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� Background and Aims Models of costs and benefits of dormancy (D) predict that the evolutionarily stable strat-
egy in long-term stable environments is for non-dormancy (ND), but this prediction remains to be tested empiri-
cally. We reviewed seed traits of species in the climatically buffered, geologically stable and nutrient-impoverished
campo rupestre grasslands in Brazil to test the hypothesis that ND is favoured over D. We examined the relative im-
portance of life-history traits and phylogeny in driving the evolution of D and assessed seed viability at the commu-
nity level.
� Methods Germination and viability data were retrieved from 67 publications and ND/D was determined for 168
species in 25 angiosperm families. We also obtained the percentage of embryoless, viable and dormant seeds for 74
species. Frequencies of species with dormant and non-dormant seeds were compared with global databases of dor-
mancy distribution.
� Key Results The majority of campo rupestre taxa (62�5 %) had non-dormant seeds, and the ND/D ratio was the
highest for any vegetation type on Earth. Dormancy was unrelated to other species life-history traits, suggesting that
contemporary factors are poor predictors of D. We found a significant phylogenetic structure in the dormancy cate-
gorical trait. Dormancy diversity was highly skewed towards the root of the phylogenetic tree and there was a strong
phylogenetic signal in the data, suggesting a major role of phylogeny in determining the evolution of D versus ND
and seed viability. Quantitative analysis of the data revealed that at least half of the seeds produced by 46 % of the
surveyed populations were embryoless and/or otherwise non-viable.
� Conclusions Our results support the view that long-term climatic and geological stability favour ND. Seed viabil-
ity data show that campo rupestre species have a markedly low investment in regeneration from seeds, highlighting
the need for specific in situ and ex situ conservation strategies to avoid loss of biodiversity.

Key words: Campo rupestre, Cerrado, community, ecophylogenetics, embryoless seeds, evolutionarily stable
strategy, OCBIL, P-deficient soils, refugia, regeneration ecology, rupestrian grassland, seed viability.

INTRODUCTION

Long-term climatic fluctuations can affect large-scale patterns
of biodiversity, and centres of diversity and endemism are com-
monly associated with climatic and geological stability
(Jansson, 2003; Carnaval and Moritz, 2008; Médail and
Diadema, 2009). Therefore, identifying and protecting refugia
have become a top conservation priority under projected cli-
mate change scenarios because of their ability to facilitate the
survival of biota under adverse conditions (Keppel et al., 2012).
However, the question of how long-term climatic and geologi-
cal stability influence plant life-history traits that determine
species niches has rarely been explored.

Remarkable ecological and evolutionary singularities have
been shown for old, climatically buffered, infertile landscapes
(OCBILs) in contrast to young, often disturbed and fertile land-
scapes (YODFELs; Hopper, 2009). These OCBILs occur to a
greater or lesser extent in at least 12 biodiversity hotspots, and

they function as biodiversity refugia containing extremely high
levels of plant endemism, which can sum to 79 % (Hopper
et al., 2016). In OCBILs, there is a clear predominance of slow-
growing plant species that largely rely on clonal reproduction
for persistence, lack specialized means for seed dispersal, have
specialized nutritional mechanisms and are resilient to fire and
fragmentation but not to soil removal (Hopper, 2009; Oliveira
et al., 2015; Silveira et al., 2016). As a result of long-term sta-
bility, plant populations from OCBILs seem to make little in-
vestment in migration mechanisms (Hopper, 2009), but no
study has yet attempted to link biome-wide regeneration strate-
gies with both life-history traits and historical stability.

Seed germination is a key component of the regeneration
niche (Grubb, 1977), and it is one of the earliest traits expressed
by plants and thus is under strong natural selection (Donohue
et al., 2010). Seed dormancy (D) is a state of inhibited germina-
tion (Simpson, 1990) that may confer adaptive value by help-
ing to restrict the timing of germination to periods when
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environmental conditions are favourable for seedling establish-
ment. Global datasets indicate that D tends to increase with in-
creasing seasonality, but it is a dominant trait across all
vegetation zones on Earth (Jurado and Flores, 2005; Baskin and
Baskin, 2014). Since D is a condition that helps regulate the
timing of seed germination, it enables seeds to avoid germina-
tion during briefly favourable periods for seedling establish-
ment (Linkies et al., 2010; Baskin and Baskin, 2014). Delaying
germination is also a bet-hedging strategy that spreads the risk
of reproductive failure in unpredictably variable (stochastic) en-
vironments (Cohen, 1966; Venable, 2007; Poisot et al., 2011;
Moreira and Pausas, 2012).

