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The term “lipid” is used to identify a large set of hydro-
phobic and amphiphilic molecules such as free fatty acids, 
sterols, fatty acid esters, and phospholipids. These mole-
cules are involved in forming fundamental structures in 
cells and tissues, providing energy for the metabolic needs 
of organisms, and regulating several homeostatic processes 
within and outside of cells, including organelle homeosta-
sis, immune function, inter-organ communication, energy 
metabolism, and cell survival. However, when the balance 
in their metabolism and composition is altered by environ-
mental or metabolic stress, lifestyle, and genetic or epigen-
etic factors, lipids can also become critical components of 
pathophysiological cascades that are detrimental to healthy 
cell and tissue function. Hence, although lipids play funda-
mental physiological roles, in excess or in improper com-
position, they can be highly damaging, leading to organelle 
dysfunction, cell death, chronic inflammation, and distur-
bances in energy and substrate metabolism and survival 
responses. In this review, we primarily focus on the roles of 
lipid classes that regulate immune responses and signaling 
mechanisms, which perpetuate a vicious cycle of metabolic 
and inflammatory disturbances leading to disease.

Abstract  Lipids encompass a wide variety of molecules 
such as fatty acids, sterols, phospholipids, and triglycerides. 
These molecules represent a highly efficient energy resource 
and can act as structural elements of membranes or as signal-
ing molecules that regulate metabolic homeostasis through 
many mechanisms. Cells possess an integrated set of re-
sponse systems to adapt to stresses such as those imposed by 
nutrient fluctuations during feeding-fasting cycles. While lip-
ids are pivotal for these homeostatic processes, they can also 
contribute to detrimental metabolic outcomes. When meta-
bolic stress becomes chronic and adaptive mechanisms are 
overwhelmed, as occurs during prolonged nutrient excess or 
obesity, lipid influx can exceed the adipose tissue storage 
capacity and result in accumulation of harmful lipid species 
at ectopic sites such as liver and muscle. As lipid metabolism 
and immune responses are highly integrated, accumulation 
of harmful lipids or generation of signaling intermediates 
can interfere with immune regulation in multiple tissues, 
causing a vicious cycle of immune-metabolic dysregulation.  
In this review, we summarize the role of lipotoxicity in 
metaflammation at the molecular and tissue level, describe 
the significance of anti-inflammatory lipids in metabolic  
homeostasis, and discuss the potential of therapeutic ap-
proaches targeting pathways at the intersection of lipid me-
tabolism and immune function.—Erikci Ertunc, M., and  
G. S. Hotamisligil. Lipid signaling and lipotoxicity in metaflam-
mation: indications for metabolic disease pathogenesis and 
treatment. J. Lipid Res. 2016. 57: 2099–2114.
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regulator, inositol-requiring protein 1 (IRE1), via nitro-
sylation (18) represents one example of the indirect im-
pact of lipotoxicity on chronic inflammatory processes.

Beyond the alteration of organelle function, lipotoxicity 
can also influence metaflammation and hormone action 
via direct effects on intracellular signaling pathways. For 
example, palmitate exposure is implicated in synthesis of 
diacylglycerols (DAGs) (19), which can activate novel pro-
tein kinase C (PKC) isoforms (20) (Fig. 1) such as PKC- 
and PKC-, which have been linked to T cell activation and 
LPS responses (21, 22) as well as insulin action and metabolic 
responses (23). While the exact mechanisms underlying 
these signaling events and the lipid species that engage 
PKCs remains under debate (23, 24), there is strong evi-
dence supporting the involvement of PKCs in both meta-
bolic and inflammatory responses that are relevant to 
obesity and type 2 diabetes. Palmitate accumulation also 
leads to ceramide biosynthesis, which can activate inflam-
matory pathways and inhibit insulin action (Fig. 1). Ceramides 
inhibit Akt-mediated insulin signaling as well as mitochon-
drial fatty acid oxidation by disrupting mitochondrial elec-
tron transport (25–28). Furthermore, inhibition of ceramide 
synthesis via myriocin treatment improves glucose and en-
ergy metabolism via recovery of insulin signaling in liver 
and muscle (29). Interestingly, toll-like receptor 4 (TLR4) 
signaling can also lead to increased expression of ceramide 
biosynthetic enzymes (30), suggesting the importance of 
this pathway in mediating metaflammation and insulin 
resistance and the reciprocal and highly integrated opera-
tion of lipid and immune signaling pathways (Fig. 1).

Finally, lipids can influence cell fate and function by en-
gaging receptors on the cell surface or stress kinases within 
the cytoplasm. Fatty acids such as palmitate can directly acti-
vate inflammatory pathways by increasing TLR4 signaling 
(31) and by stimulating signaling molecules such as PKR (10) 
(Fig. 1). In response to harmful lipids such as palmitate and 
oxidized cholesterol, PKR can activate JNK, leading to en-
gagement of downstream transcription factor activator 
protein 1 (AP-1) and expression of genes that mediate in-
flammation and apoptosis and promote inflammasome 
activity (32–34). It is unlikely that a single receptor or mo-
lecular event underlies these lipotoxic responses; however, it 
is possible to envision common signaling intermediates 
that mediate the vast array of downstream biological out-
comes of lipotoxicity. One such potential mechanism in-
volves upregulation of small nucleolar RNAs (snoRNAs) in 
the cytoplasm (35). Interestingly, PKR is the only kinase that 
also has direct double stranded RNA binding activity, and 
snoRNAs are enriched in PKR immunoprecipitates after 
palmitate treatment, suggesting that palmitate sensing by 
PKR may involve direct binding of snoRNAs to PKR for 
its activation in the metabolic disease context (36). How 
snoRNAs are involved in signaling lipotoxicity at the mo-
lecular level is yet unclear, but cells with impaired ability to 
produce snoRNAs are resistant to lipotoxicity-induced ER 
stress and death (37), indicating the potential of snoRNAs 
serving as mediators of broad lipotoxic responses. This is one 
of the most interesting emerging areas of research related to 
mechanisms of lipotoxicity and metabolic regulation.

