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This work presents a mathematical study of tissue dynamics.
We combine within-cell genome dynamics and diffusion between
cells, so that the synthesis of the two gives rise to the emergence
of function, akin to establishing “tissue homeostasis.” We intro-
duce two concepts, monotonicity and a weak version of hard-
wiring. These together are sufficient for global convergence of
the tissue dynamics.
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Is there a basis for emergence of tissue-specific function? Emer-
gence in this work is defined as the coordinated effect of indi-

vidual components that establishes an objective not possible for
an individual component. Our components are cells with their
proteins, and the objective is the function of a tissue. Here tis-
sue is a set of cells of the same cell type located together as
exemplified by an organ in the body. In vertebrates, consider
the liver, functioning to detoxify and ensure an appropriate com-
position of blood, and the skeletal muscle, functioning to con-
tract and generate force. In each of these tissues millions of
individual cells contribute to emergence of function according
to their cell type. The main elements of emergence that we
consider are first, the protein distribution in a given cell type
and second, the cellular architecture of the tissue, a 3D struc-
ture with “diffusion” of molecules between cells. We build a
mathematical model for emergence of function, from a large
accumulation of data. We also use our previous work on cell
dynamics (genome dynamics) and the work of Alan Turing on
diffusion (1).

Underlying our setting are widely believed biological hypothe-
ses: (i) Cells within a tissue (i.e., the same cell type) have the
same dynamics and the same distribution of proteins at equi-
librium and (ii) the function of a cell corresponds to the pro-
teins of that cell. For reasons that will be discussed, we call the
property in i “hardwiring” of the tissue (2, 3). Convergence of
the tissue dynamics to such an equilibrium naturally takes on
importance, for its role in maintenance of tissue function (4).
Even a local stability of the (hardwiring) equilibrium, i.e., its
robustness, gives some validity to our model in biology. Our main
theorem (Theorem 5) establishes that monotonicity, a property
that we introduce here, implies global convergence of the tis-
sue dynamics to the equilibrium, where all cells have the same
protein distribution. This gives a biological justification for our
framework and a model for “emergence of function,” as well as
suggestions for studying the passage from emergence to mor-
phogenesis. On the other hand one could see the emergence
described here as a final stage of morphogenesis, completing
a cycle.

Our model could give some support to obtaining more insights.
Further questions, where quantitative support is expected, are
also suggested: (i) To what extent is there a common equilibrium
of proteins in each cell in a tissue? (ii) How do cells in a tissue
cooperate to give rise to function? And (iii) how do we measure
the diffusion between the cells?

1. Simple Example
Here we model two cells, separated by a membrane, that each
have a same single protein. Consider the following system,

Cell 1:
dx

dt
= a (x − x0) [1a]

Cell 2:
dy

dt
= b(y − y0), a, b, < 0, x0, y0 > 0, [1b]

where x and y can be interpreted as protein concentration,
x in cell 1 and y cell 2, both positive. Thus, x , y ∈X× Y =
[0, c]×[0, d ], where c and d represent the maximum concentra-
tion of proteins x and y , respectively. The equilibria are x = x0

and y = y0. We introduce Turing-type (diffusion) coupling by
adding a term with β > 0 as follows:

dx

dt
= a (x − x0) + β(y − x ) [2]

dy

dt
= b (y − y0) + β(x − y), β > 0.

The equilibrium for the above system is obtained by solving the
system derived from Eq. 2 by setting the right-hand sides equal
to zero. This is a linear system in two equations and two variables
and we obtain

x =
−abx0 + aβx0 + bβy0

aβ + bβ − ab
[3a]

y =
−aby0 + aβx0 + bβy0

aβ + bβ − ab
. [3b]
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It is not hard to see from Eqs. 3a and 3b that if β→∞,
x and y converge to the same value ax0+by0

a+b
. Therefore, this

system approaches a common protein concentration and the
example exhibits the role of diffusion, even with different cell
dynamics. We refer to this as an “emergent equilibrium.” Eigen-
values of the Jacobian matrix (see 2. The Genome Dynamics of
One Cell and 5. Turing’s Paper on Morphogenesis) for the system
in Eq. 2 at equilibrium and finite β are expressed as

1

2
(a + b)− β +

1

2

√
(a − b)2 + 4β2

1

2
(a + b)− β − 1

2

√
(a − b)2 + 4β2.