On the other hand, D comes at the cost of increased seed
mortality before germination occurs, e.g. due to physiological
ageing, predation by animals and microbial decay (Long et al.,
2015). Thus, the benefits of D should outweigh its costs with in-
crease in environmental uncertainty, whereas non-dormant
seeds are expected to be more advantageous under a scenario of
long-term climatic stability. In fact, models predict that the evo-
lutionarily stable strategy in long-term constant environments is
for non-dormant seeds regardless of adult longevity, the timing
of reproduction and population age/stage structure (Rees,
1994). This prediction, however, remains to be tested empiri-
cally. Moreover, seed dormancy is not evenly distributed
among plant functional groups such as different growth forms,
dispersal modes and seed dispersal seasons (Wang et al., 2009;
Baskin and Baskin, 2014; Rubio de Casas et al., 2015). This
suggests that investigating life-history traits that drive D is a
promising way of gaining insight into the evolution of D.

Lack of germination under favourable conditions cannot be
attributed directly to seed dormancy without detailed examina-
tion of seed viability (Baskin et al., 2006; Silveira, 2013).
Therefore, assessing seed viability is especially crucial in se-
verely phosphorus (P)-impoverished landscapes, where P limi-
tation leads to drastic constraints in plant sexual reproduction
(Fujita et al., 2014). However, embryo presence and viability
are often overlooked in germination studies, and disentangling
the contributions of the multiple factors that result in lack of
germination is crucial not only for distinguishing between dor-
mant and non-germinable seeds but also to understanding the
potential of regeneration from seeds at the community level.

Here we report the occurrence of primary dormancy (dor-
mancy at the time of seed maturity) and seed viability for the
campo rupestre, megadiverse heterogeneous grasslands
(Silveira et al., 2016). The campo rupestre is an OCBIL that oc-
curs in eastern Brazil and is traditionally included as part of the
Cerrado biome, i.e. Neotropical savanna (Oliveira-Filho and
Ratter, 2002), a biodiversity hotspot (Myers et al., 2000). Dated
phylogenies suggested that unrelated endemic lineages of
Cerrado started to diversify 9�8 million years ago (Mya)
(Simon et al., 2009). Evidence also indicates that diversification
of some campo rupestre lineages pre-date diversification of
Cerrado lineages by several million years, suggesting that the
campo rupestre was the first open habitat in eastern South
America (Hughes et al., 2013). On a short-term time-scale, the
climatic regime in the campo rupestre is seasonal, with mark-
edly dry winters and wet summers and increasing aridity and
temperatures towards the north of its range (Silveira et al.,
2016). In the long term, however, the campo rupestre has been
buffered from past climatic extremes. Although there have been

shifts in temperature and aridity, campo rupestre did not un-
dergo any significant expansion during the middle Holocene or
during the Last Glacial Maximum, probably due to its strong
edaphic isolation (Alves and Kolbek, 1994; Barbosa and
Fernandes, 2016). The resulting vegetation stability may have
favoured the existence of several areas of endemism and refugia
(Collevatti et al., 2009; Bonatelli et al., 2014; Ribeiro et al.,
2014; Barbosa et al., 2015). In fact, the campo rupestre is a ma-
jor centre of endemism, with the highest percentage of endemic
species (1951 endemic out of 4928 species, 39�6 %) among all
other vegetation types in Brazil (BFG, 2015). Furthermore,
campo rupestre occurs in severely P-impoverished, shallow,
acidic and excessively drained quartzite-derived or ironstone
soils, mostly above 900 m and up to 2033 m above sea level
(Giulietti et al., 1997; Jacobi et al., 2007; Alves and Kolbek,
2010; Oliveira et al., 2015). Here, plants often experience
strong winds, high irradiance, frequent fires, high daily fluctua-
tions in temperature and water shortage during the dry season
(Silveira et al., 2016).