LIPID-ASSOCIATED METAFLAMMATION

Lipotoxicity, generally defined as an increased concen-
tration of harmful lipids, impairs cellular homeostasis and 
disrupts tissue function. This is a vast area of study that 
encompasses many fundamental processes in the cell and 
involves multiple mechanistic models. Here, we will focus 
mainly on lipotoxicity as it relates to the integration of meta-
bolic and immune responses, which is critical for health 
and also plays a role in metabolic diseases (1). Chronic low-
grade metabolic inflammation, termed “metaflammation,” 
is considered one of the hallmarks of metabolic diseases 
such as obesity and diabetes, and it occurs in several meta-
bolic tissues, including adipose tissue, liver, muscle, brain, 
and gut. Among other potential mechanisms, it is now 
well-established that immunometabolic pathways are highly 
responsive to lipids and linked to lipotoxicity (1). Just as 
lipotoxicity gives rise to metaflammation, alterations in 
lipid metabolism and signaling can also converge on com-
mon immune and stress responses (2), thus creating vicious 
pathological cycles that contribute to many diseases.

Perturbations in fatty acid and cholesterol fluxes lead to 
higher representation of harmful lipid classes in cells and 
in the circulation, especially saturated fatty acids and oxi-
dized cholesterol (Fig. 1). These species have been studied 
extensively for their effects on cellular function, including 
inflammatory responses and organ performance. For ex-
ample, the saturated fatty acid, palmitate, can be imported 
into cells via fatty acid transport protein 1 (FATP1), and 
overexpression of FATP1 in the heart leads to lipotoxicity-
mediated cardiomyopathy (3). Forced exposure to fatty 
acids can also be a driver for pathologies at other sites or in 
other metabolic diseases, and the discussion below is pre-
dominantly framed in this context.

The mechanisms underlying the harmful effects of ex-
cess lipid flux are related in part to the impact of lipids on 
the biophysical properties of cellular organelles. For ex-
ample, the endoplasmic reticulum (ER), which is one of 
the major hubs for lipid biosynthesis and esterification, is a 
critical organelle mediating both metabolic and inflamma-
tory adaptive responses to proteotoxic, nutritional, and 
energy-related stresses. In the setting of chronic nutrient 
stress, lipid synthesis is dysregulated in the ER, leading to 
changes in phospholipid composition of the ER mem-
brane. These changes cause disruption of calcium signal-
ing, prolonged ER stress, and decreased translation of 
ER-associated proteins (4, 5). Similarly, saturated fatty ac-
ids and cholesterol loading increase ER stress and associ-
ated cell death (6–9). ER stress responses also intersect 
with inflammatory pathways via activation of numerous in-
flammatory kinases, such as JNK, protein kinase R (PKR), 
and IKK (10, 11), and activation of inflammatory mediators 
and the inflammasome (Fig. 1). The adaptive responses of 
the ER and the unfolded protein response exhibit a pecu-
liar pattern of defects in obesity and diabetes, in the con-
text of chronic inflammation. This is evident in both type 1 
and type 2 diabetes (10, 12–17). For instance, ER stress 
propagation via increased induced nitric oxide synthase 
(iNOS) activity and subsequent inactivation of the key ER 
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their use can be coupled to cellular metabolism and signal-
ing (43). During times of excess nutrient availability, LDs 
act as a depot for excess fatty acids and cholesterol that are 
otherwise harmful to the cells (43). In higher organisms, 
this can occur in all cells, but the most dramatic example is 
the adipose tissue, a specialized organ for lipid deposition. 
In the setting of increased metabolic demand, adipocytes 
hydrolyze neutralized lipids in LDs through lipolysis, liber-
ating fatty acids for use in other tissues, feeding mitochon-
drial fatty acid oxidation pathways, and creating metabolic 
intermediates that serve as substrates or signaling molecules 
(24). The proper functioning of this rheostat is necessary 
to keep all other metabolic organs in check. In the pres-
ence of excess nutrients and energy, or in obesity, the ca-
pacity of adipose tissue can be overwhelmed, causing stress, 
injury, and abnormalities in function. For example, insulin 
resistance under these conditions leads to higher levels  
of basal lipolysis and a decreased capacity to synthesize 
and esterify fatty acids for storage or neutralization via 

LIPOTOXICITY-ASSOCIATED INFLAMMATION IN 
METABOLIC TISSUES

Continuous cycles of nutritional exposures and chang-
ing environmental factors require integrated metabolic, 
stress, and immune responses in many critical organs. Un-
der chronic energy and substrate excess, metabolic stress 
is unresolved, yielding maladaptive outcomes, such as un-
resolved inflammation, impaired hormone action, lipid 
accumulation, and loss of function. Here, we will not dis-
cuss specific conditions such as insulin resistance, fatty 
liver disease, and cardiovascular pathologies, which are 
covered in detail in excellent recent reviews (2, 19, 38–42), 
beyond specific examples relevant to metaflammation in a 
few representative sites (Fig. 2).

