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blood pressure and overlapping with metabolic trait loci
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Abstract

Meta-analyses of association results for blood pressure using exome-centric single-variants and 

gene-based tests identified 31 novel loci in discovery among 146,562 individuals with follow-up 

and meta-analysis in 180,726 additional individuals (Ntotal=327,288). These blood pressure loci 

are enriched for known cardiometabolic trait variants. Associations were also observed for the 
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aggregation of rare/low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In 

addition, blood pressure associations at 39 previously reported loci were confirmed. The identified 

variants implicate biological pathways related to cardiometabolic traits, vascular function, and 

development. Several new variants are inferred to have roles in transcription or as hubs in protein-

protein interaction networks. Genetic risk scores constructed from the identified variants were 

strongly associated with coronary disease and myocardial infarction. This large collection of blood 

pressure loci suggests new therapeutic strategies for hypertension emphasizing a link with 

cardiometabolic risk.

Hypertension (HTN) or high blood pressure (BP) is a major risk factor for cardiovascular 

disease, chronic kidney disease, and mortality1. To date, in addition to rare mutations that 

cause monogenic high or low BP disorders2–4, candidate gene studies, genome-wide 

association studies (GWAS), and admixture mapping approaches5–15 have identified variants 

at more than 60 genetic loci that are associated with BP or hypertension. Most of the known 

BP loci identified in large population-based studies are common non-coding variants with 

small effects on BP.

The Human Exome BeadChip (Exome Chip; Illumina, Inc., San Diego, CA) was designed to 

facilitate identification of functional variants that contribute to human traits, by focusing on 

variants that alter amino acid sequence. The Exome Chip includes 247,039 markers of which 

>90% are non-synonymous or splice modulating exonic variants that were not covered by 

previous genotyping arrays. While variants on previous GWAS arrays are largely common 

[minor allele frequency (MAF) ≥0.05], 83% of the Exome Chip variants are rare 

(MAF<0.01) and another 6% are low frequency (MAF 0.01 to 0.05). Only 11% of the 

Exome Chip variants are common, including a set of 5,542 (approximately 2% of overall 

array content) common variants that were drawn from the associations reported in the 

NHGRI GWAS Catalog16.

To identify functional coding variation associated with BP, we conducted a two-stage study 

in up to 327,288 individuals who were genotyped with the Exome Chip (Figure 1) for 

systolic and diastolic BP (SBP and DBP), pulse pressure (PP), mean arterial pressure 

(MAP), and HTN. We identified single variant associations at 31 novel loci and gene-based 

associations for three novel genes (two of which overlapped with the single variant loci) 

associated with BP phenotypes. About half of the novel BP variants identified in this study 

reside in loci that were previously reported in GWAS to be associated with lipids, 

immunologic diseases, and metabolic phenotypes, suggesting common etiologies of BP and 

metabolic risk factors and an opportunity to identify therapies that more broadly impact 

hypertension in the context of cardiometabolic risk.

New Loci Associated with BP by Single Variant Analyses

In the discovery stage (Stage 1), a total of 15 distinct novel candidate loci were associated 

(P<3.4×10−7) with at least one BP trait in a primary meta-analysis among samples of all 

ancestries and secondary meta-analyses among samples of European (EA) or African 

ancestry (AA) (Supplementary Table 1, Supplementary Figure 1). Meta-analysis using 

individuals from all ancestries identified 22 novel associations at 13 loci that met 
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experiment-wide significance (Supplementary Table 1). All associations with P<1×10−4 for 

at least one trait in the primary analysis are listed in Supplementary Table 2. The sole locus 

that was identified in EA but not in the all-ancestry analysis was a rare missense variant 

rs3025380 in DBH [MAF 0.005, 0.001, and 0.003 in EA, AA, and Hispanic ancestry (HA) 

samples, respectively]. Meta-analysis of AA individuals identified a common missense 

variant rs12941884 in SEZ6 (MAF=0.21 and 0.12, respectively, in AA and EA) that was not 

identified in EA or all ancestry samples.

The Exome Chip contains 43 SNPs from loci previously identified in GWAS of BP5–15. Of 

these 43 loci, 39 were associated with at least one BP trait in Stage 1 analyses 

(P<0.05/43∼0.001) (Supplementary Table 3). Twenty-six of these SNPs met experiment-

wide significance (P<3.4×10−7). Conditional analysis did not reveal any new independent 

variants at any of these previously identified loci5–15.

The 15 newly identified variants (P<3.4×10−7, Supplementary Table 1) and 62 additional 

variants (P <1×10−5 for at least one BP phenotype, Supplementary Table 2) from Stage 1 

were selected for follow up in 180,726 independent individuals (Supplementary Methods). 

