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Lactose permease (LacY), a paradigm for the largest family of
membrane transport proteins, catalyzes the coupled translocation
of a galactoside and a H+ across the cytoplasmic membrane of Escher-
ichia coli (galactoside/H+ symport). One of the most important as-
pects of the mechanism is the relationship between protonation
and binding of the cargo galactopyranoside. In this regard, it has
been shown that protonation is required for binding. Furthermore
when galactoside affinity is measured as a function of pH, an appar-
ent pK (pKapp) of ∼10.5 is obtained. Strikingly, when Glu325, a resi-
due long known to be involved in coupling between H+ and sugar
translocation, is replaced with a neutral side chain, the pH effect is
abolished, and high-affinity binding is observed until LacY is destabi-
lized at alkaline pH. In this paper, infrared spectroscopy is used to
identify Glu325 in situ. Moreover, it is demonstrated that this residue
exhibits a pKa of 10.5 ± 0.1 that is insensitive to the presence of
galactopyranoside. Thus, it is apparent that protonation of Glu325
specifically is required for effective sugar binding to LacY.
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The lactose permease of Escherichia coli (LacY), the most in-
tensively studied membrane transport protein in the major

facilitator superfamily (MFS)(1), catalyzes galactopyranoside/H+

symport by a mechanism proposed recently (2). LacY is composed
of N- and C-terminal domains, each with six mostly irregular
transmembrane helices linked by a relatively long cytoplasmic loop
with the N and C termini on the cytoplasmic face of the mem-
brane. Structures of two conformations of LacY have been solved:
(i) an inward-open conformer with a large aqueous cavity open to
the cytoplasmic side and a tightly sealed periplasmic side (3–6);
and (ii) an outward-open, occluded conformer with a tightly
sealed cytoplasmic side and a bound lactose homolog (7, 8) or a
nanobody (9). As extensively documented (10), LacY operates
by an alternating access mechanism. By this means, substrate- and
H+-binding sites in the middle of the molecule become alterna-
tively accessible to either side of the membrane as the result of
reciprocal opening/closing of periplasmic and cytoplasmic cavities.
Each of the 417 residues in LacY has been mutated (11), and

remarkably, only 9 amino acyl side chains are irreplaceable with
respect to lactose/H+ symport. Seven side chains are directly in-
volved in galactoside binding and specificity, whereas Glu325 (helix
X) and possibly Arg302 (helix IX) are involved in coupled H+

translocation (2, 11, 12). LacY mutants with neutral replacements
for Glu325 (helix X) bind galactosides with normal affinity and
catalyze equilibrium exchange and counterflow of galactosides, but
do not catalyze any reaction involving H+ symport (13, 14).
The affinity of WT LacY for galactosides (Kd) varies with pH and

exhibits an apparent pK (pKapp) of ∼10.5 (12, 15, 16). Therefore,
over the physiological range of pH, LacY is protonated. Further-
more, sugar binding to purified LacY in detergent does not induce a
change in ambient pH under conditions where binding or release of
1 H+/LacY can be measured (15). These observations and many
others (reviewed in refs. 17, 18) provide strong evidence for a sym-
metrical ordered mechanism in which protonation precedes galac-
toside binding on one side of the membrane, and follows sugar
dissociation on the other side. A similar ordered mechanism may
also be common to other members of the MFS (19–23).

Dramatically, the pKapp titration is abolished in LacYmutants with
neutral replacements for Glu325, and high-affinity binding is ob-
served up to pH 11. This behavior is unique and suggests the possi-
bility that Glu325 may be the sole residue directly involved in H+

binding and coupled transport (2). In any case, the observations in-
dicate that Glu325 is directly involved in coupling between galacto-
side and H+ translocation. LacY cannot sustain a negative charge on
Glu325 and bind galactoside simultaneously or, stated conversely,
Glu325 must be protonated to bind sugar. Of course, LacY must also
deprotonate for turnover to occur. Because certain Arg302 LacY
mutants cannot catalyze active transport but catalyze equilibrium
exchange, it has been postulated that positively charged Arg302 (helix
IX) may be important with respect to deprotonation (24).
In this study, Glu325 is identified in situ, and the pKa of this

