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Postprandial lipemia (PPL) refers to the changes in plasma 
lipoproteins following food consumption. PPL is highly 
correlated with fasting plasma TG concentrations, yet some 
evidence suggests that PPL may be an independent risk fac-
tor for CVD (1–4) in ways distinct from fasting TG (5–7). 
The risk of CVD that can be independently attributed to 
elevated or elongated PPL (factors relating to amount and 
time) is supported by the fact that modern humans spend 
most of their lifetimes in the postprandial state (2). A per-
sistent and elevated presence of TG-rich lipoprotein (TRL) 
particles in the circulation promotes thrombotic processes, 
which augment the risk for CVD events (3). PPL varies 
greatly among individuals, being defined, in addition to the 
characteristics of the food ingested, by age, sex, genetic 
variation, and environmental exposures (1, 3). Several 
genome-wide association studies (GWASs) for fasting TG 
have been performed, revealing over 30 related loci (8, 9). 
However, only two GWASs have been conducted for PPL-TG 
(10, 11), and only four genetic variants, which are also as-
sociated with fasting TG, have been identified in relation to 
PPL (9–12). This may result from the limited sample sizes 
of these studies combined with the strong environmental 
influence on this phenotype (13).

Environmental factors exert significant effects on 
gene expression, in some instances through epigenetic 
mechanisms (14). Thus, epigenetic marks can be considered 
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CD4+ T cells, which represent the most common lymphocytes in 
whole blood (21, 22). Using CD4+ specific antigen magnetic beads 
(Invitrogen, Carlsbad, CA), CD4+ T cells were isolated from fro-
zen buffy coat samples that were collected at visit 2 (baseline) 
before fenofibrate intervention. DNA was extracted from these 
cells using DNeasy kits (Qiagen, Venlo, The Netherlands) (23). 
Genome-wide DNA methylation of all DNA samples was quantified 
as described (23) using Illumina Infinium human methylation 450K 
arrays (Illumina, San Diego, CA), which contain over 485,000 
probe sets to measure DNA methylation of over 450,000 CpG sites 
across the human genome. Using Illumina’s GenomeStudio pack-
age, we estimated the proportion of total signal of methylation for 
each probe as the  score, and detection P value as the probability 
that the total intensity for a given probe falls within the background 
signal intensity. Methylation signals were then further filtered out 
if CpG sites met one of the following criteria: 1) detection P > 0.01 
and 1.5% of samples have missing data; or 2) >10% of samples 
have no adequate intensity (23). For adjustment of the batch effect 
across samples, the filtered  scores were normalized separately 
for Infinium I and II probe sets using the ComBat package for R 
(22, 24, 25). At the end, 464,005 CpG sites passed quality control 
and these were used for statistical analysis in this study. To control 
for heterogeneity of CD4+ T cells across all samples, principal 
components (PCs) based on the  scores of all autosomal CpG 
sites that passed quality control were calculated using the prcomp 
function in R (v12.12.1). Four PCs were used in the EWAS.

Genome-wide genotyping
The detailed procedure of genome-wide genotyping in GOLDN 

has been described (10, 26). In this study, we used the hybrid 
genotype data of 2,543,887 SNPs, among which 484,029 were gen-
otyped using the Affymetrix Genome-wide 6.0 Array (Affymetrix, 
Santa Clara, CA). The remaining SNPs were imputed using MaCH 
software (version 1.0.16) with human genome build 36 as refer-
ence, and genotyped SNPs that met the following criteria (27): 
call rate >96%, minor allele frequency >1%, and Hardy-Weinberg 
equilibrium test P > 106.

Statistical methods
Data analysis design.  As the epigenome is known as the finger-

print of individuals in response to lifetime exposures up to the time 
point when the samples were collected, an individual epigenotype 
depends on local environments. Therefore, individuals with the 
same genotype may have different epigenotypes under different 
environments. For such reasons, the best discovery and replication 
in EWASs should be done within the same population. We ran-
domly split the whole population (n = 979) into two-thirds as a 
discovery sample (n = 653) and one-third as a replicate sample (n = 
326) using Proc Surveyselect in SAS v9.4 (Cary, NC) while holding 
the distributions of baseline TG, BMI, and sex similar between the 
two samples. To examine the differences in clinical characteristics 
between the sexes among the discovery and replication, we per-
formed a t-test.

