Skip to main content
Springer logoLink to Springer
. 2016 May 23;76(5):291. doi: 10.1140/epjc/s10052-016-4070-4

Measurement of the transverse momentum and ϕη distributions of Drell–Yan lepton pairs in proton–proton collisions at s=8 TeV with the ATLAS detector

Atlas Collaboration230, G Aad 112, B Abbott 142, J Abdallah 199, O Abdinov 13, R Aben 136, M Abolins 117, O S AbouZeid 206, H Abramowicz 201, H Abreu 200, R Abreu 145, Y Abulaiti 193,194, B S Acharya 213,214, L Adamczyk 57, D L Adams 33, J Adelman 137, S Adomeit 128, T Adye 168, A A Affolder 101, T Agatonovic-Jovin 15, J Agricola 76, J A Aguilar-Saavedra 157,162, S P Ahlen 27, F Ahmadov 91, G Aielli 171,172, H Akerstedt 193,194, T P A Åkesson 108, A V Akimov 124, G L Alberghi 24,25, J Albert 220, S Albrand 77, M J Alconada Verzini 97, M Aleksa 42, I N Aleksandrov 91, C Alexa 35, G Alexander 201, T Alexopoulos 12, M Alhroob 142, G Alimonti 118, L Alio 112, J Alison 43, S P Alkire 53, B M M Allbrooke 197, P P Allport 20, A Aloisio 132,133, A Alonso 54, F Alonso 97, C Alpigiani 182, A Altheimer 53, B Alvarez Gonzalez 42, D Álvarez Piqueras 218, M G Alviggi 132,133, B T Amadio 17, K Amako 92, Y Amaral Coutinho 29, C Amelung 28, D Amidei 116, S P Amor Dos Santos 157,159, A Amorim 157,158, S Amoroso 68, N Amram 201, G Amundsen 28, C Anastopoulos 183, L S Ancu 69, N Andari 137, T Andeen 53, C F Anders 81, G Anders 42, J K Anders 101, K J Anderson 43, A Andreazza 118,119, V Andrei 80, S Angelidakis 11, I Angelozzi 136, P Anger 64, A Angerami 53, F Anghinolfi 42, A V Anisenkov 138, N Anjos 14, A Annovi 154,155, M Antonelli 67, A Antonov 126, J Antos 189, F Anulli 169, M Aoki 92, L Aperio Bella 20, G Arabidze 117, Y Arai 92, J P Araque 157, A T H Arce 65, F A Arduh 97, J-F Arguin 123, S Argyropoulos 89, M Arik 21, A J Armbruster 42, O Arnaez 42, H Arnold 68, M Arratia 40, O Arslan 26, A Artamonov 125, G Artoni 28, S Artz 110, S Asai 203, N Asbah 62, A Ashkenazi 201, B Åsman 193,194, L Asquith 197, K Assamagan 33, R Astalos 188, M Atkinson 216, N B Atlay 185, K Augsten 165, M Aurousseau 191, G Avolio 42, B Axen 17, M K Ayoub 146, G Azuelos 123, M A Baak 42, A E Baas 80, M J Baca 20, C Bacci 173,174, H Bachacou 180, K Bachas 202, M Backes 42, M Backhaus 42, P Bagiacchi 169,170, P Bagnaia 169,170, Y Bai 46, T Bain 53, J T Baines 168, O K Baker 227, E M Baldin 138, P Balek 166, T Balestri 196, F Balli 111, W K Balunas 152, E Banas 59, Sw Banerjee 224, A A E Bannoura 226, L Barak 42, E L Barberio 115, D Barberis 70,71, M Barbero 112, T Barillari 129, M Barisonzi 213,214, T Barklow 187, N Barlow 40, S L Barnes 111, B M Barnett 168, R M Barnett 17, Z Barnovska 7, A Baroncelli 173, G Barone 28, A J Barr 149, F Barreiro 109, J Barreiro Guimarães da Costa 46, R Bartoldus 187, A E Barton 98, P Bartos 188, A Basalaev 153, A Bassalat 146, A Basye 216, R L Bates 75, S J Batista 206, J R Batley 40, M Battaglia 181, M Bauce 169,170, F Bauer 180, H S Bawa 187, J B Beacham 140, M D Beattie 98, T Beau 107, P H Beauchemin 210, R Beccherle 154,155, P Bechtle 26, H P Beck 19, K Becker 149, M Becker 110, M Beckingham 221, C Becot 146, A J Beddall 22, A Beddall 22, V A Bednyakov 91, C P Bee 196, L J Beemster 136, T A Beermann 42, M Begel 33, J K Behr 149, C Belanger-Champagne 114, W H Bell 69, G Bella 201, L Bellagamba 24, A Bellerive 41, M Bellomo 113, K Belotskiy 126, O Beltramello 42, O Benary 201, D Benchekroun 175, M Bender 128, K Bendtz 193,194, N Benekos 12, Y Benhammou 201, E Benhar Noccioli 69, J A Benitez Garcia 208, D P Benjamin 65, J R Bensinger 28, S Bentvelsen 136, L Beresford 149, M Beretta 67, D Berge 136, E Bergeaas Kuutmann 217, N Berger 7, F Berghaus 220, J Beringer 17, C Bernard 27, N R Bernard 113, C Bernius 139, F U Bernlochner 26, T Berry 104, P Berta 166, C Bertella 110, G Bertoli 193,194, F Bertolucci 154,155, C Bertsche 142, D Bertsche 142, M I Besana 118, G J Besjes 54, O Bessidskaia Bylund 193,194, M Bessner 62, N Besson 180, C Betancourt 68, S Bethke 129, A J Bevan 103, W Bhimji 17, R M Bianchi 156, L Bianchini 28, M Bianco 42, O Biebel 128, D Biedermann 18, N V Biesuz 154,155, M Biglietti 173, J Bilbao De Mendizabal 69, H Bilokon 67, M Bindi 76, S Binet 146, A Bingul 22, C Bini 169,170, S Biondi 24,25, D M Bjergaard 65, C W Black 198, J E Black 187, K M Black 27, D Blackburn 182, R E Blair 8, J-B Blanchard 180, J E Blanco 104, T Blazek 188, I Bloch 62, C Blocker 28, W Blum 110, U Blumenschein 76, S Blunier 44, G J Bobbink 136, V S Bobrovnikov 138, S S Bocchetta 108, A Bocci 65, C Bock 128, M Boehler 68, J A Bogaerts 42, D Bogavac 15, A G Bogdanchikov 138, C Bohm 193, V Boisvert 104, T Bold 57, V Boldea 35, A S Boldyrev 127, M Bomben 107, M Bona 103, M Boonekamp 180, A Borisov 167, G Borissov 98, S Borroni 62, J Bortfeldt 128, V Bortolotto 84,85,86, K Bos 136, D Boscherini 24, M Bosman 14, J Boudreau 156, J Bouffard 2, E V Bouhova-Thacker 98, D Boumediene 52, C Bourdarios 146, N Bousson 143, S K Boutle 75, A Boveia 42, J Boyd 42, I R Boyko 91, I Bozic 15, J Bracinik 20, A Brandt 10, G Brandt 76, O Brandt 80, U Bratzler 204, B Brau 113, J E Brau 145, H M Braun 226, W D Breaden Madden 75, K Brendlinger 152, A J Brennan 115, L Brenner 136, R Brenner 217, S Bressler 223, T M Bristow 66, D Britton 75, D Britzger 62, F M Brochu 40, I Brock 26, R Brock 117, J Bronner 129, G Brooijmans 53, T Brooks 104, W K Brooks 45, J Brosamer 17, E Brost 145, P A Bruckman de Renstrom 59, D Bruncko 189, R Bruneliere 68, A Bruni 24, G Bruni 24, M Bruschi 24, N Bruscino 26, L Bryngemark 108, T Buanes 16, Q Buat 186, P Buchholz 185, A G Buckley 75, I A Budagov 91, F Buehrer 68, L Bugge 148, M K Bugge 148, O Bulekov 126, D Bullock 10, H Burckhart 42, S Burdin 101, C D Burgard 68, B Burghgrave 137, S Burke 168, I Burmeister 63, E Busato 52, D Büscher 68, V Büscher 110, P Bussey 75, J M Butler 27, A I Butt 3, C M Buttar 75, J M Butterworth 105, P Butti 136, W Buttinger 33, A Buzatu 75, A R Buzykaev 138, S Cabrera Urbán 218, D Caforio 165, V M Cairo 55,56, O Cakir 4, N Calace 69, P Calafiura 17, A Calandri 180, G Calderini 107, P Calfayan 128, L P Caloba 29, D Calvet 52, S Calvet 52, R Camacho Toro 43, S Camarda 62, P Camarri 171,172, D Cameron 148, R Caminal Armadans 216, S Campana 42, M Campanelli 105, A Campoverde 196, V Canale 132,133, A Canepa 207, M Cano Bret 50, J Cantero 109, R Cantrill 157, T Cao 60, M D M Capeans Garrido 42, I Caprini 35, M Caprini 35, M Capua 55,56, R Caputo 110, R M Carbone 53, R Cardarelli 171, F Cardillo 68, T Carli 42, G Carlino 132, L Carminati 118,119, S Caron 135, E Carquin 44, G D Carrillo-Montoya 42, J R Carter 40, J Carvalho 157,159, D Casadei 105, M P Casado 14, M Casolino 14, D W Casper 212, E Castaneda-Miranda 190, A Castelli 136, V Castillo Gimenez 218, N F Castro 157, P Catastini 79, A Catinaccio 42, J R Catmore 148, A Cattai 42, J Caudron 110, V Cavaliere 216, D Cavalli 118, M Cavalli-Sforza 14, V Cavasinni 154,155, F Ceradini 173,174, L Cerda Alberich 218, B C Cerio 65, K Cerny 166, A S Cerqueira 30, A Cerri 197, L Cerrito 103, F Cerutti 17, M Cerv 42, A Cervelli 19, S A Cetin 23, A Chafaq 175, D Chakraborty 137, I Chalupkova 166, Y L Chan 84, P Chang 216, J D Chapman 40, D G Charlton 20, C C Chau 206, C A Chavez Barajas 197, S Cheatham 200, A Chegwidden 117, S Chekanov 8, S V Chekulaev 207, G A Chelkov 91, M A Chelstowska 116, C Chen 90, H Chen 33, K Chen 196, L Chen 49, S Chen 48, S Chen 203, X Chen 51, Y Chen 93, H C Cheng 116, Y Cheng 43, A Cheplakov 91, E Cheremushkina 167, R Cherkaoui El Moursli 179, V Chernyatin 33, E Cheu 9, L Chevalier 180, V Chiarella 67, G Chiarelli 154,155, G Chiodini 99, A S Chisholm 20, R T Chislett 105, A Chitan 35, M V Chizhov 91, K Choi 87, S Chouridou 11, B K B Chow 128, V Christodoulou 105, D Chromek-Burckhart 42, J Chudoba 164, A J Chuinard 114, J J Chwastowski 59, L Chytka 144, G Ciapetti 169,170, A K Ciftci 4, D Cinca 75, V Cindro 102, I A Cioara 26, A Ciocio 17, F Cirotto 132,133, Z H Citron 223, M Ciubancan 35, A Clark 69, B L Clark 79, P J Clark 66, R N Clarke 17, C Clement 193,194, Y Coadou 112, M Cobal 213,215, A Coccaro 69, J Cochran 90, L Coffey 28, L Colasurdo 135, B Cole 53, S Cole 137, A P Colijn 136, J Collot 77, T Colombo 82, G Compostella 129, P Conde Muiño 157,158, E Coniavitis 68, S H Connell 191, I A Connelly 104, V Consorti 68, S Constantinescu 35, C Conta 150,151, G Conti 42, F Conventi 132, M Cooke 17, B D Cooper 105, A M Cooper-Sarkar 149, T Cornelissen 226, M Corradi 169,170, F Corriveau 114, A Corso-Radu 212, A Cortes-Gonzalez 14, G Cortiana 129, G Costa 118, M J Costa 218, D Costanzo 183, D Côté 10, G Cottin 40, G Cowan 104, B E Cox 111, K Cranmer 139, G Cree 41, S Crépé-Renaudin 77, F Crescioli 107, W A Cribbs 193,194, M Crispin Ortuzar 149, M Cristinziani 26, V Croft 135, G Crosetti 55,56, T Cuhadar Donszelmann 183, J Cummings 227, M Curatolo 67, J Cúth 110, C Cuthbert 198, H Czirr 185, P Czodrowski 3, S D’Auria 75, M D’Onofrio 101, M J Da Cunha Sargedas De Sousa 157,158, C Da Via 111, W Dabrowski 57, A Dafinca 149, T Dai 116, O Dale 16, F Dallaire 123, C Dallapiccola 113, M Dam 54, J R Dandoy 43, N P Dang 68, A C Daniells 20, M Danninger 219, M Dano Hoffmann 180, V Dao 68, G Darbo 70, S Darmora 10, J Dassoulas 3, A Dattagupta 87, W Davey 26, C David 220, T Davidek 166, E Davies 149, M Davies 201, P Davison 105, Y Davygora 80, E Dawe 115, I Dawson 183, R K Daya-Ishmukhametova 113, K De 10, R de Asmundis 132, A De Benedetti 142, S De Castro 24,25, S De Cecco 107, N De Groot 135, P de Jong 136, H De la Torre 109, F De Lorenzi 90, D De Pedis 169, A De Salvo 169, U De Sanctis 197, A De Santo 197, J B De Vivie De Regie 146, W J Dearnaley 98, R Debbe 33, C Debenedetti 181, D V Dedovich 91, I Deigaard 136, J Del Peso 109, T Del Prete 154,155, D Delgove 146, F Deliot 180, C M Delitzsch 69, M Deliyergiyev 102, A Dell’Acqua 42, L Dell’Asta 27, M Dell’Orso 154,155, M Della Pietra 132, D della Volpe 69, M Delmastro 7, P A Delsart 77, C Deluca 136, D A DeMarco 206, S Demers 227, M Demichev 91, A Demilly 107, S P Denisov 167, D Derendarz 59, J E Derkaoui 178, F Derue 107, P Dervan 101, K Desch 26, C Deterre 62, K Dette 63, P O Deviveiros 42, A Dewhurst 168, S Dhaliwal 28, A Di Ciaccio 171,172, L Di Ciaccio 7, A Di Domenico 169,170, C Di Donato 169,170, A Di Girolamo 42, B Di Girolamo 42, A Di Mattia 200, B Di Micco 173,174, R Di Nardo 67, A Di Simone 68, R Di Sipio 206, D Di Valentino 41, C Diaconu 112, M Diamond 206, F A Dias 66, M A Diaz 44, E B Diehl 116, J Dietrich 18, S Diglio 112, A Dimitrievska 15, J Dingfelder 26, P Dita 35, S Dita 35, F Dittus 42, F Djama 112, T Djobava 73, J I Djuvsland 80, M A B do Vale 31, D Dobos 42, M Dobre 35, C Doglioni 108, T Dohmae 203, J Dolejsi 166, Z Dolezal 166, B A Dolgoshein 126, M Donadelli 32, S Donati 154,155, P Dondero 150,151, J Donini 52, J Dopke 168, A Doria 132, M T Dova 97, A T Doyle 75, E Drechsler 76, M Dris 12, Y Du 49, E Dubreuil 52, E Duchovni 223, G Duckeck 128, O A Ducu 35,112, D Duda 136, A Dudarev 42, L Duflot 146, L Duguid 104, M Dührssen 42, M Dunford 80, H Duran Yildiz 4, M Düren 74, A Durglishvili 73, D Duschinger 64, B Dutta 62, M Dyndal 57, C Eckardt 62, K M Ecker 129, R C Edgar 116, W Edson 2, N C Edwards 66, W Ehrenfeld 26, T Eifert 42, G Eigen 16, K Einsweiler 17, T Ekelof 217, M El Kacimi 177, M Ellert 217, S Elles 7, F Ellinghaus 226, A A Elliot 220, N Ellis 42, J Elmsheuser 128, M Elsing 42, D Emeliyanov 168, Y Enari 203, O C Endner 110, M Endo 147, J Erdmann 63, A Ereditato 19, G Ernis 226, J Ernst 2, M Ernst 33, S Errede 216, E Ertel 110, M Escalier 146, H Esch 63, C Escobar 156, B Esposito 67, A I Etienvre 180, E Etzion 201, H Evans 87, A Ezhilov 153, L Fabbri 24,25, G Facini 43, R M Fakhrutdinov 167, S Falciano 169, R J Falla 105, J Faltova 166, Y Fang 46, M Fanti 118,119, A Farbin 10, A Farilla 173, T Farooque 14, S Farrell 17, S M Farrington 221, P Farthouat 42, F Fassi 179, P Fassnacht 42, D Fassouliotis 11, M Faucci Giannelli 104, A Favareto 70,71, L Fayard 146, O L Fedin 153, W Fedorko 219, S Feigl 42, L Feligioni 112, C Feng 49, E J Feng 42, H Feng 116, A B Fenyuk 167, L Feremenga 10, P Fernandez Martinez 218, S Fernandez Perez 42, J Ferrando 75, A Ferrari 217, P Ferrari 136, R Ferrari 150, D E Ferreira de Lima 75, A Ferrer 218, D Ferrere 69, C Ferretti 116, A Ferretto Parodi 70,71, M Fiascaris 43, F Fiedler 110, A Filipčič 102, M Filipuzzi 62, F Filthaut 135, M Fincke-Keeler 220, K D Finelli 198, M C N Fiolhais 157,159, L Fiorini 218, A Firan 60, A Fischer 2, C Fischer 14, J Fischer 226, W C Fisher 117, N Flaschel 62, I Fleck 185, P Fleischmann 116, G T Fletcher 183, G Fletcher 103, R R M Fletcher 152, T Flick 226, A Floderus 108, L R Flores Castillo 84, M J Flowerdew 129, A Formica 180, A Forti 111, D Fournier 146, H Fox 98, S Fracchia 14, P Francavilla 107, M Franchini 24,25, D Francis 42, L Franconi 148, M Franklin 79, M Frate 212, M Fraternali 150,151, D Freeborn 105, S T French 40, S M Fressard-Batraneanu 42, F Friedrich 64, D Froidevaux 42, J A Frost 149, C Fukunaga 204, E Fullana Torregrosa 110, B G Fulsom 187, T Fusayasu 130, J Fuster 218, C Gabaldon 77, O Gabizon 226, A Gabrielli 24,25, A Gabrielli 17, G P Gach 20, S Gadatsch 42, S Gadomski 69, G Gagliardi 70,71, P Gagnon 87, C Galea 135, B Galhardo 157,159, E J Gallas 149, B J Gallop 168, P Gallus 165, G Galster 54, K K Gan 140, J Gao 47,112, Y Gao 66, Y S Gao 187, F M Garay Walls 66, F Garberson 227, C García 218, J E García Navarro 218, M Garcia-Sciveres 17, R W Gardner 43, N Garelli 187, V Garonne 148, C Gatti 67, A Gaudiello 70,71, G Gaudio 150, B Gaur 185, L Gauthier 123, P Gauzzi 169,170, I L Gavrilenko 124, C Gay 219, G Gaycken 26, E N Gazis 12, P Ge 49, Z Gecse 219, C N P Gee 168, Ch Geich-Gimbel 26, M P Geisler 80, C Gemme 70, M H Genest 77, C Geng 47, S Gentile 169,170, M George 76, S George 104, D Gerbaudo 212, A Gershon 201, S Ghasemi 185, H Ghazlane 176, B Giacobbe 24, S Giagu 169,170, V Giangiobbe 14, P Giannetti 154,155, B Gibbard 33, S M Gibson 104, M Gignac 219, M Gilchriese 17, T P S Gillam 40, D Gillberg 42, G Gilles 52, D M Gingrich 3, N Giokaris 11, M P Giordani 213,215, F M Giorgi 24, F M Giorgi 18, P F Giraud 180, P Giromini 67, D Giugni 118, C Giuliani 129, M Giulini 81, B K Gjelsten 148, S Gkaitatzis 202, I Gkialas 202, E L Gkougkousis 146, L K Gladilin 127, C Glasman 109, J Glatzer 42, P C F Glaysher 66, A Glazov 62, M Goblirsch-Kolb 129, J R Goddard 103, J Godlewski 59, S Goldfarb 116, T Golling 69, D Golubkov 167, A Gomes 157,158,160, R Gonçalo 157, J Goncalves Pinto Firmino Da Costa 180, L Gonella 26, S González de la Hoz 218, G Gonzalez Parra 14, S Gonzalez-Sevilla 69, L Goossens 42, P A Gorbounov 125, H A Gordon 33, I Gorelov 134, B Gorini 42, E Gorini 99,100, A Gorišek 102, E Gornicki 59, A T Goshaw 65, C Gössling 63, M I Gostkin 91, D Goujdami 177, A G Goussiou 182, N Govender 191, E Gozani 200, L Graber 76, I Grabowska-Bold 57, P O J Gradin 217, P Grafström 24,25, J Gramling 69, E Gramstad 148, S Grancagnolo 18, V Gratchev 153, H M Gray 42, E Graziani 173, Z D Greenwood 106, C Grefe 26, K Gregersen 105, I M Gregor 62, P Grenier 187, J Griffiths 10, A A Grillo 181, K Grimm 98, S Grinstein 14, Ph Gris 52, J-F Grivaz 146, S Groh 110, J P Grohs 64, A Grohsjean 62, E Gross 223, J Grosse-Knetter 76, G C Grossi 106, Z J Grout 197, L Guan 116, J Guenther 165, F Guescini 69, D Guest 212, O Gueta 201, E Guido 70,71, T Guillemin 146, S Guindon 2, U Gul 75, C Gumpert 42, J Guo 50, Y Guo 47, S Gupta 149, G Gustavino 169,170, P Gutierrez 142, N G Gutierrez Ortiz 105, C Gutschow 64, C Guyot 180, C Gwenlan 149, C B Gwilliam 101, A Haas 139, C Haber 17, H K Hadavand 10, N Haddad 179, P Haefner 26, S Hageböck 26, Z Hajduk 59, H Hakobyan 228, M Haleem 62, J Haley 143, D Hall 149, G Halladjian 117, G D Hallewell 112, K Hamacher 226, P Hamal 144, K Hamano 220, A Hamilton 190, G N Hamity 183, P G Hamnett 62, L Han 47, K Hanagaki 92, K Hanawa 203, M Hance 181, B Haney 152, P Hanke 80, R Hanna 180, J B Hansen 54, J D Hansen 54, M C Hansen 26, P H Hansen 54, K Hara 209, A S Hard 224, T Harenberg 226, F Hariri 146, S Harkusha 120, R D Harrington 66, P F Harrison 221, F Hartjes 136, M Hasegawa 93, Y Hasegawa 184, A Hasib 142, S Hassani 180, S Haug 19, R Hauser 117, L Hauswald 64, M Havranek 164, C M Hawkes 20, R J Hawkings 42, A D Hawkins 108, T Hayashi 209, D Hayden 117, C P Hays 149, J M Hays 103, H S Hayward 101, S J Haywood 168, S J Head 20, T Heck 110, V Hedberg 108, L Heelan 10, S Heim 152, T Heim 226, B Heinemann 17, L Heinrich 139, J Hejbal 164, L Helary 27, S Hellman 193,194, C Helsens 42, J Henderson 149, R C W Henderson 98, Y Heng 224, C Hengler 62, S Henkelmann 219, A Henrichs 227, A M Henriques Correia 42, S Henrot-Versille 146, G H Herbert 18, Y Hernández Jiménez 218, G Herten 68, R Hertenberger 128, L Hervas 42, G G Hesketh 105, N P Hessey 136, J W Hetherly 60, R Hickling 103, E Higón-Rodriguez 218, E Hill 220, J C Hill 40, K H Hiller 62, S J Hillier 20, I Hinchliffe 17, E Hines 152, R R Hinman 17, M Hirose 205, D Hirschbuehl 226, J Hobbs 196, N Hod 136, M C Hodgkinson 183, P Hodgson 183, A Hoecker 42, M R Hoeferkamp 134, F Hoenig 128, M Hohlfeld 110, D Hohn 26, T R Holmes 17, M Homann 63, T M Hong 156, B H Hooberman 216, W H Hopkins 145, Y Horii 131, A J Horton 186, J-Y Hostachy 77, S Hou 199, A Hoummada 175, J Howard 149, J Howarth 62, M Hrabovsky 144, I Hristova 18, J Hrivnac 146, T Hryn’ova 7, A Hrynevich 121, C Hsu 192, P J Hsu 199, S-C Hsu 182, D Hu 53, Q Hu 47, X Hu 116, Y Huang 62, Z Hubacek 165, F Hubaut 112, F Huegging 26, T B Huffman 149, E W Hughes 53, G Hughes 98, M Huhtinen 42, T A Hülsing 110, N Huseynov 91, J Huston 117, J Huth 79, G Iacobucci 69, G Iakovidis 33, I Ibragimov 185, L Iconomidou-Fayard 146, E Ideal 227, Z Idrissi 179, P Iengo 42, O Igonkina 136, T Iizawa 222, Y Ikegami 92, M Ikeno 92, Y Ilchenko 43, D Iliadis 202, N Ilic 187, T Ince 129, G Introzzi 150,151, P Ioannou 11, M Iodice 173, K Iordanidou 53, V Ippolito 79, A Irles Quiles 218, C Isaksson 217, M Ishino 94, M Ishitsuka 205, R Ishmukhametov 140, C Issever 149, S Istin 21, J M Iturbe Ponce 111, R Iuppa 171,172, J Ivarsson 108, W Iwanski 59, H Iwasaki 92, J M Izen 61, V Izzo 132, S Jabbar 3, B Jackson 152, M Jackson 101, P Jackson 1, M R Jaekel 42, V Jain 2, K B Jakobi 110, K Jakobs 68, S Jakobsen 42, T Jakoubek 164, J Jakubek 165, D O Jamin 143, D K Jana 106, E Jansen 105, R Jansky 88, J Janssen 26, M Janus 76, G Jarlskog 108, N Javadov 91, T Javůrek 68, L Jeanty 17, J Jejelava 72, G-Y Jeng 198, D Jennens 115, P Jenni 68, J Jentzsch 63, C Jeske 221, S Jézéquel 7, H Ji 224, J Jia 196, Y Jiang 47, S Jiggins 105, J Jimenez Pena 218, S Jin 46, A Jinaru 35, O Jinnouchi 205, M D Joergensen 54, P Johansson 183, K A Johns 9, W J Johnson 182, K Jon-And 193,194, G Jones 221, R W L Jones 98, T J Jones 101, J Jongmanns 80, P M Jorge 157,158, K D Joshi 111, J Jovicevic 207, X Ju 224, A Juste Rozas 14, M Kaci 218, A Kaczmarska 59, M Kado 146, H Kagan 140, M Kagan 187, S J Kahn 112, E Kajomovitz 65, C W Kalderon 149, A Kaluza 110, S Kama 60, A Kamenshchikov 167, N Kanaya 203, S Kaneti 40, V A Kantserov 126, J Kanzaki 92, B Kaplan 139, L S Kaplan 224, A Kapliy 43, D Kar 192, K Karakostas 12, A Karamaoun 3, N Karastathis 12,136, M J Kareem 76, E Karentzos 12, M Karnevskiy 110, S N Karpov 91, Z M Karpova 91, K Karthik 139, V Kartvelishvili 98, A N Karyukhin 167, K Kasahara 209, L Kashif 224, R D Kass 140, A Kastanas 16, Y Kataoka 203, C Kato 203, A Katre 69, J Katzy 62, K Kawade 131, K Kawagoe 96, T Kawamoto 203, G Kawamura 76, S Kazama 203, V F Kazanin 138, R Keeler 220, R Kehoe 60, J S Keller 62, J J Kempster 104, H Keoshkerian 111, O Kepka 164, B P Kerševan 102, S Kersten 226, R A Keyes 114, F Khalil-zada 13, H Khandanyan 193,194, A Khanov 143, A G Kharlamov 138, T J Khoo 40, V Khovanskiy 125, E Khramov 91, J Khubua 73, S Kido 93, H Y Kim 10, S H Kim 209, Y K Kim 43, N Kimura 202, O M Kind 18, B T King 101, M King 218, S B King 219, J Kirk 168, A E Kiryunin 129, T Kishimoto 93, D Kisielewska 57, F Kiss 68, K Kiuchi 209, O Kivernyk 180, E Kladiva 189, M H Klein 53, M Klein 101, U Klein 101, K Kleinknecht 110, P Klimek 193,194, A Klimentov 33, R Klingenberg 63, J A Klinger 183, T Klioutchnikova 42, E-E Kluge 80, P Kluit 136, S Kluth 129, J Knapik 59, E Kneringer 88, E B F G Knoops 112, A Knue 75, A Kobayashi 203, D Kobayashi 205, T Kobayashi 203, M Kobel 64, M Kocian 187, P Kodys 166, T Koffas 41, E Koffeman 136, L A Kogan 149, S Kohlmann 226, Z Kohout 165, T Kohriki 92, T Koi 187, H Kolanoski 18, M Kolb 81, I Koletsou 7, A A Komar 124, Y Komori 203, T Kondo 92, N Kondrashova 62, K Köneke 68, A C König 135, T Kono 92, R Konoplich 139, N Konstantinidis 105, R Kopeliansky 200, S Koperny 57, L Köpke 110, A K Kopp 68, K Korcyl 59, K Kordas 202, A Korn 105, A A Korol 138, I Korolkov 14, E V Korolkova 183, O Kortner 129, S Kortner 129, T Kosek 166, V V Kostyukhin 26, V M Kotov 91, A Kotwal 65, A Kourkoumeli-Charalampidi 202, C Kourkoumelis 11, V Kouskoura 33, A Koutsman 207, R Kowalewski 220, T Z Kowalski 57, W Kozanecki 180, A S Kozhin 167, V A Kramarenko 127, G Kramberger 102, D Krasnopevtsev 126, M W Krasny 107, A Krasznahorkay 42, J K Kraus 26, A Kravchenko 33, S Kreiss 139, M Kretz 82, J Kretzschmar 101, K Kreutzfeldt 74, P Krieger 206, K Krizka 43, K Kroeninger 63, H Kroha 129, J Kroll 152, J Kroseberg 26, J Krstic 15, U Kruchonak 91, H Krüger 26, N Krumnack 90, A Kruse 224, M C Kruse 65, M Kruskal 27, T Kubota 115, H Kucuk 105, S Kuday 5, S Kuehn 68, A Kugel 82, F Kuger 225, A Kuhl 181, T Kuhl 62, V Kukhtin 91, R Kukla 180, Y Kulchitsky 120, S Kuleshov 45, M Kuna 169,170, T Kunigo 94, A Kupco 164, H Kurashige 93, Y A Kurochkin 120, V Kus 164, E S Kuwertz 220, M Kuze 205, J Kvita 144, T Kwan 220, D Kyriazopoulos 183, A La Rosa 181, J L La Rosa Navarro 32, L La Rotonda 55,56, C Lacasta 218, F Lacava 169,170, J Lacey 41, H Lacker 18, D Lacour 107, V R Lacuesta 218, E Ladygin 91, R Lafaye 7, B Laforge 107, T Lagouri 227, S Lai 76, L Lambourne 105, S Lammers 87, C L Lampen 9, W Lampl 9, E Lançon 180, U Landgraf 68, M P J Landon 103, V S Lang 80, J C Lange 14, A J Lankford 212, F Lanni 33, K Lantzsch 26, A Lanza 150, S Laplace 107, C Lapoire 42, J F Laporte 180, T Lari 118, F Lasagni Manghi 24,25, M Lassnig 42, P Laurelli 67, W Lavrijsen 17, A T Law 181, P Laycock 101, T Lazovich 79, O Le Dortz 107, E Le Guirriec 112, E Le Menedeu 