Of the 15 newly identified variants, 11 replicated (P<0.05/15∼0.0033) in the follow-up 

samples (Supplementary Tables 4, and 5). In Stage 2 analyses (i.e. joint meta-analysis of 

results from the Stage 1 and follow-up samples), we identified 48 novel BP variants at 31 

loci (including the 11 replicated loci) associated with SBP, DBP, PP, or HTN at P<3.4×10−7 

(MAP was not available in the follow-up analyses; Supplementary Tables 4 and 5). Among 

the top variants at the 31 loci, 13 were missense (Table 1). In Stage 2 analyses restricted to 

EA samples (Supplementary Table 4), all newly identified associations in EA samples 

meeting the significance threshold were also statistically significant in meta-analysis 

combining all ancestries (Supplementary Table 5) with the exception of rs1925153 in 

COL21A1. In addition, all of the variants except for the four that were nominated for follow 

up based on PP (SBP minus DBP) showed concordant directions of effects for SBP and DBP 

(Supplementary Table 6).

Three of the 31 significant novel SNPs were low-frequency (MAF 0.01 to 0.05). These 

SNPs encode non-synonymous substitutions in the genes NPR1 (rs35479618), SVEP1 
(rs111245230), and PTPMT1 (rs11537751). NPR1 encodes natriuretic peptide receptor 1 

and has been reported to be associated with BP regulation in animal models17,18 but not 

previously in humans; SVEP1 and PTPMT1 are novel BP genes. The minor alleles of all 

three SNPs were associated with increased BP and had larger absolute effects on BP than the 

alleles of any of the newly identified common variants. For example, each minor allele of 

rs35479618 was associated with an increase of 0.85 mm Hg in SBP in the follow-up samples 

compared with a maximum absolute difference (per minor allele) among the novel common 

variants of 0.43 mm Hg in SBP (for rs8068318 in TBX2; Supplementary Table 5).

Of the 28 newly identified common variants for BP, 14 were genome-wide significant in 

prior GWAS of lipids19, immunologic disease20–22, diabetes23–25, kidney function26, age at 

menarche27, resting heart rate28, waist-hip ratio29, and homocysteine concentration30, but 

not BP (Table 2 and Supplementary Table 7). Six additional variants were reported for 

several phenotypes (Table 2) in previous candidate gene, patent filing or GWAS studies, but 
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their P values were not specified or did not reach the genome-wide significance level31–36. 

By contrast, the remaining eight variants were missense SNPs that have not been reported in 

the NHGRI GWAS Catalog for any trait (Table 2). Several genes in Table 2 contain multiple 

variants showing distinct allelic roles. HOXA3 and NOS3, harbor variants rs17428471 

(HOXA3)12 and rs3918226 (NOS3)10 with genome-wide significant BP association that are 

independent of the Exome Chip variants (r2=0.007 for rs17428471 with rs6969780 and 

r2=0.007 for rs3918226 with rs891511, respectively, in the 1000 Genomes data). A variant 

rs2651899 in PRDM16 has been reported to be associated with migraine37, but this variant 

is not in LD with the new BP variant rs2493292 (r2=0.01 in the 1000 Genomes data), 

suggesting predisposition to distinct vascular consequences for different variants at this 

locus. In addition, PRDM16 has been shown to play a critical role in vascular 

development38, adipocyte function in subcutaneous fat, and development of diabetes39. 

Finally, several variants in DOT1L were reported to be associated with cartilage thickness 

and hip osteoarthritis40. The new BP variant rs2302061, however, was not in LD with any of 

the prior identified signals at this locus40.

Together, the 31 newly identified single variants explain 0.7% and 1.3% of inter-individual 

variation in SBP and DBP, respectively. The previously established and newly identified 

variants together explain 2.8% and 2.9% of phenotypic variation in SBP and DBP, 

respectively.

Gene Level Analyses

We considered the possibility that an aggregation of rare or low-frequency coding alleles at 

individual genes contributes to BP variation and tested specifically for effects of non-

synonymous, stop codon, and splicing coding variants with MAF<0.05 (T5 test) or 

MAF<0.01 (T1 test) using the seqMeta package. The standard burden test41,42, which is 

sensitive for detecting association when all variants contribute effects on BP in a concordant 

direction, identified an aggregation of rare and low-frequency coding alleles in PTPMT1 that 

contribute to higher odds of HTN (experiment wide significance P<1×10−6, Table 3, 

Supplementary Table 8A). The SKAT test43, which is designed to detect effects of alleles 

that collectively contribute to higher and lower BP effects, identified significant BP 

associations for DBH (T1) and NPR1 (T5; Table 3, Supplementary Table 8A). Among 

additional individuals of European ancestry (up to 154,543 individuals) who were used for 

follow-up analysis, gene-based SKAT (with the RAREMETAL package) was performed for 

inverse normal transformed DBP, SBP, PP, and HTN (see Methods). The gene-based 

associations replicated in the follow-up samples at P<0.05/3∼0.017 for NPR1 (P=4.4×10−5 

for SBP) and were marginally significant for PTPMT1 (P=0.019 for HTN) and DBH 
(P=0.053 for DBP) (Supplementary Table 8B).

