractory indolent or aggressive NHL in several phase II trials.56-58

Subset analyses demonstrated that lenalidomide was active across
multiple NHL subtypes; lenalidomide exhibited higher responses in
non-GCB DLBCL compared with GCB30 and showed particularly
promising activity in MCL.59,60 These latter findings led to a prospec-
tive international phase II trial known as MCL-001 (EMERGE [A
Phase 2, Multicenter, Single-Arm, Open-Label Study to Determine
the Efficacy and Safety of Single-Agent Lenalidomide (Revlimid) in
Patients With Mantle Cell NHL Who Have Relapsed or Progressed
After Treatment With Bortezomib or Are Refractory to Bortezomib]),
which enrolled 134 patients with relapsed/refractory MCL.56 Lena-
lidomide produced a 28% overall response rate (8% complete
response) in patients. The duration of response lasted for a median
of 16.6 months, notable given that patients were heavily pretreated
and 60% refractory to bortezomib. Pooled data analyses for pa-
tients with MCL from MCL-001 and earlier phase II studies (NHL-
002 and NHL-003) confirmed the clinical activity of single-agent
lenalidomide and supported its approval by the US Food and Drug
Administration for relapsed or refractory MCL after two earlier
therapies, one of which included bortezomib.56,59-61

Recent reports of an increased risk of second primary malignan-
cies (SPMs) in patients with multiple myeloma after lenalidomide
maintenance have piqued interest in understanding the underlying
mechanism that contributes to the emergence of SPMs.62,63 Little has
been reported in studies of lenalidomide in lymphoma because their
follow-up times are shorter than those for multiple myeloma. The

Table 1. Preclinical Mechanistic Rationale for Combinations
With Lenalidomide

Combination Treatment Known MOAs

Lenalidomide � rituximab13,23,51 NK cell
1 NK-cell number and activity
1 CD16 expression

Malignant B cell
G0-G1 cell cycle arrest
1 p-Bcl-2, Bax, BAD, Bim
Caspase-3 and -9 activation
PARP cleavage
p-JNK
Antiangiogenic activity

Microenvironment
1 IFN-�, MCP-1, TNF-�, and perforin

Lenalidomide � XmAb5574
(MOR208)52

NK cell
Enhanced ADCC

Lenalidomide � SGN-4053 NK cell
Enhanced ADCC

Malignant B cell
1 CD40 expression
1 cytotoxicity

Lenalidomide � bortezomib54 Malignant B cell
1 cytotoxicity

Lenalidomide � ibrutinib33 Malignant B cell
2 IRF4 levels
2 tumor growth

Lenalidomide � anti–PD-1 or
anti–PD-L129

Proposed preclinical rationale for
enhanced checkpoint control
inhibition

Abbreviations: ADCC, antibody-dependent cellular cytotoxicity; IFN-�, inter-
feron-gamma; IRF4, interferon regulatory factor 4; JNK, c-Jun N-terminal
protein kinase; MCP-1, monocyte chemotactic protein-1; MOAs, mechanisms
of action; NK, natural killer; PARP, poly(ADP-ribose) polymerase; PD-1, pro-
grammed death 1; PD-L1, programmed death ligand 1; TNF-�, tumor necrosis
factor-alpha.
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Table 2. Ongoing Clinical Studies of Lenalidomide Combinations in Lymphoma

Clinical Study Type of NHL Phase Treatment Primary End Point

Previously untreated patients
R2-ibrutinib (NCT01829568) FL I R2-ibrutinib MTD
MCL4 (LENA-BERIT; NCT00963534) MCL (age � 65 years) I/II R2-B Ph I: MTD

Ph II: PFS
Lenalidomide � DA-EPOCH-R

(NCT02213913)
MYC-associated B-cell

lymphoma
I/II Lenalidomide � DA-EPOCH-R Ph I: MTD

Ph II: PFS
SAKK 35/10 (NCT01307605) FL II R � lenalidomide CR
ECOG E1412 (NCT01856192) DLBCL II R2CHOP v R-CHOP PFS
ROBUST (DLC-002) (NCT02285062) ABC-type DLBCL III R2CHOP v R-CHOP PFS
LYSA SENIOR (NCT02128061) CD20� DLBCL, age

� 80 years
III R2miniCHOP v R-miniCHOP (subcutaneous R) OS

Maintenance
Lenalidomide maintenance post-

chemotherapy (NCT01035463)
Chemotherapy-

resistant or high-
risk NHL

I/II Lenalidomide maintenance post-BEAM � rituximab
and ASCT

Ph I: MTD
Ph II: EFS, ORR, OS

FIL R2-B (NCT01737177) MCL II Induction: R2-B CR, PFS
Maintenance: lenalidomide

ECOG E1411 (NCT01415752) MCL II Induction: RB v RBV PFS
Maintenance: R2 v R

3-Arm randomized ECOG E2408
(NCT01216683)