Epigenome-wide association.  In the discovery stage, we modeled 
the association between methylation  score at each CpG site and 
PPL response measures using a linear mixed model (28), adjusting 
for sex, age, age2, age3, study site, and the first four PCs for T cell 
impurity as fixed effects, and kinship as a random effect. The kin-
ship matrix was generated based on family pedigree (29). The 
analysis was implemented in SNP and VARIATION SUITE 8.4.3 
(GoldenHelix Inc., Bozeman, MT). In addition, we conducted an 
EWAS adjusted for an additional covariate of baseline TG. We ap-
plied the Bonferroni correction, setting epigenome-wide signifi-
cance at 1.1 × 107 (25). We subsequently fitted the identical 
model in the replication sample (n = 326) for the CpG sites that 

“fingerprints” of that communication between the environ-
ment and the genome and some experimental evidence 
indicates that diet-induced epigenetic changes can be trans-
mitted through several generations (15, 16). As such, the en-
vironment, including habitual diet, may contribute to the 
health status of the individual and his/her descendants (17).

We hypothesize that individuals respond to environmen-
tal exposures by modulation of the epigenome, which elicits 
changes in the PPL response that could alter CVD risk. Of 
different forms of epigenetic modification, DNA methylation 
is the most extensively studied for its technical feasibility at 
the epigenome-wide scale, cost-effectiveness, well-estab-
lished standard analysis platform, and its apparent relation 
to nutrition (18). The objective of this study was to conduct 
an epigenome-wide association analysis in order to identify 
DNA methylation sites that were associated with PPL-TG 
concentrations in response to a high-fat meal in the Genet-
ics of Lipid Lowering Drugs and Diet Network (GOLDN) 
study. In addition, we have characterized DNA sequence 
variation in the significant epigenome-wide association 
study (EWAS) regions in relation to PPL-TG responses.

MATERIALS AND METHODS

Study population
The GOLDN study, as a part of the National Heart, Lung, and 

Blood Institute Family Heart Study, recruited participants (n = 
1,327) from families of European descent at two field centers: 
Minneapolis, MN and Salt Lake City, UT. GOLDN was designed 
as an intervention study to identify genetic factors that determine 
lipid responses to two interventions: 1) a high-fat meal test; and 2) 
a 3 week treatment of fenofibrate (160 mg). Participants were re-
quested to stop the use of lipid-lowering medication for at least 4 
weeks and to refrain from alcohol for 24 h prior to their study 
visit. Diet history questionnaires were used to collect demographic, 
lifestyle, and dietary data (19). The study protocol was approved 
by the Institutional Review Boards at Tufts University, the Univer-
sity of Minnesota, the University of Utah, and the University of 
Alabama at Birmingham. All participants provided written con-
sent for the study. The current study comprised a total of 979 
participants for whom complete PPL and epigenome data exist.

Postprandial phenotypes
Postprandial TG responses were calculated based on the 

growth curve models of TG as the function of times, as described 
(10). Briefly, the postprandial phenotypes were estimated as four 
measurements: uptake, clearance, area under the whole curve 
(AUC), and area under the curve increase (AUI). Uptake was es-
timated as the slope of the TG response from 0 to 3.5 h after the 
meal consumption, a time at which most fat from the meal has 
been absorbed (3). Clearance was defined as the downward slope 
of the TG level from 3.5 to 6 h after meal consumption, which 
measures the speed of the metabolic process that metabolizes the 
excess fat from the plasma (3, 20). The AUC was calculated as the 
total AUC according to the trapezoid method, and the AUI was 
estimated by subtracting the baseline area from the AUC (10).

Epigenome analysis
Different cell types in whole blood may have contrasting meth-

ylation patterns. Thus, to minimize the confounding effect of cell 
type differences and increase the consistency of methylation mea-
sures across samples, we restricted DNA methylome analysis to 
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differences in the baseline TG and TG AUC between sexes 
within each sample.