14, M LeBlanc 220, T LeCompte 8, F Ledroit-Guillon 77, C A Lee 190, S C Lee 199, L Lee 1, G Lefebvre 107, M Lefebvre 220, F Legger 128, C Leggett 17, A Lehan 101, G Lehmann Miotto 42, X Lei 9, W A Leight 41, A Leisos 202, A G Leister 227, M A L Leite 32, R Leitner 166, D Lellouch 223, B Lemmer 76, K J C Leney 105, T Lenz 26, B Lenzi 42, R Leone 9, S Leone 154,155, C Leonidopoulos 66, S Leontsinis 12, C Leroy 123, C G Lester 40, M Levchenko 153, J Levêque 7, D Levin 116, L J Levinson 223, M Levy 20, A Lewis 149, A M Leyko 26, M Leyton 61, B Li 47, H Li 196, H L Li 43, L Li 65, L Li 50, S Li 65, X Li 111, Y Li 48, Z Liang 181, H Liao 52, B Liberti 171, A Liblong 206, P Lichard 42, K Lie 216, J Liebal 26, W Liebig 16, C Limbach 26, A Limosani 198, S C Lin 199, T H Lin 110, F Linde 136, B E Lindquist 196, J T Linnemann 117, E Lipeles 152, A Lipniacka 16, M Lisovyi 81, T M Liss 216, D Lissauer 33, A Lister 219, A M Litke 181, B Liu 199, D Liu 199, H Liu 116, J Liu 112, J B Liu 47, K Liu 112, L Liu 216, M Liu 65, M Liu 47, Y Liu 47, M Livan 150,151, A Lleres 77, J Llorente Merino 109, S L Lloyd 103, F Lo Sterzo 199, E Lobodzinska 62, P Loch 9, W S Lockman 181, F K Loebinger 111, A E Loevschall-Jensen 54, K M Loew 28, A Loginov 227, T Lohse 18, K Lohwasser 62, M Lokajicek 164, B A Long 27, J D Long 216, R E Long 98, K A Looper 140, L Lopes 157, D Lopez Mateos 79, B Lopez Paredes 183, I Lopez Paz 14, J Lorenz 128, N Lorenzo Martinez 87, M Losada 211, P J Lösel 128, X Lou 46, A Lounis 146, J Love 8, P A Love 98, H Lu 84, N Lu 116, H J Lubatti 182, C Luci 169,170, A Lucotte 77, C Luedtke 68, F Luehring 87, W Lukas 88, L Luminari 169, O Lundberg 193,194, B Lund-Jensen 195, D Lynn 33, R Lysak 164, E Lytken 108, H Ma 33, L L Ma 49, G Maccarrone 67, A Macchiolo 129, C M Macdonald 183, B Maček 102, J Machado Miguens 152,158, D Macina 42, D Madaffari 112, R Madar 52, H J Maddocks 98, W F Mader 64, A Madsen 62, J Maeda 93, S Maeland 16, T Maeno 33, A Maevskiy 127, E Magradze 76, K Mahboubi 68, J Mahlstedt 136, C Maiani 180, C Maidantchik 29, A A Maier 129, T Maier 128, A Maio 157,158,160, S Majewski 145, Y Makida 92, N Makovec 146, B Malaescu 107, Pa Malecki 59, V P Maleev 153, F Malek 77, U Mallik 89, D Malon 8, C Malone 187, S Maltezos 12, V M Malyshev 138, S Malyukov 42, J Mamuzic 62, G Mancini 67, B Mandelli 42, L Mandelli 118, I Mandić 102, R Mandrysch 89, J Maneira 157,158, L Manhaes de Andrade Filho 30, J Manjarres Ramos 208, A Mann 128, A Manousakis-Katsikakis 11, B Mansoulie 180, R Mantifel 114, M Mantoani 76, L Mapelli 42, L March 192, G Marchiori 107, M Marcisovsky 164, C P Marino 220, M Marjanovic 15, D E Marley 116, F Marroquim 29, S P Marsden 111, Z Marshall 17, L F Marti 19, S Marti-Garcia 218, B Martin 117, T A Martin 221, V J Martin 66, B Martin dit Latour 16, M Martinez 14, S Martin-Haugh 168, V S Martoiu 35, A C Martyniuk 105, M Marx 182, F Marzano 169, A Marzin 42, L Masetti 110, T Mashimo 203, R Mashinistov 124, J Masik 111, A L Maslennikov 138, I Massa 24,25, L Massa 24,25, P Mastrandrea 7, A Mastroberardino 55,56, T Masubuchi 203, P Mättig 226, J Mattmann 110, J Maurer 35, S J Maxfield 101, D A Maximov 138, R Mazini 199, S M Mazza 118,119, G Mc Goldrick 206, S P Mc Kee 116, A McCarn 116, R L McCarthy 196, T G McCarthy 41, N A McCubbin 168, K W McFarlane 78, J A Mcfayden 105, G Mchedlidze 76, S J McMahon 168, R A McPherson 220, M Medinnis 62, S Meehan 182, S Mehlhase 128, A Mehta 101, K Meier 80, C Meineck 128, B Meirose 61, B R Mellado Garcia 192, F Meloni 19, A Mengarelli 24,25, S Menke 129, E Meoni 210, K M Mercurio 79, S Mergelmeyer 26, P Mermod 69, L Merola 132,133, C Meroni 118, F S Merritt 43, A Messina 169,170, J Metcalfe 8, A S Mete 212, C Meyer 110, C Meyer 152, J-P Meyer 180, J Meyer 136, H Meyer Zu Theenhausen 80, R P Middleton 168, S Miglioranzi 213,215, L Mijović 26, G Mikenberg 223, M Mikestikova 164, M Mikuž 102, M Milesi 115, A Milic 42, D W Miller 43, C Mills 66, A Milov 223, D A Milstead 193,194, A A Minaenko 167, Y Minami 203, I A Minashvili 91, A I Mincer 139, B Mindur 57, M Mineev 91, Y Ming 224, L M Mir 14, K P Mistry 152, T Mitani 222, J Mitrevski 128, V A Mitsou 218, A Miucci 69, P S Miyagawa 183, J U Mjörnmark 108, T Moa 193,194, K Mochizuki 112, S Mohapatra 53, W Mohr 68, S Molander 193,194, R Moles-Valls 26, R Monden 94, M C Mondragon 117, K Mönig 62, C Monini 77, J Monk 54, E Monnier 112, A Montalbano 196, J Montejo Berlingen 42, F Monticelli 97, S Monzani 169,170, R W Moore 3, N Morange 146, D Moreno 211, M Moreno Llácer 76, P Morettini 70, D Mori 186, T Mori 203, M Morii 79, M Morinaga 203, V Morisbak 148, S Moritz 110, A K Morley 198, G Mornacchi 42, J D Morris 103, S S Mortensen 54, A Morton 75, L Morvaj 131, M Mosidze 73, J Moss 187, K Motohashi 205, R Mount 187, E Mountricha 33, S V Mouraviev 124, E J W Moyse 113, S Muanza 112, R D Mudd 20, F Mueller 129, J Mueller 156, R S P Mueller 128, T Mueller 40, D Muenstermann 69, P Mullen 75, G A Mullier 19, F J Munoz Sanchez 111, J A Murillo Quijada 20, W J Murray 168,221, H Musheghyan 76, E Musto 200, A G Myagkov 167, M Myska 165, B P Nachman 187, O Nackenhorst 69, J Nadal 76, K Nagai 149, R Nagai 205, Y Nagai 112, K Nagano 92, A Nagarkar 140, Y Nagasaka 83, K Nagata 209, M Nagel 129, E Nagy 112, A M Nairz 42, Y Nakahama 42, K Nakamura 92, T Nakamura 203, I Nakano 141, H Namasivayam 61, R F Naranjo Garcia 62, R Narayan 43, D I Narrias Villar 80, T Naumann 62, G Navarro 211, R Nayyar 9, H A Neal 116, P Yu Nechaeva 124, T J Neep 111, P D Nef 187, A Negri 150,151, M Negrini 24, S Nektarijevic 135, C Nellist 146, A Nelson 212, S Nemecek 164, P Nemethy 139, A A Nepomuceno 29, M Nessi 42, M S Neubauer 216, M Neumann 226, R M Neves 139, P Nevski 33, P R Newman 20, D H Nguyen 8, R B Nickerson 149, R Nicolaidou 180, B Nicquevert 42, J Nielsen 181, N Nikiforou 53, A Nikiforov 18, V Nikolaenko 167, I Nikolic-Audit 107, K Nikolopoulos 20, J K Nilsen 148, P Nilsson 33, Y Ninomiya 203, A Nisati 169, R Nisius 129, T Nobe 203, L Nodulman 8, M Nomachi 147, I Nomidis 41, T Nooney 103, S Norberg 142, M Nordberg 42, O Novgorodova 64, S Nowak 129, M Nozaki 92, L Nozka 144, K Ntekas 12, G Nunes Hanninger 115, T Nunnemann 128, E Nurse 105, F Nuti 115, F O’grady 9, D C O’Neil 186, V O’Shea 75, F G Oakham 41, H Oberlack 129, T Obermann 26, J Ocariz 107, A Ochi 93, I Ochoa 53, J P Ochoa-Ricoux 44, S Oda 96, S Odaka 92, H Ogren 87, A Oh 111, S H Oh 65, C C Ohm 17, H Ohman 217, H Oide 42, W Okamura 147, H Okawa 209, Y Okumura 43, T Okuyama 92, A Olariu 35, S A Olivares Pino 66, D Oliveira Damazio 33, A Olszewski 59, J Olszowska 59, A Onofre 157,161, K Onogi 131, P U E Onyisi 43, C J Oram 207, M J Oreglia 43, Y Oren 201, D Orestano 173,174, N Orlando 202, C Oropeza Barrera 75, R S Orr 206, B Osculati 70,71, R Ospanov 111, G Otero y Garzon 39, H Otono 96, M Ouchrif 178, F Ould-Saada 148, A Ouraou 180, K P Oussoren 136, Q Ouyang 46, A Ovcharova 17, M Owen 75, R E Owen 20, V E Ozcan 21, N Ozturk 10, K Pachal 186, A Pacheco Pages 14, C Padilla Aranda 14, M Pagáčová 68, S Pagan Griso 17, E Paganis 183, F Paige 33, P Pais 113, K Pajchel 148, G Palacino 208, S Palestini 42, M Palka 58, D Pallin 52, A Palma 157,158, Y B Pan 224, E St Panagiotopoulou 12, C E Pandini 107, J G Panduro Vazquez 104, P Pani 193,194, S Panitkin 33, D Pantea 35, L Paolozzi 69, Th D Papadopoulou 12, K Papageorgiou 202, A Paramonov 8, D Paredes Hernandez 227, M A Parker 40, K A Parker 183, F Parodi 70,71, J A Parsons 53, U Parzefall 68, E Pasqualucci 169, S Passaggio 70, F Pastore 173,174, Fr Pastore 104, G Pásztor 41, S Pataraia 226, N D Patel 198, J R Pater 111, T Pauly 42, J Pearce 220, B Pearson 142, L E Pedersen 54, M Pedersen 148, S Pedraza Lopez 218, R Pedro 157,158, S V Peleganchuk 138, D Pelikan 217, O Penc 164, C Peng 46, H Peng 47, B Penning 43, J Penwell 87, D V Perepelitsa 33, E Perez Codina 207, M T Pérez García-Estañ 218, L Perini 118,119, H Pernegger 42, S Perrella 132,133, R Peschke 62, V D Peshekhonov 91, K Peters 42, R F Y Peters 111, B A Petersen 42, T C Petersen 54, E Petit 62, A Petridis 1, C Petridou 202, P Petroff 146, E Petrolo 169, F Petrucci 173,174, N E Pettersson 205, R Pezoa 45, P W Phillips 168, G Piacquadio 187, E Pianori 221, A Picazio 69, E Piccaro 103, M Piccinini 24,25, M A Pickering 149, R Piegaia 39, D T Pignotti 140, J E Pilcher 43, A D Pilkington 111, A W J Pin 111, J Pina 157,158,160, M Pinamonti 213,215, J L Pinfold 3, A Pingel 54, S Pires 107, H Pirumov 62, M Pitt 223, C Pizio 118,119, L Plazak 188, M-A Pleier 33, V Pleskot 166, E Plotnikova 91, P Plucinski 193,194, D Pluth 90, R Poettgen 193,194, L Poggioli 146, D Pohl 26, G Polesello 150, A Poley 62, A Policicchio 55,56, R Polifka 206, A Polini 24, C S Pollard 75, V Polychronakos 33, K Pommès 42, L Pontecorvo 169, B G Pope 117, G A Popeneciu 36, D S Popovic 15, A Poppleton 42, S Pospisil 165, K Potamianos 17, I N Potrap 91, C J Potter 197, C T Potter 145, G Poulard 42, J Poveda 42, V Pozdnyakov 91, M E Pozo Astigarraga 42, P Pralavorio 112, A Pranko 17, S Prasad 42, S Prell 90, D Price 111, L E Price 8, M Primavera 99, S Prince 114, M Proissl 66, K Prokofiev 86, F Prokoshin 45, E Protopapadaki 180, S Protopopescu 33, J Proudfoot 8, M Przybycien 57, E Ptacek 145, D Puddu 173,174, E Pueschel 113, D Puldon 196, M Purohit 33, P Puzo 146, J Qian 116, G Qin 75, Y Qin 111, A Quadt 76, D R Quarrie 17, W B Quayle 213,214, M Queitsch-Maitland 111, D Quilty 75, S Raddum 148, V Radeka 33, V Radescu 62, S K Radhakrishnan 196, P Radloff 145, P Rados 115, F Ragusa 118,119, G Rahal 229, S Rajagopalan 33, M Rammensee 42, C Rangel-Smith 217, F Rauscher 128, S Rave 110, T Ravenscroft 75, M Raymond 42, A L Read 148, N P Readioff 101, D M Rebuzzi 150,151, A Redelbach 225, G Redlinger 33, R Reece 181, K Reeves 61, L Rehnisch 18, J Reichert 152, H Reisin 39, C Rembser 42, H Ren 46, A Renaud 146, M Rescigno 169, S Resconi 118, O L Rezanova 138, P Reznicek 166, R Rezvani 123, R Richter 129, S Richter 105, E Richter-Was 58, O Ricken 26, M Ridel 107, P Rieck 18, C J Riegel 226, J Rieger 76, O Rifki 142, M Rijssenbeek 196, A Rimoldi 150,151, L Rinaldi 24, B Ristić 69, E Ritsch 42, I Riu 14, F Rizatdinova 143, E Rizvi 103, S H Robertson 114, A Robichaud-Veronneau 114, D Robinson 40, J E M Robinson 62, A Robson 75, C Roda 154,155, S Roe 42, O Røhne 148, A Romaniouk 126, M Romano 24,25, S M Romano Saez 52, E Romero Adam 218, N Rompotis 182, M Ronzani 68, L Roos 107, E Ros 218, S Rosati 169, K Rosbach 68, P Rose 181, O Rosenthal 185, V Rossetti 193,194, E Rossi 132,133, L P Rossi 70, J H N Rosten 40, R Rosten 182, M Rotaru 35, I Roth 223, J Rothberg 182, D Rousseau 146, C R Royon 180, A Rozanov 112, Y Rozen 200, X Ruan 192, F Rubbo 187, I Rubinskiy 62, V I Rud 127, C Rudolph 64, M S Rudolph 206, F Rühr 68, A Ruiz-Martinez 42, Z Rurikova 68, N A Rusakovich 91, A Ruschke 128, H L Russell 182, J P Rutherfoord 9, N Ruthmann 42, Y F Ryabov 153, M Rybar 216, G Rybkin 146, N C Ryder 149, A Ryzhov 167, A F Saavedra 198, G Sabato 136, S Sacerdoti 39, A Saddique 3, H F-W Sadrozinski 181, R Sadykov 91, F Safai Tehrani 169, P Saha 137, M Sahinsoy 80, M Saimpert 180, T Saito 203, H Sakamoto 203, Y Sakurai 222, G Salamanna 173,174, A Salamon 171, J E Salazar Loyola 45, M Saleem 142, D Salek 136, P H Sales De Bruin 182, D Salihagic 129, A Salnikov 187, J Salt 218, D Salvatore 55,56, F Salvatore 197, A Salvucci 84, A Salzburger 42, D Sammel 68, D Sampsonidis 202, A Sanchez 132,133, J Sánchez 218, V Sanchez Martinez 218, H Sandaker 148, R L Sandbach 103, H G Sander 110, M P Sanders 128, M Sandhoff 226, C Sandoval 211, R Sandstroem 129, D P C Sankey 168, M Sannino 70,71, A Sansoni 67, C Santoni 52, R Santonico 171,172, H Santos 157, I Santoyo Castillo 197, K Sapp 156, A Sapronov 91, J G Saraiva 157,160, B Sarrazin 26, O Sasaki 92, Y Sasaki 203, K Sato 209, G Sauvage 7, E Sauvan 7, G Savage 104, P Savard 206, C Sawyer 168, L Sawyer 106, J Saxon 43, C Sbarra 24, A Sbrizzi 24,25, T Scanlon 105, D A Scannicchio 212, M Scarcella 198, V Scarfone 55,56, J Schaarschmidt 223, P Schacht 129, D Schaefer 42, R Schaefer 62, J Schaeffer 110, S Schaepe 26, S Schaetzel 81, U Schäfer 110, A C Schaffer 146, D Schaile 128, R D Schamberger 196, V Scharf 80, V A Schegelsky 153, D Scheirich 166, M Schernau 212, C Schiavi 70,71, C Schillo 68, M Schioppa 55,56, S Schlenker 42, K Schmieden 42, C Schmitt 110, S Schmitt 81, S Schmitt 62, S Schmitz 110, B Schneider 207, Y J Schnellbach 101, U Schnoor 64, L Schoeffel 180, A Schoening 81, B D Schoenrock 117, E Schopf 26, A L S Schorlemmer 76, M Schott 110, D Schouten 207, J Schovancova 10, S Schramm 69, M Schreyer 225, N Schuh 110, M J Schultens 26, H-C Schultz-Coulon 80, H Schulz 18, M Schumacher 68, B A Schumm 181, Ph Schune 180, C Schwanenberger 111, A Schwartzman 187, T A Schwarz 116, Ph Schwegler 129, H Schweiger 111, Ph Schwemling 180, R Schwienhorst 117, J Schwindling 180, T Schwindt 26, E Scifo 146, G Sciolla 28, F Scuri 154,155, F Scutti 26, J Searcy 116, G Sedov 62, E Sedykh 153, P Seema 26, S C Seidel 134, A Seiden 181, F Seifert 165, J M Seixas 29, G Sekhniaidze 132, K Sekhon 116, S J Sekula 60, D M Seliverstov 153, N Semprini-Cesari 24,25, C Serfon 42, L Serin 146, L Serkin 213,214, T Serre 112, M Sessa 173,174, R Seuster 207, H Severini 142, T Sfiligoj 102, F Sforza 42, A Sfyrla 42, E Shabalina 76, M Shamim 145, L Y Shan 46, R Shang 216, J T Shank 27, M Shapiro 17, P B Shatalov 125, K Shaw 213,214, S M Shaw 111, A Shcherbakova 193,194, C Y Shehu 197, P Sherwood 105, L Shi 199, S Shimizu 93, C O Shimmin 212, M Shimojima 130, M Shiyakova 91, A Shmeleva 124, D Shoaleh Saadi 123, M J Shochet 43, S Shojaii 118,119, S Shrestha 140, E Shulga 126, M A Shupe 9, P Sicho 164, P E Sidebo 195, O Sidiropoulou 225, D Sidorov 143, A Sidoti 24,25, F Siegert 64, Dj Sijacki 15, J Silva 157,160, Y Silver 201, S B Silverstein 193, V Simak 165, O Simard 7, Lj Simic 15, S Simion 146, E Simioni 110, B Simmons 105, D Simon 52, M Simon 110, P Sinervo 206, N B Sinev 145, M Sioli 24,25, G Siragusa 225, A N Sisakyan 91, S Yu Sivoklokov 127, J Sjölin 193,194, T B Sjursen 16, M B Skinner 98, H P Skottowe 79, P Skubic 142, M Slater 20, T Slavicek 165, M Slawinska 136, K Sliwa 210, V Smakhtin 223, B H Smart 66, L Smestad 16, S Yu Smirnov 126, Y Smirnov 126, L N Smirnova 127, O Smirnova 108, M N K Smith 53, R W Smith 53, M Smizanska 98, K Smolek 165, A A Snesarev 124, G Snidero 103, S Snyder 33, R Sobie 220, F Socher 64, A Soffer 201, D A Soh 199, G Sokhrannyi 102, C A Solans 42, M Solar 165, J Solc 165, E Yu Soldatov 126, U Soldevila 218, A A Solodkov 167, A Soloshenko 91, O V Solovyanov 167, V Solovyev 153, P Sommer 68, H Y Song 47, N Soni 1, A Sood 17, A Sopczak 165, B Sopko 165, V Sopko 165, V Sorin 14, D Sosa 81, M Sosebee 10, C L Sotiropoulou 154,155, R Soualah 213,215, A M Soukharev 138, D South 62, B C Sowden 104, S Spagnolo 99,100, M Spalla 154,155, M Spangenberg 221, F Spanò 104, W R Spearman 79, D Sperlich 18, F Spettel 129, R Spighi 24, G Spigo 42, L A Spiller 115, M Spousta 166, R D St Denis 75, A Stabile 118, S Staerz 42, J Stahlman 152, R Stamen 80, S Stamm 18, E Stanecka 59, R W Stanek 8, C Stanescu 173, M Stanescu-Bellu 62, M M Stanitzki 62, S Stapnes 148, E A Starchenko 167, J Stark 77, P Staroba 164, P Starovoitov 80, R Staszewski 59, P Steinberg 33, B Stelzer 186, H J Stelzer 42, O Stelzer-Chilton 207, H Stenzel 74, G A Stewart 75, J A Stillings 26, M C Stockton 114, M Stoebe 114, G Stoicea 35, P Stolte 76, S Stonjek 129, A R Stradling 10, A Straessner 64, M E Stramaglia 19, J Strandberg 195, S Strandberg 193,194, A Strandlie 148, E Strauss 187, M Strauss 142, P Strizenec 189, R Ströhmer 225, D M Strom 145, R Stroynowski 60, A Strubig 135, S A Stucci 19, B Stugu 16, N A Styles 62, D Su 187, J Su 156, R Subramaniam 106, A Succurro 14, S Suchek 80, Y Sugaya 147, M Suk 165, V V Sulin 124, S Sultansoy 6, T Sumida 94, S Sun 79, X Sun 46, J E Sundermann 68, K Suruliz 197, G Susinno 55,56, M R Sutton 197, S Suzuki 92, M Svatos 164, M Swiatlowski 43, I Sykora 188, T Sykora 166, D Ta 68, C Taccini 173,174, K Tackmann 62, J Taenzer 206, A Taffard 212, R Tafirout 207, N Taiblum 201, H Takai 33, R Takashima 95, H Takeda 93, T Takeshita 184, Y Takubo 92, M Talby 112, A A Talyshev 138, J Y C Tam 225, K G Tan 115, J Tanaka 203, R Tanaka 146, S Tanaka 92, B B Tannenwald 140, S Tapia Araya 45, S Tapprogge 110, S Tarem 200, F Tarrade 41, G F Tartarelli 118, P Tas 166, M Tasevsky 164, T Tashiro 94, E Tassi 55,56, A Tavares Delgado 157,158, Y Tayalati 178, A C Taylor 134, F E Taylor 122, G N Taylor 115, P T E Taylor 115, W Taylor 208, F A Teischinger 42, P Teixeira-Dias 104, K K Temming 68, D Temple 186, H Ten Kate 42, P K Teng 199, J J Teoh 147, F Tepel 226, S Terada 92, K Terashi 203, J Terron 109, S Terzo 129, M Testa 67, R J Teuscher 206, T Theveneaux-Pelzer 52, J P Thomas 20, J Thomas-Wilsker 104, E N Thompson 53, P D Thompson 20, R J Thompson 111, A S Thompson 75, L A Thomsen 227, E Thomson 152, M Thomson 40, R P Thun 116, M J Tibbetts 17, R E Ticse Torres 112, V O Tikhomirov 124, Yu A Tikhonov 138, S Timoshenko 126, E Tiouchichine 112, P Tipton 227, S Tisserant 112, K Todome 205, T Todorov 7, S Todorova-Nova 166, J Tojo 96, S Tokár 188, K Tokushuku 92, K Tollefson 117, E Tolley 79, L Tomlinson 111, M Tomoto 131, L Tompkins 187, K Toms 134, E Torrence 145, H Torres 186, E Torró Pastor 182, J Toth 112, F Touchard 112, D R Tovey 183, T Trefzger 225, L Tremblet 42, A Tricoli 42, I M Trigger 207, S Trincaz-Duvoid 107, M F Tripiana 14, W Trischuk 206, B Trocmé 77, C Troncon 118, M Trottier-McDonald 17, M Trovatelli 220, L Truong 213,215, M Trzebinski 59, A Trzupek 59, C Tsarouchas 42, J C-L Tseng 149, P V Tsiareshka 120, D Tsionou 202, G Tsipolitis 12, N Tsirintanis 11, S Tsiskaridze 14, V Tsiskaridze 68, E G Tskhadadze 72, K M Tsui 84, I I Tsukerman 125, V Tsulaia 17, S Tsuno 92, D Tsybychev 196, A Tudorache 35, V Tudorache 35, A N Tuna 79, S A Tupputi 24,25, S Turchikhin 127, D Turecek 165, R Turra 118,119, A J Turvey 60, P M Tuts 53, A Tykhonov 69, M Tylmad 193,194, M Tyndel 168, I Ueda 203, R Ueno 41, M Ughetto 193,194, F Ukegawa 209, G Unal 42, A Undrus 33, G Unel 212, F C Ungaro 115, Y Unno 92, C Unverdorben 128, J Urban 189, P Urquijo 115, P Urrejola 110, G Usai 10, A Usanova 88, L Vacavant 112, V Vacek 165, B Vachon 114, C Valderanis 110, N Valencic 136, S Valentinetti 24,25, A Valero 218, L Valery 14, S Valkar 166, S Vallecorsa 69, J A Valls Ferrer 218, W Van Den Wollenberg 136, P C Van Der Deijl 136, R van der Geer 136, H van der Graaf 136, N van Eldik 200, P van Gemmeren 8, J Van Nieuwkoop 186, I van Vulpen 136, M C van Woerden 42, M Vanadia 169,170, W Vandelli 42, R Vanguri 152, A Vaniachine 8, F Vannucci 107, G Vardanyan 228, R Vari 169, E W Varnes 9, T Varol 60, D Varouchas 107, A Vartapetian 10, K E Varvell 198, F Vazeille 52, T Vazquez Schroeder 114, J Veatch 9, L M Veloce 206, F Veloso 157,159, T Velz 26, S Veneziano 169, A Ventura 99,100, D Ventura 113, M Venturi 220, N Venturi 206, A Venturini 28, V Vercesi 150, M Verducci 169,170, W Verkerke 136, J C Vermeulen 136, A Vest 64, M C Vetterli 186, O Viazlo 108, I Vichou 216, T Vickey 183, O E Vickey Boeriu 183, G H A Viehhauser 149, S Viel 17, R Vigne 88, M Villa 24,25, M Villaplana Perez 118,119, E Vilucchi 67, M G Vincter 41, V B Vinogradov 91, I Vivarelli 197, S Vlachos 12, D Vladoiu 128, M Vlasak 165, M Vogel 44, P Vokac 165, G Volpi 154,155, M Volpi 115, H von der Schmitt 129, H von Radziewski 68, E von Toerne 26, V Vorobel 166, K Vorobev 126, M Vos 218, R Voss 42, J H Vossebeld 101, N Vranjes 15, M Vranjes Milosavljevic 15, V Vrba 164, M Vreeswijk 136, R Vuillermet 42, I Vukotic 43, Z Vykydal 165, P Wagner 26, W Wagner 226, H Wahlberg 97, S Wahrmund 64, J Wakabayashi 131, J Walder 98, R Walker 128, W Walkowiak 185, C Wang 199, F Wang 224, H Wang 17, H Wang 60, J Wang 62, J Wang 198, K Wang 114, R Wang 8, S M Wang 199, T Wang 26, T Wang 53, X Wang 227, C Wanotayaroj 145, A Warburton 114, C P Ward 40, D R Wardrope 105, A Washbrook 66, C Wasicki 62, P M Watkins 20, A T Watson 20, I J Watson 198, M F Watson 20, G Watts 182, S Watts 111, B M Waugh 105, S Webb 111, M S Weber 19, S W Weber 225, J S Webster 8, A R Weidberg 149, B Weinert 87, J Weingarten 76, C Weiser 68, H Weits 136, P S Wells 42, T Wenaus 33, T Wengler 42, S Wenig 42, N Wermes 26, M Werner 68, P Werner 42, M Wessels 80, J Wetter 210, K Whalen 145, A M Wharton 98, A White 10, M J White 1, R White 45, S White 154,155, D Whiteson 212, F J Wickens 168, W Wiedenmann 224, M Wielers 168, P Wienemann 26, C Wiglesworth 54, L A M Wiik-Fuchs 26, A Wildauer 129, H G Wilkens 42, H H Williams 152, S Williams 136, C Willis 117, S Willocq 113, A Wilson 116, J A Wilson 20, I Wingerter-Seez 7, F Winklmeier 145, B T Winter 26, M Wittgen 187, J Wittkowski 128, S J Wollstadt 110, M W Wolter 59, H Wolters 157,159, B K Wosiek 59, J Wotschack 42, M J Woudstra 111, K W Wozniak 59, M Wu 77, M Wu 43, S L Wu 224, X Wu 69, Y Wu 116, T R Wyatt 111, B M Wynne 66, S Xella 54, D Xu 46, L Xu 33, B Yabsley 198, S Yacoob 190, R Yakabe 93, M Yamada 92, D Yamaguchi 205, Y Yamaguchi 147, A Yamamoto 92, S Yamamoto 203, T Yamanaka 203, K Yamauchi 131, Y Yamazaki 93, Z Yan 27, H Yang 50, H Yang 224, Y Yang 199, W-M Yao 17, Y C Yap 107, Y Yasu 92, E Yatsenko 7, K H Yau Wong 26, J Ye 60, S Ye 33, I Yeletskikh 91, A L Yen 79, E Yildirim 62, K Yorita 222, R Yoshida 8, K Yoshihara 152, C Young 187, C J S Young 42, S Youssef 27, D R Yu 17, J Yu 10, J M Yu 116, J Yu 143, L Yuan 93, S P Y Yuen 26, A Yurkewicz 137, I Yusuff 40, B Zabinski 59, R Zaidan 89, A M Zaitsev 167, J Zalieckas 16, A Zaman 196, S Zambito 79, L Zanello 169,170, D Zanzi 115, C Zeitnitz 226, M Zeman 165, A Zemla 57, J C Zeng 216, Q Zeng 187, K Zengel 28, O Zenin 167, T Ženiš 188, D Zerwas 146, D Zhang 116, F Zhang 224, G Zhang 47, H Zhang 48, J Zhang 8, L Zhang 68, R Zhang 47, X Zhang 49, Z Zhang 146, X Zhao 60, Y Zhao 49,146, Z Zhao 47, A Zhemchugov 91, J Zhong 149, B Zhou 116, C Zhou 65, L Zhou 53, L Zhou 60, M Zhou 196, N Zhou 51, C G Zhu 49, H Zhu 46, J Zhu 116, Y Zhu 47, X Zhuang 46, K Zhukov 124, A Zibell 225, D Zieminska 87, N I Zimine 91, C Zimmermann 110, S Zimmermann 68, Z Zinonos 76, M Zinser 110, M Ziolkowski 185, L Živković 15, G Zobernig 224, A Zoccoli 24,25, M zur Nedden 18, G Zurzolo 132,133, L Zwalinski 42
PMCID: PMC5321297  PMID: 28280435