In this study, we review the ecology and evolution of seed
dormancy of campo rupestre plant species. Specifically, we
tested the following hypotheses. (1) Long-term geological and
climatic stability favour seeds that are non-dormant. (2) Life-
history traits play a more important role than phylogeny in de-
termining seed dormancy occurrence. (3) Plants growing in P-
impoverished soils make low investments in sexual reproduc-
tion, with unusually high levels of embryoless and non-viable
seeds. Further, we discuss the implications of our findings for
predicting the impact of future rapid climate change in the re-
generation niche of species in the campo rupestre flora.

MATERIALS AND METHODS

Literature review on campo rupestre seed germination

We conducted a comprehensive literature search using three on-
line search services to include experimental germination studies
on seeds collected at campo rupestre sites. To find relevant pa-
pers, we used a topic search in Web of Science, an all-indexes
search in Scielo (a National Open-Access Scientific Library;
www.scielo.br) and a broad search at Google Scholar (search
terms in Supplementary Data Appendix S1), which yielded a
total of 50, 9 and 1160 studies, respectively (until 5 September
2015). In addition, we included unpublished data of the present
authors. We combined the results from all searches and re-
moved duplicates.

Studies were included in the database if they met the follow-
ing criteria: (1) peer-reviewed indexed literature and Masters
and PhD theses written in English or Portuguese; review papers
were not included; (2) germination experiments were per-
formed with fresh seeds, given that dormancy cannot be safely
determined in stored seeds (Baskin et al., 2006); (3) seeds were
collected in campo rupestre sensu stricto (Silveira et al., 2016);
(4) control treatments were performed whenever a dormancy-
breaking treatment was conducted; and (5) species-level identi-
fication was provided by the authors.

In total, 67 studies met our criteria, providing data for 184
species in 17 families. We also report empirical data for 26 spe-
cies belonging to 16 families (ten additional families) to in-
crease representation of non-studied taxa (original data from
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germination and viability experiments in Supplementary Data
Appendix S2). In total, we gathered information for 210 species
(plus 25 subspecies, varieties or populations) belonging to 27
families. This corresponds to 20 % of the families and 4�2 % of
the species in the campo rupestre. To investigate the potential
for regeneration from campo rupestre seeds, a quantitative anal-
ysis was performed in which we included species only when vi-
ability tests were performed or when scarification provided
reliable information on maximum seed viability. Since among-
population variation in seed dormancy and germination is com-
monplace (Anderssen and Milberg, 1998), we considered dif-
ferent populations as different evolutionary units, using
numbers to distinguish among them. Given that we found infor-
mation on Lychnophora pinaster seeds collected in two differ-
ent years, we averaged the values of viability and germinability
of this species.

For each species/population examined, we recorded study
site (region, location and coordinates), collection date or dis-
persal period, species dispersal mode (biotic or abiotic), growth
form (tree, succulent, shrub or herb), microhabitat (xeric and/or
mesic), experiment length (number of days), incubation temper-
ature, germinability (germination %), germination time or rate
(e.g. mean germination time, mean velocity, germination
rate index), embryoless seeds (%), viable seeds (%) and
pre-germination treatments when available (e.g. scarification,
gibberellic acid). Species names were updated according to the
Brazil Plant Species List available at Reflora (http://reflora.jbrj.
gov.br) in September 2015.

Information on species geographic distribution and growth
form was obtained at the specieslink network (http://www.
splink.org.br) and from the Reflora database. Information on
dispersal mode was inferred from fruit morphology (e.g.
Barroso et al., 1999). Species microhabitat (xeric, mesic or xe-
ric and mesic) was determined from information available in
the papers or by consulting the authors and taxonomy experts.
Date of seed collection or fruit dispersal phenology was used to
determine the time of seed dispersal, which was further divided
into four seasons according to rainfall data for the region
(Madeira and Fernandes, 1999). The early rainy season is from
October to December, the late rainy season from January to
March, the early dry season from April to June and the late dry
season from July to September. The dry season was considered
unfavourable for seedling establishment due to the occurrence
of frequent fires, high daily temperature fluctuations and
drought (Giulietti et al., 1997; Madeira and Fernandes, 1999;
Silveira et al., 2012).

Determination of primary dormancy category

There are many definitions of D. In this study, we define
seed dormancy as the failure of viable seeds to germinate when
environmental conditions, including water, temperature, light
and gases, are favourable for germination of non-dormant seeds
(Vleeshouwers et al., 1995; Bewley, 1997; Hilhorst, 2011). Due
to limited information on most campo rupestre species, we did
not attempt to assign dormancy classes sensu Baskin and
Baskin (2004). Our primary aim was to determine whether
seeds are primarily dormant or non-dormant.