intriguing residue is determined by monitoring pH-induced changes
in purified LacY by infrared (IR) spectrometry. Reaction-induced
IR is an established tool for studying protonation changes in pro-
teins. The technique has been used successfully to identify several
critical residues in the proton path of membrane proteins (25, 26),
as well as water molecules (27). Among several specific examples,
Zscherp et al. (28) determined the pKa of Asp96 in bacteriorho-
dopsin, and the protonation state of the central glutamic acid in
cytochrome c oxidase was also identified by IR (29). Here we study
pH- and substrate-dependent conformational changes in a mono-
layer of immobilized LacY on a modified gold layer in an attenu-
ated total reflectance (ATR) cell. Surface-enhanced IR absorption
spectra are presented for WT LacY and mutant E325A, as well as
alkali-stable mutants G46W/G262W (LacYww) and LacYww/E325A,
which allow identification of Glu325 in situ and the direct demon-
stration that Glu325 has a pKa of 10.5. ± 0.1.

Results
Perfusion-Induced IR Spectroscopy. A stable monolayer with LacY
immobilized via a C-terminal His-tag to a modified gold layer
was obtained as described (30) (Fig. S1), and the effect of pH
changes was monitored by surface enhanced IR spectroscopy in
an ATR perfusion cell. Fig. 1 shows the reversible perfusion-
induced IR difference spectra obtained from pH 9–10.5 and back
with WT LacY in the presence of p-nitrophenyl-α-D-galactopyrano-
side (NPG). A broad peak centered at 1,695 cm−1 and 1,675 cm−1 is
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observed in the amide I region, which ranges from 1,700 cm−1 to
1,600 cm−1 and includes conformational changes in the C=O
groups in the protein backbone. For a typical α-helical structure,
signals at ∼1,650–1,660 cm−1 are expected (31) (see absorption
spectra in Fig. S2). However, conformational changes in parts of
a helix can strongly shift this vibrational mode because both di-
pole–dipole coupling and the hydrogen bonding environment
may be perturbed (31). Therefore, changes in the amide I sig-
nature are informative with respect to conformational rear-
rangements. When comparing spectra obtained stepwise at pHs
up to 10.5 (Fig. 1 A–C), it is apparent that the broad amide
I absorbance becomes sharper with increasing pH, and at
pH 10.5 it is centered at 1,668 cm−1 with a shoulder at 1,632 cm−1,

indicating a conformational change related to the increase
in pH.
The amide II range (between 1,590 cm−1 and 1,450 cm−1)

involves coupled CN/NH vibrational modes of the protein back-
bone (31), as well as contributions from individual amino acids
reorganizing or changing protonation states with the alkaline pH
shift. Significant shifts and increases in intensity are also observed
with increasing pH.
The most interesting change with increasing pH is observed at

1,742 cm−1. Signals at this position are characteristic of protonated
Asp or Glu residues in a hydrophobic environment as shown in
IR spectra of model compounds and in IR difference spectra
obtained with a number of membrane proteins (32). A negative
signal is observed here, reflecting deprotonation. As shown, the
signal is absent at pH 9 (Fig. 2A), begins to appear at pH 10 (Fig.
2B), and increases in intensity at pH 10.5 (Fig. 2C), clearly in-
dicating deprotonation of an acidic side chain(s). Protonation and
deprotonation are fully reversible and correlate with reorganiza-
tion of the polypeptide backbone. Although signals for deproto-
nated acidic side chains are expected to be ∼1,575 cm−1 and
1,400 cm−1 (33, 34), these signals are obscured by the amide II
band, and they are difficult to assign unambiguously.
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Fig. 1. Perfusion-induced FTIR difference spectra of Lac Y obtained from
the sample equilibrated at pH 7 in the presence of NPG subtracted from the
sample equilibrated at pH 9 (A), 10 (B), and 10.5 (C), respectively (black line)
and reverse (red line).
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Galactoside binding by WT LacY becomes unstable at highly
alkaline pH (>11) (12, 15, 16). Because the studies presented
here necessitate exposure of the protein to high pH, the alkali
stability of WT LacY was compared with that of the double-Trp
mutant G46W/G262W (LacYww), which is more stable than WT
LacY, but exhibits the identical pKapp for sugar binding (35). WT
LacY exhibits a half-life (t1/2) with respect to NPG binding of 3 h
at pH 10.5, whereas the t1/2 for LacYww is 48 h (Fig. S3). Dif-
ference spectra obtained from this mutant show the same signal
at 1,742 cm−1 very clearly (Fig. 3).