Abstract

Distributions of transverse momentum pT and the related angular variable ϕη of DrellΓÇôYan lepton pairs are measured in 20.3┬áfb-1 of protonΓÇôproton collisions at s=8┬áTeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in protonΓÇôproton collisions at s=7┬áTeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of ϕη<1 the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of ϕη this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of pT while the fixed-order prediction of Dynnlo falls below the data at high values of pT. ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the ϕη and pT distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.

Introduction

In high-energy hadronΓÇôhadron collisions the vector bosons W and Z/γ are produced via quarkΓÇôantiquark annihilation, and may be observed with very small backgrounds in their leptonic decay modes. The vector bosons may have non-zero momentum transverse to the beam direction pT(W,Z) due to the emission of quarks and gluons from the initial-state partons as well as to the intrinsic transverse momentum of the initial-state partons in the proton. Phenomenologically, the spectrum at low pT(W,Z) can be described using soft-gluon resummation [1] together with a non-perturbative contribution from the parton intrinsic transverse momentum. At high pT(W,Z) the spectrum may be described by fixed-order perturbative QCD predictions [24]. Parton-shower models [5, 6] may be used to compensate for missing higher-order corrections in the fixed-order QCD predictions.

Measurements of pT(W,Z) thus test several aspects of QCD. The correct modelling of pT(W,Z) is also important in many physics analyses at the LHC for which the production of W and/or Z bosons constitutes a background. Moreover, it is a crucial ingredient for a precise measurement of the W-boson mass, at both the LHC and the Tevatron. Measurements of the dependence of pT(W,Z) on the boson rapidity1 are sensitive to the gluon distribution function of the proton [7]. High-precision measurements at large values of pT(W,Z) could be sensitive to electroweak (EW) corrections [8].

DrellΓÇôYan events with final states including e+e- or μ+μ- (ΓÇÿDrellΓÇôYan lepton pairsΓÇÖ) allow the transverse momentum pT of Z/γ bosons to be measured with greater precision than is possible in the case of W bosons, because of the unobserved neutrino produced in W leptonic decays. Measurements of pT for lepton-pair masses, m, around the Z-boson mass peak have been made by the CDF Collaboration [9] and the D0 Collaboration [1012] at the Tevatron, and the ATLAS Collaboration [13, 14], the CMS Collaboration [15, 16] and the LHCb Collaboration [1719] at the LHC. Measurements of pT require a precise understanding of the transverse momentum pT calibration and resolution of the final-state leptons. Associated systematic uncertainties affect the resolution in pT and limit the ultimate precision of the measurements, particularly in the low-pT domain. To minimise the impact of these uncertainties, the ϕη observable was introduced [20] as an alternative probe of pT. It is defined as

ϕη=tanπ-Δϕ2·sin(θη), 1

where Δϕ is the azimuthal angle in radians between the two leptons. The angle θη is a measure of the scattering angle of the leptons with respect to the proton beam direction in the rest frame of the dilepton system and is defined by cos(θη)=tanh[(η--η+)/2], where η- and η+ are the pseudorapidities of the negatively and positively charged lepton, respectively [20]. Therefore, ϕη depends exclusively on the directions of the two leptons, which are more precisely measured than their momenta. Measurements of ϕη for m around the Z-boson mass peak were first made by the D0 Collaboration [21] at the Tevatron and subsequently by the ATLAS Collaboration [22] for s=7TeV and the LHCb Collaboration for s=7TeV [17, 18] and┬á8TeV [19] at the LHC. First measurements of ϕη for ranges of m above and below the Z-boson mass peak were recently presented by the D0 Collaboration [23].

Measurements are presented here of ϕη and pT for DrellΓÇôYan lepton-pair events using the complete s=8TeV data set of the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3┬áfb-1. The data are corrected for detector effects. The measurements are presented for e+e- and μ+μ- final states, in bins of m, above and below, as well as at the Z-boson mass peak, and in bins of the Z/γ-boson rapidity |y|. In addition, integrated fiducial cross sections are provided for six regions of m.

The ATLAS experiment is briefly described in Sect.┬á2. A general overview of the measurement methods is given in Sect.┬á3, which has specific sections on the event simulation, event reconstruction, event selection, background estimation, corrections for detector effects, and the evaluation of the systematic uncertainties. The combination of the measurements in the e+e- and μ+μ- final states is described in Sect.┬á4. The corrected differential cross sections are compared to various theoretical predictions in Sect.┬á5. A short summary and conclusion are given in Sect.┬á6. The values of the normalised differential cross sections (1/σ)dσ/dϕη and (1/σ)dσ/dpT are given in tables in the Appendix for each region of m and |y| considered.

The ATLAS detector

The ATLAS detector [24] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS) incorporating three large superconducting toroid magnets. The ID is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the range |η|<2.5. A high-granularity silicon pixel detector typically provides three measurements per track, and is followed by a silicon microstrip tracker, which usually provides four three-dimensional measurement points per track. These silicon detectors are complemented by a transition radiation tracker, which enables radially extended track reconstruction up to |η|=2.0. The transition radiation tracker also provides electron identification information based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |η|<4.9. Within the region |η|<3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering |η|<1.8, to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures within |η|<1.7, and two copper/LAr hadronic endcap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for electromagnetic and hadronic measurements, respectively.

The MS comprises separate trigger and precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chamber system covers the region |η|<2.7 with three layers of monitored drift tubes, complemented by cathode-strip chambers in the forward region, where the background is highest. The muon trigger system covers the range |η|<2.4 with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.

A three-level trigger system is used to select interesting events [25]. The Level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels which together reduce the event rate to about 400 Hz.

Analysis methods

This section describes the particle-level measurements presented in this paper (Sect.┬á3.1), the simulation of signal and background Monte Carlo (MC) samples (Sect.┬á3.2), the event reconstruction and selection criteria (Sect.┬á3.3), the estimation of backgrounds (Sect.┬á3.4), corrections to the distributions of ϕη and pT for detector effects and final-state radiation (Sect.┬á3.5), and the estimation of systematic uncertainties (Sect.┬á3.6).

Description of the particle-level measurements

DrellΓÇôYan signal MC simulation is used to correct the background-subtracted data for detector resolution and inefficiency. Three different ΓÇÿparticle-levelΓÇÖ definitions are employed, which differ in their treatment of final-state photon radiation (FSR). The Born and bare levels are defined from the lepton kinematics before and after FSR, respectively. The dressed level is defined by combining the bare four-momentum of each lepton with that of photons radiated within a cone defined by ΔR=0.1 (See footnote 1) around the lepton. The muon-pair data are corrected to the bare, dressed, and Born levels. The electron-pair data are corrected to the dressed and Born levels. The two lepton-pair channels are combined at the Born level. The bare and dressed particle-level definitions reduce the dependence on the MC FSR model used to correct the data, which results (particularly for events with m below the Z-boson mass peak) in a lower systematic uncertainty. Corrections to a common particle-level definition (Born level) for the combination of the two channels allow comparisons to calculations that do not account for the effects of FSR, albeit at the cost of an increased systematic uncertainty on the corrected data.

The data are corrected to the particle level within fiducial regions in lepton pT and |η|, and in lepton-pair m and |y| that correspond closely to the selection criteria applied to the data. The fiducial regions common to the measurements of ϕη and pT are described first. The two leptons are required to have pT>20GeV and |η|<2.4. Measurements of the normalised differential cross sections (1/σ)dσ/dϕη and (1/σ)dσ/dpT, and of the absolute differential cross section dσ/dpT, are made in three m regions within 46GeV<m<150GeV for |y|<2.4. In the mass region 66GeV<m<116GeV, measurements are made in six equally sized regions of |y|. The distributions of (1/σ)dσ/dϕη and (1/σ)dσ/dpT are individually normalised in each region of |y|. Measurements of (1/σ)dσ/dϕη in the regions of m above and below the Z-boson mass peak, 46GeV<m<66GeV and 116GeV<m<150GeV, are made in three equally-sized regions of |y|. For pT>45GeV, measurements of pT are made in three additional mass regions below 46GeV.

A synopsis of the ϕη and pT measurements, and of the fiducial-region definitions used is given in Table┬á1.

Table 1.

Synopsis of the ϕη and pT measurements, and of the fiducial region definitions used. Full details including the definition of the Born, bare and dressed particle levels are provided in the text. Unless otherwise stated criteria apply to both ϕη and pT measurements

Particle-level definitions (treatment of final-state photon radiation)
Electron pairs Dressed; Born
Muon pairs Bare; dressed; Born
Combined Born
Fiducial region
Leptons pT>20GeV and |η|<2.4
Lepton pairs |y|<2.4
Mass and rapidity regions
46GeV<m<66GeV |y|<0.8; 0.8<|y|<1.6; 1.6<|y|<2.4 (ϕη measurements only)
|y|<2.4
66GeV<m<116GeV |y|<0.4; 0.4<|y|<0.8; 0.8<|y|<1.2; 1.2<|y|<1.6; 1.6<|y|<2.0; 2.0<|y|<2.4; |y|<2.4
116GeV<m<150GeV |y|<0.8; 0.8<|y|<1.6; 1.6<|y|<2.4 (ϕη measurements only)
|y|<2.4
Very-low mass regions
12GeV<m<20GeV20GeV<m<30GeV30GeV<m<46GeV |y|<2.4, pT>45GeV, pT measurements only

Event simulation

MC simulation is used to estimate backgrounds and to correct the data for detector resolution and inefficiencies, as well as for the effects of FSR.

Three generators are used to produce samples of DrellΓÇôYan lepton-pair signal events. The first is Powheg [26, 27] which uses the CT10 set of parton distribution functions (PDFs) [28] and is interfaced to Pythia 8.170 [6, 29] with the AU2 set of tuned parameters (tune) [30] to simulate the parton shower, hadronisation and underlying event, and to Photos [31] to simulate FSR. This is referred to as Powheg+Pythia in the text. The second is Powheg interfaced to Herwig 6.520.2 [5] for the parton shower and hadronisation, Jimmy [32] for the underlying event, and Photos for FSR (referred to as Powheg+Herwig). The Sherpa 1.4.1 [33] generator is also used, which has its own implementation of the parton shower, hadronisation, underlying event and FSR, and which again uses the CT10 PDF set. Differences between the results obtained using these three generators are used to estimate systematic uncertainties related to the choice of generator.

Background events from the process Zττ are produced using Alpgen [34] interfaced to Herwig to simulate the parton shower and Jimmy to simulate the underlying event. Single W-boson decays to electrons, muons and τ leptons are produced with Sherpa, and the diboson processes WW, WZ and ZZ are produced with Herwig. The tt¯ process is simulated with MC@NLO [35] interfaced to Jimmy, as is the single-top process in the s-channel and Wt-channel. The t-channel is generated with AcerMC [36] interfaced to Pythia. Exclusive γγ production is generated using the Herwig++ 2.6.3 generator [37]. Photon-induced single-dissociative dilepton production, is simulated using Lpair 4.0 [38] with the Brasse [39] and SuriΓÇôYennie [40] structure functions for proton dissociation. For double-dissociative γγ reactions, Pythia 8.175 [29] is used with the MRST2004QED [41] PDFs.

The effect of multiple interactions per bunch crossing (pile-up) is simulated by overlaying MC-generated minimum bias events [42]. The simulated event samples are reweighted to describe the distribution of the number of pile-up events in the data. The Geant4 [43] program is used to simulate the passage of particles through the ATLAS detector. Differences in reconstruction, trigger, identification and isolation efficiencies between MC simulation and data are evaluated using a tag-and-probe method [44, 45] and are corrected for by reweighting the MC simulated events. Corrections are also applied to MC events for the description of the lepton energy and momentum scales and resolution, which are determined from fits to the observed Z -boson line shapes in data and MC simulation [45, 46]. The MC simulation is also reweighted to better describe the distribution of the longitudinal position of the primary pp collision vertex [47] in data.

Three additional samples of Drell–Yan lepton-pair signal events are produced without detector simulation, for the purpose of comparison with the corrected data in Sect. 5. The MC generators used are ResBos, Dynnlo, and Powheg+Pythia (AZNLO tune).

ResBos [48] simulates vector-boson production and decay, but does not include a description of the hadronic activity in the event nor of FSR. Initial-state QCD corrections to Z-boson production are simulated at approximately next-to-next-to-leading-order (NNLO) accuracy using approximate NNLO (i.e. O(αs2)) Wilson coefficient functions [49].2 The contributions from γ and from Z/γ interference are simulated at next-to-leading-order (NLO) accuracy (i.e. O(αs)). ResBos uses a resummed treatment of soft-gluon emissions at next-to-next-to-leading-logarithm (NNLL) accuracy. It uses the GNW parameterisation [49, 50] of non-perturbative effects at small pT, as optimised using the D0 ϕη measurements in Ref. [21]. The CT14 NNLO PDF sets [51] are used and the corresponding 90┬á% confidence-level PDF uncertainties are evaluated and rescaled to 68┬á% confidence level. The choices3 of central values and range of systematic uncertainty variations for QCD scales and the non-perturbative parameter aZ are made following Ref. [49]. These differ from the choices made for the ATLAS 7TeV pT and ϕη papers [14, 22].

Dynnlo1.3 [4] simulates initial-state QCD corrections to NNLO accuracy. The CT10 NNLO PDF sets are used. The Dynnlo calculation is performed in the Gμ electroweak parameter scheme [52]. Additional NLO electroweak virtual corrections4 are provided by the authors of Ref. [53]. Dynnlo does not account for the effects of multiple soft-gluon emission and therefore is not able to make accurate predictions at low ϕη and pT.

An additional Powheg+Pythia sample is produced which uses the AZNLO tune [14]. This tune includes the ATLAS 7TeV ϕη and pT results in a mass region around the Z peak. The sample uses Pythia version 8.175 and the CTEQ6L1 PDF set [54] for the parton shower, while CT10 is used for the Powheg calculation.

Event reconstruction and selection

The measurements are performed using protonΓÇôproton collision data recorded at s=8TeV. The data were collected between April and December 2012 and correspond to an integrated luminosity of 20.3fb-1. Selected events are required to be in a data-taking period in which there were stable beams and the detector was fully operational.

For measurements of ϕη, candidate electron-pair events were obtained using a dielectron trigger, whilst for measurements of pT, a combination of a single-electron trigger (to select events with the leading reconstructed electron pT>60GeV and the sub-leading electron pT>25GeV) and a dielectron trigger (to select all other events) was used. The motivation for using a slightly different trigger selection for measurements of the pT observable is to obtain a higher efficiency for electron pairs with ΔR<0.35, which is relevant to maintain a high acceptance for m<46GeV. Electron candidates are reconstructed from clusters of energy in the electromagnetic calorimeter matched to ID tracks [55]. They are required to have pT>20GeV and |η|<2.4, but excluding the transition regions between the barrel and the endcap electromagnetic calorimeters, 1.37<|η|<1.52. The electron candidates must satisfy a set of ΓÇÿmediumΓÇÖ selection criteria [55] that have been reoptimised for the larger number of protonΓÇôproton collisions per beam crossing observed in the 2012 data. Events are required to contain exactly two electron candidates. Except for the m region around the Z-boson mass peak, the electron candidates are required to be isolated, satisfying Ie┬á<┬á0.2, where Ie is the scalar sum of the pT of tracks with ΔR<0.4 around the electron track divided by the pT of the electron. For measurements of pT, this requirement is not applied when the two electrons are separated by ΔR<0.5. For measurements of pT the two electron candidates must satisfy ΔR>0.15.

Candidate muon-pair events are retained for further analysis using a combination of a single-muon trigger (for pT>25┬áGeV) and a dimuon trigger (for 20<pT<25┬áGeV). Muon candidates are reconstructed by combining tracks reconstructed in both the inner detector and the MS [45]. They are required to have pT>20GeV and |η|<2.4. In order to suppress backgrounds, track-quality requirements are imposed for muon identification, and longitudinal and transverse impact-parameter requirements ensure that the muon candidates originate from a common primary protonΓÇôproton interaction vertex. The muon candidates are also required to be isolated, satisfying Iμ┬á<┬á0.1, where Iμ is the scalar sum of the pT of tracks within a cone of size ΔR=0.2 around the muon divided by the pT of the muon. Events are required to contain exactly two muon candidates of opposite charge satisfying the above criteria.

Precise knowledge of the lepton directions is particularly important for the ϕη measurements. These are determined for electron candidates by the track direction in the ID, and for muon candidates from a combination of the track direction in the ID and in the MS.

Tables 2 and 3 show the number of events satisfying the above selection criteria in the electron-pair and muon-pair channels, respectively, for six regions of m. Also given is the estimated contribution to the data from the various background sources considered (described in Sect. 3.4).

Table 2.

The number of events in data satisfying the selection criteria in the electron-pair channel for six different regions of m and the estimated contribution to this value from the various background sources considered. The uncertainties quoted on the background samples include contributions from statistical and systematic sources

m [GeV] Data Total Bkg Multi-jet tt¯, single top Zττ Wν WW┬á/┬áWZ┬á/┬áZZ γγ
12ΓÇô20 17┬á729 2┬á220 ± 470 1┬á370 ± 460 509 ± 27 7 ± 1 215 ± 44 81 ± 7 41 ± 16
20ΓÇô30 13┬á322 1┬á860 ± 210 600 ± 200 873 ± 46 33 ± 3 144 ± 36 158 ± 11 54 ± 21
30ΓÇô46 14┬á798 3┬á290 ± 260 570 ± 230 1┬á920 ± 100 228 ± 23 192 ± 48 314 ± 25 75 ± 30
46ΓÇô66 201┬á613 25┬á600 ± 3┬á900 6┬á200 ± 3┬á400 3┬á990 ± 210 9┬á360 ± 940 670 ± 170 1┬á060 ± 88 4┬á300 ± 1┬á700
66ΓÇô116 6┬á671┬á873 59┬á400 ± 9┬á500 23┬á500 ± 9┬á200 13┬á040 ± 680 3┬á560 ± 360 3┬á860 ± 930 10┬á450 ± 320 5┬á000 ± 2┬á000
116ΓÇô150 77┬á919 8┬á280 ± 170 910 ± 170 4┬á590 ± 240 82 ± 8 530 ± 130 1┬á097 ± 90 1┬á070 ± 430

Table 3.

The number of events in data satisfying the selection criteria in the muon-pair channel for six different regions of m and the estimated contribution to this value from the various background sources considered. The uncertainties quoted on the background samples include contributions from statistical and systematic sources

m [GeV] Data Total Bkg Multi-jet tt¯, single top Zττ Wν WW┬á/┬áWZ┬á/┬áZZ γγ
12ΓÇô20 25┬á297 1┬á220 ± 180 440 ± 170 605 ± 32 1 ± 0 9 ± 2 107 ± 10 64 ± 26
20ΓÇô30 19┬á485 2┬á100 ± 250 590 ± 240 1┬á156 ± 61 20 ± 2 8 ± 2 241 ± 19 84 ± 33
30ΓÇô46 20┬á731 3┬á980 ± 330 730 ± 290 2┬á540 ± 130 156 ± 16 12 ± 3 429 ± 36 114 ± 45
46ΓÇô66 318┬á117 30┬á900 ± 4┬á100 7┬á400 ± 3┬á000 5┬á370 ± 280 9┬á940 ± 990 174 ± 35 1┬á460 ± 120 6┬á600 ± 2┬á600
66ΓÇô116 9┬á084┬á639 46┬á500 ± 4┬á200 7┬á400 ± 3┬á000 13┬á730 ± 720 4┬á150 ± 420 870 ± 170 13┬á640 ± 420 6┬á700 ± 2┬á700
116ΓÇô150 100┬á697 9┬á960 ± 520 1┬á270 ± 520 5┬á790 ± 300 58 ± 6 153 ± 38 1┬á310 ± 110 1┬á380 ± 550

Figure┬á1 shows the distributions of m and η for electron-pair events passing the selection requirements described above. Figure┬á2 shows the equivalent distributions for the dimuon channel. The MC signal sample is simulated using Powheg+Pythia. The predictions from the model are in qualitative agreement with the data.

Fig. 1.

Fig. 1

The distribution of events passing the selection requirements in the electron-pair channel as a function of dilepton invariant mass m (left) and electron pseudorapidity η (right). Events are shown for the m range 46 to 150GeV. The MC signal sample (yellow) is simulated using Powheg+Pythia. The statistical uncertainties on the data points are smaller than the size of the markers and the systematic uncertainties are not plotted. The prediction is normalised to the integral of the data. The vertical dashed lines on the left-hand plot at m values of 66 and 116GeV indicate the boundaries between the three principal m regions employed in the analysis. The small discontinuities in the m distribution at 66 and 116GeV are due to the absence of the isolation requirement around the Z -boson mass peak

Fig. 2.

Fig. 2

The distribution of events passing the selection requirements in the muon-pair channel as a function of dilepton invariant mass m (left) and muon pseudorapidity η (right). Events are shown for the m range 46 to 150GeV. The MC signal sample (yellow) is simulated using Powheg+Pythia. The statistical uncertainties on the data points are smaller than the size of the markers and the systematic uncertainties are not plotted. The prediction is normalised to the integral of the data. The vertical dashed lines on the left hand plot at m values of 66 and 116GeV indicate the boundaries between the three principal m regions employed in the analysis

Estimation of backgrounds

The number and properties of the background events arising from multi-jet processes are estimated using a data-driven technique. A background-dominated sample is selected using a modified version of the signal-selection criteria. In the electron-pair channel, both electrons are required to satisfy the ΓÇÿlooseΓÇÖ identification criteria [55], but not the ΓÇÿmediumΓÇÖ criteria, and are also required to have the same charge. For the muon-pair channel, two samples of lepton pairs are used: the light-flavour background is estimated by requiring a pair of muons with the same charge, whilst the heavy-flavour background is estimated by requiring one electron and one muon with opposite charge. The electron is required to be identified as ΓÇÿlooseΓÇÖ and the electron isolation cut is inverted. It is assumed that in all other variables the shape of the distribution of the multi-jet events is the same in both the signal- and background-dominated samples.

The normalisation of the multi-jet background is determined by performing a χ2 minimisation in a variable that discriminates between the signal and multi-jet background. The contribution from all sources other than the multi-jet background is taken from MC simulation. Two independent fits are performed, using lepton isolation and m as discriminating variables. The signal event-selection criteria are applied, except that the selection criteria on the isolation variables are removed for the fit that uses lepton isolation. In the muon-pair final state, the fit using isolation is performed using the values of Iμ. In the electron-pair final state, the isolation variable Ie is defined as the scalar sum of the ET of energy deposits in the calorimeter within a cone of size ΔR=0.2 around the electron cluster divided by the pT of the electron. The ET sum excludes cells assigned to the electron cluster and can be negative due to cell noise and negative signal contribution from pile-up in neighbouring bunches [56]. The fit is performed using the quantity Iemin, where Iemin is the smaller of the Ie values of the two electrons in an event. Example results of fits to the isolation variables for the electron- and muon-pair channels are shown in Fig.┬á3 for the m region around the Z -boson mass peak. The difference in the results of the fits to isolation and m is taken as the systematic uncertainty on the normalisation of the multi-jet background. As a cross-check the procedure is repeated in bins of |y| and gives results consistent with the fit performed inclusively in |y|.

Fig. 3.