Twenty-eight previously reported genes associated with monogenic BP disorders3 contained 

at least two non-synonymous, stop codon, or splice-site coding variants with MAF <0.05 on 

the Exome Chip. Burden testing of these 28 genes identified a statistically significant 

association of SLC12A1 (26 variants all having MAFs<0.005) with SBP 

(P=0.0006<0.05/28; T1 test; Supplementary Table 9). Mutations in SLC12A1, the Na-K-2Cl 

co-transporter, cause Bartter’s syndrome, a Mendelian salt-wasting condition associated with 
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hypotension44. The 26 variants in SLC12A1, however, did not overlap with the previously 

reported Bartter’s syndrome variants44. The other 27 monogenic BP genes did not reach 

statistical significance in standard burden testing. Additionally, none of the 28 genes showed 

significant association with BP using the SKAT test43 (all P>0.0006; Supplementary Table 

9).

Inferred Function of the Identified BP Loci

We applied several computational strategies and conducted cis expression quantitative locus 

(eQTL) analysis to infer biological functions associated with genes at the 31 significant 

single variant BP loci (see details in Supplementary Methods).

Disease and pathway enrichment analysis

We examined functional annotations derived from pre-compiled gene sets in GeneGO and 

literature-based inference in Literature Lab45. In GeneGO biological processes, the 31 novel 

loci were enriched for cell signaling and development functions (e.g. “regulation of 

signaling”, “regulation of growth”) compared with largely cardiovascular functions (e.g. 

“negative regulation of [smooth] muscle contraction”, “blood circulation”) for the 39 

validated BP loci (Supplementary Table 10). The novel loci were also enriched for several 

conditions related to cardiovascular and metabolic disease (e.g. “myocardial ischemia”, 

“congenital hyperinsulinism”, “acid-base imbalance”) whereas the validated loci were 

enriched for conditions more directly related to BP or cardiovascular conditions (e.g. 

“arrhythmias, cardiac”, “hypertension”, “hypotension”). Significant Literature Lab45 

(Supplementary Table 11) pathways and disease MeSH headings were enriched for insulin-

related terms (e.g. “IGF-1”, “type II diabetes”, “hyperinsulinism”) for the novel loci 

compared to BP-related terms (e.g. “cardiac muscle contraction”) and cardiovascular 

electrophysiology (e.g. “antiarrhythmics”) for the validated loci; both sets of loci were 

significant for “heart development”. In the Literature Lab45 anatomical annotations, the 

cardiovascular system (e.g. “myocardium”, “heart ventricles”) was highlighted for both the 

novel and validated SNPs, while the validated SNPs also associated with the renal system 

(e.g. “nephron”, “urinary tract”). Almost no annotations for either GeneGO or Literature 

Lab45 were unique to the set of combined novel and validated loci with the exception of a 

few terms predominantly related to BP or the renal system.

Protein-Protein Interaction Analysis

Using NCBI’s protein-protein interaction (PPI) network resources (Supplementary 

Methods), a total of 399 genes were found to be connected to at least one of the 31 novel BP 

genes (Supplementary Figure 2). Ordered on the basis of connectivity (“degree”; 

Supplementary Table 12), a measure that signifies a hub disposition in the PPI network, the 

top five BP candidate genes were INSR, PABPC4, NOS3, IGFBP3, and DOT1L. Based on 

“Google” page-rank, a connectivity measure that recognizes degree of connectivity while 

also emphasizing connections between highly connected nodes, the five top genes differed 

from ordering based on connectivity alone by the replacement of IGFBP3 by PTPMT1 
(Supplementary Table 12).
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ENCODE and Roadmap Epigenomics Analyses

RegulomeDB46 and HaploReg47 evaluations of potential cis regulatory functions identified 

rs8068318 (intronic to TBX2) as having the highest score among loci (or their LD proxies) 

that showed relatively strong evidence for a role in transcription (Supplementary Table 13). 