Identification of Glu325. The previous experiments were repeated
with LacYww and with LacYww carrying the E325A mutation. Both
mutants are significantly more stable at high pH than WT LacY.
The difference signal at 1,742 cm−1 becomes significantly stronger
in LacYww as pH increases from 10.5 to 10.9–11.5 (Fig. 4A).
However, in perfusion-induced IR difference spectra of the
LacYww/E325A and the E325A mutants, the signal at 1,742 cm−1 is
totally absent (Fig. 4 B and C, respectively). Glu325, which is clearly
involved in coupling between H+ and galactoside translocation (2),
is located within the membrane bilayer in helix X and surrounded

by hydrophobic side chains (Fig. 5). Previous observations show that
this side chain has a pKapp of ∼10.5 based on pH titrations of
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galactoside affinity (12, 15, 16). The current findings unequivocally
confirm that Glu325 is responsible for the 1,742-cm−1 band.
The pKa of Glu325 was determined by plotting the Δ in signal

intensity at 1,742 cm−1 versus pH (Fig. 6). From the ΔIR fit
observed (red), Glu325 has a pKa of 10.5 ± 0.1, a value that
agrees remarkably well with the pKapps obtained previously for
either WT LacY (green) (12, 16) or mutant LacYww (cyan) (15).
Although the E325A mutant binds galactoside with high affinity
over the entire pH range measured, essentially no value for Δ is
observed (open circles).

Effect of NPG. Notably, the IR signal at 1,742 cm−1 exhibits no
significant difference in the absence or presence of NPG at pH
10.5, 10.9, or 11.5 with either WT LacY or the LacYww mutant.
Moreover, the pH titration is unaffected by the absence or
presence of the galactoside (Fig. 6).

Discussion
These studies provide convincing evidence that Glu325 in LacY,
which plays a central role in galactoside/H+ symport, has a pKa of
10.5, as suggested by studies on the effect of pH on galactopyr-
anoside affinity. Glu325 is an essential part of the coupling mech-
anism in LacY, because its protonation or deprotonation determines
whether or not galactoside binds effectively. Clearly, this represents
an important aspect of coupling, which initiates the transport mech-
anism. Importantly, other symporters with a carboxyl group that
behaves like E325 with respect to tranwport have also been de-
scribed recently for FucP (19), and XylE (20) and GlcPSe (21).
Stabilization of the protonated form of Glu325 is likely due to the

hydrophobic microenvironment within transmembrane helix X (Fig.
5). But, deprotonation is also necessary for turnover, and with an
apparent pK of 10.5, how does deprotonation occur? Possibly, the
pKa of Glu325 may decrease by becoming more accessible to water.
In contrast, however, Arg302 may be important in this capacity
(24, 36). Like neutral replacements for Glu325, certain neutral-
replacement mutants for Arg302 are also defective in lactose/H+

symport, but catalyze equilibrium exchange (24). Perhaps the posi-
tively charged guanidinium group at position 302 facilitates depro-
tonation of Glu325 after the galactoside dissociates. Although Arg302
and Glu325 are relatively far apart with the hydroxyl group of Tyr236
in between in the current structure, the double-mutant R302C/E325C
exhibits excimer fluorescence when labeled with pyrene maleimide
(37) and the double-mutant R302H/E325H binds Mn(II) with mi-
cromolar affinity (38). Therefore, Arg302 and Glu325 may be in
closer proximity in another conformation of LacY.
Examples of residues with perturbed pKas in important mecha-

nistic positions have been reported for several membrane proteins,
as reviewed by Harris and Turner (39) for example. It was con-
cluded that the pKa is often modulated by a combination of several
types of interactions such as long-range and local electrostatic
effects. A prominent example is residue D96 in bacteriorhodopsin.
A high pKa is also observed for cytochrome c oxidase, where residue
E278 (Paracoccus denitrificans numbering), localized in the membrane,