Adipose tissue
Fatty acids are esterified and compartmentalized in dy-

namic organelles called lipid droplets (LDs), such that 

Fig.  1.  Coupling of toxic and pro-inflammatory lipids and innate immune response. Accumulation of toxic lipid classes causes deterioration 
of metabolic regulation, and the effects of such lipids converge on inflammatory and stress pathways. Saturated fatty acids such as palmitate 
have been extensively studied for their effects in increasing inflammation and inhibiting insulin action. Palmitate is taken up by the cells via 
FATPs, and is involved in upregulation of cytosolic snoRNAs, which are implicated in ER stress. PKR is a potential kinase that links palmitate-
mediated snoRNA upregulation to ER stress induction. PKR also activates inflammasomes and JNK, and promotes AP-1-mediated inflamma-
tory gene expression. Lipotoxicity can also lead to ROS production from mitochondria, which is linked to inflammasome activation. Palmitate 
directly contributes to the synthesis of DAGs and ceramides. DAGs activate stress kinases, PKCs, and the NFB pathway; ceramides activate JNK 
signaling; and both DAGs and ceramides cause insulin resistance via inhibition of IRS1 and AKT, respectively, downstream of insulin receptor 
(IR). Palmitate can also activate TLR4 signaling, which leads to activation of inflammasomes and induction of inflammatory gene transcrip-
tion factors interferon regulatory factor (IRF), NFB, and AP-1. Cholesterol is taken up by the cells via scavenger receptors (e.g., CD36). Ac-
cumulation of oxidized cholesterol or cholesterol crystals also leads to induction of TLR4, PKR, and stress kinase (JNK and p38) signaling or 
inflammasome activation and pro-inflammatory gene expression, which are central players in atherosclerosis progression.
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mechanisms and specific mediators in this context are not 
fully understood, and are an area of great interest.

Studies of mouse models of obesity have demonstrated 
that the lipotoxic milieu of adipose tissue promotes drastic 
changes in the resident immune cell profile and function. 
Specifically, adipose tissue is infiltrated by macrophages, 
which shift from an anti-inflammatory profile (also re-
ferred to as M2-like polarized) to a pro-inflammatory (also 
known as M1-like polarized) phenotype, and several im-
mune cell types are implicated in adipose tissue dysfunc-
tion, such as B and T lymphocytes, neutrophils, eosinophils, 
mast cells, and NK cells (64). As explained above, palmi-
tate, ceramide, and DAGs are broadly-studied lipid media-
tors that lead to activation of immune cells (Fig. 1), further 
suggesting a lipotoxic inflammatory connection in adipose 
tissue. Apart from direct activation of sensors and stress ki-
nases, lipids can also act as antigens that are presented to 
immune cells by CD1d. Recently, CD1d-positive adipocytes 
have been implicated in lipid-derived antigen presentation 
to a subclass of natural killer T (NKT) cells called invariant 
NKT (iNKT) cells (65). However, the role of specific iNKT 
cells in regulation of adipose tissue inflammation has been 
a subject of debate, with some studies suggesting a benefi-
cial effect of iNKT cells (65, 66) and others implicating 
iNKT cells in skewing the adipose phenotype to a more in-
flammatory and dysfunctional state (67). The identity of 
lipid molecules that are subject to antigen presentation 
and how they mount an inflammatory cascade is an excit-
ing and understudied area and may provide clarity on the 
role of this particular mechanism on adipose tissue and sys-
temic metabolism. Overall, these findings indicate that lip-
ids can directly or indirectly modulate both innate and 
acquired immune responses due to close interactions be-
tween these systems, with implications for systemic meta-
bolic homeostasis.

downregulation of synthetic machinery (44–47). This dys-
functional state contributes to systemic lipotoxicity, as re-
leased or absorbed excess dietary fatty acids move into 
circulation and are deposited into organs that are not well-
equipped to store lipids (Fig. 2). The purpose of esterifica-
tion is to prevent harmful effects of fatty acids by forming a 
neutral pool (48), and accordingly, increasing the storage 
capacity of LDs in adipocytes and macrophages by driving 
synthesis can protect against diabetes and insulin resistance 
(49–51). However, above a certain threshold, the accumu-
lation of such lipids induces stress and metaflammation, 
mediated by several stress kinases, such as PKC, JNK, and 
PKR, molecular sensors or receptors, such as TLRs, and sig-
naling proteins, such as cyclic AMP-responsive element-
binding protein 3-like protein 3 (CREBH) and SOCS 
proteins (10, 31, 52–57). In addition, obesity leads to a lo-
cal lipotoxic environment through dysregulated release of 
fatty acids, leading to alteration of the secretory output and 
an immune phenotype of adipose tissue characterized by 
increased release of cytokines, such as TNF and MCP-1, 
decreased secretion of anti-inflammatory adipokines, such 
as adiponectin, and recruitment of inflammatory macro-
phages, T-cells, and other immune effectors (38). Recipro-
cally, pro-inflammatory cytokines such as TNF regulate 
lipid metabolism in adipocytes via increasing lipolysis (58), 
which continuously exposes the organs to fatty acids. In-
creased lipolysis from adipose tissue is also linked to secretion 
of the adipokine, aP2 (FABP4) (59, 60), which is an impor-
tant mediator of immunometabolic responses locally at the 
adipose tissue, and links the lipolytic state to glucose me-
tabolism in the liver and elsewhere (61–63). Overall, while 
adipocytes are the specialized site for neutralizing fatty 
acids, this capacity is not infinite and these cells are not 
impervious to excess lipid accumulation, which drives in-
flammatory responses locally and at distant tissues. The 

Fig.  2.  Integrated organ pathology resulting from 
lipotoxicity and metabolic inflammation. White adi-
pose tissue is the designated lipid storage depot of 
higher organisms. In the presence of prolonged nutri-
ent excess or metabolic disturbances, the storage ca-
pacity of white adipose tissue is exhausted, leading to 
ectopic deposition of lipids and lipotoxicity in several 
organs, such as muscle, liver, pancreas, and heart, as 
depicted and explained in detail in the text. Because 
the lipid homeostatic pathways converge with stress 
and immune responses, such responses in affected tis-
sue systems are activated by harmful lipid species. The 
outcomes of lipotoxicity differ in the various target tis-
sues, for example NASH in liver, cardiac failure in the 
heart, altered feeding behavior and appetite due to li-
potoxicity in brain, degenerative changes in muscle 
and BAT, etc. Furthermore, lipotoxicity leads to sus-
tained and unresolved inflammation, organelle dys-
function and stress, which can lead to a vicious cycle of 
metabolic deterioration.
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action (86). Interestingly, this study also showed that re-
sidual adipose tissue inflammation and insulin resistance 
persists for extended periods of time despite weight loss at 
this site (86).