Seeds were considered to be non-dormant if� 70 % of viable
seeds germinated in about 4 weeks. They were considered to be
dormant if less than 30 % of viable seeds germinated in about
4 weeks, and pre-germination treatments improved germina-
tion. We also classified seeds as dormant for intermediate cases
in which germination occurred at higher percentages only at a
very limited temperature range (assumed to be conditionally
dormant sensu Baskin and Baskin, 2014), and <70 % of viable
seeds germinated in about 4 weeks. The D/non-dormancy (ND)
classification was considered non-conclusive when: (1) seed vi-
ability was less than 10 %; (2) less than 70 % of seeds germi-
nated in about 4 weeks and there was no reference value for
seed viability and no increase in germination percentage fol-
lowing treatment for dormancy break. Populations classified as
non-conclusive were excluded from categorical data analyses,
but populations with a low percentage of viable seeds were
used in quantitative analyses.

Database of seed dormancy in other vegetation zones

Baskin and Baskin (2014) collected a massive amount of in-
formation on seed dormancy and germination from all main
vegetation zones worldwide. Comparison of campo rupestre
data on seed dormancy with the Baskin and Baskin (2014) data-
base allows us to situate campo rupestre within its encompass-
ing biome and other vegetation zones. Therefore, we used the
Baskin and Baskin (2014) database to extract information on
occurrence of primary D in savannas (i.e. tropical dry wood-
lands, natural savannas and grasslands) and in three other vege-
tation types (tropical evergreen forest, tropical semi-deciduous
forest and tropical deciduous forest) occurring in southeast
Brazil that have differences and similarities of climatic patterns
compared with those in campo rupestre. We then compared
data for populations growing in campo rupestre with data for
species growing in these four vegetation zones.

Statistical and phylogenetic analyses

The v2 test was used to assess differences in the frequencies
of D and ND between the five vegetation zones and life-history
traits – i.e. dispersal mode (abiotic or biotic), dispersal period
(early rainy, late rainy, early dry or late dry seasons), geo-
graphic distribution (endemic or non-endemic), growth form
(herb or shrub) and microhabitat (xeric or mesic). Levels within
variables with a small sample size, namely succulent and tree
(within growth form category) and ‘xeric and mesic’ (within
microhabitat category), were excluded from analysis to prevent
loss of test reliability (Zar, 2012). Bonferroni correction (a/n)
was applied in v2 tests whenever multiple comparisons were
made.

To explore the main pattern of association between all cate-
gorical variables, we computed a global distance matrix based
on the above-mentioned variables and applied a principal coor-
dinates analysis (PCoA) to compute the two main axes of varia-
tion encompassed in the global distance matrix. Finally, to
visualize the groups based on the categorical variables, we plot-
ted a factorial map, using the functions in Pavoine et al. (2009).
These analyses were performed with the package ‘ade4’ (Dray
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and Dufour, 2007) in the R environment (R Development Core
Team, 2014).

To assess the role of phylogeny in explaining seed dormancy
in campo rupestre, populations were arrayed on a phylogenetic
tree. Briefly, species relationships were obtained using
‘Phylomatic’ (http://phylodiversity.net/phylomatic/). We then
manually corrected and improved the ultrametric tree resolution
in ‘Mesquite’ (http://mesquiteproject.org/) based on a number
of recent studies of molecular phylogeny. To estimate branch
lengths (i.e. time since divergence), we dated 55 nodes accord-
ing to several studies (Supplementary Data Appendix S3) and
positioned undated nodes evenly in the tree with the ‘bladj’ al-
gorithm of Phylocom software (Webb et al., 2008).