Epigenome-wide association of PPL
We first conducted epigenome-wide association tests for 

each of four PPL-TG traits (Table 2) in the discovery sample 
(n = 653). For AUC, we identified four methylation sites in 
three genes (CPT1A, APOA5, and SREBF1) that reached 
epigenome-wide significance at P  1.1 × 107 (Table 2). 
However, when adjusted for baseline TG, no methylation 
site reached epigenome-wide significance (supplemental 
Table S1). For the other three TG response traits (uptake, 
clearance, and AUI), we did not find any methylation sites 
that reached epigenome-wide significance either with or 
without adjusting for baseline TG. We then replicated the 
findings from the discovery stage in the replication sample 
(n = 326; Table 2). All four sites that were associated with 
AUC in the discovery sample replicated in the second 
sample after correction for multiple testing (P < 0.05/4 = 
0.0125). After adjustment for baseline TG, only two meth-
ylation sites (cg00574958 and cg17058475 at CPT1A) were 
replicated in the replication sample (supplemental Table S1).

Applying the concept of meta-analysis, we next con-
ducted a third epigenome-wide association analysis by com-
bining the discovery and replication samples and using the 
same models (Table 3). From this analysis, we observed eight 
methylation sites that were associated with AUC at the level 
of epigenome-wide significance (at P  1.1 × 107; see Ta-
ble 3, Fig. 1, supplemental Fig. S1). Four of these eight 
CpG sites were identified in the initial analysis (Table 2). 
The four newly identified sites were in the CPT1A, LPP, 
and ABCG1 genes. These four sites were also significantly 
associated with AUC in the discovery and replication sam-
ples (supplemental Table S2), with P values ranging from 
3.39 × 104 to 1.05 × 107. At CPT1A, four CpG sites were 
highly correlated with each other, with correlation coeffi-
cients ranging from 0.643 to 0.843 (supplemental Table S3) 
and similar associations with the AUC. Thus, these four CpG 
sites, located at the promotor region of CPT1A, likely rep-
resent one methylation region at CPT1A. Interestingly, 
three other methylation sites at LPP, SREBF1, and ABCG1 
are also correlated with these four CPT1A methylation 
sites (supplemental Table S3). In contrast, cg12556569 at 
APOA5 was independent of all seven methylation sites, 

were statistically significant in the discovery set for PPL measures. 
We corrected the threshold for significance in the replication 
stage for multiple testing using the Bonferroni approach, P = 
0.05/number of replicated sites. Applying the concept of meta-
analysis, we then combined the discovery and replication samples 
(i.e., the entire sample n = 979) and repeated the analysis using 
the same models (with or without adjusting for the baseline TG) 
as in the discovery and replication stages. Because PPL-TG re-
sponse traits are strongly correlated with fasting TG, we also con-
ducted an EWAS for fasting TG with the entire population using 
the same method and model (without adjusting for baseline TG).

Estimation of genetic and epigenetic variance contribution
Variance contribution of individual methylation sites was esti-

mated using efficient mixed-model association while controlling 
for normalized kinship (28) that was calculated based on family 
pedigree (29). This procedure was implemented in the Mixed 
Linear Model Analysis tools of SNP and VARIATION SUITE 8.4.3 
(GoldenHelix Inc., Bozeman, MT). As the identified methylation 
sites were not totally independent from each other, the combined 
variance contribution of all methylation sites was estimated with 
the option of Multi-Locus Mixed Model of the Mixed Linear 
Model Analysis while controlling for family relationship and co-
variates. The variance contribution of the previously identified 
genetic variants (rs964184 and rs10243693) that were associated 
with AUC (10) was calculated using the same method in partici-
pants (n = 707) for whom the genotype data was available.