Because the eigenvalues are real negative, this pair (x , y) of
Eq. 3 is a stable equilibrium.

Success of Emergence. The magnitude of (x − y) from Eq. 3 mea-
sures the departure from the “emergence” as

x − y = − ab (x0 − y0)

β(a + b)− ab
. [4]

If x0 − y0 is big and β is small, there is ill-conditioning as fol-
lows. If a = 0 in Eq. 3, the solution is x = y0 and y = y0. If a 6= 0,
no matter how small, and β= 0, the solution is x = x0 and y = y0.
Note from Eq. 4, for any finite β the equilibrium for the pair
(x , y) has x and not y if x0 6= y0. We might say then that the sys-
tem in Eq. 2 is not emergent (for any finite β). Fig. 1 shows a
numerical example of this system.

Remark 1: Here the β anticipates the Fiedler number of a
Laplacian defined by the cellular network of the tissue. We intro-
duce the concept of a “hardwiring hypothesis,” which implies
x0 = y0. Diffusion is unnecessary in our example for emergence
[and in fact it can defeat emergence (!) as we will see]. On the
other hand diffusion can have a stabilizing effect.

This is an example of linear dynamics of one protein and one
cell with stability. These dynamics although linear are also a good
approximation of the general stable dynamics in a neighborhood
of the equilibria. Moreover, the global dynamics of the basin of
the stable equilibrium are qualitatively equivalent to the linear
example.

Fig. 1. Plot of Eqs. 3a and 3b for a =− 2, b =− 1, c =− 1, d =− 2 as β
changes. x (red) and y (blue) are the coordinates of the equilibrium of Eq. 2.

2. The Genome Dynamics of One Cell
We use the setting of our paper on genome dynamics (2). For

a single-cell state space X =
n∏
j

[0, cj ], where cj is the maximum

concentration of protein j . Sometimes we use cj =∞. The inner
product is Cartesian. The genome dynamics are expressed as
dx
dt

= F(x), where F is a function from X ⊂ Rn to Rn .
Generally recall the notion of stable equilibrium x0 of X for

dx
dt

= F(x), as well as its basin. If every eigenvalue of the Jacobian
matrix of first partial derivatives of F at x0 has negative real part,
then all trajectories that start near x0 approach it as t →∞. The
basin B (x0) is the set of all points that tends to x0 when t →∞.
Then x0 is a stable equilibrium.

The dynamics on the basin are “linear” provided that the
F : B → Rn , B = Rn , has the form F (x) = Flin (x− x0), where
Flin is a linear map, Rn→Rn , x belongs to B, and x0 is the equi-
librium in B. Suppose that F is the dynamics, not necessarily lin-
ear, with stable equilibrium x0. Then F at x0 has the above form
in a neighborhood of x0 (Flin is the derivative of F at x0). More-
over, it can be shown that the dynamics on the basin are topolog-
ically equivalent to the linear dynamics as above. In fact, a main
theorem about stable equilibria is that the linear dynamic in Rn is
equivalent to the dynamics of dx

dt
= F (x) in the basin B(x0). This

means there is a homeomorphism from Rn to the basin B (x0)
that preserves the solution curves. Then the dynamics of B (x0)
are the same topologically as the linear dynamics above. Browder
(5) and Hirsch and Smith (6) have extensively studied the topic of
monotonicity. Here we provide our version of monotonicity that
has a common element with Hirsch (5) and Browder and Smith
(6), but is quite different.
Definition 1: Monotonicity condition: Suppose we have dynam-
ics dx

dt
= G(x) on a domain X in a Euclidean space with its inner

product. The monotonicity condition for G, and a point x0 ∈ X,
is then

〈Gx, (x− x0)〉 < 0 for all x 6= x0 in X. [5]

Proposition 1. For any dynamics dx
dt

= G(x) on X ⊂ Rk , x0 ∈ X,
the monotonicity condition for X, x0, implies that ‖x (t)− x0‖ is a
decreasing function of t for all nontrivial solutions x(t) in X, where
x(t) is defined for all t > 0.