To assess the existence of phylogenetic signal in the dor-
mancy categorical trait, we used two distinct approaches: (1)
the Maddison and Slatkin (1991) method, which compares the
minimum number of trait-state changes across a phylogenetic
tree with a null model (100,000 randomizations), in which the
trait states were randomized in the tips of the tree; and (2) de-
composition of dormancy trait diversity among the nodes of the
phylogenetic tree to test whether dormancy diversity is clus-
tered near the root of the phylogenetic tree [tips/root skewness
test based on the distance of nodes to the root of the tree, with
10 000 randomizations, according to Pavoine et al. (2010)]. To
obtain the distance matrix based on the categorical dormancy
trait, we used the generalization of Gower’s distance according
to Pavoine et al. (2009). For quantitative traits [dormancy index
D� (D þ ND þ 1)�1 and log(x þ 1)-transformed percentages
of embryoless and non-viable seeds], we examined the phyloge-
netic signal with Blomberg’s K test with 100 000 randomiza-
tions (Blomberg et al., 2003; Münkemüller et al., 2012). All
analyses were performed in the R environment (R
Development Core Team, 2014), using the ‘picante’ package
for Blomberg’s K test (Kembel et al., 2010), the ‘phylo.sig-
nal.disc’ function (developed by Enrico L. Rezende, University
of Roehampton, UK) for the Maddison and Slatkin (1991)
method and the ‘decdiv’ function for decomposition of trait di-
versity among the nodes of the phylogenetic tree (Pavoine
et al., 2010).

RESULTS

Ecology and evolution of seed dormancy

We were able to classify the D/ND status in 168 populations
(155 species) from campo rupestre (Supplementary Data
Appendices S4 and S5). The majority of populations (105;
62�5%) had non-dormant seeds, and 63 populations (37�5 %)
had dormant seeds. We could not assign dormancy status in 55
species.

Frequencies of D and ND in campo rupestre were signifi-
cantly different from those in all the other tropical vegetation
zones. Non-dormancy was statistically more frequent in campo
rupestre than in any of the other four vegetation zones.
Evergreen tropical rainforest had the second highest frequency
of ND, followed by tropical semi-deciduous forests and sa-
vannas and tropical deciduous forests, which had the lowest fre-
quencies of ND (Fig. 1) (Supplementary Data Appendix S6).

The v2 tests did not show a correlation between seed dor-
mancy category and any life-history traits: dispersal mode,

dispersal period, geographic distribution, growth form or micro-
habitat (Table 1). The PCoA applied in the global distance
computed with dormancy and life-history traits highlighted the
lack of association between these variables. The two main axes
of the PCoA explained 39 % of the total variance. The first axis
separated dormant and non-dormant populations, whereas the
second axis separated endemic from non-endemic populations.
The other life-history traits were not associated with the first
two axes, with either D or ND classification (Fig. 2).

We found a strong phylogenetic signal in the dormancy cate-
gorical trait using the Maddison and Slatkin (1991) method
(P < 0�00001), and the partition of dormancy diversity was
highly skewed towards the root of the tree (P < 0�001; Fig. 3).
The node with the highest seed dormancy trait diversity
(10�2 % of total diversity) was the one that diverges between
monocots and eudicots (Fig. 3). Overall, dormancy was concen-
trated in a few extant families, and it was especially rare in the
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FIG. 1. Biome-wide percentage of seed dormancy categories among campo
rupestre (this study) and tropical evergreen forests, tropical semi-deciduous for-
ests, savannas and tropical deciduous forests (Baskin and Baskin, 2014). D and
ND frequencies were significantly different among all vegetation zones, except
for savannas and tropical deciduous forests, according to the v2 test (Appendix

S5).

TABLE 1. Lack of association between dormancy category and
life-history traits: dispersal mode (abiotic or biotic), dispersal pe-
riod (early rainy, late rainy, early dry or late dry season), geo-
graphic distribution (endemic or non-endemic), growth form
(herb or shrub), microhabitat (xeric or mesic). Bonferroni correc-
tion was applied in v2 tests due to the multiple comparisons, us-

ing the significance level of P < 0�01

Variables v2 test

v2 P

Dispersal mode 0�83 0�362
Dispersal time 8�077 0�044
Geographic distribution 2�442 0�118
Growth form 1�6834 0�194
Microhabitat 4�9452 0�026
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monocots, with Poaceae and Cyperaceae having the highest
dormancy percentages. Seed dormancy was more common in
the eudicots, with Fabaceae and Verbenaceae showing highest
percentages of species with dormant seeds. In the
Melastomataceae, D appears to have evolved multiple times
(Fig. 3).