This SNP maps to an active TBX2 promoter histone mark in lung fibroblast and DNAse I 

hypersensitivity marks in seven cell types, while overlapping with five transcriptional 

regulatory motifs. TBX2 is a member of a highly conserved T-box family of transcription 

factors and has been implicated in cardiac developmental abnormalities48,49 and kidney 

function26.

cis-eQTL Analysis

The 31 newly identified BP variants were queried for cis-eQTL association (Supplementary 

Table 14) in over 5,000 participants from the Framingham Heart Study (FHS), using 

microarray-based transcriptomic profiling of RNA from whole blood. A total of 720 SNP-

transcript pairs were tested. Forty-three pairs (representing 17 variants) were significant at 

FDR<10%, among which eight variants were cis-eQTLs for multiple gene transcripts. For 

example, rs1953126 (near the 5’-UTR of PHF19) is a cis-eQTL for PHF19 and for multiple 

nearby genes including C5, GSN, PSMD5, RAB14, FBXW2, and TRAF1. Query of 

publicly available eQTL databases via GRASP50 and recent publications51,52 based on 

profiling of whole blood or other tissue types51–58 yielded eQTL assignments that were 

concordant with the FHS findings for most variants listed in Supplementary Table 14.

Effects of BP-associated Variants on Clinical Outcomes

We considered the aggregate effects of the BP loci on BP-related clinical outcomes using 

new Exome Chip-based results for coronary artery disease/myocardial infarction (CAD/MI), 

including 42,335 cases and 78,239 controls59, and for renal function measured by 

glomerular filtration rate (GFR) in up to 111,655 individuals. For 59 of the 70 BP associated 

SNPs, alleles that were associated with higher BP were also associated with increased odds 

of CAD/MI (Supplementary Tables 15 and 16), a highly significant concordance with the 

known influence of BP on CAD/MI (sign test, binomial P=4.5×10−9). Similarly, genetic risk 

scores (GRS) constructed from the 70 BP SNPs using weights derived from their effects on 

SBP, DBP, and MAP were highly significantly associated with CAD/MI with odds-ratios 

(per 1 mm Hg increment in SNP-based BP) of 1.05 (P=8.6×10−44), 1.08 (P=1.9×10−41), and 

1.06 (P=1.1×10−45) respectively (Supplementary Table 17, Supplementary Methods). GRSs 

constructed solely from the rare/low-frequency variants at the three loci with significant 

gene-based tests (DBH, NPR1, PTPMT1) were significant for CAD/MI using MAP-based 

weightings for DBH (P=0.026) and HTN-based weightings for PTPMT1 (P=0.003) with a 

non-significant concordant trend using MAP-based weightings for NPR1 (P=0.13; 

Supplementary Table 18). By contrast, BP-raising alleles for only 39 of the 70 BP associated 

SNPs were associated with diminished kidney function (CKD) as reflected by lower GFR, 

indicating a degree of concordance that was not significant (sign test, binomial P=0.40). A 

similar lack of association was observed for the BP GRS associations with GFR using 

weights for SBP (P=0.18), DBP (P=0.63), and MAP (P=0.31).
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Discussion

Through a two-stage study design of discovery (n=146,562) followed by external look ups 

(n=180,726) and joint analysis (n=327,288), we identified single variant associations at 31 

novel loci and gene-based associations for three novel genes (two of which overlapped with 

the single variant loci) associated with BP phenotypes. We also confirmed common variants 

at 39 previously reported BP loci, raising the number of statistically significant BP loci in 

our study to 71 and extended the number of non-monogenic BP-associated loci5–15 to over 

90. The sample size for the joint analysis in this study is far larger than any prior genetic 

study of BP5–15. This large increase in sample size is an important reason for the discovery 

of many new BP loci and likely explains why some of the newly identified common loci 

were not discovered in previous BP GWAS. In addition, direct genotyping of coding variants 

likely added incremental power over imputed genotypes and tagging SNPs that were the 

basis of prior GWAS, suggesting that novel common variants will continue to be identified 

for BP phenotypes using the same set or similar set of samples with exome sequencing and 

whole genome sequencing. Furthermore, phenotypic and possibly genetic heterogeneity (due 

to additional samples in this study), differences in analysis plans, and the play of chance 

may be additional explanations of why some of the common variants identified in this study 

were not identified in prior BP GWAS.