Proof: Suppose Eq. 5 is true. Note that

d
(
‖x (t)− x0‖2

)
dt

=
d 〈x(t)− x0, x(t)− x0〉

dt

= 2

〈
d (x(t))

dt
, x(t)− x0

〉
= 2 〈Gx(t), (x(t)− x0)〉 .

The quantity at the end is negative by Eq. 10, the monotonicity
condition. QED.

One could call the X of Proposition 1 a “monotonic basin” for
the dynamics. Under these conditions x0 is an equilibrium.

Thus, monotonicity on X, x0 implies that x(t) is monotonically
converging to x0. This gives a stability of x0. The converse is not
true not even in the linear case. One can take for an example a
spiral sink where the axes are different (Fig. 2). When the solu-
tion is going in the direction of the long axis, then x(t) − x0 is
not decreasing, whereas x0 is a stable equilibrium. This example
helps us understand the famous Turing phenomenon (5. Turing’s
Paper on Morphogenesis).
Example 1: Let Fx = A(x− x0), where A is a linear map Rn →
Rn , not necessarily symmetric. Then A is negative definite exactly
when monotonicity holds.

Let us return to the biological setting. Single-cell dynamics are
those of dynamics on a basin B⊂X as in our previous work on

Rajapakse and Smale PNAS | February 14, 2017 | vol. 114 | no. 7 | 1463



Fig. 2. 〈Fp, (p− x0)〉 > 0. This an example of a basin that is not a
monotonic basin.

genome dynamics (2). We assume that the basin B is that of
an equilibrium x0 and are excluding periodic attractors in the
present paper. This means we are identifying a cell with its basin.
The equilibrium of genome dynamics of a cell exhibits the dis-
tribution of proteins. That distribution can be identified with
that cell.

We now examine explicitly the conditions for monotonicity in
the linear case of one cell with two proteins. This case can be
represented by the system

dx
dt

= Fx = A(x− x0), x = (x1, x2),

where A =

(
a b
c d

)
and dx

dt
= 0 when x = x0. Then A (Jacobian

matrix at x0) is stable and x (t) → x0 when all eigenvalues have
negative real parts. The eigenvalues of A are given by the char-
acteristic equation λ2 − τλ+ ∆ = 0, where

τ = trace(A) = a + d and ∆ = det(A) = ad − bc.

Then λ1 =
τ+
√
τ2−4∆

2
, λ2 =

τ−
√
τ2−4∆

2
are the eigenvalues

of A. For stability A must satisfy two criteria: (i) The trace, a +
d , must be negative, and (ii) the determinant, ad − bc, must be
positive (7, 8).

To derive the conditions for monotonicity, consider the
quadratic form associated with A : Q(u, v) = au2 + dv2 −(
b+c

2

)
uv , and suppose a, d < 0. Thus, A+AT

2
=

(
a b+c

2
b+c

2
d

)
,

and A+AT

2
is symmetric. The matrix of a quadratic form can

always be forced to be symmetric in this way. The condi-
tion for monotonicity is 〈Fx, (x− x0)〉 < 0. This amounts to
〈A (x− x0), (x− x0)〉 < 0 or that the eigenvalues of

(
A+AT

2

)
are negative, which is equivalent to A being negative definite.
Because the determinant of A+AT

2
is positive,

ad >

(
b + c

2

)2

, a, d < 0. [6]

In summary the stability condition is bc< ad and the mono-

tonicity condition is
(

(b+c)
2

)2

< ad . Therefore, the excess of the

left-hand sides of the previous inequalities is
(

(b+c)
2

)2

− bc. If
the excess is positive or zero, monotonicity implies stability. The
excess is never negative. More generally, as a consequence of
Proposition 1 we can prove the following.
Proposition 2. For linear dynamics on Rn monotonicity implies
stability.