Fig. 3

Left The distribution of the smallest of the isolation variables of the two electrons Iemin. Right The distribution of the muon isolation variable Iμ. The data for 66GeV<m<116GeV are compared to the sum of the estimated multi-jet background and all other processes, which are estimated from MC simulation. The red dashed lines indicate the range over which the fit is performed

The backgrounds from all sources other than multi-jet processes are estimated using the MC samples detailed in Sect.┬á3.2. These estimates are cross-checked by comparing MC simulation to data in control regions, selected using criteria that increase the fraction of background. The Zττ and tt¯ backgrounds are enhanced by requiring exactly one electron and one muon candidate per event according to the criteria described in Sect.┬á3.3. The MC simulation is found to be consistent with the data within the assigned uncertainties on the cross sections (see Sect.┬á3.6). In addition, a subset of these events is studied in which two jets with pT>25GeV are identified, which significantly enhances the contribution from the tt¯ background. Again, the MC simulation is consistent with the data within the assigned uncertainties.

Around the Z -boson mass peak and at low values of ϕη and pT, the background is dominated by multi-jet and γγ processes which together amount to less than 1┬á% of the selected electron-pair or muon-pair event sample. At high ϕη and pT, tt¯ and diboson processes dominate and constitute a few percent of the selected data. In the regions of m below the Z-boson mass peak, tt¯ continues to be a dominant background at larger values of ϕη and pT (forming up to 20┬á% of the selected data), whilst at lower values of ϕη and pT the dominant contribution is from γγ processes with other contributions from Zττ and multi-jet processes (totalling between 10 and 20┬á% of the selected data). The fraction of tt¯ background in the m regions below 46GeV is enhanced by the requirement that pT be greater than 45GeV. In the region of m above the Z-boson mass peak, the tt¯ background forms more than 30┬á% of the selected data at higher values of ϕη and pT. The total background is smaller at low values (approximately 10┬á% of the selected data) with the dominant contribution again coming from γγ processes.

Corrections for detector effects and FSR

After the estimated total background is subtracted from the data, DrellΓÇôYan signal MC simulation is used to correct to the particle level, accounting for detector resolution and inefficiencies and the effects of FSR.

Since the experimental resolution in ϕη is smaller than the chosen bin widths, the fractions of accepted events that fall within the same bin in ϕη at the particle level and reconstructed detector level in the MC simulation are high, having typical values of around 90┬á%. Therefore, simple bin-by-bin corrections of the ϕη distributions are sufficient. A single iteration is performed by reweighting the signal MC events at particle level to the corrected data and rederiving the correction factors. The correction factors are estimated using an average over all available signal MC samples (as described in Sect.┬á3.2).

The detector resolution has a larger effect in the measurement of pT. An iterative Bayesian unfolding method [5759] with seven iterations is used to correct the pT distribution to particle level. The response matrix, which connects the pT distribution at reconstruction and particle levels is estimated using the Powheg+Pythia signal MC sample.

Systematic uncertainties

In this section the principal sources of uncertainty on the measurements are discussed, as well as the degree to which these uncertainties are correlated (between bins in ϕη or pT, or between the electron-pair and muon-pair channels) when combining the electron-pair and muon-pair results and in quoting the final results. Figure┬á4 provides a summary of the uncertainties arising from data statistics, mis-modelling of the detector, background processes, and of the MC signal samples used to correct the data. These are given for both the electron (dressed level) and muon (bare level) channels as a function of ϕη and pT for events with 66GeV<m<116GeV and |y|<2.4.

Fig. 4.

Fig. 4

Uncertainty from various sources on (1/σ)dσ/dϕη (top) and (1/σ)dσ/dpT (bottom) for events with 66GeV<m<116GeV and |y|<2.4. Left Electron-pair channel at dressed level. Right Muon-pair channel at bare level

The statistical uncertainties on the data, and on the MC samples used to correct the data, are considered as uncorrelated between bins and between channels. In most kinematic regions the statistical uncertainty on the data is larger than the total systematic uncertainty in both ϕη and pT (for the normalised measurements) and is always a large contribution to the total uncertainty.

Most sources of systematic uncertainty from the modelling of the detector and beam conditions are treated as fully correlated between bins. These comprise possible mis-modelling of the lepton energy (electron) and momentum (muon) scales and their resolution as well as mis-modelling of the lepton reconstruction, identification, trigger and isolation efficiencies [4446]. Some of the detector uncertainties have a statistical component, which for the pT and integrated cross-section measurements is non-negligible and is propagated to the final measurements using a toy MC method. The above uncertainties are treated as uncorrelated between the two channels and are generally a small fraction of the total systematic uncertainty in the individual channels and on the combined result. The exceptions are the energy and momentum scale uncertainties, which become significant for the pT measurements at high values of pT. Also considered are uncertainties due to mis-modelling of the pile-up distribution and of the distribution of the longitudinal position of the primary vertex, which are estimated by varying the associated MC scaling factor and are treated as correlated between channels. The pile-up uncertainty is a small, but non-negligible contribution to the total systematic uncertainty in most kinematic regions and the vertex uncertainty is generally even smaller. An uncertainty is estimated for the possible mis-modelling of the lepton angular resolution. This uncertainty is relevant only for the measurements of ϕη and its size is found to be of an order similar to that of the pile-up uncertainty.

Important contributions to the total systematic uncertainty on both ϕη and pT arise from the modelling of the background processes. The uncertainty arising from varying the normalisation of each MC background within its theoretical cross-section uncertainty is treated as correlated between channels. This source makes a small contribution to the total systematic uncertainty in the m region around the Z -boson mass peak (where the total background is small), but becomes more significant in regions away from the peak. The dominant uncertainty on the multi-jet background arises from the difference in normalisation obtained from template fits performed in the distribution of the isolation variable or in m. This is treated as fully correlated between bins and is generally a small contribution to the total uncertainty, becoming more important for the m regions below the Z peak. The statistical uncertainty on the multi-jet background is considered as uncorrelated between bins and channels, and is small.

Several sources of systematic uncertainty are considered, arising from mis-modelling of the underlying physics distributions by the DrellΓÇôYan signal MC generator.

The effect of any mis-modelling of the underlying ϕη and pT distributions is evaluated as follows. For ϕη a second iteration of the bin-by-bin correction procedure (see Sect.┬á3.5) is made and any difference with respect to the first iteration is treated as a systematic uncertainty. This is found to be negligible in all kinematic regions, due to the very small bin-to-bin migration in ϕη. For pT the MC simulation is reweighted at particle level to the unfolded data and the unfolding is repeated. Any change is treated as a systematic uncertainty, which is always found to be a small fraction of the total uncertainty.

The systematic uncertainty due to the choice of signal MC generator used to correct the data is evaluated as follows. For ϕη an uncertainty envelope is chosen that encompasses the difference in the bin-by-bin correction factors obtained using any individual signal MC sample compared to the central values. (As described in Sect.┬á3.5, the central values are obtained from an average over all available signal MC samples.) For pT the uncertainty is quoted as the difference in the results obtained when unfolding the data with Sherpa, as compared to Powheg+Pythia, which is used for the central values. This source results in a significant contribution to the systematic uncertainty in both ϕη and pT for the m region around the Z -boson mass peak. The systematic uncertainty on the Born-level measurements below the Z -boson mass peak receives a significant contribution due to the differences in FSR modelling between Photos and Sherpa.

Potential uncertainties on the final ϕη and pT distributions could arise from the modelling of the PDFs in the MC generators used to correct data to particle level. These are estimated using the CT10 error sets [28] using the LHAPDF interface [60], and are found to be negligible. A correction is applied to the Powheg+Pythia sample, which implements a running coupling for the photon exchange and a running width in the Z -boson propagator. This correction is found to have a negligible effect on the final results.

Powheg+Pythia provides a poor description of the data for the samples with very low mass, m<46GeV and pT>45GeV. The prediction from Powheg+Pythia is reweighted to that from Sherpa in order to evaluate an uncertainty due to this effect, which is found to be a small fraction of the total systematic uncertainty.

The Bayesian unfolding procedure used to correct the pT distributions for the effects of detector resolution and FSR has associated uncertainties. A statistical component is estimated using the bootstrap method [61] and the difference in the unfolded result between using six and seven iterations is treated as a systematic uncertainty, which is assumed fully correlated between bins of pT and found to be a small fraction of the total systematic uncertainty.

The uncertainty on the integrated luminosity is 2.8┬á%, which is determined following the methodology described in Ref. [62]. This has a negligible impact on the uncertainty in the normalised differential distributions (1/σ)dσ/dϕη and (1/σ)dσ/dpT.

The total systematic uncertainties are generally smaller than the statistical uncertainties on the data. In ϕη the total systematic uncertainties at the Z-boson mass peak are at the level of around 1ΓÇ░ at low ϕη, rising to around 0.5┬á% for high ϕη. In pT the total systematic uncertainties at the Z-boson mass peak are at the level of around 0.5┬á% at low pT, rising to around 10┬á% for high pT.

The full results for (1/σ)dσ/dϕη and (1/σ)dσ/dpT are presented in the Appendix in bins of |y|, for which the size of the data statistical uncertainties relative to the systematic uncertainties are larger still.

Results

Combination procedure

The differential and integrated cross-section measurements in the electron-pair and muon-pair channels are combined at Born level using the HERA averager tool, which performs a χ2 minimisation in which correlations between bins and between the two channels are taken into account [63]. The combinations for the pT and ϕη measurements are performed separately in each region of m and |y|.

Differential cross-section measurements

Figure┬á5 shows the combined Born-level distributions of (1/σ)dσ/dϕη, in three m regions from 46GeV to 150GeV for |y|<2.4. The central panel of each plots in Fig.┬á5 shows the ratios of the values from the individual channels to the combined values and the lower panel of each plot shows the difference between the electron-pair and muon-pair values divided by the uncertainty on that difference (pull). The χ2 per degree of freedom is given. The level of agreement between the electron-pair and muon-pair distributions is good. Figure┬á6 shows the equivalent set of plots for the distributions of (1/σ)dσ/dpT for the six regions of m from 12GeV to 150GeV. Again the level of agreement between the two channels is good.

Fig. 5.

Fig. 5

The Born-level distributions of (1/σ)dσ/dϕη for the combination of the electron-pair and muon-pair channels, shown in three m regions from 46 to 150GeV for |y|<2.4. The central panel of each plot shows the ratios of the values from the individual channels to the combined values, where the error bars on the individual-channel measurements represent the total uncertainty uncorrelated between bins. The light-green band represents the data statistical uncertainty on the combined value and the dark-green band represents the total uncertainty (statistical and systematic). The χ2 per degree of freedom is given. The lower panel of each plot shows the pull, defined as the difference between the electron-pair and muon-pair values divided by the uncertainty on that difference

Fig. 6.

Fig. 6

The Born-level distributions of (1/σ)dσ/dpT for the combination of the electron-pair and muon-pair channels, shown in six m regions for |y|<2.4. The central panel of each plot shows the ratios of the values from the individual channels to the combined values, where the error bars on the individual-channel measurements represent the total uncertainty uncorrelated between bins. The light-blue band represents the data statistical uncertainty on the combined value and the dark-blue band represents the total uncertainty (statistical and systematic). The χ2 per degree of freedom is given. The lower panel of each plot shows the pull, defined as the difference between the electron-pair and muon-pair values divided by the uncertainty on that difference

The values of (1/σ)dσ/dϕη and (1/σ)dσ/dpT are given in tables in the Appendix for each region of m and |y| considered. The electron-pair results are given at the dressed and Born levels, and the muon-pair results at the bare, dressed and Born levels. The Born-level combined results are also given. The associated statistical and systematic uncertainties (both uncorrelated and correlated between bins in ϕη or pT) are provided in percentage form.

Integrated cross-section measurements

In addition to detailed differential studies in ϕη and pT, integrated fiducial cross sections are provided for six regions in m from 12 to 150GeV. The fiducial phase space is the same as for the pT measurements defined in Table┬á1. The Born-level fiducial cross sections are provided in Table┬á4 for the electron-pair and muon-pair channels separately, as well as for their combination. Uncertainties arising from data statistics, mis-modelling of the detector, background processes and of the MC signal samples used to correct the data are provided as a percentage of the cross section. The individual uncertainty sources after the combination are not necessarily orthogonal and also do not include uncertainties uncorrelated between bins of m. Therefore their quadratic sum may not give the total systematic uncertainty.

Table 4.

Fiducial cross sections at Born level in the electron- and muon-pair channels as well as the combined value. The statistical and systematic uncertainties are given as a percentage of the cross section. An additional uncertainty of 2.8 % on the integrated luminosity, which is fully correlated between channels and among all m bins, pertains to these measurements. The individual uncertainty sources after the combination are not necessarily orthogonal and also do not include uncertainties uncorrelated between bins of m. Therefore their quadratic sum may not give the total systematic uncertainty

m [GeV] 12ΓÇô20 20ΓÇô30 30ΓÇô46 46ΓÇô66 66ΓÇô116 116ΓÇô150
σ(Z/γe+e-) [pb] 1.42 1.04 1.01 15.16 537.64 5.72
Statistical uncertainty [%] 0.91 1.05 1.13 0.28 0.04 0.41
Detector uncertainty [%] 2.28 2.12 1.79 3.47 0.83 0.87
Background uncertainty [%] 3.16 1.97 2.36 2.77 0.14 0.83
Model uncertainty [%] 5.11 4.38 3.59 1.59 0.16 0.74
Total systematic uncertainty [%] 6.43 5.25 4.66 4.72 0.86 1.41
σ(Z/γμ+μ-) [pb] 1.45 1.04 0.97 14.97 535.25 5.48
Statistical uncertainty [%] 0.69 0.82 0.91 0.21 0.03 0.37
Detector uncertainty [%] 1.07 1.08 1.01 1.10 0.71 0.84
Background uncertainty [%] 0.75 2.19 2.00 1.48 0.04 0.97
Model uncertainty [%] 2.59 1.81 2.36 0.75 0.31 0.31
Total systematic uncertainty [%] 2.90 3.04 3.25 2.00 0.78 1.32
σ(Z/γ+-) [pb] 1.45 1.03 0.97 14.96 537.10 5.59
Statistical uncertainty [%] 0.63 0.75 0.83 0.17 0.03 0.31
Detector uncertainty [%] 0.84 0.99 0.87 1.05 0.40 0.56
Background uncertainty [%] 0.18 0.85 1.42 1.28 0.06 0.77
Model uncertainty [%] 1.84 2.24 2.27 0.89 0.19 0.50
Total systematic uncertainty [%] 2.06 2.44 2.38 1.82 0.45 1.03

These results are displayed in Fig.┬á7. In the channel combination the χ2 per degree of freedom is 8/6, showing that the electron-pair and muon-pair measurements are consistent. A total uncertainty of 0.6┬á%, not including the uncertainty of 2.8┬á% on the integrated luminosity, is reached in the region of the Z -boson mass peak. The fact that in some individual m bins the combined cross section does not lie at the naive weighted average of the individual channel values is due to the effect of systematic uncertainties that are correlated among m bins, but uncorrelated between channels (see, for example, Refs. [64, 65]).

Fig. 7.

Fig. 7

Born-level fiducial cross sections in bins of m for the combination of the electron-pair and muon-pair channels. The middle plot shows the ratios of the values from the individual channels to the combined values, where the error bars on the individual-channel measurements represent the total uncertainty uncorrelated between bins. The light-blue band represents the data statistical uncertainty on the combined value. The dark-blue band represents the total uncertainty (statistical and systematic), except for the uncertainty of 2.8┬á% on the integrated luminosity, which is fully correlated between channels and among all m bins. The χ2 per degree of freedom is given. The lower plot shows the pull, defined as the difference between the electron-pair and muon-pair values divided by the uncertainty on that difference. The fiducial regions to which these cross sections correspond are specified in Table┬á1. Note that pT is required to be greater than 45GeV for m<46GeV

Comparison to QCD predictions

Overview

The combined Born-level measurements of ϕη and pT presented in Sect.┬á4 are compared in this section to a series of theoretical predictions.

A first general comparison is provided by Fig.┬á8. This shows the ratio of the predictions of ResBos for the Z-boson mass peak and for |y|┬á<┬á2.4 to the combined Born-level data for (1/σ)dσ/dϕη and (1/σ)dσ/dpT. In order to allow the features of these two distributions to be compared easily, the scales on the abscissae in Fig.┬á8 are aligned according to the approximate relationship [20]5 2mZϕηpT. The general features of the two distributions in Fig.┬á8 are similar. At low values of ϕη and pT, in which non-perturbative effects and soft-gluon resummation are most important, the predictions from ResBos are consistent with the data within the assigned theoretical uncertainties. However, at high values of ϕη and pT, which are more sensitive to the emission of hard partons, the predictions from ResBos are not consistent with the data within theoretical uncertainties. Figure┬á8 illustrates the particular power of ϕη to probe the region of low pT. Finer binning is possible in ϕη than in pT whilst maintaining smaller systematic uncertainties from experimental resolution.

Fig. 8.

Fig. 8

The ratio of the predictions of ResBos for the Z-boson mass peak and for |y|┬á<┬á2.4 to the combined Born-level data for (1/σ)dσ/dϕη (top) and (1/σ)dσ/dpT (bottom). The light-green (light-blue) band represents the statistical uncertainty on the data for ϕη (pT) and the dark-green (dark-blue) band represents the total uncertainty (statistical and systematic) on the data. The yellow band represents the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs

The ϕη measurements are compared in detail to predictions from ResBos in Sect.┬á5.2. In Sect.┬á5.3 the normalised pT measurements are compared to the predictions from a number of MC generators that use the parton-shower approach. The fixed-order predictions from Dynnlo1.3 [4] are compared to the absolute pT differential cross sections in Sect.┬á5.4.

Comparison to resummed calculations

The predictions of (1/σ)dσ/dϕη from ResBos are compared to the Born-level measurements in Figs.┬á9, 10, 11, 12 and 13. As described above, ϕη provides particularly precise measurements in the region sensitive to the effects of soft-gluon resummation and non-perturbative effects and therefore is the observable used to test the predictions from ResBos. Figure┬á9 shows the ratio of (1/σ)dσ/dϕη as predicted by ResBos to the combined Born-level data for the six |y| regions at the Z -boson mass peak. Figure┬á10 shows the same comparison for the three |y| regions in the two m regions adjacent to the Z-boson mass peak. Also shown in these figures are the statistical and total uncertainties on the data, as well as the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs.

Fig. 9.

Fig. 9

The ratio of (1/σ)dσ/dϕη as predicted by ResBos to the combined Born-level data, for the six |y| regions at the Z -boson mass peak. The light-green band represents the statistical uncertainty on the data and the dark-green band represents the total uncertainty (statistical and systematic) on the data. The yellow band represents the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs

Fig. 10.

Fig. 10

The ratio of (1/σ)dσ/dϕη as predicted by ResBos to the combined Born-level data, for the three |y| regions in the two m regions adjacent to the Z-boson mass peak. The light-green band represents the statistical uncertainty on the data and the dark-green band represents the total uncertainty (statistical and systematic) on the data. The yellow band represents the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs

Fig. 11.

Fig. 11

The distribution of (1/σ)dσ/dϕη at Born level in each region of |y|, shown as a ratio to the central rapidity region (|y|<0.4), for events at the Z -boson mass peak. The data, shown as points, are compared to the predictions of ResBos. The light-green band represents the statistical uncertainty on the data and the dark-green band represents the total uncertainty on the data (treating systematic uncertainties as uncorrelated between regions of |y|). The yellow band represents the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs

Fig. 12.

Fig. 12

The distribution of (1/σ)dσ/dϕη at Born level in each region of |y|, shown as a ratio to the central rapidity region (|y|<0.8), for events with m between 46 to 66GeV (upper plots) and 116 to 150GeV (lower plots). The data, shown as points, are compared to the predictions of ResBos. The light-green band represents the statistical uncertainty on the data and the dark-green band represents the total uncertainty on the data (treating systematic uncertainties as uncorrelated between regions of |y|). The yellow band represents the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs

Fig. 13.

Fig. 13

The ratio of (1/σ)dσ/dϕη in the m region from 116 to 150GeV to that in the m region from 46 to 66GeV, for three regions of |y|. The data, shown as points, are compared to the predictions of ResBos. The light-green band represents the statistical uncertainty on the data and the dark-green band represents the total uncertainty on the data (treating systematic uncertainties as uncorrelated between the mass regions). The yellow band represents the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs

For values of ϕη<2 for the m region around the Z -boson mass peak the predictions from ResBos are generally consistent with the (much more precise) data within the assigned theoretical uncertainties. However, at larger values of ϕη this is not the case. For the region of m above the Z-boson mass peak the predictions from ResBos are consistent with the data within uncertainties for all values of ϕη. For the region of m from 46 to 66GeV the predictions from ResBos lie below the data for ϕη>0.4. In this context it may be noted that a known deficiency of the ResBos prediction is the lack of NNLO QCD corrections for the contributions from γ and from Z/γ interference. Similar deviations from the data in the mass region below the Z peak were observed in the D0 measurement in Ref. [23].

The theoretical uncertainties are highly correlated between different kinematic regions and therefore, as pointed out in Ref. [23], the ratio of (1/σ)dσ/dϕη in different kinematic regions enables a more precise comparison of the predictions with data. For example, the question of whether or not the non-perturbative contribution to pT varies with parton momentum fraction, x, or four-momentum transfer, Q2, may be investigated by examining how the shape of (1/σ)dσ/dϕη evolves with |y| and m at low ϕη.

Figure┬á11 shows the ratio of the distribution of (1/σ)dσ/dϕη in each region of |y| to the distribution in the central region (|y|<0.4), for events in the m region around the Z -boson mass peak. The distributions are shown for data (with associated statistical and total uncertainties) as well as for ResBos. It can be seen that the uncertainties on the ResBos predictions, arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs, are of a comparable size to the uncertainties on the corrected data. The predictions from ResBos are consistent with the data within the assigned uncertainties. Figure┬á12 shows equivalent comparisons for the m regions from 46GeV to 66GeV and from 116GeV to 150GeV. It can be seen that the predictions from ResBos are again consistent with the data within the assigned uncertainties. Therefore it can be concluded that ResBos describes the evolution with |y| of the shape of the (1/σ)dσ/dϕη measurements well, and rather better than it describes the basic shape of the data (Figs.┬á9, 10).

Figure┬á13 shows the ratio of (1/σ)dσ/dϕη in the m region from 116GeV to 150GeV to that in the m region from 46GeV to 66GeV, for the three divisions of |y|. The ratio is shown for data (with associated statistical and total uncertainties) as well as for ResBos. It can again be seen that the uncertainties on the ResBos predictions, arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter aZ, and PDFs, and shown as a yellow band, are of a comparable size to the uncertainties on the corrected data. For values of ϕη<0.5 the predictions from ResBos are consistent with the data within the assigned theoretical uncertainties showing that ResBos is able to describe the evolution of the ϕη distribution with m. However, at larger values of ϕη this is not thecase.

Comparison to parton-shower approaches

Figures┬á14, 15 and 16 show the comparison of the (1/σ)dσ/dpT distributions to the predictions of MC generators using the parton-shower approach: Powheg+Pythia (with both the AU2 [30] and AZNLO [14] tunes), Powheg+Herwig (only shown for the m region around the Z peak) and Sherpa. Figure┬á14 shows the ratio of (1/σ)dσ/dpT as predicted by the MC generators, to the combined Born-level data in each of the six m regions for |y|<2.4. Figure┬á15 shows the ratio for each of the six |y| regions at the Z -boson mass peak. Between pT values of approximately 5GeV and 100GeV for m>46GeV the MC generators describe the shape of the data to within 10┬á%. However, outside this range, and in the regions with very low m, the agreement worsens. For values of pT<50GeV for the m region around the Z-boson mass peak the best description is provided by Powheg+Pythia (AZNLO), which was tuned to exactly this kinematic region in the 7TeV data [14]. However, at high values of pT around the Z-boson mass peak and in other m regions this MC tune does not describe the data well and also does not outperform the Powheg+Pythia AU2 tune. The differences between Sherpa and the data are generally of a similar magnitude, but of opposite sign, to those seen for Powheg+Pythia.

Fig. 14.

Fig. 14

The ratio of (1/σ)dσ/dpT as predicted by various MC generators to the combined Born-level data, in six different regions of m for |y|<2.4. The light-blue band represents the statistical uncertainty on the data and the dark-blue band represents the total uncertainty (statistical and systematic) on the data

Fig. 15.

Fig. 15

The ratio of (1/σ)dσ/dpT as predicted by various MC generators to the combined Born-level data, in different |y| ranges for events at the Z -boson mass peak. The light-blue band represents the statistical uncertainty on the data and the dark-blue band represents the total uncertainty (statistical and systematic) on the data

Fig. 16.

Fig. 16

The distribution of (1/σ)dσ/dpT at Born level in each region of |y|, shown as a ratio to the central rapidity region (|y|<0.4), for events at the Z -boson mass peak. The data, shown as points, are compared to the predictions of various MC generators. The light-blue band represents the statistical uncertainty on the data and the dark-blue band represents the total uncertainty on the data (treating systematic uncertainties as uncorrelated between regions of |y|)

Figure┬á16 shows the ratio of the distribution of (1/σ)dσ/dpT in each region of |y| to the distribution in the central region (|y|<0.4), for events in the m region around the Z -boson mass peak. The distributions are shown for data (with associated statistical and total uncertainties) as well as for predictions from three parton-shower MC generators. The MC generators describe the data reasonably well over the entire range of pT and generally much better than they describe the (1/σ)dσ/dpT distributions (Figs.┬á14, 15) ΓÇô although there are discrepancies of up to 5┬á% with respect to data for pT<4GeV.

For comparison with Fig.┬á14, Fig.┬á17 shows the ratio of (1/σ)dσ/dϕη as predicted by the MC generators, to the combined Born-level data in each of the three m regions from 46GeV to 150GeV for |y|<2.4. The differences between MC predictions and data seen in Fig.┬á17 are consistent with those seen in Fig.┬á14.

Fig. 17.

Fig. 17

The ratio of (1/σ)dσ/dϕη as predicted by various MC generators to the combined Born-level data, in three different regions of m for |y|<2.4. The light-green band represents the statistical uncertainty on the data and the dark-green band represents the total uncertainty (statistical and systematic) on the data

Fixed-order QCD and electroweak corrections

Figure┬á18 shows the ratio of dσ/dpT as predicted by the fixed-order perturbative QCD predictions of Dynnlo to Born-level data for six regions of m from 12GeV to 150GeV. The prediction is shown both with and without NLO EW corrections [53]. The data are shown with their associated statistical and total uncertainties. The predictions are not expected to describe the shape of the data for lower values of pT, where it is known that the effects of soft-gluon emissions become important. At pT>30GeV the shape of the pT distribution is described within uncertainties by Dynnlo. However, the prediction is consistently low by about 15┬á% compared to the data across all m ranges, which is not covered by the evaluated scale and PDF uncertainties, although a recent calculation suggests the size of order αs3 corrections to be +(5ΓÇô10)┬á% for pT60GeV [66]. The observed behaviour of Dynnlo is consistent with the results at s=7TeV near the Z peak [14]. The application of NLO EW corrections predicts an approximately 5┬á% increase of the cross section below the Z-peak region due to effects of γ exchange, while a suppression of up to 20┬á% at highest pT is predicted due to large Sudakov logarithms [53]. The change in the prediction induced by the addition of the EW corrections is significantly smaller than both the uncertainty on the NNLO QCD prediction and the difference between the prediction and data. Therefore, no conclusions can be drawn on whether or not their addition leads to an improvement in agreement between data and theory.

Fig. 18.

Fig. 18

The ratio of dσ/dpT as predicted by the Dynnlo MC generator to the combined Born-level data, for six regions of mfrom 12 to 150GeV. Two sets of Dynnlo predictions are shown, one of which includes NLO EW corrections while the other does not. The error bars on the Dynnlo predictions represent the uncertainty arising from varying the QCD scales and PDFs. Additional uncertainties introduced by the inclusion of the EW corrections are at the level of 2ΓÇô4┬á% and are always significantly smaller than the QCD scale and PDF uncertainties. Therefore for clarity these points are shown without uncertainty bars. The light-blue band represents the statistical uncertainty on the data and the dark-blue band represents the total uncertainty (statistical and systematic) on the data

Conclusion

Measurements are presented of the ϕη and pT distributions of DrellΓÇôYan lepton-pair events using 20.3┬áfb-1 of s=8TeV pp collision data collected with the ATLAS detector. The results presented here expand upon those presented previously by ATLAS at s=7TeV, by providing measurements in regions of m above and below, as well as on, the Z -boson mass peak, and also in finer divisions of |y| than were presented at s=7TeV. Measurements for both the electron- and muon-pair channels are provided corresponding to a variety of particle-level definitions that differ in the size of the correction for final-state photon radiation. The results from the two channels at the Born level are combined and compared to a variety of theoretical predictions. In addition, measurements of the integrated cross section in six bins of m are given.