Fourteen of the novel BP variants identified in the present study reside in loci that were 

previously reported in GWAS to be associated with lipids19, immunologic diseases20–22, and 

metabolic phenotypes23–25, 29 (Table 2 and Supplementary Table 7). Thirteen of the 

previously identified BP variants were also linked to non-BP traits/diseases (Supplementary 

Table 19). Considerable evidence has accumulated linking high BP to insulin resistance, 

altered lipid levels, inflammation, and other features of the metabolic syndrome60–65. Gene 

set enrichment, regulatory sequence variation, and PPI annotations of the new BP loci 

implicate genes that contribute to cardiac structure and function as well as insulin signaling 

and type 2 diabetes. In addition, among the previously reported BP genes that were 

confirmed in our study, ATXN2, GRB14, HECTD4, PTPN11, and SLC39A8 
(Supplementary Table 3) have been proposed as candidate genes for metabolic syndrome 

based on their associations with metabolic traits and inflammatory biomarkers65.

The NPR1 gene was associated with BP in both single variant and gene-based tests. This 

gene encodes the receptor for atrial and B-type natriuretic peptides, which regulate blood 

volume and BP17,18. The functional consequences of the Glu967Lys amino acid substitution 

that is encoded by rs35479618 (the significant NPR1 SNP in single variant analysis) is 

unknown, but the change results in opposite charge and a large difference in side chain 

volume, and is predicted to be possibly damaging (score=0.513) by Polyphen-266. The 

effects of the 13 rare and one low-frequency variants in NPR1 varied in directions, 

explaining why gene-based testing was significant using SKAT43, which is sensitive to BP-

raising and lowering effects, rather than burden41,42 testing, which requires a consistent 

direction of BP effect, (Figure 2, Supplementary Figure 3). Of note, Npr1 knockout mice 

have hypertension, cardiac hypertrophy, and sudden death phenotypes17,18,67 and mice with 

only one copy of the Npr1 gene have salt-sensitive hypertension compared to wild type 

mice17. Future studies are warranted to determine if humans carrying the rare BP-increasing 
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alleles of NPR1 also have salt-sensitive hypertension. We have previously demonstrated that 

common variation that raises atrial natriuretic peptides level lowers BP13, suggesting the 

potential for BP-lowering strategies that target natriuretic peptide interaction with natriuretic 

peptide receptors. Similarly, molecular mimicking of the action of BP-lowering alleles in 

NPR1 may be worth exploring as a novel BP treatment.

Both single variant and gene-based (T1) analysis in Stage 1 identified DBH as a BP gene 

(Figure 3). DBH codes the enzyme dopamine beta hydroxylase, which catalyzes the 

transformation of dopamine to norepinephrine. Both dopamine and norepinephrine act on 

the sympathetic nervous system, influencing a variety of complex traits including BP. 

Impaired dopamine beta hydroxylase activity has been identified in individuals with severe 

autonomic failure, including orthostatic hypotension68,69 , and mutation of DBH has been 

identified in two individuals with autonomic dysfunction70. The rare minor allele of 

rs3025380, encoding the Gly88Ala non-synonymous substitution, was associated with a 

comparatively large reduction of 1.81 mm Hg in MAP even though the amino acid change is 

predicted to be remote from the active site71. Inhibition of DBH has long been considered a 

potential target for anti-hypertensive therapy72 but these efforts have been undermined due 

to the broad involvement of catecholamines in a variety of critical biologic processes73,74 

and the potential for undesirable side effects.

The remaining significant gene in gene-based testing was PTPMT1, which codes for 

mitochondrial protein tyrosine phosphatase 1. Knockdown of PTPMT1 expression in a rat 

pancreatic insulinoma cell line was found to enhance ATP production and insulin 

secretion75, which is closely aligned with the insulin and cardiometabolic regulatory features 

of many of the novel BP loci identified in this study. In addition, targeted burden testing of 

uncommon and rare variants in genes that cause monogenic BP disorders identified a 

significant BP association with SLC12A1, the Na-K-2Cl co-transporter that is well 

established to harbor rare mutations that cause Bartter’s syndrome, a salt wasting condition 

associated with hypotension44.

The Exome Chip array was designed to aid in the search for rare functional variants with 

large effect sizes. This study did not, however, identify any rare variants associated with BP 

phenotypes through single variant analyses, suggesting that rare variants with large effects 

on BP are an uncommon occurrence. With the current sample size, this study was not 

adequately-powered to identify rare variants with only modest effect sizes. Within the 

predominant class of variants studied (i.e. low-frequency and rare non-synonymous SNPs), 

there may not be a large enough number of variants or effects of sufficient size to account 

for a substantial proportion of the remaining missing heritability of BP. Nevertheless, this 

study greatly extends the number of known BP-associated loci and moreover demonstrates 

their potential relevance to cardiovascular disease. The discovery of a total of 32 new BP 

loci (31 from single variant tests, 1 from gene-based tests) and their overlap with other 

disease-related phenotypes suggest common etiologies of BP and metabolic risk factors and 

an opportunity to identify therapies that more broadly impact hypertension in the context of 

cardiometabolic risk.
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Online Methods