Relationship between epigenetic markers and genetic 
variants

For the CpG sites that showed a significant association, we fur-
ther examined their correlations with loci previously identified 
(10) that were associated with AUC in participants for whom 
both epigenome and genome data were available (n = 707). In 
addition, we further examined the association of SNPs within a 
50 kb region of each CpG site associating with AUC. Data from 
previous genetic association studies were retrieved from the 
GWAS catalog (30) and gene-environment interactions from 
CardioGxE (31).

RESULTS

Demographic and clinical characteristics
The TG-related characteristics of the discovery and repli-

cation samples are listed in Table 1. There were no signifi-
cant differences between the discovery and replication 
samples for the TG and PPL response-related phenotypes 
(Table 1). However, there were equivalent significant 

TABLE  1.  Characteristics of discovery and replicate samples in GOLDN

Discovery Sample (n = 653) Replication Sample (n = 326)

Men Women Both Men Women Both

n 313 340 653 156 170 326
Age, years 48.1 (15.9) 47.9 (16.4) 48.0 (16.2) 50.2 (17.3) 47.6 (16.4) 48.8 (16.9)
BMI, kg/m2 28.3 (4.6) 28.2 (6.4) 28.2 (5.6) 28.5 (5.0) 28.2 (6.4) 28.3 (5.8)
Waist, inches 100.0 (13.8) 93.2 (17.8) 96.5 (16.4) 100.6 (13.6) 93.1 (16.9) 96.7 (15.8)
TG at baseline, mg/dl 149.1 (111.0)a 125.7 (82.2) 136.9 (97.7) 144.4 (90.1) 127.2 (87.3) 135.4 (89.0)
TG uptake slope 0.18 (0.03) 0.17 (0.03) 0.18 (0.03) 0.18 (0.03) 0.18 (0.03) 0.18 (0.03)
TG clearance slope 0.06 (0.05) 0.07 (0.05) 0.07 (0.05) 0.05 (0.05) 0.07 (0.05) 0.06 (0.05)
TG AUC 31.6 (3.4)b 30.4 (3.3) 30.9 (3.4) 31.6 (3.3)a 30.3 (3.3) 30.9 (3.4)
TG AUI 2.5 (0.5) 2.4 (0.5) 2.4 (0.6) 2.6 (0.6) 2.4 (0.5) 2.5 (0.6)

Values are means (standard deviations).
aP value for differences between men and women (within sample) significant with P < 0.05.
bP value for differences between men and women (within sample) significant with P < 0.001.
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Correlation between identified methylation sites and  
PPL-associated variants

We examined the correlation between the eight identi-
fied methylation sites and two genetic variants (rs964184 
and rs10243693) that we previously found in GOLDN to 
be associated with AUC (10). The methylation level at 
cg12556569 at APOA5 was highly correlated (r = 0.689, 
P = 2.71 × 10100) with the genotype of SNP rs964184 (sup-
plemental Table S4). However, methylation levels at any of 
the identified CpG sites were not associated with the 
rs10243693 genotype. In addition, we also examined all 
SNPs within 50 kb upstream or downstream of each of the 
eight methylation sites for association with AUC. For 
cg12556569 at APOA5, there were 20 SNPs (of 71 SNPs in 
this region; Fig. 2, supplemental Table S5) that reached 
significant association after correction for multiple testing 
(P  0.05/71 = 0.0007). For the other seven methylation 
sites, none of the SNPs evaluated reached significant asso-
ciation after correction for multiple testing.

DISCUSSION

AUC measures the total change in plasma TG (PPL) and 
the duration of these changes after consumption of a high-
fat meal (10). In terms of the risk for CVD, an increased 
AUC indicates elevated levels of atherogenic TRLs and/or 
an extended period of time that such lipoproteins remain in 
the circulation (2, 3, 5). Our findings highlight the signifi-
cant contribution of the epigenome to the individual variabil-
ity in PPL response to a high-fat challenge. PPL is influenced 
strongly by environmental factors and these environmental 
factors may convey their effects through epigenetic mecha-
nisms. We identified eight methylation CpG sites that were 
significantly associated with PPL-TG responses (i.e., AUC) in 
our study with 979 subjects of European descent. AUC is 
strongly correlated with fasting TG, and we also observed 
that these eight methylation sites showed similar strong asso-
ciations with fasting TG. These methylation sites encompass 

but when adjusting for baseline TG, no methylation site 
reached epigenome-wide significance. Lastly, there was no 
significant association between methylation sites and the 
other three PPL-TG measures of uptake, clearance, and AUI.