The predictions from ResBos, which include the effects of soft-gluon resummation, are compared to the normalised ϕη distributions (1/σ)dσ/dϕη. These predictions are consistent with the data within the assigned theoretical uncertainties within certain kinematic regions, especially at low values of ϕη: ϕη<0.4 for 46GeV<m<66GeV; ϕη<2 for 66GeV<m<116GeV; and over the full range of ϕη for 116GeV<m<150GeV. However, outside these kinematic ranges, i.e., for larger values of ϕη, the predictions show significant deviations from the data. The evolution of (1/σ)dσ/dϕη with |y| and m (for which the theoretical uncertainties on the predictions largely cancel) is generally well described by ResBos.

Predictions from MC generators with parton showers are compared to the normalised pT distributions in a similar manner. Between pT values of approximately 5GeV and 100GeV for m>46GeV the MC generators describe the basic shape of the data to within 10 %. However outside this range, and in the very-low regions of m the agreement worsens. The MC generators do though provide a reasonable description of the evolution of the pT distributions with |y| for the m region around the Z -boson mass peak. Fixed-order predictions from Dynnlo are compared to the absolute pT differential cross-section distributions. The predictions describe the shape of the data within uncertainties for pT>40GeV but only describe the absolute values to within 15 %, which is not covered by the evaluated scale and PDF uncertainties. The data and QCD predictions are not precise enough to be sensitive to the inclusion of EW corrections.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Appendix

In the Tables┬á6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 in this appendix the values of (1/σ)dσ/dϕη and (1/σ)dσ/dpT are given for each region of m and |y| considered. The electron-pair results are given at the dressed and Born levels, and the muon-pair results at the bare, dressed and Born levels. The Born-level combined results are also given. The associated statistical and systematic uncertainties (both uncorrelated and correlated between bins in ϕη or pT) are provided in percentage form.

Table 5.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 46GeVm<66GeV,0|y|<0.8. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0–0.004 6.778 ± 2.4 ± 0.9 ± 5.9 7.256 ± 2.4 ± 1.0 ± 6.0 6.688 ± 2.0 ± 0.8 ± 5.0 6.687 ± 2.0 ± 0.8 ± 5.0 7.157 ± 2.0 ± 0.8 ± 5.2 7.248 ± 1.5 ± 0.6 ± 5.3
0.004–0.008 6.662 ± 2.3 ± 0.9 ± 2.3 7.051 ± 2.3 ± 0.9 ± 2.6 7.079 ± 2.0 ± 0.8 ± 1.9 7.046 ± 2.0 ± 0.8 ± 1.9 7.469 ± 2.0 ± 0.8 ± 2.4 7.258 ± 1.5 ± 0.6 ± 2.3
0.008–0.012 6.781 ± 2.3 ± 0.9 ± 1.5 7.179 ± 2.3 ± 0.9 ± 1.9 6.747 ± 2.1 ± 0.8 ± 1.4 6.704 ± 2.1 ± 0.8 ± 1.4 7.169 ± 2.1 ± 0.8 ± 2.0 7.141 ± 1.5 ± 0.6 ± 1.7
0.012–0.016 6.561 ± 2.3 ± 0.9 ± 1.1 6.926 ± 2.3 ± 0.9 ± 1.6 6.680 ± 2.0 ± 0.8 ± 1.1 6.660 ± 2.1 ± 0.8 ± 1.1 7.085 ± 2.0 ± 0.8 ± 1.8 6.981 ± 1.5 ± 0.6 ± 1.5
0.016–0.020 6.540 ± 2.3 ± 0.9 ± 1.0 6.927 ± 2.3 ± 1.0 ± 1.5 6.542 ± 2.0 ± 0.8 ± 0.9 6.484 ± 2.0 ± 0.8 ± 0.9 6.884 ± 2.0 ± 0.8 ± 1.6 6.861 ± 1.5 ± 0.6 ± 1.4
0.020–0.024 6.327 ± 2.3 ± 0.9 ± 1.1 6.714 ± 2.3 ± 0.9 ± 1.6 6.437 ± 2.1 ± 0.9 ± 0.9 6.415 ± 2.1 ± 0.9 ± 0.9 6.755 ± 2.1 ± 0.9 ± 1.7 6.693 ± 1.6 ± 0.6 ± 1.4
0.024–0.029 6.102 ± 2.1 ± 0.8 ± 0.9 6.408 ± 2.1 ± 0.9 ± 1.4 6.072 ± 1.9 ± 0.8 ± 0.9 6.075 ± 1.9 ± 0.8 ± 0.9 6.472 ± 1.9 ± 0.8 ± 1.5 6.398 ± 1.4 ± 0.6 ± 1.2
0.029–0.034 5.682 ± 2.2 ± 0.8 ± 0.8 5.957 ± 2.2 ± 0.9 ± 1.4 5.877 ± 2.0 ± 0.8 ± 0.8 5.904 ± 2.0 ± 0.8 ± 0.8 6.214 ± 2.0 ± 0.8 ± 1.4 6.062 ± 1.5 ± 0.6 ± 1.2
0.034–0.039 5.868 ± 2.2 ± 0.8 ± 0.9 6.185 ± 2.2 ± 0.9 ± 1.4 5.468 ± 2.1 ± 0.8 ± 0.8 5.482 ± 2.1 ± 0.8 ± 0.8 5.798 ± 2.1 ± 0.8 ± 1.4 5.919 ± 1.5 ± 0.6 ± 1.2
0.039–0.045 5.263 ± 2.1 ± 0.8 ± 0.5 5.485 ± 2.1 ± 0.9 ± 1.3 5.428 ± 1.9 ± 0.8 ± 0.8 5.449 ± 1.9 ± 0.8 ± 0.8 5.669 ± 1.9 ± 0.8 ± 1.4 5.544 ± 1.4 ± 0.6 ± 1.1
0.045–0.051 5.032 ± 2.1 ± 0.8 ± 0.6 5.274 ± 2.1 ± 0.9 ± 1.3 5.182 ± 1.9 ± 0.8 ± 0.9 5.210 ± 1.9 ± 0.8 ± 0.9 5.505 ± 1.9 ± 0.8 ± 1.5 5.351 ± 1.4 ± 0.6 ± 1.1
0.051–0.057 4.796 ± 2.2 ± 0.8 ± 0.6 4.964 ± 2.2 ± 0.8 ± 1.3 4.862 ± 2.0 ± 0.8 ± 0.8 4.897 ± 2.0 ± 0.8 ± 0.8 5.111 ± 2.0 ± 0.8 ± 1.4 5.003 ± 1.5 ± 0.6 ± 1.1
0.057–0.064 4.443 ± 2.1 ± 0.8 ± 0.7 4.603 ± 2.1 ± 0.8 ± 1.3 4.430 ± 1.9 ± 0.8 ± 0.5 4.443 ± 1.9 ± 0.8 ± 0.5 4.663 ± 1.9 ± 0.8 ± 1.5 4.597 ± 1.4 ± 0.6 ± 1.2
0.064–0.072 4.113 ± 2.0 ± 0.8 ± 0.6 4.271 ± 2.0 ± 0.8 ± 1.3 4.052 ± 1.9 ± 0.8 ± 0.4 4.082 ± 1.9 ± 0.8 ± 0.4 4.256 ± 1.9 ± 0.8 ± 1.4 4.245 ± 1.4 ± 0.6 ± 1.2
0.072–0.081 3.766 ± 2.0 ± 0.7 ± 0.7 3.876 ± 2.0 ± 0.8 ± 1.3 3.759 ± 1.8 ± 0.7 ± 0.5 3.787 ± 1.8 ± 0.7 ± 0.5 3.912 ± 1.8 ± 0.7 ± 1.5 3.866 ± 1.3 ± 0.5 ± 1.2
0.081–0.091 3.400 ± 2.0 ± 1.2 ± 1.0 3.495 ± 2.0 ± 1.2 ± 1.5 3.517 ± 1.8 ± 0.7 ± 0.5 3.521 ± 1.8 ± 0.7 ± 0.5 3.665 ± 1.8 ± 0.7 ± 1.5 3.580 ± 1.3 ± 0.7 ± 1.2
0.091–0.102 3.231 ± 2.0 ± 0.7 ± 0.8 3.318 ± 2.0 ± 0.8 ± 1.4 3.107 ± 1.8 ± 0.7 ± 0.5 3.130 ± 1.8 ± 0.7 ± 0.5 3.224 ± 1.8 ± 0.7 ± 1.5 3.240 ± 1.3 ± 0.5 ± 1.2
0.102–0.114 2.833 ± 2.0 ± 0.7 ± 0.8 2.848 ± 2.0 ± 0.8 ± 1.4 2.814 ± 1.8 ± 0.7 ± 0.5 2.822 ± 1.8 ± 0.7 ± 0.5 2.882 ± 1.8 ± 0.7 ± 1.5 2.844 ± 1.3 ± 0.5 ± 1.2
0.114–0.128 2.555 ± 2.0 ± 0.7 ± 0.7 2.596 ± 2.0 ± 0.8 ± 1.3 2.477 ± 1.8 ± 0.7 ± 0.7 2.487 ± 1.8 ± 0.7 ± 0.7 2.518 ± 1.8 ± 0.7 ± 0.9 2.535 ± 1.3 ± 0.5 ± 0.9
0.128–0.145 2.206 ± 1.9 ± 0.7 ± 0.7 2.204 ± 1.9 ± 0.7 ± 1.4 2.175 ± 1.7 ± 0.7 ± 0.5 2.170 ± 1.7 ± 0.7 ± 0.5 2.160 ± 1.7 ± 0.7 ± 0.8 2.173 ± 1.3 ± 0.5 ± 0.9
0.145–0.165 1.830 ± 1.9 ± 0.7 ± 0.7 1.799 ± 1.9 ± 0.8 ± 1.4 1.846 ± 1.7 ± 0.7 ± 0.6 1.850 ± 1.7 ± 0.7 ± 0.6 1.836 ± 1.7 ± 0.7 ± 0.8 1.811 ± 1.3 ± 0.5 ± 0.9
0.165–0.189 1.545 ± 1.9 ± 0.7 ± 0.8 1.519 ± 1.9 ± 0.8 ± 1.4 1.535 ± 1.7 ± 0.7 ± 0.5 1.538 ± 1.7 ± 0.7 ± 0.5 1.497 ± 1.7 ± 0.7 ± 0.8 1.497 ± 1.3 ± 0.5 ± 1.0
0.189–0.219 1.235 ± 1.9 ± 1.1 ± 1.0 1.185 ± 1.9 ± 1.2 ± 1.5 1.292 ± 1.7 ± 0.7 ± 0.6 1.292 ± 1.7 ± 0.7 ± 0.6 1.240 ± 1.7 ± 0.7 ± 0.8 1.214 ± 1.3 ± 0.6 ± 0.9
0.219–0.258 1.008 ± 1.8 ± 0.7 ± 0.9 0.949 ± 1.8 ± 0.7 ± 1.5 1.003 ± 1.7 ± 0.7 ± 0.6 1.001 ± 1.7 ± 0.7 ± 0.6 0.944 ± 1.7 ± 0.7 ± 0.9 0.943 ± 1.2 ± 0.5 ± 1.0
0.258–0.312 0.767 ± 1.8 ± 0.7 ± 0.9 0.707 ± 1.8 ± 0.8 ± 2.2 0.772 ± 1.6 ± 0.7 ± 0.7 0.771 ± 1.6 ± 0.7 ± 0.7 0.702 ± 1.6 ± 0.7 ± 1.9 0.697 ± 1.2 ± 0.5 ± 1.7
0.312–0.391 0.545 ± 1.8 ± 0.8 ± 0.9 0.488 ± 1.8 ± 0.9 ± 2.2 0.530 ± 1.6 ± 0.7 ± 0.6 0.531 ± 1.6 ± 0.7 ± 0.6 0.472 ± 1.6 ± 0.7 ± 1.8 0.477 ± 1.2 ± 0.5 ± 1.7
0.391–0.524 0.337 ± 1.8 ± 0.7 ± 1.0 0.299 ± 1.8 ± 0.7 ± 2.2 0.336 ± 1.6 ± 0.6 ± 1.1 0.335 ± 1.6 ± 0.6 ± 1.1 0.293 ± 1.6 ± 0.6 ± 2.0 0.295 ± 1.2 ± 0.5 ± 1.7
0.524–0.695 0.201 ± 2.0 ± 0.8 ± 1.8 0.183 ± 2.0 ± 0.8 ± 2.7 0.194 ± 1.8 ± 0.8 ± 1.9 0.193 ± 1.8 ± 0.8 ± 1.9 0.170 ± 1.8 ± 0.8 ± 2.5 0.176 ± 1.4 ± 0.6 ± 1.9
0.695–0.918 0.105 ± 2.5 ± 1.0 ± 1.5 0.0978 ± 2.5 ± 1.0 ± 2.5 0.113 ± 2.2 ± 1.0 ± 2.1 0.112 ± 2.2 ± 1.0 ± 2.1 0.102 ± 2.2 ± 1.0 ± 2.7 0.101 ± 1.6 ± 0.7 ± 2.0
0.918–1.153 0.0647 ± 3.2 ± 1.3 ± 1.9 0.0623 ± 3.2 ± 1.4 ± 2.7 0.0613 ± 3.0 ± 1.3 ± 2.9 0.0609 ± 3.0 ± 1.3 ± 2.9 0.0569 ± 3.0 ± 1.3 ± 3.4 0.0598 ± 2.2 ± 0.9 ± 2.3
1.153–1.496 0.0342 ± 3.9 ± 2.7 ± 2.9 0.0330 ± 3.9 ± 2.8 ± 3.6 0.0333 ± 3.2 ± 1.7 ± 4.2 0.0328 ± 3.2 ± 1.7 ± 4.2 0.0315 ± 3.2 ± 1.7 ± 4.8 0.0330 ± 2.5 ± 1.5 ± 3.2
1.496–1.947 0.0184 ± 4.7 ± 2.2 ± 3.0 0.0181 ± 4.7 ± 2.2 ± 3.6 0.0169 ± 4.1 ± 2.1 ± 3.3 0.0167 ± 4.1 ± 2.1 ± 3.3 0.0160 ± 4.1 ± 2.1 ± 4.0 0.0170 ± 3.1 ± 1.5 ± 3.2
1.947–2.522 0.00907 ± 6.1 ± 3.0 ± 3.7 0.00885 ± 6.1 ± 3.1 ± 4.3 0.00989 ± 4.7 ± 2.2 ± 2.9 0.00975 ± 4.7 ± 2.2 ± 2.9 0.00950 ± 4.7 ± 2.2 ± 3.6 0.00939 ± 3.7 ± 1.8 ± 3.2
2.522–3.277 0.00454 ± 7.5 ± 4.6 ± 3.1 0.00445 ± 7.5 ± 4.7 ± 3.8 0.00447 ± 6.1 ± 2.7 ± 4.2 0.00441 ± 6.1 ± 2.7 ± 4.2 0.00430 ± 6.1 ± 2.7 ± 4.8 0.00446 ± 4.7 ± 2.4 ± 3.4
3.277–5.000 0.00252 ± 6.3 ± 2.8 ± 4.0 0.00252 ± 6.3 ± 2.8 ± 4.6 0.00220 ± 5.7 ± 2.6 ± 3.8 0.00219 ± 5.7 ± 2.6 ± 3.8 0.00214 ± 5.7 ± 2.6 ± 4.4 0.00232 ± 4.2 ± 1.9 ± 3.3
5.000–10.000 0.000525 ± 8.6 ± 3.9 ± 3.4 0.000510 ± 8.6 ± 3.9 ± 4.0 0.000585 ± 6.4 ± 2.9 ± 4.0 0.000577 ± 6.4 ± 2.9 ± 4.0 0.000545 ± 6.4 ± 2.9 ± 4.6 0.000542 ± 5.1 ± 2.3 ± 3.3

Table 6.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 46GeVm<66GeV,0.8|y|<1.6. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 7.182 ± 2.7 ± 1.1 ± 5.3 7.754 ± 2.7 ± 1.1 ± 5.3 6.713 ± 1.9 ± 0.8 ± 4.7 6.704 ± 1.9 ± 0.8 ± 4.7 7.109 ± 1.9 ± 0.8 ± 5.0 7.311 ± 1.5 ± 0.6 ± 4.9
0.004–0.008 7.048 ± 2.6 ± 1.1 ± 2.5 7.465 ± 2.6 ± 1.1 ± 2.7 6.917 ± 1.9 ± 0.8 ± 1.9 6.884 ± 1.9 ± 0.8 ± 1.9 7.255 ± 1.9 ± 0.8 ± 2.5 7.349 ± 1.5 ± 0.6 ± 2.3
0.008–0.012 6.842 ± 2.6 ± 1.1 ± 1.7 7.254 ± 2.6 ± 1.1 ± 2.0 6.898 ± 1.9 ± 0.8 ± 1.3 6.851 ± 1.9 ± 0.8 ± 1.3 7.247 ± 1.9 ± 0.8 ± 2.0 7.270 ± 1.5 ± 0.6 ± 1.7
0.012–0.016 6.408 ± 2.7 ± 1.1 ± 1.1 6.812 ± 2.7 ± 1.2 ± 1.6 6.758 ± 1.9 ± 0.8 ± 1.0 6.757 ± 1.9 ± 0.8 ± 1.0 7.249 ± 1.9 ± 0.8 ± 1.9 7.123 ± 1.6 ± 0.6 ± 1.5
0.016–0.020 6.302 ± 2.7 ± 1.1 ± 1.4 6.619 ± 2.7 ± 1.1 ± 1.8 6.625 ± 2.0 ± 0.8 ± 1.1 6.630 ± 2.0 ± 0.8 ± 1.1 7.000 ± 2.0 ± 0.8 ± 1.9 6.872 ± 1.6 ± 0.7 ± 1.4
0.020–0.024 6.328 ± 2.7 ± 1.1 ± 1.1 6.654 ± 2.7 ± 1.1 ± 1.6 6.326 ± 2.0 ± 0.8 ± 0.9 6.334 ± 2.0 ± 0.8 ± 0.9 6.722 ± 2.0 ± 0.8 ± 1.8 6.725 ± 1.6 ± 0.7 ± 1.4
0.024–0.029 6.279 ± 2.4 ± 0.9 ± 0.9 6.570 ± 2.4 ± 1.0 ± 1.4 6.161 ± 1.8 ± 0.7 ± 0.8 6.141 ± 1.8 ± 0.7 ± 0.8 6.497 ± 1.8 ± 0.7 ± 1.7 6.535 ± 1.4 ± 0.6 ± 1.3
0.029–0.034 6.047 ± 2.4 ± 1.0 ± 0.8 6.369 ± 2.4 ± 1.0 ± 1.4 5.931 ± 1.9 ± 0.8 ± 0.7 5.944 ± 1.9 ± 0.8 ± 0.7 6.311 ± 1.9 ± 0.8 ± 1.6 6.344 ± 1.5 ± 0.6 ± 1.2
0.034–0.039 5.803 ± 2.6 ± 1.1 ± 1.1 6.074 ± 2.6 ± 1.1 ± 1.5 5.684 ± 1.9 ± 0.8 ± 0.7 5.664 ± 1.9 ± 0.8 ± 0.7 6.004 ± 1.9 ± 0.8 ± 1.6 6.049 ± 1.5 ± 0.6 ± 1.2
0.039–0.045 5.295 ± 2.4 ± 0.9 ± 0.6 5.522 ± 2.4 ± 1.0 ± 1.3 5.417 ± 1.8 ± 0.7 ± 0.7 5.413 ± 1.8 ± 0.7 ± 0.7 5.695 ± 1.8 ± 0.7 ± 1.6 5.648 ± 1.4 ± 0.6 ± 1.2
0.045–0.051 5.149 ± 2.4 ± 1.0 ± 0.9 5.351 ± 2.4 ± 1.0 ± 1.5 5.158 ± 1.8 ± 0.7 ± 1.0 5.189 ± 1.8 ± 0.7 ± 1.0 5.398 ± 1.8 ± 0.7 ± 1.8 5.373 ± 1.5 ± 0.6 ± 1.2
0.051–0.057 4.906 ± 2.5 ± 1.0 ± 0.7 5.112 ± 2.5 ± 1.0 ± 1.3 5.115 ± 1.8 ± 0.7 ± 0.8 5.139 ± 1.8 ± 0.7 ± 0.8 5.394 ± 1.8 ± 0.7 ± 1.7 5.308 ± 1.5 ± 0.6 ± 1.2
0.057–0.064 4.396 ± 2.4 ± 0.9 ± 0.7 4.555 ± 2.4 ± 1.0 ± 1.3 4.535 ± 1.8 ± 0.7 ± 0.8 4.569 ± 1.8 ± 0.7 ± 0.8 4.775 ± 1.8 ± 0.7 ± 1.4 4.698 ± 1.4 ± 0.6 ± 1.1
0.064–0.072 4.289 ± 2.3 ± 0.9 ± 1.0 4.427 ± 2.3 ± 1.0 ± 1.5 4.180 ± 1.7 ± 0.7 ± 0.7 4.198 ± 1.7 ± 0.7 ± 0.7 4.360 ± 1.7 ± 0.7 ± 1.4 4.383 ± 1.4 ± 0.6 ± 1.1
0.072–0.081 3.884 ± 2.3 ± 0.9 ± 0.8 3.993 ± 2.3 ± 0.9 ± 1.4 4.079 ± 1.6 ± 0.7 ± 0.7 4.110 ± 1.6 ± 0.7 ± 0.7 4.273 ± 1.6 ± 0.7 ± 1.3 4.182 ± 1.3 ± 0.5 ± 1.1
0.081–0.091 3.645 ± 2.2 ± 0.9 ± 0.8 3.749 ± 2.2 ± 0.9 ± 1.4 3.465 ± 1.7 ± 0.7 ± 0.4 3.486 ± 1.7 ± 0.7 ± 0.4 3.611 ± 1.7 ± 0.7 ± 1.2 3.688 ± 1.3 ± 0.5 ± 1.0
0.091–0.102 3.172 ± 2.3 ± 0.9 ± 0.7 3.241 ± 2.3 ± 1.0 ± 1.3 3.153 ± 1.7 ± 0.7 ± 0.5 3.165 ± 1.7 ± 0.7 ± 0.5 3.232 ± 1.7 ± 0.7 ± 1.2 3.256 ± 1.3 ± 0.6 ± 1.0
0.102–0.114 2.869 ± 2.3 ± 0.9 ± 0.7 2.927 ± 2.3 ± 1.0 ± 1.4 2.795 ± 1.7 ± 0.7 ± 0.5 2.802 ± 1.7 ± 0.7 ± 0.5 2.850 ± 1.7 ± 0.7 ± 1.2 2.893 ± 1.4 ± 0.6 ± 1.0
0.114–0.128 2.520 ± 2.3 ± 1.0 ± 0.8 2.540 ± 2.3 ± 1.0 ± 1.4 2.538 ± 1.6 ± 0.7 ± 0.5 2.550 ± 1.6 ± 0.7 ± 0.5 2.585 ± 1.6 ± 0.7 ± 0.6 2.585 ± 1.3 ± 0.6 ± 0.7
0.128–0.145 2.092 ± 2.2 ± 0.9 ± 0.8 2.091 ± 2.2 ± 1.0 ± 1.4 2.158 ± 1.6 ± 0.6 ± 0.6 2.154 ± 1.6 ± 0.6 ± 0.6 2.151 ± 1.6 ± 0.6 ± 0.7 2.137 ± 1.3 ± 0.5 ± 0.8
0.145–0.165 1.806 ± 2.3 ± 0.9 ± 0.8 1.768 ± 2.3 ± 0.9 ± 1.4 1.891 ± 1.6 ± 0.6 ± 0.6 1.889 ± 1.6 ± 0.6 ± 0.6 1.868 ± 1.6 ± 0.6 ± 0.7 1.841 ± 1.3 ± 0.5 ± 0.8
0.165–0.189 1.462 ± 2.3 ± 0.9 ± 0.7 1.419 ± 2.3 ± 1.0 ± 1.4 1.497 ± 1.6 ± 0.7 ± 0.5 1.496 ± 1.6 ± 0.7 ± 0.5 1.458 ± 1.6 ± 0.7 ± 0.6 1.453 ± 1.3 ± 0.5 ± 0.7
0.189–0.219 1.216 ± 2.2 ± 1.1 ± 0.7 1.162 ± 2.2 ± 1.1 ± 1.4 1.268 ± 1.6 ± 0.6 ± 0.6 1.268 ± 1.6 ± 0.6 ± 0.6 1.209 ± 1.6 ± 0.6 ± 0.7 1.199 ± 1.3 ± 0.6 ± 0.7
0.219–0.258 0.989 ± 2.2 ± 0.8 ± 0.8 0.937 ± 2.2 ± 0.9 ± 1.4 0.982 ± 1.6 ± 0.6 ± 0.6 0.991 ± 1.6 ± 0.6 ± 0.6 0.928 ± 1.6 ± 0.6 ± 0.7 0.937 ± 1.3 ± 0.5 ± 0.8
0.258–0.312 0.738 ± 2.1 ± 0.9 ± 0.9 0.669 ± 2.1 ± 1.0 ± 2.2 0.755 ± 1.5 ± 0.6 ± 0.5 0.756 ± 1.5 ± 0.6 ± 0.5 0.686 ± 1.5 ± 0.6 ± 2.2 0.693 ± 1.2 ± 0.5 ± 1.7
0.312–0.391 0.554 ± 2.0 ± 0.9 ± 1.2 0.499 ± 2.0 ± 1.0 ± 2.4 0.526 ± 1.5 ± 0.6 ± 1.2 0.524 ± 1.5 ± 0.6 ± 1.2 0.465 ± 1.5 ± 0.6 ± 2.4 0.490 ± 1.2 ± 0.5 ± 1.8
0.391–0.524 0.325 ± 2.1 ± 0.8 ± 1.3 0.288 ± 2.1 ± 0.9 ± 2.4 0.331 ± 1.5 ± 0.7 ± 1.6 0.329 ± 1.5 ± 0.7 ± 1.6 0.291 ± 1.5 ± 0.7 ± 2.6 0.300 ± 1.2 ± 0.6 ± 1.9
0.524–0.695 0.197 ± 2.4 ± 1.3 ± 1.9 0.179 ± 2.4 ± 1.3 ± 2.8 0.187 ± 1.7 ± 0.7 ± 2.2 0.186 ± 1.7 ± 0.7 ± 2.2 0.163 ± 1.7 ± 0.7 ± 3.1 0.176 ± 1.4 ± 0.6 ± 2.1
0.695–0.918 0.102 ± 2.9 ± 1.8 ± 1.9 0.0961 ± 2.9 ± 1.8 ± 2.8 0.101 ± 2.1 ± 0.9 ± 2.5 0.0998 ± 2.1 ± 0.9 ± 2.5 0.0921 ± 2.1 ± 0.9 ± 3.3 0.0978 ± 1.7 ± 0.8 ± 2.2
0.918–1.153 0.0605 ± 3.8 ± 1.8 ± 2.3 0.0584 ± 3.8 ± 1.9 ± 3.1 0.0594 ± 2.6 ± 1.1 ± 3.4 0.0588 ± 2.6 ± 1.1 ± 3.4 0.0547 ± 2.6 ± 1.1 ± 4.0 0.0594 ± 2.1 ± 1.0 ± 2.5
1.153–1.496 0.0352 ± 4.2 ± 3.4 ± 2.6 0.0345 ± 4.2 ± 3.4 ± 3.4 0.0315 ± 3.1 ± 1.6 ± 2.7 0.0310 ± 3.1 ± 1.6 ± 2.7 0.0300 ± 3.1 ± 1.6 ± 3.2 0.0327 ± 2.5 ± 1.5 ± 2.4
1.496–1.947 0.0174 ± 5.2 ± 3.3 ± 3.7 0.0171 ± 5.2 ± 3.4 ± 4.3 0.0177 ± 3.8 ± 1.8 ± 2.2 0.0175 ± 3.8 ± 1.8 ± 2.2 0.0167 ± 3.8 ± 1.8 ± 2.8 0.0175 ± 3.0 ± 1.6 ± 2.4
1.947–2.522 0.00950 ± 6.2 ± 3.6 ± 3.9 0.00936 ± 6.2 ± 3.7 ± 4.5 0.00938 ± 4.4 ± 2.0 ± 2.4 0.00923 ± 4.4 ± 2.0 ± 2.4 0.00905 ± 4.4 ± 2.0 ± 2.9 0.00953 ± 3.5 ± 1.8 ± 2.4
2.522–3.277 0.00567 ± 6.3 ± 3.9 ± 11 0.00574 ± 6.3 ± 3.9 ± 11 0.00493 ± 5.4 ± 3.3 ± 2.0 0.00494 ± 5.4 ± 3.3 ± 2.0 0.00480 ± 5.4 ± 3.3 ± 2.6 0.00519 ± 4.1 ± 2.5 ± 3.3
3.277–5.000 0.00208 ± 7.3 ± 4.5 ± 4.1 0.00204 ± 7.3 ± 4.5 ± 4.6 0.00206 ± 5.5 ± 3.4 ± 3.6 0.00204 ± 5.5 ± 3.4 ± 3.6 0.00200 ± 5.5 ± 3.4 ± 3.9 0.00211 ± 4.3 ± 2.7 ± 2.7
5.000–10.000 0.000603 ± 7.9 ± 4.4 ± 3.3 0.000599 ± 7.9 ± 4.4 ± 3.9 0.000536 ± 6.4 ± 3.8 ± 3.4 0.000529 ± 6.4 ± 3.8 ± 3.4 0.000521 ± 6.4 ± 3.8 ± 3.8 0.000577 ± 4.9 ± 2.9 ± 2.7