One emerging aspect of hepatic lipotoxicity is free cho-
lesterol accumulation due to disturbances in cholesterol 
homeostasis and transport (87–89), which has been under-
appreciated until recently in liver metabolic dysfunction. 
This phenomenon is supported by association studies in 
humans demonstrating dysregulation of cholesterol me-
tabolism genes and free cholesterol levels with NAFLD 
(90). Excess free cholesterol causes damage in liver through 
JNK-1- and TLR4-dependent mechanisms (91). Choles-
terol loading of mitochondria in liver is also argued to con-
tribute to TNF-mediated steatohepatitis (92). Additionally, 
Kupffer cells, the liver resident macrophages, have been 
shown to form crown-like structures around dying hepato-
cytes and accumulate cholesterol in NASH (93). However, 
whether lipogenesis or inflammation constitute the initiat-
ing events in NASH and are causal to pathology has been 
the subject of much debate. While the value of such debate 
itself could be debated, time course analysis of inflamma-
tory and lipogenic changes in mouse models of hepatoste-
atosis (94) and inhibition of steatosis by liver macrophage 
depletion (75) suggest that inflammatory events occur very 
early in the course of disease. In agreement with this, re-
cent studies examining arginase 2-deficient (Arg2/) 
mice suggest that inflammation can lead to de novo he-
patic lipogenesis (95). Arg2/ mice develop spontaneous 
steatosis with inflammation and increased lipogenic gene 
expression. Depletion of liver macrophages leads to de-
creased LD accumulation in the liver, suggesting that in-
flammation may precede lipid accumulation (96). Other 
studies have suggested that this may not be the case and 
even concluded that inflammation may not be a major 
player in this context due to lack of inflammatory connec-
tions to liver insulin resistance in the respective mouse 
models studied (97–99). The likely scenario is that lipogen-
esis and inflammatory responses cannot be separated in 
real life, they regulate each other, both contribute to ab-
normal liver metabolism and disease, and both are part of 
a regulatory as well as maladaptive cycle (2). For example, 
high-fat diet feeding exacerbates inflammation and liver 
injury in Arg2/ mice, suggesting a further contribution 
of lipotoxicity in forming a futile cycle. Also, adipose-
derived acetyl-CoA has been shown to accumulate in the liver 
in the setting of insulin resistance, and this is linked to ab-
errant hepatic glucose production (100). In this case, the 
effect of acetyl-CoA was dependent on IL-6 action, as neutral-
ization of this cytokine reversed the disease phenotype dem-
onstrating yet another example of inflammatory pathways 
interacting with lipids. Many other examples exist in litera-
ture and are reviewed elsewhere (2, 101).

In discussing tissue lipid accumulation, it is important to 
note that LD formation in hepatocytes may also be an 
adaptive response in the liver as it is in adipose tissue, and 
to a certain tolerable threshold and composition, may rep-
resent a way to preserve the function of the hepatocytes. 
Consistent with this, hepatic LD formation should not be 

Compared with white adipose tissue, there is much less 
information on the lipotoxic events in the brown adipose 
tissue (BAT), which has a lower storage but higher turnover 
capacity. BAT is best known for its function in nonshivering 
thermogenesis and energy expenditure. At cold tempera-
tures, BAT increases fatty acid uptake and fatty acid oxidation 
to keep up with thermogenic needs. Recently, a surprisingly 
large capacity for postprandial lipid uptake via triglyceride-
rich proteins was demonstrated in BAT, suggesting another 
layer of metabolic regulation in BAT function that can lead 
to intracellular stress and intermediary products that would 
require a strong defense mechanism (68). Indeed, it is 
known that in dietary and genetic models of metabolic dis-
ease such as ob/ob mice, BAT becomes a white adipose-like 
tissue due to increased triglyceride accumulation, leading 
to inflammation and dysfunction (69, 70) (Fig. 2). The 
mechanisms that are in place to preserve the functional in-
tegrity of BAT and defend against inflammation and stress 
and how these relate to pathophysiology of metabolic dis-
ease are critical but incompletely answered questions and 
open to further research.