High-risk stage II-IV FL II Arm I: BR to R CR, DFS
Arm II: BVR to R
Arm III: BR to lenalidomide to R

RELEVANCE (NCT01650701) FL III Induction: R2 v R-chemotherapy CR/CRu at 30 months,
PFSMaintenance: R2 (post-R2) v R (post-R-chemotherapy)

MCL R2 Elderly (NCT01865110) Older MCL III Induction: R-CHOP � R-HAD v R-CHOP PFS
Maintenance: R2 v R

FIL MCL-0208 (NCT02354313) Advanced MCL III Induction: R-high-dose chemotherapy and ASCT PFS
Maintenance: lenalidomide v observation

MAGNIFY (NHL-008) (NCT01996865) FL, MZL, MCL IIIb Induction: R2 PFS
Maintenance: lenalidomide v R

Relapsed/refractory patients
Lenalidomide � brentuximab vedotin

(NCT02086604)
DLBCL I Lenalidomide � brentuximab vedotin MTD

Lenalidomide � temsirolimus (NCT01076543) NHL and HL I/II Lenalidomide � temsirolimus Ph I: MTD
Ph II: ORR, CR

R2 � chemotherapy (NCT01788189) CD20� NHL (not MCL) I/II R2 � methotrexate, leucovorin, and cytarabine Ph I: MTD
Ph II: ORR

R2 � carfilzomib (NCT01729104) MCL I/II R2 � carfilzomib Ph I: MTD
Ph II: ORR

Lenalidomide � idelalisib (NCT01838434) MCL I/II R2 with idelalisib; amended to
lenalidomide � idelalisib

Ph I: MTD
Ph II: PFS

LR-ESHAP (NCT02340936) DLBCL I/II Salvage LR-ESHAP in candidates for HDT and ASCT Ph I: MTD
Ph II: ORR

Dose-finding lenalidomide � obinutuzuab
(NCT01995669)

iNHL I/II Lenalidomide � obinutuzumab Ph I: MTD
Ph II: ORR

GALEN (NCT01582776) DLBCL, MCL Ib/II Lenalidomide � obinutuzumab Ph I: MTD
Ph II: ORR

Lenalidomide � ibrutinib (NCT01955499) NHL I Lenalidomide � ibrutinib MTD
Lenalidomide � ibrutinib � R (NCT02077166) DLBCL Ib/II Lenalidomide � ibrutinib � rituximab Ph I: MTD

Ph II: ORR
Lenalidomide � ibrutinib � DA-EPOCH-R

(NCT02142049)
DLBCL Ib/II Lenalidomide � ibrutinib � DA-EPOCH-R Ph I: MTD

Ph II: ORR
Lenalidomide � romidepsin (NCT01755975) Lymphoma and

myeloma
Ib/IIa Lenalidomide � romidepsin MTD, safety

R2 � carfilzomib � romidepsin (NCT02341014) B- and T-cell lymphoma Ib/IIa R2 � carfilzomib � romidepsin Ph I: MTD
Ph II: ORR

LEGEND (NCT02060656) DLBCL II LR-GEM v R-GEM-P CR
AUGMENT (NHL-007) (NCT01938001) FL and MZL III R2 v R PFS

Abbreviations: ABC, activated B cell; ASCT, autologous stem-cell transplantation; B, bendamustine; BEAM, carmustine, etoposide, cytarabine, melphalan; CHOP, cyclophosph-
amide, doxorubicin, vincristine, prednisone; CR, complete response; CRu, CR unconfirmed; DA, dose adjusted; DFS, disease-free survival; DLBCL, diffuse large B-cell lymphoma;
ECOG, Eastern Cooperative Oncology Group; EFS, event-free survival; EPOCH, etoposide, prednisone, doxorubicin, cyclophosphamide, vincristine; ESHAP, etoposide,
methylprednisolone, cisplatin, and cytarabine; FIL, Fondazione Italiana Linfomi; FL, follicular lymphoma; GEM(-P), gemcitabine, methylprednisolone (cisplatin); HAD, high-dose
cytarabine and dexamethasone; HDT, high-dose therapy; iNHL, indolent non-Hodgkin lymphoma; LR, lenalidomide � rituximab; LYSA, Lymphoma Study Association; MCL,
mantle-cell lymphoma; MTD, maximum tolerated dose; MZL, marginal zone lymphoma; NHL, non-Hodgkin lymphoma; ORR, overall response rate; OS, overall survival; PFS,
progression-free survival; Ph, phase; R, rituximab; R2, lenalidomide � rituximab; V, bortezomib.
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MCL-001 study of single-agent lenalidomide identified invasive SPM
rates consistent with the expected background occurrences reported
by the SEER program for individuals 65 years of age and older.56 Clear
elucidation of the mechanisms involved in SPMs appears to be con-
founded by patients’ prior exposure to multiple lines of therapy, mak-
ing insights into the mechanisms involved speculative. Studies in
multiple myeloma suggest that prior or concurrent exposure to the
alkylating agent melphalan may increase the risk of developing SPMs
through its DNA-damaging properties and potential synergy with
lenalidomide’s inhibition of DNA repair mechanisms (possibly via
cereblon inhibition).62,63 An alternate potential mechanism might
include disruption of viral latency, as has been suggested for Epstein-
Barr virus in preclinical studies of B cells.64 For patients receiving
lenalidomide for a long period of time, continued study is needed for
better insight into the mechanisms involved in the development of
SPMs. Clinically in lymphoma, a disease plagued by probable relapse,
it is important to consider lenalidomide maintenance in the context of
the risk to benefit ratio to the patient, as the risk of progressive disease
or death is much greater than that of developing an SPM.