Fig. 5. Position of Glu325 in C-terminal six-helix bundle of WT LacY (Protein
Data Bank ID code 2V8N). LacY is presented as rainbow-colored backbone
(from blue to red for helices 1–12) with hydrophilic cavity open to cyto-
plasmic side. Side chain of Glu325 located in helix X is shown as spheres. The
area around Glu325 is enlarged with hydrophobic environment displayed as
a space-filled cartoon (cyan).

Fig. 6. pH dependence of Δ-IR intensity change at 1,742 cm−1 measured
with LacYww in the absence or presence of NPG (filled red circles) or E325A
LacY (open red circles), and Kd values for NPG binding to WT LacY (filled
green circles), E325A LacY (open green circles), or LacYww (filled cyan circles).
Kd values were calculated as the ratio of rate constants (koff/kon) measured
by stopped flow (12, 35).
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was found to have a pKa higher than 11 (40). Electrochemically
induced FTIR difference spectra revealed a signal at 1,748 cm−1,
at a position close to that observed here for E325 in LacY. A
similar hydrogen-bonding environment is thus expected.
One important observation in the current work is that the titra-

tion of Glu325 is not altered by binding of NPG. This is unexpected
because protonation of Glu325 is coupled to increased affinity of
the galactoside. In a straightforward thermodynamic model, the H+

and sugar affinities should demonstrate reciprocity, (i.e., if H+

binding enhances sugar affinity by 100-fold, then sugar binding
should also enhance the affinity of the H+ by 100-fold). However, in
addition to the IR findings, binding of sugar to LacY does not cause
any change in ambient pH, as discussed previously (15).
In conclusion, these finding provide direct experimental evidence

that Glu325 has a pKa of 10.5, a value that coincides precisely with
the variation of the affinity of LacY for galactoside as a function of
pH. The conclusion provides strong confirmation for the critical role
of this residue in the reaction mechanism postulated for LacY (2).

Materials and Methods
Materials. Oligonucleotides were synthesized by Integrated DNA Technolo-
gies, Inc. Restriction enzymes were purchased from New England Biolabs. The
QuikChange II kit was purchased from Stratagene. NPG was from Sigma.
Talon superflow resin was purchased from BD Clontech. Dodecyl-β-D-mal-
topyranoside (DDM) and octyl-β-D-glucoside (OG) were from Affimetrix.
Synthetic phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine
(POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG)
were from Avanti Polar Lipids, Inc. All other materials were of reagent grade
obtained from commercial sources.

Construction ofMutants, Purification of LacY, and Reconstitution into Proteoliposomes.
Construction of mutants, expression in E. coli, and purification of LacY
were performed as described (41). All constructs contained a C-terminal
6His-tag that was used for affinity purification with Talon resin. Purified
proteins (10–15 mg/mL) in 50 mM sodium phosphate (NaPi/0.02% DDM; pH
7.5) were frozen in liquid nitrogen and stored at −80 °C until use. Re-
constitution into proteoliposomes was carried out with synthetic phos-
pholipids (POPE/POPG ratio 3:1) by using the dilution method (42). Briefly,
purified LacY in 0.02% DDM (wt/vol) was mixed with phospholipids dis-
solved in 1.2% OG maintaining a lipid-to-protein ratio of 5 (wt/wt). The
mixture was kept on ice for 20 min and then quickly diluted 50 times in
50 mM NaPi buffer (pH 7.5). The proteoliposomes (PLs) were harvested by
centrifugation for 1 h at 100,000 g, suspended in the same buffer, and
subjected to two cycles of freeze/thaw/sonication. Flash-frozen PLs were
stored at −80 °C. Before use, the PLs were subjected to an additional two
cycles of freeze/thaw/sonication.