Study Participants

A total of 146,562 individuals of European American (EA) (n=120,473), African American 

(AA) (n=21,503), and Hispanic American (HA) (n=4,586) contributed from 16 studies 

(Supplementary Table 20 and Supplementary Note) were included in the discovery stage 

association analyses. The entire discovery sample was also included in the meta-analyses of 

discovery and follow-up stage results (Figure 1). All study participants provided written 

informed consent for genetic research, with the exception of the BioVU biorepository, in 

which DNA was extracted from discarded blood collected during routine clinical testing and 

was linked to de-identified medical records. All studies received approval to conduct this 

research from their respective Institutional Review Boards. Studies contributing to the 

discovery analyses included a wide range of mean measured BP values (110 to 142 mm Hg 

for SBP and 69 to 84 mmHg for DBP), hypertension prevalence (2% to 77%), and 

proportion of individuals taking anti-hypertensive medications (0.6 to 63%) (Supplementary 

Table 20).

Genotyping and Quality Control

All samples were genotyped on the Illumina Infinium Human Exome Array v1.0 or v1.1 

(Supplementary Table 21). Ten studies (51,106 individuals) were jointly called at the Human 

Genetics Center of the University of Texas Health Science Center in Houston76. Six 

additional studies followed genotyping calling protocols from Illumina or from the 

CHARGE consortium, and strand assignment for allele encoding specified by the CHARGE 

consortium76. All studies followed quality control guidelines recommended by the 

CHARGE analysis committee. Quality control procedures were further applied at the cohort 

level as described in Supplementary Table 21. Variants were removed for genotype call rate 

less than 95%, HWE p-value less than 1×10−6, and concordance rate (between overlapping 

variants from previous GWAS and the Exome Chip) less than 95%; individual samples were 

removed for call rate less than 95%, discordance rate less than 95% with GWAS data, or in 

the event of a suspected sample swap, sex mismatch, or heterozygosity F-value greater than 

10.

BP Phenotypes

In the discovery stage, the BP phenotypes included were SBP, DBP, PP (SBP minus DBP), 

and MAP (1/3 SBP + 2/3 DBP). A participant was classified as having HTN if she/he had 

SBP ≥140 mm Hg, or DBP ≥90 mm Hg, or was taking anti-hypertensive medication. SBP 

and DBP values were obtained from the first examination attended for longitudinal studies; 

when available, the average of two single occasion measurements was used for SBP and 

DBP. To account for the reduction in BP due to medication use, all individuals taking BP 

lowering medication had15 mm Hg added to the measured SBP, and 10 mm Hg to the 

measured DBP15. The four continuous BP traits are moderately or highly correlated such 

that among the larger contributing cohorts, the ranges of correlations were: 0.70–0.82 (SBP-

DBP), 0.92–0.95 (SBP-MAP), 0.73–0.89 (SBP-PP), 0.92–0.99 (DBP-MAP), 0.20–0.45 

(DBP-PP), and 0.43–0.68 (MAP-PP). Such correlations appeared to be consistent across 

different ethnic populations within these same studies.
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Association Analyses and Meta-analyses

Power Estimation—Nearly 90 percent of the markers on the Exome Chip are low-

frequency (MAF 0.01–0.05) or rare (MAF <0.01) variants. Power for association was 

evaluated for MAP assuming a mean of 100 mm Hg with standard deviation of 10 mm Hg 

using QUANTO77 for a sample size n=150,000 at the significance level of 3.4 × 10−7 for a 

variant with MAF of 0.0005, 0.001, 0.005, or 0.01. To reach 80% power, an effect size of 5, 

3.5, 1.6, or 1.1 mm Hg, is needed, respectively, for a variant with MAF=0.0005, 0.001, 

0.005, or 0.01.

The Fraction of the Common Variants Tagged by the Exome Chip—We 

downloaded the phase 3 genotype data for the European ancestry from HapMap project. The 

phase 3 file “hapmap3_r2_b36_fwd.CEU.qc.poly” includes 1,416,121 variants (1,352,770 

with MAF>0.01 and 1,223,919 with MAF> 0.05). We used the PLINK command “show-

tags” to estimate the number of common variants (MAF>0.05) that can be tagged by Exome 

Chip variants. We estimated that 172,220 (linkage disequilibrium r2≥0.5) and 88,186 

(linkage disequilibrium r2≥0.8) common SNPs (MAF >0.05) can be tagged by the Exome 

Chip variants. Compared to the number of variants tagged by a GWAS chip (e.g. Affymetrix 

500K), the Exome Chip tags much fewer common variants.