Liver
The liver is one of the most highly explored organs in 

the context of lipotoxicity. Because nonalcoholic fatty liver 
disease (NAFLD) is highly prevalent, and is closely associ-
ated with a cluster of metabolic diseases such as obesity, 
insulin resistance, and diabetes, understanding hepatic li-
potoxicity is of paramount importance. A subclassification 
of NAFLD is nonalcoholic steatohepatitis (NASH), which is 
characterized by the presence of inflammatory cells in liver 
histology. NASH progression is mediated by interplay be-
tween lipid-mediated toxicity and inflammatory responses 
leading to liver injury (71) (Fig. 2). The signaling events in 
this process involve DAGs and ceramide (72, 73), which are 
discussed above for their significance in inflammatory sig-
naling. Numerous studies have also demonstrated the im-
portance of inflammatory responses in hepatic lipotoxicity 
associated with local or systemic TNF and IL-1 exposure 
(74, 75) or as a result of dysbiosis (76–78). In liver, the ER 
is a pivotal node at the crossroads of inflammation and 
lipid metabolism. ER dysfunction may contribute to meta-
bolic dysregulation of liver through iNOS-mediated tyro-
sine nitrosylation of IRE1 (18) or engaging inflammatory 
signaling cascades (10, 79, 80) and the inflammasome 
(81). Similarly, JNK as well as the  and  isoforms of p38 
are critical mediators of inflammation and metabolic de-
terioration in mouse models of obesity or NASH, highlight-
ing engagement of the stress pathways in lipotoxic 
responses (82–84). In mouse models of fatty liver disease, 
the mitochondria exhibit dysfunctional -oxidation. This 
might be partially due to increased ER-mitochondria con-
nections and associated calcium overload in mitochondria 
in obesity (85). In these contexts, it is unequivocal that in-
flammatory pathways are highly critical to obesity-induced 
metabolic dysfunction, and blocking these can reverse the 
disease. A recent study in mouse models as well as humans 
also showed that weight loss can result in dramatic resolution 
of obesity-induced liver inflammation along with insulin 
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pro-inflammatory cytokines to drive inflammatory cell in-
filtration and exacerbate heart disease (123–125). TLR4 
has been implicated as the mediator of fatty acid-induced 
lipid accumulation and inflammatory responses in the 
heart (126). Similarly, excessive triglyceride accumulation 
in the cardiac muscle was demonstrated to cause exhaus-
tion of mitochondrial capacity via deregulation of PPAR 
signaling involved in oxidative pathways (127, 128) and ac-
cumulation of harmful lipids, such as DAG and ceramides, 
which can activate PKCs and inhibit insulin signaling (129). 
Interestingly, driving triglyceride synthesis via DGAT1 ex-
pression in cardiac tissue renders mice resistant to devel-
oping lipotoxic cardiomyopathy and decreases accumulation 
of DAG and ceramide (130), suggesting an adaptive role 
for increasing lipogenic capacity or altering the profile of 
lipids in cardiomyocytes.

Lipotoxicity-mediated inflammation also drives cardio-
vascular disease pathogenesis in the context of atheroscle-
rosis. Exposure to saturated fatty acids, such as palmitate, 
or modified lipoproteins leads to ER stress in macro-
phages, which drives apoptosis and further promotion of 
inflammation in atherosclerotic plaques (131). Dysregula-
tion of cholesterol fluxes and accumulation of oxidized 
LDL particles in arterial walls leads to inflammatory cell 
recruitment and atherogenic plaques (132). In an attempt 
to limit plaque formation, macrophages take up oxidized 
LDL particles, which causes formation of foam cells that 
secrete inflammatory cytokines and leads to a futile cycle 
of inflammation and formation of more foam cells. Cho-
lesterol crystals are also indicators of progressed athero-
sclerotic plaques, and can activate the inflammasome in 
macrophages in the context of atherosclerosis (133) (Fig. 
1). The role of cholesterol and inflammation in cardiovas-
cular disease is extensively reviewed elsewhere (132, 134, 
135) and will not be covered further here. It is however 
important to note that diabetes is a central risk factor for 
cardiovascular disease and our current understanding of 
how diabetes drives myocardial perturbations is insuffi-
cient. Further study on diabetes-associated changes in 
heart and the significance of cardiovascular lipotoxicity 
and inflammation may help to determine alternative and 
novel clinical approaches to cardiovascular disease.

Other organs
As has been reviewed elsewhere (136–138), lipotoxicity 

plays an important role in islet dysfunction in obesity. Al-
though fatty acids regulate insulin secretion from islets at 
different levels, such as vesicle trafficking and calcium in-
flux via their metabolites (139), chronic elevation of such 
lipids leads to -cell failure together with inflammatory eti-
ology (140). Human data suggest that type 2 diabetic pa-
tients have increased IL-1 expression and macrophage 
recruitment in their islets (140–142). It has also been pro-
posed that -cell failure in type 2 diabetes has an inflamma-
tory component that is promoted by lipotoxicity (Fig. 2) 
(143). Moreover, in a study in which mice were infused 
with ethyl palmitate in order to elevate circulating palmi-
tate levels, glucose-stimulated insulin secretion was defec-
tive in a TLR4/MyD88-dependent manner (144). Palmitate 

expected to be, and in fact is not, uniformly associated with 
adverse metabolic outcomes (102–104).

Skeletal muscle and heart
High levels of circulating fatty acids and triglycerides 

are associated with muscle insulin resistance in mice and 
humans (105–107). In both experimental models and in 
obese and diabetic individuals, there is increased TNF 
expression and accumulation of inflammatory cells in the 
muscle tissue (Fig. 2), which can, at least in part, be res-
cued by exercise (108, 109). In addition, adipocytes can 
accumulate in the muscle tissue, providing an opportunity 
for paracrine communication (110). Chronic exposure to 
a high concentration of saturated fatty acids leads to inhi-
bition of insulin receptor signaling through inhibition of 
IRS-1 via decreased tyrosine phosphorylation in muscle 
cells (107, 111, 112). Saturated fatty acids also engage sev-
eral stress and inflammatory signaling molecules, such as 
PKC, JNK, ERK, STAT3, and iNOS, and increase IL-6, 
TNF, and IL-1 expression, which, in turn, impact me-
tabolism (113, 114). DAG and long-chain acyl-CoAs have 
been implicated as the culprits in muscle lipotoxicity be-
cause they activate stress kinases such as PKC that contrib-
ute to insulin resistance (111, 115, 116). Chronic metabolic 
stress leads to mitochondrial dysfunction, and lipid accu-
mulation is suggested to occur due to defective mitochon-
drial -oxidation (117). However, this notion has been 
challenged by studies in which lipid trafficking into mito-
chondria is perturbed by knocking out malonyl-CoA de-
carboxylase (MCD) (118). Mice lacking MCD are resistant 
to developing diet-induced glucose intolerance, although 
they have increased intramuscular lipid accumulation. 
These data led to the proposal that the problem of mito-
chondrial dysfunction in this context may in fact be in-
creased, yet maladaptive, -oxidation, such that a blockade 
in the TCA cycle and consecutive accumulation of acyl-
CoAs and acylcarnitines in the mitochondria would result 
in insulin resistance (118). Regardless, impaired mito-
chondrial function can also promote chronic inflammatory 
responses through many mechanisms, including genera-
tion of excess reactive oxygen species (ROS) and activa-
tion of the inflammasome (119, 120) (Fig. 1). Overall, 
lipid-mediated changes during insulin resistance in muscle 
converge with immune pathways and directly or indirectly 
regulate inflammatory signaling. An intriguing excep-
tion where excess lipid accumulation in muscle does not 
correlate with metabolic deterioration occurs in athletes, 
suggesting active adaptive mechanisms including robust mi-
tochondrial -oxidation (121). In depth understanding of 
such adaptive mechanisms could help identify targets for 
alleviating metabolic pathologies.