Table 7.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 46GeVm<66GeV,1.6|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 6.724 ± 3.7 ± 1.7 ± 4.0 7.096 ± 3.7 ± 1.7 ± 4.2 6.844 ± 2.6 ± 1.1 ± 3.2 6.783 ± 2.6 ± 1.1 ± 3.2 7.249 ± 2.6 ± 1.1 ± 3.3 7.260 ± 2.1 ± 0.9 ± 3.5
0.004–0.008 6.620 ± 3.7 ± 1.8 ± 1.9 6.958 ± 3.7 ± 1.8 ± 2.2 6.899 ± 2.4 ± 1.0 ± 1.5 6.752 ± 2.4 ± 1.0 ± 1.5 7.155 ± 2.4 ± 1.0 ± 1.7 7.129 ± 2.0 ± 0.9 ± 1.7
0.008–0.012 6.546 ± 3.6 ± 1.8 ± 1.2 6.826 ± 3.6 ± 1.8 ± 1.7 7.009 ± 2.5 ± 1.0 ± 1.2 6.942 ± 2.5 ± 1.0 ± 1.2 7.338 ± 2.5 ± 1.0 ± 1.4 7.174 ± 2.1 ± 0.9 ± 1.3
0.012–0.016 6.493 ± 3.6 ± 1.4 ± 1.6 6.877 ± 3.6 ± 1.5 ± 1.9 7.341 ± 2.5 ± 1.1 ± 0.9 7.206 ± 2.5 ± 1.1 ± 0.9 7.625 ± 2.5 ± 1.1 ± 1.2 7.389 ± 2.0 ± 0.9 ± 1.2
0.016–0.020 6.632 ± 3.6 ± 1.5 ± 2.0 6.939 ± 3.6 ± 1.5 ± 2.3 6.958 ± 2.5 ± 1.0 ± 0.9 6.958 ± 2.5 ± 1.0 ± 0.9 7.457 ± 2.5 ± 1.0 ± 1.3 7.249 ± 2.1 ± 0.9 ± 1.2
0.020–0.024 6.727 ± 3.6 ± 1.5 ± 0.9 7.004 ± 3.6 ± 1.5 ± 1.5 6.505 ± 2.7 ± 1.1 ± 0.7 6.504 ± 2.7 ± 1.1 ± 0.7 6.724 ± 2.7 ± 1.1 ± 1.1 6.803 ± 2.1 ± 0.9 ± 1.0
0.024–0.029 6.531 ± 3.3 ± 1.3 ± 1.1 6.896 ± 3.3 ± 1.4 ± 1.6 6.452 ± 2.4 ± 1.0 ± 0.7 6.378 ± 2.4 ± 1.0 ± 0.7 6.721 ± 2.4 ± 1.0 ± 1.1 6.747 ± 1.9 ± 0.8 ± 1.0
0.029–0.034 6.023 ± 3.4 ± 1.4 ± 1.0 6.297 ± 3.4 ± 1.4 ± 1.5 5.969 ± 2.5 ± 1.0 ± 0.7 5.980 ± 2.5 ± 1.0 ± 0.7 6.272 ± 2.5 ± 1.0 ± 1.1 6.261 ± 2.0 ± 0.8 ± 1.0
0.034–0.039 6.204 ± 3.3 ± 1.4 ± 0.9 6.499 ± 3.3 ± 1.4 ± 1.5 5.529 ± 2.6 ± 1.1 ± 0.6 5.509 ± 2.6 ± 1.1 ± 0.6 5.840 ± 2.6 ± 1.1 ± 1.0 6.050 ± 2.0 ± 0.8 ± 1.0
0.039–0.045 5.461 ± 3.2 ± 1.8 ± 0.9 5.675 ± 3.2 ± 1.8 ± 1.4 5.619 ± 2.3 ± 0.9 ± 0.7 5.625 ± 2.3 ± 0.9 ± 0.7 5.999 ± 2.3 ± 0.9 ± 1.1 5.895 ± 1.9 ± 0.9 ± 1.0
0.045–0.051 5.384 ± 3.3 ± 1.8 ± 1.1 5.592 ± 3.3 ± 1.8 ± 1.5 5.153 ± 2.4 ± 1.0 ± 0.8 5.170 ± 2.4 ± 1.0 ± 0.8 5.355 ± 2.4 ± 1.0 ± 1.2 5.418 ± 1.9 ± 0.9 ± 1.0
0.051–0.057 5.016 ± 3.4 ± 1.4 ± 1.3 5.256 ± 3.4 ± 1.5 ± 1.7 4.916 ± 2.4 ± 1.0 ± 0.6 4.891 ± 2.4 ± 1.0 ± 0.6 5.109 ± 2.4 ± 1.0 ± 1.0 5.161 ± 2.0 ± 0.8 ± 1.0
0.057–0.064 4.760 ± 3.2 ± 1.4 ± 0.8 4.923 ± 3.2 ± 1.4 ± 1.4 4.848 ± 2.3 ± 0.9 ± 0.4 4.878 ± 2.3 ± 0.9 ± 0.4 5.037 ± 2.3 ± 0.9 ± 0.8 4.995 ± 1.9 ± 0.8 ± 0.8
0.064–0.072 4.364 ± 3.2 ± 2.0 ± 1.0 4.489 ± 3.2 ± 2.0 ± 1.5 4.181 ± 2.2 ± 0.9 ± 0.4 4.203 ± 2.2 ± 0.9 ± 0.4 4.359 ± 2.2 ± 0.9 ± 0.8 4.383 ± 1.8 ± 0.9 ± 0.8
0.072–0.081 3.733 ± 3.2 ± 2.0 ± 0.9 3.810 ± 3.2 ± 2.1 ± 1.5 3.849 ± 2.2 ± 0.9 ± 0.5 3.856 ± 2.2 ± 0.9 ± 0.5 3.958 ± 2.2 ± 0.9 ± 0.8 3.911 ± 1.8 ± 0.9 ± 0.8
0.081–0.091 3.600 ± 3.1 ± 1.2 ± 0.6 3.679 ± 3.1 ± 1.2 ± 1.3 3.482 ± 2.2 ± 0.9 ± 0.4 3.505 ± 2.2 ± 0.9 ± 0.4 3.594 ± 2.2 ± 0.9 ± 0.8 3.620 ± 1.8 ± 0.7 ± 0.8
0.091–0.102 3.201 ± 3.1 ± 1.4 ± 0.9 3.247 ± 3.1 ± 1.5 ± 1.5 3.279 ± 2.3 ± 0.9 ± 0.5 3.283 ± 2.3 ± 0.9 ± 0.5 3.344 ± 2.3 ± 0.9 ± 0.8 3.307 ± 1.8 ± 0.8 ± 0.9
0.102–0.114 2.927 ± 3.1 ± 1.4 ± 1.3 2.942 ± 3.1 ± 1.5 ± 1.7 2.898 ± 2.2 ± 0.9 ± 0.3 2.901 ± 2.2 ± 0.9 ± 0.3 2.921 ± 2.2 ± 0.9 ± 0.7 2.932 ± 1.8 ± 0.8 ± 0.8
0.114–0.128 2.599 ± 3.0 ± 1.9 ± 0.9 2.618 ± 3.0 ± 2.0 ± 1.5 2.526 ± 2.2 ± 0.9 ± 0.5 2.528 ± 2.2 ± 0.9 ± 0.5 2.560 ± 2.2 ± 0.9 ± 0.8 2.577 ± 1.8 ± 0.9 ± 0.8
0.128–0.145 1.987 ± 3.1 ± 2.0 ± 1.1 1.954 ± 3.1 ± 2.0 ± 1.6 2.236 ± 2.1 ± 0.8 ± 0.4 2.241 ± 2.1 ± 0.8 ± 0.4 2.234 ± 2.1 ± 0.8 ± 0.8 2.160 ± 1.7 ± 0.8 ± 0.8
0.145–0.165 1.840 ± 3.1 ± 1.3 ± 1.3 1.829 ± 3.1 ± 1.3 ± 1.7 1.862 ± 2.2 ± 0.9 ± 0.4 1.860 ± 2.2 ± 0.9 ± 0.4 1.824 ± 2.2 ± 0.9 ± 0.8 1.825 ± 1.8 ± 0.7 ± 0.9
0.165–0.189 1.544 ± 3.0 ± 1.7 ± 1.1 1.500 ± 3.0 ± 1.8 ± 1.6 1.594 ± 2.1 ± 0.9 ± 0.5 1.610 ± 2.1 ± 0.9 ± 0.5 1.546 ± 2.1 ± 0.9 ± 0.8 1.533 ± 1.7 ± 0.8 ± 0.9
0.189–0.219 1.302 ± 3.0 ± 2.0 ± 1.0 1.253 ± 3.0 ± 2.1 ± 1.6 1.232 ± 2.2 ± 0.9 ± 0.5 1.233 ± 2.2 ± 0.9 ± 0.5 1.179 ± 2.2 ± 0.9 ± 0.8 1.205 ± 1.8 ± 0.9 ± 0.8
0.219–0.258 1.000 ± 2.9 ± 1.6 ± 0.9 0.939 ± 2.9 ± 1.6 ± 1.6 0.977 ± 2.2 ± 0.9 ± 0.6 0.985 ± 2.2 ± 0.9 ± 0.6 0.925 ± 2.2 ± 0.9 ± 0.9 0.929 ± 1.7 ± 0.8 ± 0.9
0.258–0.312 0.728 ± 2.9 ± 1.6 ± 1.5 0.669 ± 2.9 ± 1.6 ± 2.4 0.749 ± 2.0 ± 0.8 ± 0.6 0.747 ± 2.0 ± 0.8 ± 0.6 0.690 ± 2.0 ± 0.8 ± 1.9 0.685 ± 1.6 ± 0.7 ± 1.7
0.312–0.391 0.538 ± 2.8 ± 1.3 ± 1.1 0.488 ± 2.8 ± 1.4 ± 2.3 0.530 ± 2.0 ± 0.8 ± 1.1 0.534 ± 2.0 ± 0.8 ± 1.1 0.473 ± 2.0 ± 0.8 ± 2.1 0.481 ± 1.6 ± 0.7 ± 1.8
0.391–0.524 0.347 ± 2.7 ± 1.0 ± 1.4 0.315 ± 2.7 ± 1.1 ± 2.4 0.326 ± 2.0 ± 0.8 ± 1.2 0.327 ± 2.0 ± 0.8 ± 1.2 0.290 ± 2.0 ± 0.8 ± 2.1 0.299 ± 1.6 ± 0.7 ± 1.8
0.524–0.695 0.191 ± 3.3 ± 3.0 ± 1.7 0.176 ± 3.3 ± 3.0 ± 2.6 0.181 ± 2.3 ± 0.9 ± 2.0 0.182 ± 2.3 ± 0.9 ± 2.0 0.163 ± 2.3 ± 0.9 ± 2.7 0.168 ± 1.9 ± 1.0 ± 2.1
0.695–0.918 0.103 ± 3.9 ± 2.7 ± 1.7 0.0993 ± 3.9 ± 2.7 ± 2.6 0.102 ± 2.7 ± 1.2 ± 2.2 0.102 ± 2.7 ± 1.2 ± 2.2 0.0953 ± 2.7 ± 1.2 ± 2.8 0.0978 ± 2.2 ± 1.1 ± 2.2
0.918–1.153 0.0543 ± 5.2 ± 4.2 ± 3.4 0.0529 ± 5.2 ± 4.2 ± 3.9 0.0543 ± 3.6 ± 1.5 ± 1.0 0.0539 ± 3.6 ± 1.5 ± 1.0 0.0519 ± 3.6 ± 1.5 ± 2.0 0.0526 ± 3.0 ± 1.5 ± 1.9
1.153–1.496 0.0285 ± 6.0 ± 3.9 ± 3.8 0.0282 ± 6.0 ± 4.0 ± 4.4 0.0300 ± 4.2 ± 2.2 ± 1.4 0.0295 ± 4.2 ± 2.2 ± 1.4 0.0285 ± 4.2 ± 2.2 ± 1.6 0.0285 ± 3.4 ± 2.0 ± 1.7
1.496–1.947 0.0152 ± 6.9 ± 3.6 ± 3.5 0.0152 ± 6.9 ± 3.6 ± 4.1 0.0150 ± 5.7 ± 2.8 ± 1.8 0.0152 ± 5.7 ± 2.8 ± 1.8 0.0153 ± 5.7 ± 2.8 ± 2.0 0.0154 ± 4.4 ± 2.2 ± 2.0
1.947–2.522 0.00628 ± 9.3 ± 4.2 ± 3.9 0.00634 ± 9.3 ± 4.3 ± 4.4 0.00625 ± 7.0 ± 3.3 ± 1.9 0.00634 ± 7.0 ± 3.3 ± 1.9 0.00619 ± 7.0 ± 3.3 ± 2.0 0.00631 ± 5.6 ± 2.6 ± 2.1
2.522–3.277 0.00274 ± 13 ± 4.4 ± 4.7 0.00272 ± 13 ± 4.5 ± 5.2 0.00292 ± 8.8 ± 3.8 ± 1.9 0.00294 ± 8.8 ± 3.8 ± 1.9 0.00293 ± 8.8 ± 3.8 ± 2.0 0.00284 ± 7.2 ± 2.9 ± 2.2
3.277–5.000 0.00115 ± 12 ± 4.3 ± 5.4 0.00118 ± 12 ± 4.4 ± 5.9 0.00102 ± 9.8 ± 4.3 ± 1.8 0.00106 ± 9.8 ± 4.3 ± 1.8 0.00104 ± 9.8 ± 4.3 ± 2.0 0.00109 ± 7.6 ± 3.1 ± 2.4
5.000–10.000 0.000213 ± 17 ± 5.6 ± 5.1 0.000209 ± 17 ± 5.7 ± 5.4 0.000309 ± 10 ± 4.5 ± 2.2 0.000321 ± 10 ± 4.5 ± 2.2 0.000354 ± 10 ± 4.5 ± 2.3 0.000295 ± 9.0 ± 3.5 ± 2.3

Table 8.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,0|y|<0.4. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 9.252 ± 0.4 ± 0.1 ± 0.2 9.331 ± 0.4 ± 0.1 ± 0.2 9.359 ± 0.4 ± 0.1 ± 0.1 9.359 ± 0.4 ± 0.1 ± 0.1 9.437 ± 0.4 ± 0.1 ± 0.2 9.386 ± 0.3 ± 0.1 ± 0.2
0.004–0.008 9.264 ± 0.4 ± 0.1 ± 0.1 9.353 ± 0.4 ± 0.1 ± 0.2 9.279 ± 0.4 ± 0.1 ± 0.1 9.270 ± 0.4 ± 0.1 ± 0.1 9.347 ± 0.4 ± 0.1 ± 0.1 9.346 ± 0.3 ± 0.1 ± 0.1
0.008–0.012 9.001 ± 0.4 ± 0.1 ± 0.1 9.067 ± 0.4 ± 0.1 ± 0.1 9.079 ± 0.4 ± 0.1 ± 0.1 9.074 ± 0.4 ± 0.1 ± 0.1 9.161 ± 0.4 ± 0.1 ± 0.1 9.115 ± 0.3 ± 0.1 ± 0.1
0.012–0.016 8.810 ± 0.4 ± 0.1 ± 0.1 8.881 ± 0.4 ± 0.1 ± 0.1 8.878 ± 0.4 ± 0.1 ± 0.1 8.875 ± 0.4 ± 0.1 ± 0.1 8.933 ± 0.4 ± 0.1 ± 0.1 8.908 ± 0.3 ± 0.1 ± 0.1
0.016–0.020 8.627 ± 0.4 ± 0.1 ± 0.1 8.697 ± 0.4 ± 0.1 ± 0.1 8.479 ± 0.4 ± 0.1 ± 0.1 8.474 ± 0.4 ± 0.1 ± 0.1 8.534 ± 0.4 ± 0.1 ± 0.1 8.607 ± 0.3 ± 0.1 ± 0.1
0.020–0.024 8.112 ± 0.4 ± 0.1 ± 0.1 8.162 ± 0.4 ± 0.1 ± 0.1 8.163 ± 0.4 ± 0.1 ± 0.1 8.164 ± 0.4 ± 0.1 ± 0.1 8.223 ± 0.4 ± 0.1 ± 0.1 8.196 ± 0.3 ± 0.1 ± 0.1
0.024–0.029 7.778 ± 0.4 ± 0.1 ± 0.1 7.817 ± 0.4 ± 0.1 ± 0.1 7.823 ± 0.4 ± 0.1 ± 0.0 7.822 ± 0.4 ± 0.1 ± 0.0 7.864 ± 0.4 ± 0.1 ± 0.1 7.840 ± 0.3 ± 0.1 ± 0.1
0.029–0.034 7.344 ± 0.4 ± 0.1 ± 0.1 7.384 ± 0.4 ± 0.1 ± 0.1 7.401 ± 0.4 ± 0.1 ± 0.0 7.395 ± 0.4 ± 0.1 ± 0.0 7.431 ± 0.4 ± 0.1 ± 0.1 7.407 ± 0.3 ± 0.1 ± 0.1
0.034–0.039 6.884 ± 0.4 ± 0.1 ± 0.1 6.909 ± 0.4 ± 0.1 ± 0.1 6.861 ± 0.4 ± 0.1 ± 0.0 6.863 ± 0.4 ± 0.1 ± 0.0 6.898 ± 0.4 ± 0.1 ± 0.1 6.903 ± 0.3 ± 0.1 ± 0.1
0.039–0.045 6.367 ± 0.4 ± 0.1 ± 0.1 6.375 ± 0.4 ± 0.1 ± 0.1 6.392 ± 0.4 ± 0.1 ± 0.0 6.392 ± 0.4 ± 0.1 ± 0.0 6.416 ± 0.4 ± 0.1 ± 0.1 6.396 ± 0.3 ± 0.1 ± 0.1
0.045–0.051 5.865 ± 0.4 ± 0.1 ± 0.1 5.873 ± 0.4 ± 0.1 ± 0.1 5.877 ± 0.4 ± 0.1 ± 0.0 5.872 ± 0.4 ± 0.1 ± 0.0 5.878 ± 0.4 ± 0.1 ± 0.1 5.875 ± 0.3 ± 0.1 ± 0.1
0.051–0.057 5.438 ± 0.4 ± 0.1 ± 0.1 5.441 ± 0.4 ± 0.1 ± 0.1 5.430 ± 0.4 ± 0.1 ± 0.0 5.434 ± 0.4 ± 0.1 ± 0.0 5.436 ± 0.4 ± 0.1 ± 0.1 5.438 ± 0.3 ± 0.1 ± 0.1
0.057–0.064 4.954 ± 0.4 ± 0.1 ± 0.1 4.952 ± 0.4 ± 0.1 ± 0.1 4.970 ± 0.4 ± 0.1 ± 0.1 4.966 ± 0.4 ± 0.1 ± 0.1 4.962 ± 0.4 ± 0.1 ± 0.2 4.957 ± 0.3 ± 0.1 ± 0.1
0.064–0.072 4.522 ± 0.4 ± 0.1 ± 0.1 4.514 ± 0.4 ± 0.1 ± 0.1 4.514 ± 0.4 ± 0.1 ± 0.1 4.514 ± 0.4 ± 0.1 ± 0.1 4.503 ± 0.4 ± 0.1 ± 0.2 4.507 ± 0.3 ± 0.1 ± 0.1
0.072–0.081 4.021 ± 0.4 ± 0.1 ± 0.1 4.011 ± 0.4 ± 0.1 ± 0.1 3.984 ± 0.4 ± 0.1 ± 0.1 3.983 ± 0.4 ± 0.1 ± 0.1 3.970 ± 0.4 ± 0.1 ± 0.2 3.988 ± 0.3 ± 0.1 ± 0.1
0.081–0.091 3.572 ± 0.4 ± 0.1 ± 0.1 3.558 ± 0.4 ± 0.1 ± 0.1 3.576 ± 0.4 ± 0.1 ± 0.1 3.576 ± 0.4 ± 0.1  ± 0.1 3.567 ± 0.4 ± 0.1 ± 0.2 3.561 ± 0.3 ± 0.1 ± 0.1
0.091–0.102 3.145 ± 0.4 ± 0.1 ± 0.1 3.132 ± 0.4 ± 0.1 ± 0.1 3.165 ± 0.4 ± 0.1 ± 0.1 3.165 ± 0.4 ± 0.1 ± 0.1 3.145 ± 0.4 ± 0.1 ± 0.2 3.138 ± 0.3 ± 0.1 ± 0.1
0.102–0.114 2.764 ± 0.4 ± 0.1 ± 0.1 2.752 ± 0.4 ± 0.1 ± 0.1 2.774 ± 0.4 ± 0.1 ± 0.1 2.773 ± 0.4 ± 0.1 ± 0.1 2.763 ± 0.4 ± 0.1 ± 0.2 2.757 ± 0.3 ± 0.1 ± 0.1
0.114–0.128 2.394 ± 0.4 ± 0.1 ± 0.1 2.382 ± 0.4 ± 0.1 ± 0.1 2.379 ± 0.4 ± 0.1 ± 0.1 2.378 ± 0.4 ± 0.1 ± 0.1 2.363 ± 0.4 ± 0.1 ± 0.1 2.371 ± 0.3 ± 0.1 ± 0.1
0.128–0.145 2.023 ± 0.4 ± 0.1 ± 0.1 2.009 ± 0.4 ± 0.1 ± 0.1 2.037 ± 0.4 ± 0.1 ± 0.1 2.038 ± 0.4 ± 0.1 ± 0.1 2.026 ± 0.4 ± 0.1 ± 0.1 2.017 ± 0.3 ± 0.1 ± 0.1
0.145–0.165 1.697 ± 0.4 ± 0.1 ± 0.1 1.686 ± 0.4 ± 0.1 ± 0.1 1.698 ± 0.4 ± 0.1 ± 0.1 1.698 ± 0.4 ± 0.1 ± 0.1 1.688 ± 0.4 ± 0.1 ± 0.1 1.687 ± 0.3 ± 0.1 ± 0.1
0.165–0.189 1.396 ± 0.4 ± 0.1 ± 0.1 1.388 ± 0.4 ± 0.1 ± 0.1 1.391 ± 0.4 ± 0.1 ± 0.1 1.391 ± 0.4 ± 0.1 ± 0.1 1.382 ± 0.4 ± 0.1 ± 0.2 1.384 ± 0.3 ± 0.1 ± 0.1
0.189–0.219 1.111 ± 0.4 ± 0.1 ± 0.1 1.104 ± 0.4 ± 0.1 ± 0.1 1.105 ± 0.4 ± 0.1 ± 0.1 1.106 ± 0.4 ± 0.1 ± 0.1 1.098 ± 0.4 ± 0.1 ± 0.2 1.101 ± 0.3 ± 0.1 ± 0.1
0.219–0.258 0.851 ± 0.4 ± 0.1 ± 0.1 0.846 ± 0.4 ± 0.1 ± 0.1 0.856 ± 0.4 ± 0.1 ± 0.1 0.857 ± 0.4 ± 0.1 ± 0.1 0.852 ± 0.4 ± 0.1 ± 0.2 0.849 ± 0.3 ± 0.1 ± 0.1
0.258–0.312 0.618 ± 0.4 ± 0.1 ± 0.2 0.615 ± 0.4 ± 0.1 ± 0.3 0.616 ± 0.4 ± 0.1 ± 0.1 0.616 ± 0.4 ± 0.1 ± 0.1 0.613 ± 0.4 ± 0.1 ± 0.2 0.614 ± 0.3 ± 0.1 ± 0.2
0.312–0.391 0.411 ± 0.4 ± 0.1 ± 0.3 0.410 ± 0.4 ± 0.1 ± 0.3 0.412 ± 0.4 ± 0.1 ± 0.2 0.412 ± 0.4 ± 0.1 ± 0.2 0.410 ± 0.4 ± 0.1 ± 0.2 0.410 ± 0.3 ± 0.1 ± 0.2
0.391–0.524 0.241 ± 0.4 ± 0.1 ± 0.3 0.240 ± 0.4 ± 0.1 ± 0.3 0.239 ± 0.4 ± 0.1 ± 0.2 0.239 ± 0.4 ± 0.1 ± 0.2 0.239 ± 0.4 ± 0.1 ± 0.2 0.239 ± 0.3 ± 0.1 ± 0.2
0.524–0.695 0.126 ± 0.5 ± 0.2 ± 0.3 0.126 ± 0.5 ± 0.2 ± 0.3 0.124 ± 0.5 ± 0.1 ± 0.2 0.124 ± 0.5 ± 0.1 ± 0.2 0.124 ± 0.5 ± 0.1 ± 0.3 0.125 ± 0.4 ± 0.1 ± 0.2
0.695–0.918 0.0635 ± 0.7 ± 0.2 ± 0.3 0.0633 ± 0.7 ± 0.2 ± 0.3 0.0631 ± 0.6 ± 0.2 ± 0.3 0.0631 ± 0.6 ± 0.2 ± 0.3 0.0629 ± 0.6 ± 0.2 ± 0.3 0.0631 ± 0.5 ± 0.1 ± 0.3
0.918–1.153 0.0335 ± 0.9 ± 0.3 ± 0.3 0.0334 ± 0.9 ± 0.3 ± 0.3 0.0328 ± 0.8 ± 0.2 ± 0.4 0.0329 ± 0.8 ± 0.2 ± 0.4 0.0328 ± 0.8 ± 0.2 ± 0.4 0.0331 ± 0.6 ± 0.2 ± 0.3
1.153–1.496 0.0178 ± 1.0 ± 0.2 ± 0.4 0.0177 ± 1.0 ± 0.2 ± 0.4 0.0173 ± 1.0 ± 0.2 ± 0.4 0.0173 ± 1.0 ± 0.2 ± 0.4 0.0173 ± 1.0 ± 0.2 ± 0.5 0.0175 ± 0.7 ± 0.2 ± 0.4
1.496–1.947 0.00883 ± 1.2 ± 0.3 ± 0.4 0.00880 ± 1.2 ± 0.3 ± 0.4 0.00875 ± 1.2 ± 0.3 ± 0.4 0.00878 ± 1.2 ± 0.3 ± 0.4 0.00877 ± 1.2 ± 0.3 ± 0.5 0.00879 ± 0.9 ± 0.2 ± 0.4
1.947–2.522 0.00451 ± 1.6 ± 0.4 ± 0.6 0.00449 ± 1.6 ± 0.4 ± 0.6 0.00444 ± 1.4 ± 0.4 ± 0.5 0.00445 ± 1.4 ± 0.4 ± 0.5 0.00443 ± 1.4 ± 0.4 ± 0.6 0.00446 ± 1.1 ± 0.3 ± 0.4
2.522–3.277 0.00239 ± 1.9 ± 0.4 ± 0.6 0.00238 ± 1.9 ± 0.4 ± 0.6 0.00227 ± 1.7 ± 0.5 ± 0.6 0.00228 ± 1.7 ± 0.5 ± 0.6 0.00227 ± 1.7 ± 0.5 ± 0.6 0.00232 ± 1.3 ± 0.3 ± 0.4
3.277–5.000 0.00103 ± 1.9 ± 0.4 ± 0.7 0.00103 ± 1.9 ± 0.4 ± 0.7 0.00102 ± 1.7 ± 0.4 ± 0.6 0.00102 ± 1.7 ± 0.4 ± 0.6 0.00102 ± 1.7 ± 0.4 ± 0.6 0.00102 ± 1.3 ± 0.3 ± 0.5
5.000–10.000 0.000306 ± 2.1 ± 0.5 ± 0.7 0.000306 ± 2.1 ± 0.5 ± 0.7 0.000300 ± 1.9 ± 0.5 ± 0.6 0.000301 ± 1.9 ± 0.5 ± 0.6 0.000301 ± 1.9 ± 0.5 ± 0.7 0.000303 ± 1.4 ± 0.3 ± 0.5