In this population, we found that AUC was strongly cor-
related with fasting TG (Pearson correlation coefficient r = 
0.853; supplemental Table S6). We then conducted an EWAS 
for fasting TG with the entire population (n = 979) using 
the same method, and found six of eight AUC-associated 
methylation sites were significantly associated with fasting 
TG at the epigenome-wide significance (supplemental  
Table S4), and two other sites (cg12556569 and cg11024682) 
at APOA5 and SREBF1 almost reached the epigenome-wide 
significance (P = 1.47 × 107 and 1.66 × 107, respectively).

Phenotypic variation of PPL explained by the eight 
identified methylation sites

To measure how much variation in AUC can be ac-
counted for by identified epigenetic variants, we estimated 
the variance contribution of each significant CpG site to 
the phenotypic variance of AUC (Table 3). In particular, 
cg00574958 had the largest effect on AUC (9.7%), whereas 
cg16464007 at LPP had the smallest contribution of 3.0%. 
Four CpG sites at CPT1A contributed a similarly large 
amount of variance to PPL phenotype. As all CpG sites, 
except cg12556569 at APOA5, are not totally independent 
from each other (supplemental Table S3), we estimated the 
combined variance contribution of all eight CpG sites to-
gether. This yielded a value of 14.9% for AUC variance. As 
AUC is strongly correlated with fasting TG, we also esti-
mated the combined variance contribution of the eight 
sites to the phenotypic variance of fasting TG and deter-
mined this to be 16.3%. In contrast, the genetic variance 
contribution of the two previously identified genetic loci 
(rs964184 and rs10243693) (10) was estimated as 4.5% 
both for AUC and fasting TG, thereby suggesting that the 
contribution of epigenetic variants identified in this study 
to AUC and fasting TG is substantial in this population.

TABLE  2.  CpG sites associated with AUC in response to a high-fat meal in discovery and replication samples

Marker Chr:Positiona Gene

Discovery (n = 653) Replication (n = 326)

 (SE) P  (SE) P

cg00574958 11:68607622 CPT1A 33.24 (4.91) 3.02 × 1011
50.84 (6.27) 1.18 × 1014

cg17058475 11:68607737 CPT1A 19.93 (3.57) 3.58 × 108
33.53 (5.01) 1.01 × 1010

cg12556569 11:116664039 APOA5 3.41 (0.63) 9.52 × 108 2.61 (0.92) 4.97 × 103

cg11024682 17:17730094 SREBF1 25.41 (4.64) 6.10 × 108 16.77 (6.03) 5.74 × 103

a Genomic position was based on genome build 37.

TABLE  3.  CpG sites associated with AUC in response to a high-fat meal in the full samples (n = 979)

Marker Chr:Positiona Gene  (SE) P AUC Variance Explained

cg16464007 3:188002729 LPP 12.81 (2.32) 4.50 × 108 0.030
cg00574958 11:68607622 CPT1A 38.50 (3.77) 2.69 × 1023 0.097
cg09737197 11:68607675 CPT1A 16.79 (2.75) 1.39 × 109 0.037
cg17058475 11:68607737 CPT1A 23.86 (2.84) 1.39 × 1016 0.068
cg01082498 11:68608225 CPT1A 43.83 (7.34) 3.33 × 109 0.036
cg12556569 11:116664039 APOA5 2.94 (0.52) 2.30 × 108 0.032
cg11024682 17:17730094 SREBF1 20.64 (3.63) 1.68 × 108 0.032
cg06500161 21:43656587 ABCG1 16.59 (2.80) 4.25 × 109 0.035