Cohort-specific Analysis—Gene-based (or region-based) testing was performed using 

the seqMeta package78. Covariates included age, age-squared, sex, body mass index (BMI), 

and principle components (if applicable) to account for population structure. All variants 

were recoded to conform to the alleles specified in a “Recode” file distributed to each study. 

In all analyses, variant effects were modeled additively. Conditional analysis was performed 

to identify independent BP signals at previously reported BP loci5–15 using the seqMeta 

package78 by adjusting at the cohort level for the previously reported GWAS SNP with the 

smallest p-value in association analysis. Similarly, for any newly identified locus with 

multiple variants, conditional analysis was performed by adjusting for the most significant 

variant in the region to identify non-redundant signals.

Meta-analysis at the Single Variant Level—Meta-analysis of single variant 

associations from discovery and follow-up stage results was performed using the inverse 

variance weighted fixed-effects method79 implemented in the seqMeta package78. In the 

discovery stage, the primary meta-analysis was performed in all samples to identify variants 

showing consistent effects with BP traits across multiple ancestry groups. Secondary 

analysis was performed in each of the three ancestries separately to identify novel variants 

with different ancestral origin. Meta-analysis was also performed on results from conditional 

analysis and compared with the original meta-analysis to identify non-redundant signals. 

Although we performed association and meta-analysis on all genotyped variants that passed 

quality control, we only reported results from about 147,000 variants that had minor allele 

counts (MACs) ≥30 in meta-analyses of all samples. Since the BP traits are highly 

correlated, we used an array-wide Bonferroni-corrected significance threshold of 3.4 ×10−7 

(=0.05/147,000). The Exome Chip array contains numerous previously published variants or 

their LD proxies, mostly from GWAS using imputed genotype information for a variety of 

human traits. Using exome chip experimental genotypes, associations from previous BP 
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GWAS5–15 were considered significant with P values ≤ 0.05/n, where n is the number of 

previously identified SNPs or SNPs that showed at least moderate LD (r2≥0.3) on the Exome 

Chip.

Meta-analysis at the Gene Level—Meta-analysis was also conducted at the gene level 

to evaluate aggregate effects from multiple non-synonymous and splicing variants with 

MAFs ≤0.01 (T1) and ≤ 0.05 (T5) in a gene using both the sequence kernel association test 

(SKAT)43 and the standard burden test41,42 implemented in the seqMeta package78. The 

standard burden test collapses the rare variants and has optimal properties when these 

variants all have the same directionality and magnitude of effect on phenotype. In contrast, 

SKAT aggregates individual variant score test statistics and offers better power compared to 

the burden test when there are a variety of effect sizes and directions, e.g. both protective 

and deleterious effects in a gene43. Approximately 17,000 genes were included two or more 

non-synonymous variants in the primary meta-analysis of all study samples. An association 

was deemed to be signficant at P<1 ×10−6 for gene-based tests. Among up to 154,543 

individuals of European ancestry from CHD Exome+ Consortium, ExomeBP Consortium, 

GoT2DGenes Consortium, T2D–GENES consortium (Supplementary Note), gene-based 

SKAT was applied to HTN and inverse normal transformed DBP, SBP, PP using the 

RAREMETAL software package80. We performed lookup in their SKAT results for the 

genes that displayed P<1 ×10−6 in Stage 1 analysis of this study.

The Follow-up Study at the Single Variant Level

The follow-up study was performed in external samples (follow-up samples) including a 

total of 180,726 individuals from the CHD Exome+ Consortium, ExomeBP Consortium, 

GoT2DGenes Consortium, T2D–GENES consortium (Supplementary Note). Summary 

information about participants, genotyping and quality control in the follow-up samples are 

presented in Supplementary Note. The follow-up samples provided SNP association 

statistics for DBP, PP, SBP, and HTN but not MAP for a total of 180,726 individuals. 

Significant variants (P ≤ 3.4 × 10−7) in the discovery samples were considered replicated in 

the follow-up samples with P ≤ 0.05/n with their pre-specified BP trait in the follow-up 

sample alone, where n was the number of variants tested in the follow-up samples. Both the 

significant variants from discovery and additional variants with P ≤ 1 × 10−5 from the 

discovery samples were selected for joint meta-analysis with the follow-up samples. The 

primary meta-analysis of the discovery and follow-up results was performed in individuals 

of all ancestries. The secondary meta-analysis was conducted in the EA only samples. The 

inverse variance weighted method was used in meta-analysis of the discovery and follow-up 

stage results for DBP, PP and SBP. Because the follow-up samples provided only z-scores 

and sample sizes for HTN, the optimally weighted z-score method81 was used in meta-

analysis of HTN. The threshold of P ≤ 3.4 ×10−7 was required for significance in meta-

analyses of the discovery and follow-up samples.