Table 9.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,0.4|y|<0.8. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 9.405 ± 0.4 ± 0.1 ± 0.2 9.503 ± 0.4 ± 0.1 ± 0.2 9.386 ± 0.4 ± 0.1 ± 0.1 9.383 ± 0.4 ± 0.1 ± 0.1 9.452 ± 0.4 ± 0.1 ± 0.2 9.465 ± 0.3 ± 0.1 ± 0.2
0.004–0.008 9.230 ± 0.4 ± 0.1 ± 0.1 9.300 ± 0.4 ± 0.1 ± 0.1 9.290 ± 0.4 ± 0.1 ± 0.1 9.289 ± 0.4 ± 0.1 ± 0.1 9.372 ± 0.4 ± 0.1 ± 0.1 9.332 ± 0.3 ± 0.1 ± 0.1
0.008–0.012 9.055 ± 0.4 ± 0.1 ± 0.1 9.140 ± 0.4 ± 0.1 ± 0.1 9.100 ± 0.4 ± 0.1 ± 0.0 9.102 ± 0.4 ± 0.1 ± 0.0 9.173 ± 0.4 ± 0.1 ± 0.1 9.148 ± 0.3 ± 0.1 ± 0.1
0.012–0.016 8.813 ± 0.4 ± 0.1 ± 0.1 8.877 ± 0.4 ± 0.1 ± 0.1 8.888 ± 0.4 ± 0.1 ± 0.0 8.890 ± 0.4 ± 0.1 ± 0.0 8.960 ± 0.4 ± 0.1 ± 0.1 8.917 ± 0.3 ± 0.1 ± 0.1
0.016–0.020 8.530 ± 0.4 ± 0.1 ± 0.1 8.592 ± 0.4 ± 0.1 ± 0.1 8.595 ± 0.4 ± 0.1 ± 0.0 8.590 ± 0.4 ± 0.1 ± 0.0 8.659 ± 0.4 ± 0.1 ± 0.1 8.621 ± 0.3 ± 0.1 ± 0.1
0.020–0.024 8.163 ± 0.5 ± 0.1 ± 0.1 8.209 ± 0.5 ± 0.1 ± 0.1 8.210 ± 0.4 ± 0.1 ± 0.0 8.207 ± 0.4 ± 0.1 ± 0.0 8.257 ± 0.4 ± 0.1 ± 0.1 8.228 ± 0.3 ± 0.1 ± 0.1
0.024–0.029 7.849 ± 0.4 ± 0.1 ± 0.1 7.898 ± 0.4 ± 0.1 ± 0.1 7.813 ± 0.4 ± 0.1 ± 0.1 7.809 ± 0.4 ± 0.1 ± 0.1 7.853 ± 0.4 ± 0.1 ± 0.2 7.863 ± 0.3 ± 0.1 ± 0.1
0.029–0.034 7.382 ± 0.4 ± 0.1 ± 0.1 7.411 ± 0.4 ± 0.1 ± 0.1 7.393 ± 0.4 ± 0.1 ± 0.1 7.388 ± 0.4 ± 0.1 ± 0.1 7.427 ± 0.4 ± 0.1 ± 0.2 7.412 ± 0.3 ± 0.1 ± 0.1
0.034–0.039 6.874 ± 0.4 ± 0.1 ± 0.1 6.895 ± 0.4 ± 0.1 ± 0.1 6.909 ± 0.4 ± 0.1 ± 0.1 6.907 ± 0.4 ± 0.1 ± 0.1 6.933 ± 0.4 ± 0.1 ± 0.2 6.910 ± 0.3 ± 0.1 ± 0.1
0.039–0.045 6.410 ± 0.4 ± 0.1 ± 0.1 6.425 ± 0.4 ± 0.1 ± 0.1 6.425 ± 0.4 ± 0.1 ± 0.1 6.417 ± 0.4 ± 0.1 ± 0.1 6.443 ± 0.4 ± 0.1 ± 0.2 6.428 ± 0.3 ± 0.1 ± 0.1
0.045–0.051 5.850 ± 0.4 ± 0.1 ± 0.1 5.856 ± 0.4 ± 0.1 ± 0.1 5.903 ± 0.4 ± 0.1 ± 0.1 5.906 ± 0.4 ± 0.1 ± 0.1 5.913 ± 0.4 ± 0.1 ± 0.2 5.882 ± 0.3 ± 0.1 ± 0.1
0.051–0.057 5.427 ± 0.5 ± 0.1 ± 0.1 5.429 ± 0.5 ± 0.1 ± 0.1 5.477 ± 0.4 ± 0.1 ± 0.1 5.475 ± 0.4 ± 0.1 ± 0.1 5.477 ± 0.4 ± 0.1 ± 0.2 5.450 ± 0.3 ± 0.1 ± 0.1
0.057–0.064 4.933 ± 0.4 ± 0.1 ± 0.1 4.930 ± 0.4 ± 0.1 ± 0.1 4.979 ± 0.4 ± 0.1 ± 0.1 4.977 ± 0.4 ± 0.1 ± 0.1 4.972 ± 0.4 ± 0.1 ± 0.2 4.949 ± 0.3 ± 0.1 ± 0.1
0.064–0.072 4.503 ± 0.4 ± 0.1 ± 0.1 4.499 ± 0.4 ± 0.1 ± 0.1 4.490 ± 0.4 ± 0.1 ± 0.1 4.492 ± 0.4 ± 0.1 ± 0.1 4.484 ± 0.4 ± 0.1 ± 0.2 4.485 ± 0.3 ± 0.1 ± 0.1
0.072–0.081 4.020 ± 0.4 ± 0.1 ± 0.1 4.011 ± 0.4 ± 0.1 ± 0.1 4.037 ± 0.4 ± 0.1 ± 0.1 4.035 ± 0.4 ± 0.1 ± 0.1 4.027 ± 0.4 ± 0.1 ± 0.2 4.016 ± 0.3 ± 0.1 ± 0.1
0.081–0.091 3.585 ± 0.4 ± 0.1 ± 0.1 3.573 ± 0.4 ± 0.1 ± 0.1 3.586 ± 0.4 ± 0.1 ± 0.1 3.587 ± 0.4 ± 0.1 ± 0.1 3.579 ± 0.4 ± 0.1 ± 0.2 3.574 ± 0.3 ± 0.1 ± 0.1
0.091–0.102 3.146 ± 0.4 ± 0.1 ± 0.1 3.132 ± 0.4 ± 0.1 ± 0.1 3.146 ± 0.4 ± 0.1 ± 0.1 3.144 ± 0.4 ± 0.1 ± 0.1 3.132 ± 0.4 ± 0.1 ± 0.2 3.130 ± 0.3 ± 0.1 ± 0.1
0.102–0.114 2.786 ± 0.4 ± 0.1 ± 0.1 2.772 ± 0.4 ± 0.1 ± 0.1 2.753 ± 0.4 ± 0.1 ± 0.1 2.752 ± 0.4 ± 0.1 ± 0.1 2.737 ± 0.4 ± 0.1 ± 0.2 2.750 ± 0.3 ± 0.1 ± 0.1
0.114–0.128 2.380 ± 0.4 ± 0.1 ± 0.1 2.365 ± 0.4 ± 0.1 ± 0.1 2.370 ± 0.4 ± 0.1 ± 0.1 2.369 ± 0.4 ± 0.1 ± 0.1 2.358 ± 0.4 ± 0.1 ± 0.1 2.361 ± 0.3 ± 0.1 ± 0.1
0.128–0.145 2.034 ± 0.4 ± 0.1 ± 0.1 2.022 ± 0.4 ± 0.1 ± 0.1 2.034 ± 0.4 ± 0.1 ± 0.1 2.034 ± 0.4 ± 0.1 ± 0.1 2.021 ± 0.4 ± 0.1 ± 0.1 2.021 ± 0.3 ± 0.1 ± 0.1
0.145–0.165 1.694 ± 0.4 ± 0.1 ± 0.1 1.683 ± 0.4 ± 0.1 ± 0.1 1.695 ± 0.4 ± 0.1 ± 0.1 1.695 ± 0.4 ± 0.1 ± 0.1 1.684 ± 0.4 ± 0.1 ± 0.1 1.683 ± 0.3 ± 0.1 ± 0.1
0.165–0.189 1.396 ± 0.4 ± 0.1 ± 0.1 1.388 ± 0.4 ± 0.1 ± 0.1 1.381 ± 0.4 ± 0.1 ± 0.1 1.381 ± 0.4 ± 0.1 ± 0.1 1.373 ± 0.4 ± 0.1 ± 0.1 1.379 ± 0.3 ± 0.1 ± 0.1
0.189–0.219 1.115 ± 0.4 ± 0.1 ± 0.1 1.108 ± 0.4 ± 0.1 ± 0.1 1.109 ± 0.4 ± 0.1 ± 0.1 1.110 ± 0.4 ± 0.1 ± 0.1 1.102 ± 0.4 ± 0.1 ± 0.1 1.105 ± 0.3 ± 0.1 ± 0.1
0.219–0.258 0.853 ± 0.4 ± 0.1 ± 0.2 0.849 ± 0.4 ± 0.1 ± 0.2 0.848 ± 0.4 ± 0.1 ± 0.1 0.848 ± 0.4 ± 0.1 ± 0.1 0.843 ± 0.4 ± 0.1 ± 0.1 0.845 ± 0.3 ± 0.1 ± 0.1
0.258–0.312 0.616 ± 0.4 ± 0.1 ± 0.2 0.613 ± 0.4 ± 0.1 ± 0.2 0.612 ± 0.4 ± 0.1 ± 0.1 0.612 ± 0.4 ± 0.1 ± 0.1 0.609 ± 0.4 ± 0.1 ± 0.2 0.610 ± 0.3 ± 0.1 ± 0.2
0.312–0.391 0.410 ± 0.4 ± 0.1 ± 0.3 0.408 ± 0.4 ± 0.1 ± 0.3 0.410 ± 0.4 ± 0.1 ± 0.2 0.410 ± 0.4 ± 0.1 ± 0.2 0.409 ± 0.4 ± 0.1 ± 0.2 0.408 ± 0.3 ± 0.1 ± 0.2
0.391–0.524 0.240 ± 0.5 ± 0.1 ± 0.3 0.240 ± 0.5 ± 0.1 ± 0.3 0.236 ± 0.4 ± 0.1 ± 0.2 0.236 ± 0.4 ± 0.1 ± 0.2 0.235 ± 0.4 ± 0.1 ± 0.2 0.237 ± 0.3 ± 0.1 ± 0.2
0.524–0.695 0.124 ± 0.6 ± 0.2 ± 0.3 0.124 ± 0.6 ± 0.2 ± 0.3 0.124 ± 0.5 ± 0.1 ± 0.2 0.124 ± 0.5 ± 0.1 ± 0.2 0.124 ± 0.5 ± 0.1 ± 0.2 0.124 ± 0.4 ± 0.1 ± 0.2
0.695–0.918 0.0629 ± 0.7 ± 0.2 ± 0.3 0.0627 ± 0.7 ± 0.2 ± 0.3 0.0623 ± 0.6 ± 0.1 ± 0.3 0.0623 ± 0.6 ± 0.1 ± 0.3 0.0621 ± 0.6 ± 0.1 ± 0.3 0.0623 ± 0.5 ± 0.1 ± 0.2
0.918–1.153 0.0330 ± 0.9 ± 0.3 ± 0.3 0.0329 ± 0.9 ± 0.3 ± 0.3 0.0331 ± 0.8 ± 0.2 ± 0.3 0.0332 ± 0.8 ± 0.2 ± 0.3 0.0331 ± 0.8 ± 0.2 ± 0.3 0.0330 ± 0.6 ± 0.2 ± 0.2
1.153–1.496 0.0175 ± 1.0 ± 0.3 ± 0.5 0.0174 ± 1.0 ± 0.3 ± 0.5 0.0174 ± 1.0 ± 0.2 ± 0.3 0.0174 ± 1.0 ± 0.2 ± 0.3 0.0173 ± 1.0 ± 0.2 ± 0.5 0.0173 ± 0.7 ± 0.2 ± 0.4
1.496–1.947 0.00850 ± 1.3 ± 0.3 ± 0.5 0.00847 ± 1.3 ± 0.3 ± 0.5 0.00861 ± 1.2 ± 0.2 ± 0.4 0.00862 ± 1.2 ± 0.2 ± 0.4 0.00862 ± 1.2 ± 0.2 ± 0.5 0.00853 ± 0.9 ± 0.2 ± 0.4
1.947–2.522 0.00440 ± 1.6 ± 0.4 ± 0.6 0.00439 ± 1.6 ± 0.4 ± 0.6 0.00438 ± 1.5 ± 0.4 ± 0.3 0.00439 ± 1.5 ± 0.4 ± 0.3 0.00437 ± 1.5 ± 0.4 ± 0.5 0.00437 ± 1.1 ± 0.3 ± 0.4
2.522–3.277 0.00229 ± 2.0 ± 0.4 ± 0.6 0.00229 ± 2.0 ± 0.5 ± 0.6 0.00224 ± 1.8 ± 0.5 ± 0.4 0.00224 ± 1.8 ± 0.5 ± 0.4 0.00223 ± 1.8 ± 0.5 ± 0.6 0.00225 ± 1.3 ± 0.3 ± 0.4
3.277–5.000 0.000994 ± 2.0 ± 0.6 ± 0.8 0.000993 ± 2.0 ± 0.6 ± 0.8 0.00101 ± 1.8 ± 0.4 ± 0.3 0.00101 ± 1.8 ± 0.4 ± 0.3 0.00102 ± 1.8 ± 0.4 ± 0.5 0.00100 ± 1.3 ± 0.4 ± 0.4
5.000–10.000 0.000309 ± 2.1 ± 0.5 ± 0.8 0.000308 ± 2.1 ± 0.5 ± 0.8 0.000297 ± 1.9 ± 0.5 ± 0.4 0.000297 ± 1.9 ± 0.5 ± 0.4 0.000297 ± 1.9 ± 0.5 ± 0.6 0.000301 ± 1.4 ± 0.4 ± 0.5

Table 10.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,0.8|y|<1.2. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 9.387 ± 0.4 ± 0.1 ± 0.2 9.476 ± 0.4 ± 0.1 ± 0.2 9.394 ± 0.4 ± 0.1 ± 0.1 9.388 ± 0.4 ± 0.1 ± 0.1 9.455 ± 0.4 ± 0.1 ± 0.2 9.458 ± 0.3 ± 0.1 ± 0.2
0.004–0.008 9.268 ± 0.4 ± 0.1 ± 0.1 9.352 ± 0.4 ± 0.1 ± 0.1 9.374 ± 0.4 ± 0.1 ± 0.0 9.371 ± 0.4 ± 0.1 ± 0.0 9.462 ± 0.4 ± 0.1 ± 0.2 9.412 ± 0.3 ± 0.1 ± 0.1
0.008–0.012 9.252 ± 0.4 ± 0.1 ± 0.1 9.330 ± 0.4 ± 0.1 ± 0.1 9.160 ± 0.4 ± 0.1 ± 0.0 9.155 ± 0.4 ± 0.1 ± 0.0 9.231 ± 0.4 ± 0.1 ± 0.2 9.265 ± 0.3 ± 0.1 ± 0.1
0.012–0.016 8.913 ± 0.5 ± 0.2 ± 0.1 8.989 ± 0.5 ± 0.2 ± 0.1 8.907 ± 0.4 ± 0.1 ± 0.0 8.900 ± 0.4 ± 0.1 ± 0.0 8.968 ± 0.4 ± 0.1 ± 0.2 8.973 ± 0.3 ± 0.1 ± 0.1
0.016–0.020 8.699 ± 0.5 ± 0.2 ± 0.1 8.772 ± 0.5 ± 0.2 ± 0.1 8.619 ± 0.4 ± 0.1 ± 0.0 8.613 ± 0.4 ± 0.1 ± 0.0 8.681 ± 0.4 ± 0.1 ± 0.2 8.712 ± 0.3 ± 0.1 ± 0.1
0.020–0.024 8.264 ± 0.5 ± 0.1 ± 0.1 8.312 ± 0.5 ± 0.1 ± 0.1 8.352 ± 0.4 ± 0.1 ± 0.0 8.348 ± 0.4 ± 0.1 ± 0.0 8.394 ± 0.4 ± 0.1 ± 0.2 8.356 ± 0.3 ± 0.1 ± 0.1
0.024–0.029 7.876 ± 0.4 ± 0.1 ± 0.1 7.920 ± 0.4 ± 0.1 ± 0.1 7.869 ± 0.4 ± 0.1 ± 0.1 7.868 ± 0.4 ± 0.1 ± 0.1 7.926 ± 0.4 ± 0.1 ± 0.1 7.918 ± 0.3 ± 0.1 ± 0.1
0.029–0.034 7.364 ± 0.4 ± 0.2 ± 0.1 7.396 ± 0.4 ± 0.2 ± 0.1 7.443 ± 0.4 ± 0.1 ± 0.1 7.437 ± 0.4 ± 0.1 ± 0.1 7.473 ± 0.4 ± 0.1 ± 0.1 7.439 ± 0.3 ± 0.1 ± 0.1
0.034–0.039 6.923 ± 0.5 ± 0.2 ± 0.1 6.950 ± 0.5 ± 0.2 ± 0.1 6.915 ± 0.4 ± 0.1 ± 0.0 6.906 ± 0.4 ± 0.1 ± 0.0 6.934 ± 0.4 ± 0.1 ± 0.1 6.937 ± 0.3 ± 0.1 ± 0.1
0.039–0.045 6.430 ± 0.4 ± 0.1 ± 0.1 6.450 ± 0.4 ± 0.1 ± 0.1 6.484 ± 0.4 ± 0.1 ± 0.1 6.483 ± 0.4 ± 0.1 ± 0.1 6.499 ± 0.4 ± 0.1 ± 0.1 6.475 ± 0.3 ± 0.1 ± 0.1
0.045–0.051 5.921 ± 0.5 ± 0.1 ± 0.1 5.923 ± 0.5 ± 0.2 ± 0.1 5.884 ± 0.4 ± 0.1 ± 0.1 5.884 ± 0.4 ± 0.1 ± 0.1 5.898 ± 0.4 ± 0.1 ± 0.1 5.905 ± 0.3 ± 0.1 ± 0.1
0.051–0.057 5.410 ± 0.5 ± 0.1 ± 0.1 5.410 ± 0.5 ± 0.1 ± 0.1 5.469 ± 0.4 ± 0.1 ± 0.1 5.470 ± 0.4 ± 0.1 ± 0.1 5.466 ± 0.4 ± 0.1 ± 0.1 5.441 ± 0.3 ± 0.1 ± 0.1
0.057–0.064 5.012 ± 0.5 ± 0.1 ± 0.1 5.008 ± 0.5 ± 0.1 ± 0.1 5.019 ± 0.4 ± 0.1 ± 0.1 5.016 ± 0.4 ± 0.1 ± 0.1 5.023 ± 0.4 ± 0.1 ± 0.1 5.015 ± 0.3 ± 0.1 ± 0.1
0.064–0.072 4.492 ± 0.5 ± 0.1 ± 0.1 4.483 ± 0.5 ± 0.1 ± 0.1 4.506 ± 0.4 ± 0.1 ± 0.1 4.506 ± 0.4 ± 0.1 ± 0.1 4.498 ± 0.4 ± 0.1 ± 0.1 4.491 ± 0.3 ± 0.1 ± 0.1
0.072–0.081 4.019 ± 0.5 ± 0.1 ± 0.1 4.009 ± 0.5 ± 0.1 ± 0.1 4.038 ± 0.4 ± 0.1 ± 0.1 4.037 ± 0.4 ± 0.1 ± 0.1 4.024 ± 0.4 ± 0.1 ± 0.1 4.016 ± 0.3 ± 0.1 ± 0.1
0.081–0.091 3.589 ± 0.5 ± 0.1 ± 0.1 3.576 ± 0.5 ± 0.1 ± 0.1 3.566 ± 0.4 ± 0.1 ± 0.1 3.564 ± 0.4 ± 0.1 ± 0.1 3.550 ± 0.4 ± 0.1 ± 0.1 3.559 ± 0.3 ± 0.1 ± 0.1
0.091–0.102 3.141 ± 0.5 ± 0.1 ± 0.1 3.128 ± 0.5 ± 0.1 ± 0.1 3.147 ± 0.4 ± 0.1 ± 0.1 3.149 ± 0.4 ± 0.1 ± 0.1 3.138 ± 0.4 ± 0.1 ± 0.1 3.133 ± 0.3 ± 0.1 ± 0.1
0.102–0.114 2.755 ± 0.5 ± 0.1 ± 0.1 2.740 ± 0.5 ± 0.1 ± 0.1 2.746 ± 0.4 ± 0.1 ± 0.1 2.745 ± 0.4 ± 0.1 ± 0.1 2.732 ± 0.4 ± 0.1 ± 0.1 2.734 ± 0.3 ± 0.1 ± 0.1
0.114–0.128 2.394 ± 0.5 ± 0.1 ± 0.1 2.380 ± 0.5 ± 0.1 ± 0.1 2.388 ± 0.4 ± 0.1 ± 0.1 2.388 ± 0.4 ± 0.1 ± 0.1 2.374 ± 0.4 ± 0.1 ± 0.1 2.375 ± 0.3 ± 0.1 ± 0.1
0.128–0.145 2.029 ± 0.5 ± 0.1 ± 0.1 2.017 ± 0.5 ± 0.1 ± 0.1 2.025 ± 0.4 ± 0.1 ± 0.1 2.025 ± 0.4 ± 0.1 ± 0.1 2.015 ± 0.4 ± 0.1 ± 0.1 2.015 ± 0.3 ± 0.1 ± 0.1
0.145–0.165 1.695 ± 0.5 ± 0.1 ± 0.1 1.684 ± 0.5 ± 0.1 ± 0.1 1.678 ± 0.4 ± 0.1 ± 0.1 1.679 ± 0.4 ± 0.1 ± 0.1 1.667 ± 0.4 ± 0.1 ± 0.1 1.673 ± 0.3 ± 0.1 ± 0.1
0.165–0.189 1.378 ± 0.5 ± 0.1 ± 0.1 1.368 ± 0.5 ± 0.1 ± 0.1 1.394 ± 0.4 ± 0.1 ± 0.1 1.394 ± 0.4 ± 0.1 ± 0.1 1.385 ± 0.4 ± 0.1 ± 0.1 1.378 ± 0.3 ± 0.1 ± 0.1
0.189–0.219 1.106 ± 0.5 ± 0.1 ± 0.1 1.100 ± 0.5 ± 0.1 ± 0.1 1.109 ± 0.4 ± 0.1 ± 0.1 1.110 ± 0.4 ± 0.1 ± 0.1 1.105 ± 0.4 ± 0.1 ± 0.2 1.102 ± 0.3 ± 0.1 ± 0.1
0.219–0.258 0.845 ± 0.5 ± 0.1 ± 0.1 0.840 ± 0.5 ± 0.1 ± 0.1 0.843 ± 0.4 ± 0.1 ± 0.1 0.843 ± 0.4 ± 0.1 ± 0.1 0.838 ± 0.4 ± 0.1 ± 0.1 0.839 ± 0.3 ± 0.1 ± 0.1
0.258–0.312 0.614 ± 0.5 ± 0.1 ± 0.2 0.611 ± 0.5 ± 0.1 ± 0.2 0.609 ± 0.4 ± 0.1 ± 0.1 0.609 ± 0.4 ± 0.1 ± 0.1 0.606 ± 0.4 ± 0.1 ± 0.2 0.608 ± 0.3 ± 0.1 ± 0.2
0.312–0.391 0.409 ± 0.5 ± 0.1 ± 0.3 0.407 ± 0.5 ± 0.1 ± 0.3 0.408 ± 0.4 ± 0.1 ± 0.2 0.408 ± 0.4 ± 0.1 ± 0.2 0.406 ± 0.4 ± 0.1 ± 0.2 0.406 ± 0.3 ± 0.1 ± 0.2
0.391–0.524 0.238 ± 0.5 ± 0.1 ± 0.3 0.237 ± 0.5 ± 0.1 ± 0.3 0.236 ± 0.4 ± 0.1 ± 0.2 0.236 ± 0.4 ± 0.1 ± 0.2 0.235 ± 0.4 ± 0.1 ± 0.2 0.236 ± 0.3 ± 0.1 ± 0.2
0.524–0.695 0.122 ± 0.6 ± 0.3 ± 0.3 0.122 ± 0.6 ± 0.3 ± 0.3 0.121 ± 0.5 ± 0.1 ± 0.2 0.121 ± 0.5 ± 0.1 ± 0.2 0.121 ± 0.5 ± 0.1 ± 0.3 0.121 ± 0.4 ± 0.1 ± 0.2
0.695–0.918 0.0624 ± 0.7 ± 0.3 ± 0.3 0.0622 ± 0.7 ± 0.3 ± 0.3 0.0616 ± 0.6 ± 0.1 ± 0.2 0.0617 ± 0.6 ± 0.1 ± 0.2 0.0615 ± 0.6 ± 0.1 ± 0.3 0.0618 ± 0.5 ± 0.2 ± 0.2
0.918–1.153 0.0321 ± 1.0 ± 0.3 ± 0.3 0.0320 ± 1.0 ± 0.3 ± 0.3 0.0323 ± 0.8 ± 0.2 ± 0.2 0.0323 ± 0.8 ± 0.2 ± 0.2 0.0322 ± 0.8 ± 0.2 ± 0.3 0.0321 ± 0.6 ± 0.2 ± 0.2
1.153–1.496 0.0165 ± 1.1 ± 0.3 ± 0.4 0.0165 ± 1.1 ± 0.3 ± 0.4 0.0166 ± 1.0 ± 0.2 ± 0.2 0.0167 ± 1.0 ± 0.2 ± 0.2 0.0166 ± 1.0 ± 0.2 ± 0.3 0.0165 ± 0.7 ± 0.2 ± 0.3
1.496–1.947 0.00801 ± 1.4 ± 0.4 ± 0.4 0.00797 ± 1.4 ± 0.4 ± 0.4 0.00835 ± 1.2 ± 0.3 ± 0.3 0.00838 ± 1.2 ± 0.3 ± 0.3 0.00833 ± 1.2 ± 0.3 ± 0.3 0.00817 ± 0.9 ± 0.2 ± 0.3
1.947–2.522 0.00412 ± 1.7 ± 0.4 ± 0.4 0.00410 ± 1.7 ± 0.4 ± 0.4 0.00406 ± 1.6 ± 0.3 ± 0.4 0.00407 ± 1.6 ± 0.3 ± 0.4 0.00405 ± 1.6 ± 0.3 ± 0.4 0.00407 ± 1.2 ± 0.3 ± 0.3
2.522–3.277 0.00210 ± 2.1 ± 0.5 ± 0.5 0.00209 ± 2.1 ± 0.5 ± 0.5 0.00207 ± 1.9 ± 0.4 ± 0.3 0.00208 ± 1.9 ± 0.4 ± 0.3 0.00207 ± 1.9 ± 0.4 ± 0.4 0.00207 ± 1.4 ± 0.3 ± 0.3
3.277–5.000 0.000942 ± 2.1 ± 0.5 ± 0.8 0.000940 ± 2.1 ± 0.6 ± 0.8 0.000909 ± 1.8 ± 0.4 ± 0.4 0.000909 ± 1.9 ± 0.4 ± 0.4 0.000909 ± 1.9 ± 0.4 ± 0.4 0.000922 ± 1.4 ± 0.3 ± 0.4
5.000–10.000 0.000282 ± 2.3 ± 0.5 ± 0.6 0.000282 ± 2.3 ± 0.5 ± 0.6 0.000274 ± 2.0 ± 0.5 ± 0.4 0.000275 ± 2.0 ± 0.5 ± 0.4 0.000273 ± 2.0 ± 0.5 ± 0.5 0.000276 ± 1.5 ± 0.3 ± 0.4