The potential for regeneration from seeds

Reliable information for embryo presence, viability and dor-
mancy was available for 83 populations of 74 species in 21
families. Blomberg’s K test shows the phylogenetic signal in
the quantitative assessment of dormancy (K¼ 0�646; P¼
0�00001), confirming the results obtained using the Maddison
and Slatkin (1991) method and diversity partitioning analysis in
the dormancy categorical trait. The phylogenetic signal was
also significant for the percentage of embryoless (K¼1�469;
P¼0�00001) and non-viable (K¼ 0�2264; P¼ 0�03456) seeds.
Therefore, the high prevalence of populations that produce

embryoless and/or non-viable seeds seems to be phylogeneti-
cally determined (Supplementary Data Appendix S7). Overall,
we found a wide variety of patterns for seeds from campo
rupestre in which families had contrasting levels of dormancy,
viability and embryo presence (Fig. 4).

DISCUSSION

Despite the widely recognized association between centres of
diversity and endemism with climatic and geological stability,
very little is known about how long-term stability influences
species traits that determine regeneration niches. We compiled
a database with information on seed dormancy and viability in
campo rupestre to test hypotheses on the life-history traits that
drive the adaptive value of germination behaviour in long-term
stable environments. To our knowledge, the D/ND ratio found
for campo rupestre is the lowest on Earth (Baskin and Baskin,
2014). In campo rupestre, the D/ND ratio was markedly lower
than that in the surrounding types of vegetation, which have
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FIG. 3. Continued.
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gone through major and extensive area changes during periods
of climatic fluctuation, especially during the Quaternary
(Carnaval and Moritz, 2008; Carnaval et al., 2009; Werneck
et al., 2011, 2012), thus supporting our first hypothesis that
long-term geological stability and climatic buffering favours
non-dormant seeds. We found no significant correlations be-
tween seed dormancy and life-history traits, thereby providing
no support for our second hypothesis. Phylogeny, rather than
ecology, was better correlated with seed dormancy categories,

indicating that geological–climatic history played a more im-
portant role than contemporary factors in driving seed dor-
mancy. We also found an unprecedentedly wide variation in the
percentage of embryoless and non-viable seeds within a single
vegetation type, which showed a strong phylogenetic signal,
suggesting strong biome-wide limitations in sexual reproduc-
tion across different taxa. Notably, campo rupestre had major
differences with regard to the known patterns of germination
behaviour, which seems to agree with evidence of low
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FIG. 3. Decomposition of dormancy trait diversity along the nodes of the phylogenetic tree assembled for the campo rupestre species. Black squares at the tips
of the tree denote populations classified as primarily dormant. A time scale (Mya) is shown below the tree. The total quadratic entropy (TQE) for the dormancy cate-

gorical trait diversity is 0�994, and the circles at the nodes indicate the contribution of the node to total dormancy diversity. Scale is given at the bottom of the tree.
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investment in dispersal mechanisms in plant communities from
OCBILs (Hopper, 2009).

Costs and benefits of seed dormancy in campo rupestre

Without accounting for the historical geological–climatic
component, we would expect a seasonal environment, such as
the campo rupestre, to have proportions of dormant seeds simi-
lar to that of savannas and tropical deciduous forests, and a
greater proportion than that of aseasonal environments, such as
the tropical evergreen rainforest and tropical semi-deciduous
forests (Jurado and Flores, 2005; Baskin and Baskin, 2014). At
least for Melastomataceae from campo rupestre, dormancy
evolved in species dispersing seeds during the late rainy season,
shortly before conditions become unfavourable for seedling es-
tablishment (Silveira et al., 2012), thereby confirming the pre-
dictions of a significant association between dispersal time and
seed dormancy in seasonal environments (Rubio de Casas
et al., 2015). However, our results differ from those of other
studies (Bu et al., 2008; Wang et al., 2009) in that we found no
correlation of D with dispersal period, suggesting that seasonal-
ity is not a strong selective force driving D in campo rupestre at
the community level.

It is not yet clear how non-dormant species manage to germi-
nate in the field at a time that is suitable for seedling establish-
ment. Unlike other seasonal environments, life-stage transitions
(e.g. germination, flowering, seed dispersal) of campo rupestre
plants show tremendous diversity in phenological patterns
(Madeira and Fernandes, 1999; Le Stradic, 2012; Belo et al.,
2013), suggesting no obvious outcome of the complex interac-
tion between life-history traits and environmental filters. For

instance, seed dispersal and germination of two campo rupestre
endemic species of Leiothrix (Eriocaulaceae) occur under
unfavourable conditions for seedling establishment, resulting in
enormous mortality rates of seedlings during the subsequent
dry period, as predicted (Coelho et al., 2008). It seems that
these Leiothrix species and many other campo rupestre species
rely on long-term survival of adult plants for persistence, since
long-lived perennials, resprouters and clonal plants are recur-
rent in this environment (Alves, 1994; Silveira et al., 2016).
This strategy of persistence through long-lived individuals is
markedly different from that of annual plants, which depend on
seedling survival and/or formation of a seed bank for persis-
tence and therefore delay germination, which reduces risk
(Venable, 2007).