Fig. 3 shows an example of monotonicity and stability condi-
tions in the bc plane, where a, d = −1. E is the monotonic region
and hence is part of the stable region. The red solid circle in Fig. 3

represents Turing’s two-cell example [Turing (1) and Chua (9)],
discussed in 5. Turing’s Paper on Morphogenesis.

Hardwiring. The genes present in the human genome are the
same in all cell types and all individuals. Now we describe a prop-
erty of a family of cells, which we called hardwiring (2), motivated
by the universality above. Our network in ref. 2 puts an oriented
edge (between two nodes), between two genes, i and j , if it is
possible for the protein product of gene i to bind to the pro-
moter of gene j and activate transcription. Gene i will bind to
this promoter only in some cell types, at certain stages of devel-
opment. It can happen that gene i as a transcription factor may
be silenced. In that case gene i can be removed from the network
together with its edges. As an example, this phenomenon can
occur through failure of chromatin accessibility (10). We say that
a family of cells is hardwired provided that the genome dynamics
are the same for every cell in the family. In the example of Tur-
ing [also Chua (9) and Smale (11)] below, hardwiring is assumed
extensively.

Definition of Weak Hardwiring. Thus, the family is hardwired pro-
vided that the dynamics of each cell in the family are the same;
in particular, the equilibrium of each cell is the same. That is, the
protein distribution at the equilibrium of each cell is the same.
If the last property is true, then we say that the family satisfies
“weak hardwiring.” The idea of the weak hardwiring concept is
that in a single cell type all cells have the same equilibrium dis-
tribution of proteins (2). This helps justify the identification of a
tissue with its protein distribution.

3. Cellular Dynamics and Their Architecture
We define a graph Γ as a mathematical model for the cellular
structure for a single tissue. First, consider the m cells of the
single tissue and a single protein. The main biological object is
the cellular architecture of a tissue that consists of m cells in
three dimensions. The graph Γ consists of nodes corresponding
to the cells of the tissue. The weighted edges of the graph are
associated with the membranes between two cells and define the
notion of adjacency. This adjacency is represented by a number
that represents the diffusion between two cells and it depends on
the interactions at their cell membranes (12). This number could

Fig. 3. Monotonicity and stability conditions in the bc plane for a,d =

−1. The dark gray region together with the blue region (E) constitutes the
stability region. E is the monotonic region. The red solid circle shows Turing’s
two-cell example in the bc plane.
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be interpreted as the product of the permeability and the area of
the membrane between cell i and cell j , a quantity represented
by a matrix element aij . We write A = (aij ). The matrix A is an
m × m symmetric matrix, the adjacency matrix of the architec-
ture. Note that A does not depend on the protein levels. Thus, Γ
is a weighted graph whose nodes are i = 1, ...,m and edges aij .
We assume that the graph is connected. What we have discussed
here is a network whose nodes are cells and it is not to be con-
fused with the genome network in 3. Cellular Dynamics and Their
Architecture. This model applies more literally to diffusion in the
case of small molecules.

Definition of a State. A state associated to the graph is a set of
protein levels x1, . . . , xm , where xi is the level of a single protein
in the ith cell. Thus, a state x is a function of nodes i and with
value at node i written as xi . The states form a linear space S and
feasible states, the subspace of functions with nonnegative values
S+. The function x ∈ S is harmonic provided that xi is a constant
function of i . By our hypothesis that the graph Γ is connected, it
follows that the space of harmonic functions is one dimensional.
For n proteins we generalize the notion of xi and S. Now xi is
a distribution of proteins in the ith cell; i.e., xi = (x1

i , . . . , x
n
i ).

Note that this expression can be thought of as a function of i .
We assume that the membrane structure of the tissue affects all
of the proteins equally [this is a strong idealization, but it can be
relaxed easily as in Turing’s example (1) in 5. Turing’s Paper on
Morphogenesis).