a Genomic position was based on genome build 37.
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fatty acid -oxidation. Decreased methylation status at the 
CPT1A locus has been associated with lipid profile (22, 33), 
insulin resistance (25), and metabolic syndrome (34), as 
well as obesity (35) in GOLDN, and some of these findings 
were replicated in other populations (35). In addition, in-
creased methylation at CPT1A-cg00574958 is correlated with 
decreased expression of CPT1A (22, 36) and, more generally, 
an inverse relation was seen between CPT1A expression and 
changes in TG levels after fish oil supplementation (37). 
Interestingly, CpG methylation at CPT1A was noted as 1.49-
fold higher in adipocytes of obese compared with never 
obese women (38). We identified four correlated CpG sites 
at CPT1A that strongly associated with AUC (supplemental 
Table S3), and decreased methylation of the same four sites 
has been associated with increased fasting plasma TG (22). 
Moreover, obese subjects show increased PPL responses to 
a high-fat meal (9, 39, 40). As the methylation of CPT1A con-
tributes to increased risk of obesity in several populations 
(35), it is not surprising that CPT1A methylation is highly 
correlated with PPL responses, likely linked to risk of CVD.

The APOA5 genotype is a strong determinant of fasting 
TG (41) and PPL-TG (12). We identified SNP rs964184 near 
APOA5 as highly associated with PPL-TG (10). In this study, 
we found that methylation site cg12556569 (Fig. 2), 903 bp 
from the APOA5 transcription start site, was significantly 

five genes: LPP, CPT1A, APOA5, SREBF1, and ABCG1, four 
of which encode proteins known to be involved in lipid me-
tabolism. Four CpG sites in CPT1A, APOA5, SREBF1, and 
ABCG1 were reported recently to be associated with fasting 
TG in two populations of European descent (KORA and 
InCHIANTI) (32), lending support to our findings.

Individuals respond diversely to a high-fat meal, with TG 
reaching the highest peak 3.5–4 h after the meal and return-
ing to baseline at 10 to 12 h after consumption (5). In the 
GOLDN population, AUC was calculated based on measures 
at three time points: 0, 3.5, and 6 h after consumption of the 
83% fat meal. Previously, our GWAS identified two loci that 
were associated with AUC, but such associations were no 
longer significant after adjustment for baseline TG (10). 
Similarly, in the present study, all eight identified methyla-
tion sites did not reach epigenome-wide significance after 
adjustment for baseline TG (supplemental Table S1). As 
fasting TG was measured from the same blood draw as PPL 
in this population, we observed a strong correlation between 
fasting TG and AUC (r = 0.853; supplemental Table S6). 
Hence, it is not unexpected that identified epigenetic vari-
ants that are associated with AUC are also highly correlated 
with fasting TG, thus contributing to the risk of CVD.

CPT1A converts cytoplasmic long-chain acyl-CoA to acyl-
carnitine, which is then transported to mitochondria for 

Fig.  1.  Distribution of P values [log10(P value)] 
from the epigenome-wide association analysis with 
AUC phenotype (n = 979). Eight CpG sites reached 
epigenome-wide significance P < 1.1 × 107 (above 
the dashed line).

Fig.  2.  Integrated regional overlap of EWAS signals (open squares) and GWAS signals (solid circles) at the APOA5. The x-axis displays the 
physical position of CpG sites and SNPs within 50 kb upstream and downstream of the EWAS signal of cg12556569 at APOA5; the y-axis dis-
plays log10(P value) of the association.
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and baseline TG (see supplemental Table S6). Only AUC is 
highly correlated with baseline TG (r = 0.853). The other 
three PPL traits are weakly (r = 0.15 for clearance slope), 
negatively (r = 0.10 for uptake slope), or not (r = 0.036 for 
AUI) correlated with baseline TG. On the other hand, as 
the PPL was limited to 6 h with only 3 measures (0, 3.5, and 
6 h), AUC may not reflect the length of time needed to 
capture the catabolic side of the PPL, and the data points 
were not dense enough to precisely calculate the absorp-
tion and synthesis of TRLs (and their catabolism). Still, 
AUC may provide a more comprehensive view of the over-
all PPL response than the other three phenotypes. Addi-
tionally, the other three PPL traits (intestinal absorption, 
chylomicron synthesis, and hepatic TRL catabolism) may 
not be properly captured with methylation measures in the 
CD4+ T cells. Therefore, the fact that identified epigenetic 
loci are associated with AUC only, not the other three mea-
sures of PPL, could reflect the particular characteristics of 
epigenetic loci that are induced by the environment.