Seeds must remain viable for dormancy to be adaptive, other-
wise they may die before germination occurs (Donohue et al.,
2010). Our results indicate that many species produce seeds
with low viability at the time of dispersal. Although some typi-
cal campo rupestre species maintain their viability for more
than 1 year (Munné-Bosch et al., 2011; Cheib and Garcia,
2012; Garcia et al., 2012, 2014), some agents of mortality, such
as predators, can effectively reduce seed set. Future studies
should focus on quantifying seed mortality and identifying its
various sources to allow more general conclusions on seed per-
sistence in the soil (Long et al., 2015).

Phylogeny correlates with dormancy categories

All analyses consistently indicated a strong phylogenetic sig-
nal in seed dormancy, indicating that closely related species are
more similar regarding D category than expected by chance.
Additionally, skewness of D diversity towards the root in the
phylogenetic tree shows that the rate of dormancy evolution
was high in the past, during the major species divergences in
angiosperms, and suggests a stable evolution of dormancy in re-
cent lineages. This trait conservatism may be at least partly ex-
plained by campo rupestre’s history of recent speciation
(Bitencourt and Rapini, 2013) and by its geographically struc-
tured speciation (Alves and Kolbek, 1994). Furthermore, in par-
ticular, transitions from ND to other D states have been
considered to be uncommon throughout the evolutionary his-
tory of flowering plants, suggesting that ND is a derived state
unlikely to be changed, although some such changes have oc-
curred (Willis et al., 2014).

Since seed dormancy occurrence was not correlated to any of
the life-history traits analysed here, phylogeny alone was its
best predictor. In Melastomataceae, however, seed dormancy is
a very labile trait, known to be influenced by life-history factors
(Silveira et al., 2012). Therefore, although phylogenetic con-
straints probably prevent multiple evolution of seed dormancy
in the vast majority of clades, some families, such as
Melastomataceae, may evolve under more relaxed constraints.

Finally, we acknowledge that our database of campo rupestre
seeds may be biased towards certain clades, thus limiting the
extent of our conclusions on the evolution of seed dormancy.
Nevertheless, biased samples are the case in all biodiversity
studies (Hortal et al., 2015), including those that consider seed
biology (Baskin and Baskin 2014). In addition, our database
comprises several species in eight of the ten most species-rich
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FIG. 4. Average percentages of embryoless, non-viable, non-dormant and dor-
mant seeds of campo rupestre species groups per family. Families are ranked by
total percentage of non-germinable seeds (embryoless plus non-viable). Total
percentage of viable seeds is the sum of the percentages of dormant and non-
dormant seeds. Numbers in parentheses on the right side of the bars indicate

numbers of sampled populations (n).
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families of campo rupestre and in eight of its nine most
species-rich genera (Silveira et al., 2016). Poaceae and
Cyperaceae are especially abundant in campo rupestre, and
therefore they may be underrepresented in our database.
However, these two families exhibited extremely low seed via-
bility, indicating that most of their species probably do not rely
on seeds as a means of reproductive assurance (Le Stradic
et al., 2015). Thus, despite the limited size of the database, we
are confident that it is representative of the campo rupestre
vegetation.

The potential for regeneration from seeds

Seeds of taxa from campo rupestre showed diverse percent-
ages of embryo presence and viability. At least half of the seeds
produced by 46 % of the populations were embryoless and/or
non-viable, thus indicating a very low potential for regeneration
from seeds. Given that the soil of campo rupestre is one of the
most P-deficient soils in the world (Oliveira et al., 2015), this
result is in line with the hypothesis that P limitation is associ-
ated with low investment in sexual reproduction (Fujita et al.,
2014). Other possible causes of the low levels of seed viability
are inbreeding depression (Lamont and Wiens, 2003; Montoro
and Santos, 2007; Holmes et al., 2008; Vos et al., 2012), since
many campo rupestre species are locally rare (Silveira et al.,
2016). In addition, the percentage of embryoless and non-viable
seeds had a strong phylogenetic signal, indicating that geo-
logical–climatic historical factors also play a role in determin-
ing seed quality. Further studies are necessary to determine
whether sexual versus asexual reproductive systems provide ev-
idence for trade-offs that influence recruitment success in
nutrient-impoverished environments (Vico et al., 2016).