The heart has a robust capacity to utilize fatty acids  
for metabolic and functional demands (39). However, a 
prolonged increase in circulating fatty acids and triglycer-
ides and accumulation of pericardial adipose tissue can 
trigger inflammatory signaling in the heart and cause  
cardiac dysfunction in metabolic disease that features mi-
tochondrial dysfunction and increased ROS and NFB  
activity (Fig. 2) (122). Epicardial fat can also secrete 
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(160, 161). Hence, both through its endocrine impact on 
systemic metabolism and by hosting the microbiota, the 
gut is a critical determinant of metabolic and organismal 
health. Future research in this area is also exciting and 
promising in understanding the systemic impact of lipids 
and their interactions with the immune and other response 
systems.

BIOACTIVE LIPIDS AND REGULATION OF 
INFLAMMATION

In recent years, emerging studies have offered a new un-
derstanding of lipid function as soluble signals (lipokines) 
regulating biological processes outside cells (Fig. 3). Inter-
estingly, several classes of these have been shown to be im-
portant for resolution of inflammation. One such lipokine 
with a significant role in metabolic regulation is the fatty 
acid C16:1n7-palmitoleate (162). When synthesis of palmi-
toleate is increased as a result of adipose tissue-specific up-
regulation of de novo lipogenesis, its levels in circulation 
rise, resulting in suppression of inflammation and liver lipo-
genesis and stimulation of muscle glucose uptake (162–164). 
Furthermore, palmitoleate generation in macrophages al-
leviates lipotoxicity-induced ER stress and cell death and, 
consequently, progression of atherosclerosis (131). An-
other endogenously produced lipid family with potentially 
vast metabolic actions includes the fatty acid hydroxy fatty 
acids (FAHFAs), which were identified in adipose tissue 
and the circulation of mice in which adipose tissue de novo 
lipogenesis was also experimentally increased (165). A sub-
class of these lipids, called palmitic acid hydroxy stearic ac-
ids, has been implicated in mitigation of adipose tissue 
inflammation and exert anti-diabetic and insulin-sensitizing 
activities in mice, showing FAHFAs as another bioactive 
lipid signal that controls immunometabolic aspects of 
diabetes.

The -3 fatty acids, which can be acquired via the diet, 
have also been shown to inhibit metabolic inflammation 
and alleviate insulin resistance (166). Specifically, -3 fatty 
acids stimulate a lipid sensor, G protein-coupled receptor 
120 (GPR120), and inhibit TNF and TLR4-mediated in-
flammation. Treatment of mice with -3 decreases adipose 
tissue inflammation and improves insulin sensitivity (166). 
Discovery of a dysfunctional variant of GPR120 in humans 
that is associated with obesity and insulin resistance also 
strengthened the hypothesis that GPR120 signaling is a vi-
able target for metabolic disease treatment and that this 
pathway may involve signaling by endogenous monoun-
saturated fatty acids such as palmitoleate (167). Additional 
beneficial roles are attributed to -3 fatty acids through 
their metabolism into resolvins and protectins (168, 169). 
Defects in the production and action of these molecules 
can impair resolution of inflammation and lead to im-
paired cellular and organismal function (169). Endo-
cannabinoids are a class of monoacylglycerols that are 
well-known for their effect in increasing appetite via  
activating their receptors in the CNS and directly impact-
ing adipose tissue and liver in the periphery to regulate 

elevation also led to macrophage infiltration of the islets. 
These observations laid the groundwork for a new perspec-
tive for lipotoxicity-induced inflammation in islets in type 2 
diabetes. Recent findings also suggest a role for abnormal 
cholesterol metabolism in -cell failure in type 2 diabetes 
patients (145, 146). A role for cholesterol accumulation in 
islet inflammation and -cell dysfunction was shown in 
mice that were deficient in cholesterol transporters ABCA1 
and ABCG1. In this model, excessive accumulation of  
cholesterol led to macrophage recruitment and increased 
IL-1 expression as well as defective glucose-stimulated in-
sulin secretion (147). This intriguing hypothesis that dys-
regulated cholesterol fluxes drive metabolic inflammation 
may have profound translational implications for the utility 
of cholesterol management strategies in -cell preservation 
and diabetes.

Similarly, many of the pathways defined earlier apply to 
the CNS, in that obesity and exposure to excess lipids can 
create chronic inflammation and cause ER stress in the 
brain (148–150) (Fig. 2). In both humans and preclinical 
models, obesity-induced inflammatory changes are evident 
in the brain (151, 152), and hypothalamic ER stress con-
tributes to defective insulin and leptin action (148, 150, 
153). Interestingly, amelioration of ER stress via chemical 
chaperones can reverse some of these effects (153). One 
lipotoxic inducer of hypothalamic ER stress was proposed 
to be ceramide. CNS levels of ceramide are increased in 
obese mouse models, and central administration of these 
lipids leads to weight gain via inhibition of BAT function 
(154). Saturated fatty acids have been shown to increase 
hypothalamic inflammation via TLR4 (149). In contrast, 
increasing fatty acid oxidation in hypothalamic neurons 
can decrease palmitate-induced inflammation and toxicity 
(155). These observations highlight the need for more re-
search to understand the mechanism of lipotoxic inflam-
mation in the CNS leading to metabolic dysregulation.