It is well-established that obese individuals exhibit elevated 
postprandial TG in response to a high-fat meal compared 
with nonobese individuals (57, 58), but the underlying mech-
anism is not clear. Because epigenetic markers can affect 
both BMI/waist and PPL phenotypes, in our epigenome-
wide association analysis, BMI or waist were not adjusted in 
our linear mixed models. In fact, three of the identified 
epigenetic loci, CPT1A-cg00574958, SREBF1-cg11024682, 
and ABCG1-cg06500161, were also associated with BMI in 
the meta-analysis that was reported recently based on this 
population and the Framingham Heart Study (35). To ex-
amine the dependence of AUC on obesity, we conducted 
EWASs with the entire sample (both discovery and replicate 
samples combined) while adjusting for waist or BMI. In-
deed, only cg00574958 (and related loci cg17058475 and 
cg09737197) at CPT1A remained significant at the epig-
enome-wide level (P < 1.1 × 107), while other loci were 
marginally significant with AUC at P < 5.5 × 106. In es-
sence, our findings imply that the identified epigenetic loci 
at CPT1A, SREBF1, and ABCG1 can link obesity to hyperlip-
idemia (high TG) and elevated postprandial TG response, 
and then to the risk of CVD. This observation potentially 
defines a mechanism by which obese subjects show in-
creased PPL response to a high-fat meal, with a subsequent 
increased risk for CVD.

Many GWASs have identified genetic loci for a given 
trait, but often these loci account for only a small fraction of 
genetic variation and phenotypic variation, raising the issue 
of missing heritability (59). Within the same population, 
we previously conducted a GWAS of PPL-TG response and 
identified two variants that were associated with AUC and 
reached genome-wide significance (10). However, these 
loci explain only about 4.5% of the total phenotypic varia-
tion of the PPL response. Diet-induced epigenetic variation 
in obesity has been demonstrated recently and is transmis-
sible in mice from one generation to next (15). Here, we 
estimated the variance contribution of the identified eight 
methylation sites to PPL responses and fasting TG to be 
14.9 and 16.3%, respectively. Such a large contribution of the 
epigenome to PPL-TG and fasting TG variation is striking. 

associated with the PPL-TG response. This methylation 
site is highly correlated with three SNPs (see supplemental 
Table S3): rs964184 (r = 0.689), rs662799 (1131T>C or 
600T>C, r = 0.480), and rs3135506 (Ser19Trp, S19W or 
56C>G, r = 0.457). The correlation between cg12556569 and 
rs964184 was also observed in other populations of Euro-
pean descent (32). Methylation site cg12556569 maps 332 
bp upstream of rs662799, a functional variant with a haplo-
type containing the C allele conferring 46% lower luciferase 
activity (transcription) of APOA5 (42). We further showed 
that higher methylation levels at cg12556569 are corre-
lated with elevated PPL-TG responses (Table 3). Thus, it is 
anticipated that high methylation at this site could be as-
sociated with low expression of APOA5, thereby leading to 
abnormal metabolism and accumulation of TRLs.

ABCG1, encoding a member of the ABC transporter fam-
ily, is involved in the efflux of cholesterol and phospholipids 
from macrophages into HDL. We observed that higher 
methylation levels at cg06500161, near the ABCG1 gene, 
were correlated with a high PPL-TG response. Previously, 
high DNA methylation levels at ABCG1 have been associated 
with increased fasting TG (32, 43). In addition, high methyla-
tion levels at this CpG site were shown to be associated with 
increased fasting insulin and insulin resistance (25). Further-
more, type 2 diabetes patients showed low expression of 
ABCG1 and increased intracellular cholesterol accumula-
tion (44). These observations support the notion that higher 
methylation of ABCG1 could lead to an increased CVD risk.