The single-agent activity of lenalidomide, combined with pre-
clinical evidence of its ability to enhance the antitumor activity of
rituximab, led to early trials of combination rituximab and lenalido-
mide (R2) therapy in first-line and relapsed settings. Enhanced activity
has been observed with R2 in MCL,28,65 DLBCL,66-68 FL,69,70 and
indolent NHL.71,72 A recently published study of R2 shows evidence of
overcoming rituximab-resistance in indolent NHL and MCL.73 The
feasibility of administering lenalidomide or R2 in combination with
either dexamethasone or bortezomib in patients with MCL was also
demonstrated.74-77 First-line R2 plus cyclophosphamide, doxorubi-
cin, vincristine, prednisone (R2CHOP) produced encouraging re-
sponse rates and progression-free survival times in patients with
DLBCL and FL in several clinical trials, particularly when compared
with historical data for R-CHOP alone.78-80 Notably, patients with
GCB and non-GCB DLBCL phenotypes achieved similar objective
response rates with R2CHOP.79 The combination of R2 with benda-
mustine is being explored as a first-line option in elderly patients with
MCL (Table 2).81 Studies of R2 with multiple combination partners
are ongoing in phase I and II trials. Recent findings on the combina-
tion of R2 with idelalisib in relapsed/refractory NHL (A051201;
NCT01838434) indicate that combined mechanisms of action may
not always be complementary.82 This triple combination led to unex-
pected toxicity suggestive of cytokine release syndrome (a rare event
associated with rituximab), and the dosing regimen has been modified
to include lenalidomide plus idelalisib without rituximab.

Numerous clinical trials are currently underway to further eluci-
date how to best exploit lenalidomide pathways in NHL treatment
(Table 2). RELEVANCE (NCT01650701) is a phase III open-label
study comparing R2 with rituximab-based immunochemotherapy

followed by rituximab or R2 maintenance in 1,000 previously un-
treated FLs. The primary outcomes are complete response rate at 30
months and progression-free survival time. GALEN (NCT01582776)
is a phase IB/II study evaluating the combination of lenalidomide with
obinutuzumab in relapsed or refractory FL, DLBCL, and MCL.83 The
phase IB component recommended a dosage of 20 mg/d lenalidomide
in combination with fixed-dose obinutuzumab in FLs; the ongoing
phase II study will evaluate efficacy and safety in relapsed or refractory
FLs and aggressive NHLs.

In conclusion, lenalidomide is an orally active immunomodula-
tory drug that has direct antineoplastic activity and indirect effects
mediated through multiple types of immune cells found in the tumor
microenvironment, including B, T, NK, and dendritic cells (Fig 1).6,9-

13,25-28 Recently, the E3 ubiquitin ligase cereblon was identified as a
molecular target that likely underlies the effects of lenalidomide on
tumor cells as well as on cells in the tumor microenvironment. On the
basis of its overall profile, lenalidomide was evaluated initially as
monotherapy in patients with relapsed or refractory NHL and exhib-
ited activity across multiple lymphoma subtypes. The observation of
durable responses in patients with MCL provided a focus for clinical
development and led to approval of lenalidomide for relapsed/refrac-
tory MCL. Preclinical studies have shown that lenalidomide has en-
hanced or synergistic activity with other agents, including rituximab,
dexamethasone, bortezomib, and B-cell receptor pathway inhibitors,
reflecting its unique mechanisms of action. These experimental obser-
vations, combined with the single-agent activity observed clinically,
provided the basis for evaluation of R2 and other combination regi-
mens across a variety of treatment phases for both indolent and ag-
gressive NHL types. Clinical results highlight the potential activity for
lenalidomide-based combinations. Continued understanding of the
mechanisms of lenalidomide against tumor cells and cells in the tumor
microenvironment will help optimize lenalidomide’s therapeutic ef-
fects for patients with NHL overall and on an individual basis.
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