The Laplacian Matrix. Let D be the diagonal matrix with the ith
element of the diagonal defined by

∑
j

aij . Then the Laplacian is

given by

L = D− A.

L is a (m × m) real symmetric matrix, and together with
the nonnegativity of the weights, this implies that it is positive
semidefinite (13). It is an operator on S.

The diffusion dynamics defined by the cellular architecture
may be written as follows:

dxi
dt

= −
∑
j∈mi

aij (xi − xj ), i = 1, ...,m

or

dx
dt

= −Lx. [7]

Note that Eq. 12 is a linear system of ordinary differential
equations.
Remark 2: Harmonic functions are exactly a set of x, such that
Lx = 0.

Note that our definition applies not just to a single protein,
but also to an n-tuple xi belonging to Rn , and the feasible ones
to (R+)n .

Proposition 3. The system is globally stable with equilibrium set, the
harmonic functions.
Proof: 〈−Lx, x〉 ≤ 0 and 〈−Lx, x〉 = 0 if and only if x = constant;
i.e., x1 = x2 = · · · = xm . The solution to Eq. 7 is denoted by x(t)
with initial conditions x(0) = C, C ∈ Rm . Now the solution is

x(t) = e−LtC.

Then d
dt
〈x(t), x(t)〉= 2〈−Lx(t), x(t)〉< 0, unless x(t) satisfies

x1(t) = x2(t) = · · ·= xm(t) = constant. Therefore, the solution
converges to a harmonic function. QED.

For the n-protein case, the harmonic functions form an
n-dimensional space defined by x1 = x2 = ...= xm , where x1 is an
arbitrary element of Rn .

4. Dynamics of a Tissue

We use both the notations Xi =
n∏
j

[0, cj ] and the basin, Bi ⊂ Xi

with its equilibrium x0,i for the domain of the genome dynam-
ics, where cj is the maximum concentration of protein j and n
is the number of proteins. Xi is important for the lapse of emer-
gence and dealing with different cell types (different tissues) as in
6. Lapse of Emergence. Bi is suited for single-tissue theory as in
the following.

Genome Dynamics for m Cells. For a single cell say i , Bi is the
domain of the dynamics. For each cell i , Fi : Bi→Rn represents
the genome dynamics in cell i ,

dxi
dt

= Fixi , xi ∈ Bi , i = 1, ...m. [8]

For the case of cells of a tissue S =
m∏
i

Bi , i = 1, ...,m where m

is the number of cells in the tissue and S is the state space of 3.
Cellular Dynamics and Their Architecture extended to n proteins.
We use an inner product on S derived from the inner products
on Bi . Thus, Bi corresponds to cell i with stable equilibrium x0,i .

Now we take the product of the dynamics over all of
the cells at once to get F : S→RN (or better (Rn)m), where
F = (F1, · · · ,Fm),N = nm and

dx
dt

= Fx, x ∈S. [9]

Eq. 9 is rephrasing Eq. 8. This is the genome dynamics of the
tissue. Thus, this tissue has genome dynamics and separates into
individual cell dynamics Bi for cell i . Let x0 be the point of S
defined as x0 = (x0,1, x0,2, ..., x0,m), where x0,i is the equilibrium
in Bi . The weak-hardwiring hypothesis asserts that the x0,i are
all the same. Then x0 is the equilibrium for genome dynamics for
the whole tissue. For the rest of this paper we assume the weak
hardwiring for the cells in the tissue.

Extension of Monotonicity to the Genome Dynamics of the Tissue.
Extension of the definition of monotonicity to many cells is
given by

〈Fx, (x− x0)〉 < 0,F =
∏

Fi , x 6= x0

x = (x1, x2, ..., xm) and x1= (x1
1, x

2
1, ..., x

n
1 ) ∈ X1, etc.