Surface Modification of the Silicon Crystal and Protein Immobilization. First, a
gold layer was cast on the surface of a Si ATR crystal by etching the Si with
hydrofluoric acid (HF) and reduction of AuCl4 as described previously (30).
Before the deposition of the gold film, the ATR crystal was polished with
0.3-μm alumina, rinsed with copious amounts of Millipore water, acetone,
and water again. The crystal was then dried under an argon stream and
immersed in 40% NH4F (wt/vol) for 1 min, rinsed, and dried again. It was then
heated at 65 °C for 10 min together with the plating solution. This solution was
a 1:1:1 mix (vol/vol/vol) of (i) 15 mM NaAuCl4, (ii) 150 mM Na2SO3, 50 mM
Na2S2O3, and 50 mM NH4Cl, and (iii) HF 2% (wt/vol; total volume: 1 mL). Once
the plating temperature was reached, the prism was covered with the solution

for 40 s, and the reaction was stopped by washing the plating solution off with
water, followed by drying with a stream of argon. The resulting gold film was
then tested for electrical conductance with a multimeter (the typical electric re-
sistance of the layer as measured from one corner to another of the crystal should
be ∼15 Ω for a thickness of 50 nm).

The experimental procedure for the nickel nitrilotriacetic acid self-assembled
monolayer (Ni-NTA SAM) was adapted from refs. 30, 43. First, the gold mod-
ified silicon ATR crystal was covered with 1 mg/mL of 3,3′-dithiodipropionic
acid di(N-hydroxysuccinimide ester) (DTSP) in dry dimethyl sulfoxide and the
monolayer was allowed to self-assemble for 1 h. The excess DTSP was then
washed away with dry DMSO and the crystal was dried under an argon stream.
Afterward, it was covered with 100 mM Nα′,Nα′′-bis(carboxymethyl)-L-lysine in
0.5 M K2CO3 at pH 9.8 for 3 h and then rinsed with water. Finally, the surface
was incubated in 50 mM Ni(ClO4)2 for 1 h before being washed one last time
with water. For immobilization of the protein, 5 μL of 7.2 mg/mL LacY was
deposited on the modified gold surface for 1h.

Infrared Spectroscopy. A configuration allowing the simultaneous acquisition
of FTIR spectra in the ATR mode with perfusion of solutions with given
composition was used. As a multireflection ATR unit, we used silicon crystal
with 3-mm surface diameter. All experiments were carried out with a Bruker
Vertex 70 FTIR spectrometer (Globar source, KBr Beamsplitter, mercury
cadmium telluride detector) at 8-mm aperture and 40-kHz scanner velocity.
The measurements were carried out at ∼7 °C. Solutions was kept on ice before
use. For the data presented here, the pump speed was kept constant at a flow
rate of 0.2 mL/min. Before each perfusion step, the input tube was carefully
washed with water and buffer.

Difference Spectra. To monitor pH-induced difference spectra, we used one
perfusion buffer with constant pH value 7.0 (25 mM KPi/100 mM KCl/0.01%
DDM) and a second perfusion solution with the same composition but at
different pH values ranging from 8.0 to 11.5. At the beginning, the system
was equilibrated with the KPi (pH 7.0) for 30 min. Thereafter, the spectrum
was recorded as background and the perfusion solution was changed to the
second solution (pH range 8.0–11.5). After 20 min (pH 8.0–11.5) minus pH 7.0
difference spectra were recorded. The new state of the protein was recorded
as background, and the solution was changed to pH 7.0. Again after 20 min,
the pH 7.0 minus (pH 8.0–11.5) difference spectra were obtained. The same
procedure was repeated five times and the difference spectra were aver-
aged and smoothed. Baseline correction was done, where necessary. The
data were normalized on the basis of the absorbance spectra obtained at
the beginning of each experiment, when the data from different samples
had to be compared.

Difference Spectra of LacY in the Presence of NPG. NPG was dissolved in 25 mM
KPi/100 mM KCl/0.01% DDM (pH 7.0) at a final concentration of 80 μM. A
second perfusion solution of the same composition at pH values ranging
from 9.0 to 11.5 was also prepared. The experiments have then been per-
formed in analogy to the data obtained in the absence of NPG.
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