Finally, nutritional input, for example exposure to a 
high-fat diet, leads to drastic changes in the gut microbi-
ome (Fig. 2), and these alterations contribute to the de-
velopment of metabolic disease. The most compelling 
evidence to support this postulate is that, in mice, fecal 
transplantation from obese to lean experimental groups is 
sufficient to induce weight gain (156). In obese mice, cir-
culating levels of microbial factors such as LPS were found 
to be increased, potentially due to increased gut permea-
bility (Fig. 2) (157). Such factors can engage the TLR 
signaling pathways, which are established mediators of 
metaflammation. A recent study suggested that feeding 
mice a diet that is rich in saturated fatty acids increases LPS 
and other microbial factors in the circulation, and this 
leads to white adipose tissue inflammation through TLR4 
signaling (158). These observations suggest the presence 
of an extra layer of regulation of metaflammation involving 
gut-adipose tissue communication in dietary lipid recogni-
tion. Gut-derived lipid signals such as N-acylphosphatidyl-
ethanolamines (NAPEs), which are produced upon fat 
ingestion, might also impact immunometabolic outcomes. 
For example, NAPEs act in the gut-brain axis to decrease 
food intake (159) and they can also suppress inflammation 
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composition (179, 180). In addition to acting through 
TGR5 to inhibit NFB-mediated inflammation (181), 
bile acids bind to and activate farnesoid X receptor 
(FXR), which is a major regulator of transcription re-
lated to bile acid and cholesterol metabolism (182), and 
FXR activation inhibits inflammation and fibrosis in a 
mouse model of NASH (183).

It is clear that while the field is in its early stages, there is 
tremendous potential in exploring the vast diversity of 
lipids for their specific biology and how signaling and 
structural functions are intertwined. Overall, the discovery 
of lipid species with beneficial or detrimental effects and 
associated pathways involved in immunometabolic func-
tions has already expanded the perspective on lipids that 
were conventionally associated with lipotoxicity, and un-
coupled lipid availability from metabolic dysfunction. 
Identification of these lipids also offers unique opportuni-
ties to exploit them for preventive and therapeutic strate-
gies, especially in the context of chronic immunometabolic 
diseases.

metabolism and inflammatory responses. While activation 
of cannabinoid receptor type 1 (CB1) has undesirable ef-
fects in the context of metabolic disease (170–172), CB2 
signaling can promote anti-inflammatory outcomes (173, 
174) (Fig. 3).

In addition to serving as signaling molecules, an alter-
native mechanism by which lipids regulate metabolism 
and alleviate inflammation is through direct engagement 
of transcription factors (Fig. 3). For example, fatty acyl 
derivatives and eicosanoids are well-known ligands for 
nuclear receptors such as PPARs (175). PPARs, in turn, 
regulate transcription associated with immunological 
and metabolic outcomes, such as fatty acid oxidation, 
lipid biosynthesis, and attenuation of inflammation 
(176–178). Oxysterols are endogenous ligands for liver X 
receptors (LXRs), which are critical in liver and macro-
phage function in the context of metabolic and cardio-
vascular diseases and regulate whole body cholesterol 
metabolism and have anti-inflammatory roles that  
are partially mediated by modulation of ER membrane 

Fig.  3.  Immunometabolic signaling capacity of lipids. The discovery of beneficial roles for specific lipids has changed the perspective on 
metabolic disease from being excessive fat storage disease to dysregulation of fat composition, and suggested the presence of more complex 
regulation of lipid subclasses in maintaining homeostatic signaling. The figure depicts several lipids that have anti-inflammatory signaling 
properties through various distinct mechanisms. For example, lipid ligands bind a variety of nuclear receptors: PPAR ligands are fatty acyl 
derivatives, LXR ligands are oxysterols, and FXR ligands are bile acids, all with ability to activate an anti-inflammatory program. Lipids are 
also involved in cell-to-cell and inter-organ communication. Palmitoleate, FAHFAs, and -3 fatty acids can activate GPR120 signaling leading 
to inhibition of JNK- and IKK-mediated inflammation. FAHFAs and palmitoleate are endogenous lipids identified in mouse models of in-
creased adipose tissue de novo lipogenesis, while -3 fatty acids are acquired from food intake. The -3 fatty acids can further be metabolized 
into resolvins and protectins, which are involved in resolution of inflammation. Bile acids and endocannabinoids bind to their respective 
receptors, TGR5 and CB2, to inhibit inflammation and can impact metabolic homeostasis.
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dysfunction, and death. The most prominent and common 
example of this is the use of cholesterol-lowering drugs, 
such as statins, that can help to decrease the harmful ef-
fects of free cholesterol accumulation in liver and macro-
phages (204, 205). This topic is covered in detail elsewhere 
(134, 206). Anti-inflammatory medications, such as colchi-
cine and methotrexate, have been associated with de-
creased cardiovascular disease (207, 208). Salicylates can 
inhibit the NFB pathway and have been shown to improve 
glucose metabolism and diabetes (209, 210). TNF was 
one of the first inflammatory molecules shown to play a 
role in metabolic disease (211). Targeting this pathway in 
preclinical models proved successful (212–228), although 
comprehensive human studies are lacking, and the exist-
ing limited studies have reported both failures and suc-
cesses in humans (229). The limitations of the human 
studies with existing anti-cytokine reagents were recently 
reviewed in an excellent article (230). There are also excit-
ing, but not yet fully exploited, possibilities by antagonizing 
lipid-sensing pathways, i.e., using TLR4 antagonists (231) 
or PKR inhibitors (232) to alleviate inflammation along 
with other beneficial effects associated with the target func-
tions. In these areas, studies in humans are also highly lim-
ited at the moment. Because lipotoxicity impairs ER 
function and leads to a prolonged unfolded protein re-
sponse, which can engage stress and inflammatory path-
ways, it may also be considered for potential intervention 
strategies. The use of agents that alleviate ER stress, such as 
tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric 
acid, has been tested in metabolic contexts with beneficial 
results on liver and CNS function (153, 233–235). TUDCA 
treatment in experimental models of acute pancreatitis 
and ischemia reperfusion in liver also demonstrated de-
creased JNK activity along with attenuated inflammatory 
responses (236, 237). In obese mice treated with TUDCA 
or 4-phenylbutyric acid, liver JNK activity was decreased 
along with improved insulin sensitivity and glucose metab-
olism (233). Interestingly, TUDCA treatment in humans 
also improved liver and muscle insulin resistance (238) 
warranting further clinical studies (239), some of which 
are currently underway (e.g., NCT01829698, https://www.
clinicaltrials.gov/ct2/show/NCT01829698).