Here xji denotes the amount of the jth protein in the ith cell.
dx
dt

= Fx is the dynamics on the basin B =
∏

Bi , x0 =
(
x0,1, x0,2, ...,

x0,m

)
and x0 ∈B. Observe from weak hardwiring x0,1 =

x0,2 = ... = x0,m .

Example 2: Fx = A(x− x0), where A =
∏

Ai , so that A is a mul-
tilinear map and each Ai : Rm → Rm is linear. Then Ai , for each
i , is negative definite exactly when this monotonicity holds.

However, we are not assuming the linearity of the dynamics.
We cannot get even a good model of robust stability of equi-
libria in the linear setting. We cannot model dynamics with two
separate equilibria.

Diffusion Dynamics for n Proteins. Recall in 3. Cellular Dynamics
and Their Architecture, the diffusion dynamics between cells in a
tissue for a protein distribution

dx
dt

= −Lx or
dxi
dt

= −Lxi for all i = 1, ..,m. [10]

Here x =(x1, ..., xm), xi∈Rn is an n-tuple of proteins or “a
distribution of proteins.”

The Basin Hypothesis. Cells described by Fi : Bi → Rm have
the same basin Bi and the same equilibrium x0,i (this is a con-
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sequence of the hardwiring hypothesis). We also suppose that
the basins Bi are convex. These two hypotheses are made so that
the diffusion terms in Eq. 11 below make sense and are called
the basin hypothesis.

Following the spirit of Turing’s paper, we may combine
two dynamics (genome dynamics within the cell and diffusion
dynamics between cells) into a system (Eq. 11) that is the object
of the study in this paper:

dx
dt

= Fx− Lx, x ∈B =

m∏
i=1

Bi [11]

We emphasize that differential Eq. 11 is not necessarily linear
in contrast to Turing.

The main theorem of this paper is as follows.
Theorem 5. The dynamical system dx

dt
= Fx−Lx of a tissue (Eq. 11)

is globally stable with equilibrium x0 provided the basin hypothesis
is satisfied and F satisfies monotonicity.
Lemma 1. If F is monotone relative to B, x0, then (F− L) is
monotone.
Proof of Lemma 1: Lemma 1 is true if F is monotone and if−L is
monotone. First, 〈−Lx, (x− x0)〉≤ 0 is proved. From weak hard-
wiring x0 is harmonic and so Lx0 = 0. Moreover, 〈−Lx, x〉 ≤ 0
for any x ∈ S, because −L is negative semidefinite (4. Dynamics
of a Tissue). Therefore, 〈−Lx, (x− x0)〉 ≤ 0. Because Fx0 = 0,
thus it remains only to prove 〈Fx, (x− x0)〉 < 0 for x 6= x0. But F
is monotone by hypothesis. QED.

By Proposition 1 applied to G = (F− L) and Lemma 1 we
obtain the global stability of equilibrium x0, thus proving
Theorem 5.

We name the property of dx
dt

= Fx − Lx in Theorem 5 emer-
gence. Theorem 5 establishes that monotonicity implies global
convergence of the tissue dynamics to the equilibrium; that is, all
cells have the same protein distribution, in a strong stable sense
(“robustness”). This gives a biological justification for the con-
cept of weak hardwiring in a tissue. Thus, we give a model for
emergence of function.

Ours is not the first paper to address the issue of convergence
after Turing’s paper. In particular, Wang and Slotine (14) have
conditions designed to show convergence in systems resembling
ours. Our work in Proposition 1 and Theorem 5 deals with a wider
class of spaces as our basins and their products correspond to
dynamics of protein levels. Also we do not use a derivative of G
in our condition, and we do use a point x0 in Rn , not the origin, as
an equilibrium. Clearly the convergence results in ref. 14 do not
imply ours. Our previous paper (15) follows our current perspec-
tive, with a passage from one basin to two basins. This is moti-
vated by the biological example of Gardner et al. (16). Also Chua
(9) has convergence results for systems related to ours. These two
authors work in linear spaces with nonlinear equations, whereas
we work in nonlinear spaces.
Remark 3: Recall the linear case dx

dt
= F (x− x0) − Lx,

where x = (x1, ...,xm) and (F− L) is not singular. This is in the
form dx

dt
= Px−Q, where P = F− L and Q = Fx0. The explicit

solution (17) is x(t) = exp(Pt)
(
x (0)− P−1Q

)
+ P−1Q.