Functional Inference

We applied several computational strategies to infer biological functions associated with 

candidate genes of the 31 novel loci reaching P <3.4×10−7 (Table 1) and 39 validated loci 

(Supplementary Table 3): 1) To test whether SNPs in Table 1 and Supplementary Table 3 
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were significantly enriched among pre-specified gene sets defined in pathways, or by shared 

roles in particular diseases or biological processes, we performed gene pathway, disease, and 

Gene Ontology (GO) enrichment analysis using GeneGo software and Literature Lab45 data 

mining of literature (Supplementary Methods); 2) To investigate whether the coding and 

non-coding variants listed in Table 1 may influence the transcriptional regulation, we 

compared BP candidate SNPs with ENCODE and Roadmap Epigenomics regulome features 

summarized for mainly cis regulatory function in HaploReg47 and RegulomeDB46. The 

inclusion of coding variants in this analysis was justified by previous research showing that 

transcriptional regulation can be influenced by both non-coding and coding variations; a 

recent publication has shown that ∼15% of human codons simultaneously specify both 

amino acids and transcription factor recognition sites82; and 3) To identify genes that encode 

proteins especially connected to other proteins and therefore inferred to be important, we 

performed protein-protein interaction network analysis (PPI) on SNPs in Table 1. The PPI 

network was constructed using the NCBI PPI database information, which sources 

information from HPRD, BIND, BioGRID and EcoCys databases. By design, 2% of the 

Exome Chip variants were identified from previous GWAS. To investigate if these previous 

GWAS SNPs may artificially increase the extent of GeneGO enrichment in known 

functional classes, we performed GeneGO enrichment analysis on 10 randomly selected sets 

of genes from the Exome Chip (with replacement) with the size of new and previously BP 

candidates discovered. None of these random sets showed gene-set enrichment with 

significance comparable to the enrichment for the BP SNPs.

To further assess putative functionality for the novel loci, we performed cis-eQTL analysis 

between each of the newly identified variants with gene expression within 1 Mb flanking 

that variant in peripheral whole blood samples of ∼ 5000 individuals from the Framingham 

Heart Study (FHS). Statistical significance in the FHS expression data was evaluated at 

FDR<10% for newly identified variants83. We also searched for cis-associations between 

novel variants and gene transcripts within 1 Mb flanking the lead SNP based on databases of 

previously published expression quantitative trait locus (eQTL) analyses at the false 

discovery rate (FDR) <10%51,84.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall study design
In the discovery phase, single variant and gene-based analyses were performed for systolic 

and diastolic blood pressure, pulse pressure, mean arterial pressure, and hypertension among 

146,562 individuals from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology Plus (CHARGE+) Exome Chip Blood Pressure Consortium. Fifteen variants 

were significant (P<3.4×10−7) and 62 displayed P<1×10−5. In the follow-up phase, meta-

analysis was performed for 77 variants with results from 180,726 individuals from the CHD 

Exome+ Consortium, ExomeBP Consortium, GoT2DGenes Consortium, T2D–GENES 

consortium.
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Figure 2. NPR1 Gene: Low-frequency and rare variants associated in aggregate with mean 
arterial pressure
The NPR1 protein (1,061 amino acids) is comprised of three domains: extracellular domain, 

kinase homology domain, and guanylate cyclase domain. The effects of the 14 low-

frequency and rare variants after adjustment for age, age2, sex, and body mass index on 

mean arterial pressure are shown for higher (tan) or lower (purple) values in mm Hg; dot 

area is proportional to the number of minor allele carriers. The minor allele of rs35479618 

(MAF ∼ 0.012, E967K), was carried by 3,164 participants. The minor allele of rs201787421 

(MAF ∼ 2.6×10−5 R782Q), was carried by 5 participants.
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Figure 3. DBH Gene: Rare variants associated in aggregate with mean arterial pressure
The DBH protein (617 amino acids) contains the dopamine β-monooxygenase N-terminal 

(DOMON) domain, the catalytic core (the CuH and CuM domains) and the C-terminal (C–T) 

domain. The effects of the 27 rare variants after adjustment for age, age2, sex, and body 

mass index on mean arterial pressure are shown for higher (tan) or lower (purple) values in 

mm Hg. The minor allele of rs74853476 (MAF ∼ 0.0015), a splicing variant, was carried by 

291 participants. The minor allele of rs201681337 (MAF ∼ 7.9×10−5, A301T), was carried 

by 4 participants.
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