An exciting and emerging translational area relates to 
bioactive lipids, such as palmitoleate, FAHFAs, and -3 
fatty acids that have all been shown to have anti-diabetic 
and anti-inflammatory effects in mouse models of meta-
bolic disease (discussed above). Hence supplementation 
with such molecules or finding agonists that target path-
ways associated with these lipids, such as GPR120 signaling 
(240, 241), could help reduce lipid-induced metaflamma-
tion in a variety of immunometabolic diseases, including 
obesity and diabetes. The -3 fatty acids are further me-
tabolized into resolvins, which are involved in resolution 
of inflammation (169), a persistent process in diabetes. 
Hence resolvin supplementation or targeting pathways of 
resolvin synthesis could help alleviate systemic and local 
adipose tissue inflammation (242) and represent an effec-
tive approach against diabetes. Similar opportunities may 
also arise from exploring the products of gut microbiota 

THERAPEUTIC POTENTIAL OF TARGETING 
INFLAMMATORY LIPIDS IN METAFLAMMATION

Lipid metabolism and immune responses are closely in-
tegrated in multiple tissue systems through conserved path-
ways, perhaps due to once advantageous evolutionary 
adaptations at times of frequent periods of famine and 
high occurrence of infectious disease. In the current era, 
when there is an excess of available nutrients and decreased 
prevalence of infectious disease, excess nutrients can drive 
immune pathways leading to chronic low-level sterile 
metaflammation, making these adaptations disadvanta-
geous remnants of evolution. The accelerated increase in 
the prevalence of obesity and associated diseases calls for 
deeper understanding of the complex makeup of lipid and 
immune responses and their interaction in order to de-
velop therapies targeting each.

The contribution of lipotoxicity, inflammation, and as-
sociated stress responses to metabolic disease involves in-
terplay of several dysregulated pathways that are highly 
integrated and coregulated. Because of this complexity, it 
is challenging to distinguish which phenomena are initiat-
ing and which lie downstream, and how they can be best 
targeted for intervention. For example, insulin resistance 
leads to uncontrolled lipolysis, which is one of the earlier 
events in systemic lipotoxicity; thus insulin-sensitizing ther-
apies such as TZDs can help increase lipid storage in adi-
pose tissue to overcome lipotoxic effects (184, 185). The 
finding that adipose triglyceride lipase (ATGL)-deficient 
mice are insulin sensitive despite triglyceride accumulation 
(186) suggests that lipases can also be targeted for meta-
bolic disease treatment. Fatty acids released by ATGL activ-
ity, however, are also implicated in PPAR activation and 
contribute to cardiac muscle homeostasis (127), and hence 
the prolonged general inhibition of lipolysis might have 
undesirable effects. Further understanding of the lipolytic 
pathway and the details and molecular components of its 
contribution to signaling and metabolism will help deter-
mine if and how lipolysis can be pharmacologically tar-
geted in a more specific and restricted manner toward 
treatment of diabetes. For example, lipolysis has been 
linked to increased FABP4 secretion from adipose tissue 
via a nonclassical mechanism (59, 60, 187, 188). FABP4 se-
cretion is regulated by ATGL and hormone-sensitive lipase 
activity and subsequent increase in fatty acid availability 
(60). Interestingly, there is strong correlation between cir-
culating FABP4 levels and metabolic disease in preclinical 
models and in humans (59, 189–199). Mechanistically, 
secreted FABP4 has been demonstrated to increase liver 
glucose production and insulin secretion and decrease car-
diomyocyte contractility (59, 200, 201), and hence, may 
explain some of the detrimental effects of uncontrolled 
lipolysis. These effects of circulating FABP4 support the 
possibility of using neutralizing antibodies to treat meta-
bolic disease, and this approach has proven successful in 
preclinical models (59, 202, 203).

As metaflammation is the hallmark of chronic metabolic 
disease, immunoregulatory or anti-inflammatory thera-
pies can help reduce lipid-induced inflammation, cellular 
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(243, 244). Considering the potential transformational im-
pact of these approaches to manage chronic disease, fur-
ther research and preclinical as well as clinical testing of 
these concepts represent a highly promising area of fur-
ther translational possibilities.

SUMMARY

Extensive research on immunometabolic disorders has 
established a strong connection between inflammatory 
pathways and lipids. While the current challenge remains 
to be the effective development and/or testing of transla-
tional tools for prevention and treatment, the future looks 
more promising than ever with the diversity of new possi-
bilities against chronic metabolic diseases.
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