The highly diverse patterns of seed viability across taxa also
point to a great challenge in relying on seeds to preserve biodi-
versity of campo rupestre. The overall mean of 41 % of
embryoless and non-viable seeds indicates that it will be chal-
lenging to obtain the amount of seeds necessary for the effec-
tive use of native species in landscape-scale restoration (Merritt
and Dixon, 2011). To date, many restoration techniques have
been inefficient in restoring plant communities of campo
rupestre (Matias et al., 2009; Le Stradic et al., 2014a, b), and
low seed viability is the best explanation for these failures (Le
Stradic et al., 2014a). In this regard, our data show that phylog-
eny plays an important role in determining seed viability per-
centages, providing a useful tool for species selection and
devising new approaches for seed-based restoration techniques.

Future scenario

There is a clear predominance of stress-tolerant strategies in
campo rupestre plant communities (Negreiros et al., 2014),
which may confer unusually high resistance of the species to
climate change (Harrison et al., 2015). Nevertheless, we still
cannot entirely appreciate the effects of climate change on this
vegetation type, since there is a huge knowledge gap regarding
plant regeneration. Since phylogeny seems to be the main
driver of regeneration strategy, our results suggest that phyloge-
netic inertia determines the ability of seeds of most species to
respond physiologically to specific environmental cues. The

phylogenetic approach may therefore be useful to improve our
ability to predict germination patterns across community and
neglected clades (Ribeiro et al., 2016). This is important since
the speed of climate change and the rate of habitat destruction
are much higher than our ability to generate scientific data on
the seed biology of native species, and effective conservation
strategies are therefore necessary. However, investigations of
germination timing in the field and seedling growth and sur-
vival under both present and future conditions also are neces-
sary to better understand plant recruitment from seeds in the
campo rupestre.

Altogether, our study provides support for the view that
long-term climatic buffering and geological stability, along
with soil infertility, are associated with a markedly low invest-
ment in regeneration from seeds (Hopper et al., 2016; Silveira
et al., 2016). This view, however, raises the question of how
plants adapted to long-term stability will respond to a fast-
changing environment. Models of future climate scenarios have
predicted large losses of environmentally suitable areas for
campo rupestre until the 2080s, regardless of other existing an-
thropic impacts (Bitencourt et al., 2016). The high percentage
of non-germinable seeds reported here, combined with the lack
of specialized seed dispersal mechanisms in campo rupestre
(Silveira et al., 2016), suggests that these species are not likely
to migrate to suitable sites in the face of climate change.
Therefore, persistence of the plant communities in current areas
and ex situ conservation strategies are of utmost importance in
avoiding loss of biodiversity and associated ecosystem services.

SUPPLEMENTARY DATA

Supplementary data are available online at www.aob.oxfordjour
nals.org and consist of the following. Appendix S1: key words
used for search in three academic search engines. Appendix S2:
germination experiments and viability assessments. Table S1:
list of species and information concerning the collection date,
locations of the studied species, number of sampled individuals
and replicates used in germination and viability trials.
Appendix S3: details of the resolution of polytomies and deter-
mination of node ages of the phylogenetic tree with 168 species
from campos rupestres, southeastern Brazil. Table S2: esti-
mated age of nodes numbered in Figure S1. Figure S1: phyloge-
netic tree with the 168 species from campos rupestres,
southeastern Brazil. Appendix S4: Table S3: mean percentage
of embryoless, non-viable, non-dormant and dormant seeds for
26 species of campo rupestre. Appendix S5: Table S4: dor-
mancy or non-dormancy in seeds in 176 populations from
campo rupestre. Appendix S6: Table S5: comparison of dor-
mancy and non-dormancy absolute frequencies between differ-
ent vegetation zones. Appendix S7: Figure S2: phylogenetic
tree assembled for the campo rupestre species with quantitative
data.
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