SREBF1, a transcription factor that binds to the sterol regu-
latory element-1, regulates transcription of the LDL receptor 
gene (44). MicroRNA MIR33B, encoded within intron 17 of 
SREBF1, targets cholesterol metabolism and fatty acid oxida-
tion genes (45, 46) leading to increases in VLDL-TG (47) 
and altered expression of CPT1A (48). Interestingly, a gene-
diet interaction between SREBF1 variant rs2297508 (Gly-
952Gly) and a high-carbohydrate low-fat diet was reported 
for plasma TG in Han Chinese women (49). Still, it remains 
unclear whether the epigenetic association observed here ex-
erts impact on SREBF1, MIR33B, or both, but it is intriguing 
that this microRNA has been reported to modulate expres-
sion of ABCG1 and CPT1A in human liver cells (48, 50).

LPP, also known as LIM domain containing preferred 
translocation partner in lipoma, functions in cell-cell adhe-
sion and cell motility, but there is no report in relation to 
its potential role in lipid metabolism and PPL responses. 
The LPP locus has been identified as associating with type 
2 diabetes susceptibility (51, 52) and obesity (53), with CpG 
sites found to be age-associated in a set of seven large ex-
tended families (54). The CpG site showing association with 
TG PPL in this study is about 550 kb from BCL6, a locus iden-
tified via TG pathway analysis of GWAS results, as was ABCG1 
(55). Moreover, we have noted that the LPP locus appears 
to be under positive selection for obesity traits (56), which 
may reflect selective pressure from environmental exposure.

All eight identified epigenetic loci in this population are 
associated with the AUC-PPL phenotype, but there is no 
significant epigenetic locus that is associated with the other 
three PPL phenotypes: uptake, clearance, and AUI. We have 
examined the correlation between all four PPL phenotypes 
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This observation suggests that epigenetic processes may 
account for some of the variation that remains unexplained 
using the GWAS approach. This underscores the need to 
include epigenetic markers with genomic markers and 
gene-environment and epistatic interactions in order to 
gain a more accurate prediction of CVD risk, and to facilitate 
the development of effective strategies for its prevention.

This study has its limitations in the following aspects. 
First, one main limitation with the study is the impossibility 
to infer the causal relationship between observed DNA 
methylation and plasma lipid profile. On the one hand, 
DNA methylation of key lipid metabolism genes, such 
APOA5, can lead to reduced expression, and then slow 
clearance of TG and elevated PPL (12). On the other hand, 
it was shown statistically that high TG can also lead to meth-
ylation of lipid metabolism genes (CPT1A and SREBF1) 
(60). However, the biological and molecular mechanisms 
of such a causal relationship remain to be demonstrated. 
The second limitation is the constraint of a 6 h timeframe 
for the PPL measures with only three time points (0, 3.5, 
and 6 h), which may not precisely capture the entire PPL. 
An additional limitation of the study is the cell-type speci-
ficity and biological relevance of the identified methylation 
sites to lipid metabolism. The more relevant tissues for 
lipid metabolism are liver and intestine, which are not 
available for analysis in a population study. On the other 
hand, accumulating evidence suggests methylation sites 
that are age-related are commonly shared across many tis-
sues (61). DNA methylation in the blood can serve as a 
biomarker of methylation in other tissues (61). As such, 
our finding translates from one tissue type to another. An-
other limitation is that the replication sample of this study 
is not fully independent of the discovery sample. Consider-
ing strong dependence of epigenetic changes on environ-
ment, replication within the same population is justified. 
Furthermore, as the AUC of PPL phenotype was measured 
in this study in response to consumption of a meal high in 
dairy fat (83%), the identified epigenetic loci are likely spe-
cific to such dietary challenges and our results might not 
be replicated following other diets. Still, the identified loci 
map to genes with well-characterized functions in lipid me-
tabolism and homeostasis. On the other hand, based on 
the power calculation, the discovery sample has sufficient 
power to identify methylation sites that associate with these 
PPL phenotypes, as does the replication sample to repli-
cate any findings from the discovery sample.
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