5. Turing’s Paper on Morphogenesis
The work of Alan Turing plays an important role in our paper.
The main differential Eq. 11 owes much to ref. 1. There are
some important differences. First, we use nonlinearity for the
cell dynamics in contrast to the Turing linear setting. Nonlin-
earity allows us to address issues of stability, where the second
derivative plays a crucial role and we are able to use associated
domains of the cell dynamics more in accord with the biology.
On the other hand, Turing developed his work in a partial dif-
ferential equations framework, with reaction diffusion equations
that reflect a continuum perspective of the nature of cells. That

leads to some applications in morphogenesis, such as patterning
in Zebra stripes (18, 19). Our own perspective differs. We feel
that some of the basic features of morphogenesis must deal with
few cells (embryogenesis, cell differentiation). The recent work
of Chua (9) also develops Turing’s contributions in a different
direction from our work.

Turing found an important example of the system of the same
type we used in 4. Dynamics of a Tissue. The example shows how
a system that is stable without diffusion becomes unstable in the
presence of diffusion. Turing was motivated to understand mor-
phogenesis with this example of instability. The example consists
of two cells and two proteins. The variables x1, y1 represent con-
centrations of molecules (or proteins) for the first cell and x2, y2

represent those for the second cell. Turing’s two-cell reaction–
diffusion example can be written as

dx1

dt
= (5x1 − 6y1 + 1) + 0.5 (x2 − x1) [12]

dy1

dt
= (6x1 − 7y1 + 1) + 4.5 (y2 − y1)

dx2

dt
= (5x2 − 6y2 + 1) + 0.5 (x1 − x2)

dy2

dt
= (6x2 − 7y2 + 1) + 4.5(y1 − y2), x1, y1, x2, y2 > 0.

The two cells are identical in this example and we can
describe the cell dynamics as dx1

dt
= (5x1 − 6y1 + 1), dy1

dt
=

(6x1 − 7y1 + 1). It is easy to transform the system in Eq. 12 into
our form, dx

dt
= (F− L) x.

Genome Dynamics of the Turing Example. We now show that a
key phenomenon of this example is the failure of the mono-
tonicity condition. That is necessary to give rise to instability
(morphogenesis).

Let us then study the monotonicity of 2. The Genome Dynamics
of One Cell as well as perform a 2D analysis for the Turing exam-
ple. First we construct matrix A for a single cell of the Turing

example: a = 5, b =− 7, c = 6, d = 7, and A =

(
5 −6
6 −7

)
. Here

the Turing example assumes two identical cells and we can write
the monotonicity condition as 〈(5x − 6y , 6x − 7y), (x , y)〉 < 0
for all x , y > 0. Thus, 5x2 − 7y2 < 0. If x = 2, y = 1, we
can see that 5x2 − 7y2 > 0; therefore the Turing two-cell exam-
ple fails the monotonicity condition (red solid circle in Fig. 3).
Monotonicity is only a sufficient condition for stability. Now we
check for stability.

The trace(A) =− 2, and det(A) = 1. Thus, the eigenvalues of
A are given by λi(A) = −1, i = 1, 2 [and the eigenvectors are
given by vi = (1, 1) , i = 1, 2]. Therefore, the genome dynamics
are stable for one cell and hence for two cells.

Diffusion Dynamics. The diffusion dynamics in the system in Eq.
12 are expressed by the terms 0.5 (x2 − x1) and 4.5 (y2 − y1).
Because the diffusion dynamics are represented by the negative
Laplacian matrix as in 3. Cellular Dynamics and Their Architec-
ture, their eigenvalues are nonpositive.

Full Dynamics. Combining genome dynamics and diffusion dyna-
mics gives the Turing example of the system in Eq. 19. The linear
part of the system in Eq. 19 is

M =

4.5 −6 0.5 0
6 −11.5 0 4.5

0.5 0 4.5 −6
0 4.5 6 −11.5

.
The system in Eq. 19 has a unique equilibrium that is obtained

by solving the right-hand side of the equation set equal to zero.
Eigenvalues of M can be computed to be 2.0,−1,−1,−14.
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Because there is a positive eigenvalue, the system with diffusion
is unstable. Therefore, the Turing system not only has a pos-
sibility of failure of stability but also in fact is unstable. Sum-
marizing, the Jacobian at the equilibrium has four eigenvalues,
one of which is positive. Thus, the full system with diffusion
is not stable. In this way Turing showed that at equilibrium
the two-cell example without diffusion is stable, but with diffu-
sion has lost stability. We have remarked further on the role of
monotonicity.

Wang and Slotine (20) examine a condition on the dynamics
that depends on the diffusion coupling whereas our monotonic-
ity depends only on the dynamics in each cell and not on the dif-
fusion. But each condition plays a main role in the convergence.

Smale (11) examined similar equations with nonlinear cell
dynamics. He considered each of two cells as having a global
stable equilibrium, and therefore the cells were “dead” in an
abstract mathematical sense. But upon coupling the two cells by
diffusion, he proved that the resulting system has a global peri-
odic attractor, and hence the cells become “alive.” Toward this
end Smale’s work was a mathematical model similar to the Tur-
ing two-cell example but with dynamics of each cell not linear,
leading to the model

dx k

dt
= R

(
x k)+

∑
µik

(
x i − x k)

i∈ set of cells neighboring k th cell

, [13]

where k = 1, ...,N and (x i − x k )∈Rm . The first term above,
R
(
x k
)

gives the dynamics for the kth cell and the second
term describes the diffusion processes between cells. The prin-
cipal case considered by Smale (11) is m = 4, N = 2, and shows
for the appropriate choice of parameters (R, µk ), the system
has stable equilibria without diffusion and with diffusion has a
global periodic attractor. Eq. 13 is precisely a form of our main
equations. Again the phenomenon depends on the failure of
monotonicity.

(Easy) Conjecture 1. Generically monotonicity of a linear system in
Euclidean space is equivalent to all eigenvalues negative (and real).

6. Lapse of Emergence
Here we discuss an avenue to study the departure from emer-
gence, using our setting. Consider the Jacobian of dx

dt
= Fx − L

(Eq. 11) at the equilibrium x0; that is,

(D (F− L))x0
, x0 = (x0,1, ..., x0,m),

where x0,i is the equilibrium of the dynamics of the ith cell and
x0,i are all equal. The main cause of lapse of emergence is the
vanishing of the determinant of (D (F− L))x0

. As in our paper
(15), the pitchfork bifurcation is signaled at a bifurcation param-
eter µ, where the det(D (F− L))x0

first becomes zero. Because
x0,i are equal, Lx0 = 0 and x0 belongs to the n-dimensional
harmonic space, kernel(L) . Generically −L is contracting to
kernel(L); that is, the eigenvalues of −L are λk = 0 for k ≤ n ,
and for k > n, λk < 0.

Now look at D(F)x0
=
(

D(F1)x0,1
, ...,D(Fm)x0,m

)
on the basin

B. Each D(Fi)x0,i
is contracting before the bifurcation, say for

µ< 0. At µ= 0, one can expect one of these contracting deriva-
tives to become singular; for example, D(F1)x0,1

with one eigen-
value is equal to zero and the rest are negative. This is the begin-
ning of the lapse of emergence in this scenario. Now restrict the
dynamics to the protein space of the first cell to study the bifur-
cation. In this protein space we can expect the dynamics after the
bifurcation to have two basins. This is the setting of the pitchfork
bifurcation paper (15).

Thispapercanbeusedtoexaminetheendofemergence interms
of cell division (symmetric or asymmetric or cancer) (21, 22).
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