Table 11.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,1.2|y|<1.6. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 9.382 ± 0.5 ± 0.1 ± 0.2 9.470 ± 0.5 ± 0.2 ± 0.2 9.358 ± 0.4 ± 0.1 ± 0.1 9.352 ± 0.4 ± 0.1 ± 0.1 9.433 ± 0.4 ± 0.1 ± 0.2 9.443 ± 0.3 ± 0.1 ± 0.2
0.004–0.008 9.317 ± 0.5 ± 0.2 ± 0.2 9.402 ± 0.5 ± 0.2 ± 0.2 9.289 ± 0.4 ± 0.1 ± 0.1 9.281 ± 0.4 ± 0.1 ± 0.1 9.363 ± 0.4 ± 0.1 ± 0.2 9.374 ± 0.3 ± 0.1 ± 0.1
0.008–0.012 9.095 ± 0.5 ± 0.2 ± 0.2 9.169 ± 0.5 ± 0.2 ± 0.2 9.101 ± 0.4 ± 0.1 ± 0.0 9.093 ± 0.4 ± 0.1 ± 0.0 9.167 ± 0.4 ± 0.1 ± 0.2 9.165 ± 0.3 ± 0.1 ± 0.1
0.012–0.016 8.874 ± 0.5 ± 0.1 ± 0.2 8.945 ± 0.5 ± 0.2 ± 0.2 8.918 ± 0.4 ± 0.1 ± 0.0 8.905 ± 0.4 ± 0.1 ± 0.0 8.999 ± 0.4 ± 0.1 ± 0.2 8.975 ± 0.3 ± 0.1 ± 0.1
0.016–0.020 8.552 ± 0.5 ± 0.2 ± 0.2 8.617 ± 0.5 ± 0.2 ± 0.2 8.632 ± 0.4 ± 0.1 ± 0.0 8.629 ± 0.4 ± 0.1 ± 0.0 8.682 ± 0.4 ± 0.1 ± 0.2 8.655 ± 0.3 ± 0.1 ± 0.1
0.020–0.024 8.242 ± 0.5 ± 0.2 ± 0.2 8.299 ± 0.5 ± 0.2 ± 0.2 8.265 ± 0.4 ± 0.1 ± 0.0 8.264 ± 0.4 ± 0.1 ± 0.0 8.332 ± 0.4 ± 0.1 ± 0.2 8.317 ± 0.3 ± 0.1 ± 0.1
0.024–0.029 7.803 ± 0.5 ± 0.2 ± 0.2 7.841 ± 0.5 ± 0.2 ± 0.2 7.805 ± 0.4 ± 0.1 ± 0.0 7.792 ± 0.4 ± 0.1 ± 0.0 7.835 ± 0.4 ± 0.1 ± 0.2 7.833 ± 0.3 ± 0.1 ± 0.2
0.029–0.034 7.312 ± 0.5 ± 0.1 ± 0.2 7.340 ± 0.5 ± 0.2 ± 0.2 7.371 ± 0.4 ± 0.1 ± 0.0 7.363 ± 0.4 ± 0.1 ± 0.0 7.395 ± 0.4 ± 0.1 ± 0.2 7.371 ± 0.3 ± 0.1 ± 0.2
0.034–0.039 6.920 ± 0.5 ± 0.2 ± 0.2 6.938 ± 0.5 ± 0.2 ± 0.2 6.907 ± 0.4 ± 0.1 ± 0.0 6.914 ± 0.4 ± 0.1 ± 0.0 6.944 ± 0.4 ± 0.1 ± 0.2 6.939 ± 0.3 ± 0.1 ± 0.2
0.039–0.045 6.397 ± 0.5 ± 0.1 ± 0.2 6.413 ± 0.5 ± 0.1 ± 0.2 6.401 ± 0.4 ± 0.1 ± 0.0 6.404 ± 0.4 ± 0.1 ± 0.0 6.427 ± 0.4 ± 0.1 ± 0.2 6.420 ± 0.3 ± 0.1 ± 0.2
0.045–0.051 5.877 ± 0.5 ± 0.2 ± 0.1 5.886 ± 0.5 ± 0.2 ± 0.1 5.914 ± 0.4 ± 0.1 ± 0.0 5.908 ± 0.4 ± 0.1 ± 0.0 5.910 ± 0.4 ± 0.1 ± 0.2 5.898 ± 0.3 ± 0.1 ± 0.2
0.051–0.057 5.366 ± 0.5 ± 0.2 ± 0.1 5.364 ± 0.5 ± 0.2 ± 0.1 5.417 ± 0.4 ± 0.1 ± 0.0 5.415 ± 0.4 ± 0.1 ± 0.0 5.416 ± 0.4 ± 0.1 ± 0.2 5.394 ± 0.3 ± 0.1 ± 0.2
0.057–0.064 4.985 ± 0.5 ± 0.1 ± 0.1 4.985 ± 0.5 ± 0.2 ± 0.1 4.981 ± 0.4 ± 0.1 ± 0.1 4.979 ± 0.4 ± 0.1 ± 0.1 4.982 ± 0.4 ± 0.1 ± 0.2 4.980 ± 0.3 ± 0.1 ± 0.2
0.064–0.072 4.526 ± 0.5 ± 0.1 ± 0.1 4.519 ± 0.5 ± 0.1 ± 0.1 4.524 ± 0.4 ± 0.1 ± 0.1 4.521 ± 0.4 ± 0.1 ± 0.1 4.503 ± 0.4 ± 0.1 ± 0.2 4.506 ± 0.3 ± 0.1 ± 0.2
0.072–0.081 4.049 ± 0.5 ± 0.2 ± 0.1 4.037 ± 0.5 ± 0.2 ± 0.1 4.071 ± 0.4 ± 0.1 ± 0.1 4.071 ± 0.4 ± 0.1 ± 0.1 4.059 ± 0.4 ± 0.1 ± 0.2 4.049 ± 0.3 ± 0.1 ± 0.1
0.081–0.091 3.593 ± 0.5 ± 0.2 ± 0.1 3.576 ± 0.5 ± 0.2 ± 0.1 3.590 ± 0.4 ± 0.1 ± 0.1 3.587 ± 0.4 ± 0.1 ± 0.1 3.571 ± 0.4 ± 0.1 ± 0.2 3.570 ± 0.3 ± 0.1 ± 0.1
0.091–0.102 3.196 ± 0.5 ± 0.2 ± 0.1 3.182 ± 0.5 ± 0.2 ± 0.1 3.159 ± 0.4 ± 0.1 ± 0.1 3.158 ± 0.4 ± 0.1 ± 0.1 3.142 ± 0.4 ± 0.1 ± 0.2 3.154 ± 0.3 ± 0.1 ± 0.1
0.102–0.114 2.756 ± 0.5 ± 0.2 ± 0.1 2.742 ± 0.5 ± 0.2 ± 0.1 2.781 ± 0.4 ± 0.1 ± 0.1 2.784 ± 0.4 ± 0.1 ± 0.1 2.769 ± 0.4 ± 0.1 ± 0.2 2.757 ± 0.3 ± 0.1 ± 0.1
0.114–0.128 2.403 ± 0.5 ± 0.2 ± 0.1 2.388 ± 0.5 ± 0.2 ± 0.1 2.418 ± 0.4 ± 0.1 ± 0.1 2.418 ± 0.4 ± 0.1 ± 0.1 2.403 ± 0.4 ± 0.1 ± 0.1 2.396 ± 0.3 ± 0.1 ± 0.1
0.128–0.145 2.065 ± 0.5 ± 0.2 ± 0.1 2.053 ± 0.5 ± 0.2 ± 0.1 2.045 ± 0.4 ± 0.1 ± 0.1 2.045 ± 0.4 ± 0.1 ± 0.1 2.032 ± 0.4 ± 0.1 ± 0.1 2.039 ± 0.3 ± 0.1 ± 0.1
0.145–0.165 1.715 ± 0.5 ± 0.2 ± 0.1 1.705 ± 0.5 ± 0.2 ± 0.1 1.709 ± 0.4 ± 0.1 ± 0.1 1.711 ± 0.4 ± 0.1 ± 0.1 1.700 ± 0.4 ± 0.1 ± 0.1 1.701 ± 0.3 ± 0.1 ± 0.1
0.165–0.189 1.404 ± 0.5 ± 0.2 ± 0.1 1.395 ± 0.5 ± 0.2 ± 0.1 1.403 ± 0.4 ± 0.1 ± 0.1 1.404 ± 0.4 ± 0.1 ± 0.1 1.394 ± 0.4 ± 0.1 ± 0.1 1.394 ± 0.3 ± 0.1 ± 0.1
0.189–0.219 1.117 ± 0.5 ± 0.3 ± 0.2 1.110 ± 0.5 ± 0.3 ± 0.2 1.123 ± 0.4 ± 0.1 ± 0.1 1.124 ± 0.4 ± 0.1 ± 0.1 1.118 ± 0.4 ± 0.1 ± 0.1 1.115 ± 0.3 ± 0.1 ± 0.1
0.219–0.258 0.851 ± 0.5 ± 0.3 ± 0.2 0.846 ± 0.5 ± 0.3 ± 0.2 0.856 ± 0.4 ± 0.1 ± 0.1 0.856 ± 0.4 ± 0.1 ± 0.1 0.852 ± 0.4 ± 0.1 ± 0.1 0.850 ± 0.3 ± 0.1 ± 0.1
0.258–0.312 0.621 ± 0.5 ± 0.2 ± 0.3 0.618 ± 0.5 ± 0.2 ± 0.3 0.622 ± 0.4 ± 0.1 ± 0.1 0.623 ± 0.4 ± 0.1 ± 0.1 0.620 ± 0.4 ± 0.1 ± 0.2 0.618 ± 0.3 ± 0.1 ± 0.2
0.312–0.391 0.415 ± 0.5 ± 0.2 ± 0.3 0.413 ± 0.5 ± 0.2 ± 0.4 0.409 ± 0.4 ± 0.1 ± 0.1 0.409 ± 0.4 ± 0.1 ± 0.1 0.408 ± 0.4 ± 0.1 ± 0.2 0.409 ± 0.3 ± 0.1 ± 0.2
0.391–0.524 0.238 ± 0.5 ± 0.1 ± 0.3 0.238 ± 0.5 ± 0.1 ± 0.3 0.237 ± 0.4 ± 0.1 ± 0.1 0.237 ± 0.4 ± 0.1 ± 0.1 0.237 ± 0.4 ± 0.1 ± 0.2 0.237 ± 0.3 ± 0.1 ± 0.2
0.524–0.695 0.124 ± 0.7 ± 0.4 ± 0.3 0.124 ± 0.7 ± 0.4 ± 0.3 0.122 ± 0.5 ± 0.2 ± 0.2 0.122 ± 0.5 ± 0.2 ± 0.2 0.122 ± 0.5 ± 0.2 ± 0.2 0.122 ± 0.4 ± 0.2 ± 0.2
0.695–0.918 0.0615 ± 0.8 ± 0.4 ± 0.4 0.0614 ± 0.8 ± 0.4 ± 0.4 0.0609 ± 0.7 ± 0.2 ± 0.1 0.0610 ± 0.7 ± 0.2 ± 0.1 0.0609 ± 0.7 ± 0.2 ± 0.2 0.0610 ± 0.5 ± 0.2 ± 0.2
0.918–1.153 0.0313 ± 1.1 ± 0.5 ± 0.4 0.0312 ± 1.1 ± 0.5 ± 0.4 0.0310 ± 0.9 ± 0.2 ± 0.2 0.0311 ± 0.9 ± 0.2 ± 0.2 0.0310 ± 0.9 ± 0.2 ± 0.2 0.0310 ± 0.7 ± 0.2 ± 0.2
1.153–1.496 0.0163 ± 1.3 ± 0.3 ± 0.5 0.0163 ± 1.3 ± 0.3 ± 0.5 0.0158 ± 1.1 ± 0.3 ± 0.2 0.0158 ± 1.1 ± 0.3 ± 0.2 0.0158 ± 1.1 ± 0.3 ± 0.4 0.0160 ± 0.8 ± 0.2 ± 0.3
1.496–1.947 0.00752 ± 1.6 ± 0.4 ± 0.5 0.00749 ± 1.6 ± 0.4 ± 0.5 0.00740 ± 1.3 ± 0.3 ± 0.3 0.00741 ± 1.3 ± 0.3 ± 0.3 0.00737 ± 1.3 ± 0.3 ± 0.5 0.00740 ± 1.0 ± 0.2 ± 0.3
1.947–2.522 0.00356 ± 2.0 ± 0.5 ± 0.6 0.00354 ± 2.0 ± 0.5 ± 0.6 0.00356 ± 1.7 ± 0.4 ± 0.4 0.00357 ± 1.7 ± 0.4 ± 0.4 0.00357 ± 1.7 ± 0.4 ± 0.5 0.00355 ± 1.3 ± 0.3 ± 0.4
2.522–3.277 0.00168 ± 2.5 ± 0.6 ± 0.6 0.00168 ± 2.5 ± 0.6 ± 0.6 0.00175 ± 2.1 ± 0.4 ± 0.6 0.00176 ± 2.1 ± 0.4 ± 0.6 0.00175 ± 2.1 ± 0.4 ± 0.7 0.00171 ± 1.6 ± 0.4 ± 0.4
3.277–5.000 0.000769 ± 2.4 ± 0.6 ± 0.6 0.000768 ± 2.4 ± 0.6 ± 0.6 0.000792 ± 2.1 ± 0.7 ± 0.5 0.000796 ± 2.1 ± 0.7 ± 0.5 0.000795 ± 2.1 ± 0.7 ± 0.6 0.000781 ± 1.6 ± 0.5 ± 0.4
5.000–10.000 0.000215 ± 2.7 ± 0.8 ± 0.7 0.000215 ± 2.7 ± 0.8 ± 0.7 0.000213 ± 2.4 ± 0.5 ± 0.4 0.000213 ± 2.4 ± 0.5 ± 0.4 0.000213 ± 2.4 ± 0.5 ± 0.6 0.000213 ± 1.8 ± 0.4 ± 0.4

Table 12.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,1.6|y|<2.0. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 9.378 ± 0.6 ± 0.3 ± 0.3 9.472 ± 0.6 ± 0.3 ± 0.3 9.338 ± 0.5 ± 0.1 ± 0.1 9.325 ± 0.5 ± 0.1 ± 0.1 9.405 ± 0.5 ± 0.1 ± 0.2 9.418 ± 0.4 ± 0.1 ± 0.1
0.004–0.008 9.264 ± 0.6 ± 0.2 ± 0.2 9.368 ± 0.6 ± 0.2 ± 0.2 9.273 ± 0.5 ± 0.1 ± 0.0 9.274 ± 0.5 ± 0.1 ± 0.0 9.347 ± 0.5 ± 0.1 ± 0.1 9.345 ± 0.4 ± 0.1 ± 0.1
0.008–0.012 9.014 ± 0.6 ± 0.2 ± 0.2 9.077 ± 0.6 ± 0.2 ± 0.3 9.131 ± 0.5 ± 0.1 ± 0.0 9.130 ± 0.5 ± 0.1 ± 0.0 9.199 ± 0.5 ± 0.1 ± 0.1 9.153 ± 0.4 ± 0.1 ± 0.1
0.012–0.016 8.875 ± 0.7 ± 0.2 ± 0.2 8.951 ± 0.7 ± 0.2 ± 0.2 8.864 ± 0.5 ± 0.1 ± 0.0 8.855 ± 0.5 ± 0.1 ± 0.0 8.930 ± 0.5 ± 0.1 ± 0.1 8.928 ± 0.4 ± 0.1 ± 0.1
0.016–0.020 8.592 ± 0.7 ± 0.2 ± 0.2 8.657 ± 0.7 ± 0.2 ± 0.2 8.503 ± 0.5 ± 0.1 ± 0.0 8.493 ± 0.5 ± 0.1 ± 0.0 8.561 ± 0.5 ± 0.1 ± 0.1 8.588 ± 0.4 ± 0.1 ± 0.1
0.020–0.024 8.207 ± 0.7 ± 0.2 ± 0.2 8.259 ± 0.7 ± 0.2 ± 0.2 8.149 ± 0.5 ± 0.1 ± 0.1 8.143 ± 0.5 ± 0.1 ± 0.1 8.195 ± 0.5 ± 0.1 ± 0.2 8.211 ± 0.4 ± 0.1 ± 0.1
0.024–0.029 7.721 ± 0.6 ± 0.2 ± 0.2 7.755 ± 0.6 ± 0.2 ± 0.2 7.776 ± 0.5 ± 0.1 ± 0.0 7.769 ± 0.5 ± 0.1 ± 0.0 7.842 ± 0.5 ± 0.1 ± 0.3 7.804 ± 0.4 ± 0.1 ± 0.2
0.029–0.034 7.439 ± 0.6 ± 0.2 ± 0.2 7.484 ± 0.6 ± 0.2 ± 0.3 7.343 ± 0.5 ± 0.1 ± 0.0 7.345 ± 0.5 ± 0.1 ± 0.0 7.398 ± 0.5 ± 0.1 ± 0.3 7.416 ± 0.4 ± 0.1 ± 0.2
0.034–0.039 6.755 ± 0.7 ± 0.2 ± 0.2 6.765 ± 0.7 ± 0.3 ± 0.3 6.832 ± 0.5 ± 0.1 ± 0.1 6.824 ± 0.5 ± 0.1 ± 0.1 6.848 ± 0.5 ± 0.1 ± 0.3 6.813 ± 0.4 ± 0.1 ± 0.2
0.039–0.045 6.394 ± 0.6 ± 0.2 ± 0.2 6.414 ± 0.6 ± 0.2 ± 0.2 6.377 ± 0.5 ± 0.1 ± 0.0 6.375 ± 0.5 ± 0.1 ± 0.0 6.383 ± 0.5 ± 0.1 ± 0.3 6.383 ± 0.4 ± 0.1 ± 0.2
0.045–0.051 5.878 ± 0.7 ± 0.2 ± 0.2 5.881 ± 0.7 ± 0.2 ± 0.2 5.906 ± 0.5 ± 0.1 ± 0.1 5.903 ± 0.5 ± 0.1 ± 0.1 5.916 ± 0.5 ± 0.1 ± 0.3 5.895 ± 0.4 ± 0.1 ± 0.2
0.051–0.057 5.309 ± 0.7 ± 0.2 ± 0.2 5.302 ± 0.7 ± 0.2 ± 0.2 5.371 ± 0.5 ± 0.1 ± 0.0 5.370 ± 0.5 ± 0.1 ± 0.0 5.374 ± 0.5 ± 0.1 ± 0.3 5.344 ± 0.4 ± 0.1 ± 0.2
0.057–0.064 4.899 ± 0.7 ± 0.2 ± 0.2 4.896 ± 0.7 ± 0.2 ± 0.2 4.909 ± 0.5 ± 0.1 ± 0.1 4.907 ± 0.5 ± 0.1 ± 0.1 4.900 ± 0.5 ± 0.1 ± 0.2 4.893 ± 0.4 ± 0.1 ± 0.1
0.064–0.072 4.508 ± 0.6 ± 0.2 ± 0.2 4.503 ± 0.6 ± 0.2 ± 0.2 4.511 ± 0.5 ± 0.1 ± 0.1 4.507 ± 0.5 ± 0.1 ± 0.1 4.498 ± 0.5 ± 0.1 ± 0.2 4.495 ± 0.4 ± 0.1 ± 0.1
0.072–0.081 4.011 ± 0.6 ± 0.4 ± 0.2 3.996 ± 0.6 ± 0.4 ± 0.2 4.008 ± 0.5 ± 0.1 ± 0.1 4.005 ± 0.5 ± 0.1 ± 0.1 3.990 ± 0.5 ± 0.1 ± 0.2 3.988 ± 0.4 ± 0.1 ± 0.1
0.081–0.091 3.574 ± 0.7 ± 0.4 ± 0.2 3.561 ± 0.7 ± 0.4 ± 0.2 3.574 ± 0.5 ± 0.1 ± 0.1 3.575 ± 0.5 ± 0.1 ± 0.1 3.558 ± 0.5 ± 0.1 ± 0.2 3.556 ± 0.4 ± 0.1 ± 0.1
0.091–0.102 3.159 ± 0.7 ± 0.2 ± 0.2 3.142 ± 0.7 ± 0.2 ± 0.2 3.157 ± 0.5 ± 0.1 ± 0.1 3.155 ± 0.5 ± 0.1 ± 0.1 3.130 ± 0.5 ± 0.1 ± 0.2 3.131 ± 0.4 ± 0.1 ± 0.1
0.102–0.114 2.806 ± 0.7 ± 0.2 ± 0.1 2.793 ± 0.7 ± 0.2 ± 0.1 2.774 ± 0.5 ± 0.1 ± 0.1 2.776 ± 0.5 ± 0.1 ± 0.1 2.764 ± 0.5 ± 0.1 ± 0.2 2.772 ± 0.4 ± 0.1 ± 0.1
0.114–0.128 2.407 ± 0.7 ± 0.2 ± 0.1 2.392 ± 0.7 ± 0.2 ± 0.1 2.416 ± 0.5 ± 0.1 ± 0.1 2.416 ± 0.5 ± 0.1 ± 0.1 2.401 ± 0.5 ± 0.1 ± 0.2 2.396 ± 0.4 ± 0.1 ± 0.1
0.128–0.145 2.072 ± 0.7 ± 0.2 ± 0.1 2.058 ± 0.7 ± 0.2 ± 0.1 2.061 ± 0.5 ± 0.1 ± 0.1 2.061 ± 0.5 ± 0.1 ± 0.1 2.048 ± 0.5 ± 0.1 ± 0.2 2.050 ± 0.4 ± 0.1 ± 0.1
0.145–0.165 1.730 ± 0.7 ± 0.2 ± 0.2 1.716 ± 0.7 ± 0.2 ± 0.2 1.729 ± 0.5 ± 0.1 ± 0.1 1.730 ± 0.5 ± 0.1 ± 0.1 1.718 ± 0.5 ± 0.1 ± 0.2 1.717 ± 0.4 ± 0.1 ± 0.1
0.165–0.189 1.417 ± 0.7 ± 0.2 ± 0.2 1.408 ± 0.7 ± 0.2 ± 0.2 1.423 ± 0.5 ± 0.1 ± 0.1 1.422 ± 0.5 ± 0.1 ± 0.1 1.414 ± 0.5 ± 0.1 ± 0.2 1.411 ± 0.4 ± 0.1 ± 0.1
0.189–0.219 1.137 ± 0.7 ± 0.4 ± 0.3 1.130 ± 0.7 ± 0.4 ± 0.3 1.138 ± 0.5 ± 0.1 ± 0.1 1.139 ± 0.5 ± 0.1 ± 0.1 1.133 ± 0.5 ± 0.1 ± 0.2 1.131 ± 0.4 ± 0.1 ± 0.2
0.219–0.258 0.871 ± 0.7 ± 0.4 ± 0.3 0.866 ± 0.7 ± 0.4 ± 0.3 0.875 ± 0.5 ± 0.1 ± 0.1 0.876 ± 0.5 ± 0.1 ± 0.1 0.870 ± 0.5 ± 0.1 ± 0.2 0.869 ± 0.4 ± 0.1 ± 0.2
0.258–0.312 0.643 ± 0.7 ± 0.2 ± 0.4 0.641 ± 0.7 ± 0.3 ± 0.4 0.634 ± 0.5 ± 0.1 ± 0.1 0.635 ± 0.5 ± 0.1 ± 0.1 0.631 ± 0.5 ± 0.1 ± 0.2 0.634 ± 0.4 ± 0.1 ± 0.2
0.312–0.391 0.428 ± 0.7 ± 0.3 ± 0.4 0.426 ± 0.7 ± 0.3 ± 0.4 0.427 ± 0.5 ± 0.1 ± 0.1 0.427 ± 0.5 ± 0.1 ± 0.1 0.425 ± 0.5 ± 0.1 ± 0.2 0.425 ± 0.4 ± 0.1 ± 0.2
0.391–0.524 0.244 ± 0.7 ± 0.3 ± 0.5 0.244 ± 0.7 ± 0.3 ± 0.5 0.245 ± 0.5 ± 0.1 ± 0.1 0.246 ± 0.5 ± 0.1 ± 0.1 0.245 ± 0.5 ± 0.1 ± 0.2 0.245 ± 0.4 ± 0.1 ± 0.2
0.524–0.695 0.125 ± 0.8 ± 0.4 ± 0.6 0.124 ± 0.8 ± 0.4 ± 0.6 0.126 ± 0.6 ± 0.1 ± 0.2 0.127 ± 0.6 ± 0.1 ± 0.2 0.126 ± 0.6 ± 0.1 ± 0.2 0.126 ± 0.5 ± 0.2 ± 0.2
0.695–0.918 0.0621 ± 1.0 ± 0.4 ± 0.7 0.0620 ± 1.0 ± 0.4 ± 0.7 0.0613 ± 0.8 ± 0.2 ± 0.2 0.0615 ± 0.8 ± 0.2 ± 0.2 0.0615 ± 0.8 ± 0.2 ± 0.3 0.0616 ± 0.6 ± 0.2 ± 0.3
0.918–1.153 0.0305 ± 1.4 ± 0.5 ± 0.7 0.0304 ± 1.4 ± 0.5 ± 0.7 0.0301 ± 1.1 ± 0.2 ± 0.2 0.0301 ± 1.1 ± 0.2 ± 0.2 0.0300 ± 1.1 ± 0.2 ± 0.3 0.0301 ± 0.9 ± 0.2 ± 0.3
1.153–1.496 0.0148 ± 1.6 ± 0.6 ± 0.8 0.0148 ± 1.6 ± 0.6 ± 0.8 0.0149 ± 1.3 ± 0.2 ± 0.3 0.0150 ± 1.3 ± 0.2 ± 0.3 0.0149 ± 1.3 ± 0.2 ± 0.6 0.0149 ± 1.0 ± 0.2 ± 0.4
1.496–1.947 0.00643 ± 2.1 ± 0.6 ± 1.0 0.00641 ± 2.1 ± 0.6 ± 1.0 0.00638 ± 1.8 ± 0.3 ± 0.4 0.00641 ± 1.8 ± 0.3 ± 0.4 0.00642 ± 1.8 ± 0.3 ± 0.7 0.00641 ± 1.4 ± 0.3 ± 0.5
1.947–2.522 0.00274 ± 2.9 ± 0.7 ± 1.0 0.00272 ± 2.9 ± 0.7 ± 1.1 0.00299 ± 2.3 ± 0.4 ± 0.4 0.00299 ± 2.3 ± 0.4 ± 0.4 0.00297 ± 2.3 ± 0.4 ± 0.7 0.00287 ± 1.8 ± 0.4 ± 0.5
2.522–3.277 0.00131 ± 3.6 ± 0.7 ± 1.2 0.00130 ± 3.6 ± 0.8 ± 1.2 0.00128 ± 3.0 ± 0.6 ± 0.4 0.00128 ± 3.0 ± 0.6 ± 0.4 0.00129 ± 3.0 ± 0.6 ± 0.7 0.00129 ± 2.3 ± 0.5 ± 0.5
3.277–5.000 0.000510 ± 3.8 ± 1.1 ± 1.4 0.000509 ± 3.8 ± 1.1 ± 1.4 0.000519 ± 3.1 ± 0.6 ± 0.7 0.000524 ± 3.1 ± 0.6 ± 0.7 0.000525 ± 3.1 ± 0.6 ± 0.9 0.000517 ± 2.4 ± 0.5 ± 0.7
5.000–10.000 0.000141 ± 4.2 ± 0.9 ± 1.3 0.000141 ± 4.2 ± 0.9 ± 1.3 0.000127 ± 3.8 ± 0.6 ± 0.5 0.000128 ± 3.8 ± 0.6 ± 0.5 0.000128 ± 3.8 ± 0.6 ± 0.7 0.000133 ± 2.8 ± 0.5 ± 0.6

Table 13.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,2.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 9.324 ± 1.0 ± 0.4 ± 0.3 9.417 ± 1.0 ± 0.4 ± 0.3 9.348 ± 0.8 ± 0.1 ± 0.1 9.347 ± 0.8 ± 0.1 ± 0.1 9.417 ± 0.8 ± 0.1 ± 0.4 9.417 ± 0.6 ± 0.2 ± 0.2
0.004–0.008 9.101 ± 1.0 ± 0.4 ± 0.3 9.182 ± 1.0 ± 0.4 ± 0.3 9.294 ± 0.9 ± 0.2 ± 0.1 9.288 ± 0.9 ± 0.2 ± 0.1 9.372 ± 0.9 ± 0.2 ± 0.4 9.303 ± 0.7 ± 0.2 ± 0.2
0.008–0.012 9.083 ± 1.0 ± 0.4 ± 0.3 9.179 ± 1.0 ± 0.4 ± 0.3 8.969 ± 0.9 ± 0.2 ± 0.1 8.959 ± 0.9 ± 0.2 ± 0.1 9.023 ± 0.9 ± 0.2 ± 0.4 9.084 ± 0.7 ± 0.2 ± 0.2
0.012–0.016 8.825 ± 1.0 ± 0.4 ± 0.3 8.895 ± 1.0 ± 0.4 ± 0.3 9.015 ± 0.9 ± 0.2 ± 0.1 8.993 ± 0.9 ± 0.2 ± 0.1 9.050 ± 0.9 ± 0.2 ± 0.4 8.991 ± 0.7 ± 0.2 ± 0.2
0.016–0.020 8.401 ± 1.0 ± 0.4 ± 0.3 8.462 ± 1.0 ± 0.4 ± 0.3 8.469 ± 0.9 ± 0.2 ± 0.1 8.456 ± 0.9 ± 0.2 ± 0.1 8.540 ± 0.9 ± 0.2 ± 0.4 8.511 ± 0.7 ± 0.2 ± 0.2
0.020–0.024 8.047 ± 1.1 ± 0.5 ± 0.3 8.094 ± 1.1 ± 0.5 ± 0.3 8.242 ± 0.9 ± 0.2 ± 0.1 8.241 ± 0.9 ± 0.2 ± 0.1 8.305 ± 0.9 ± 0.2 ± 0.4 8.236 ± 0.7 ± 0.2 ± 0.2
0.024–0.029 7.986 ± 1.0 ± 0.5 ± 0.3 8.065 ± 1.0 ± 0.5 ± 0.4 7.748 ± 0.8 ± 0.2 ± 0.0 7.743 ± 0.8 ± 0.2 ± 0.0 7.799 ± 0.8 ± 0.2 ± 0.4 7.891 ± 0.6 ± 0.2 ± 0.2
0.029–0.034 7.168 ± 1.0 ± 0.5 ± 0.3 7.173 ± 1.0 ± 0.5 ± 0.3 7.276 ± 0.9 ± 0.1 ± 0.0 7.270 ± 0.9 ± 0.1 ± 0.0 7.310 ± 0.9 ± 0.1 ± 0.4 7.267 ± 0.7 ± 0.2 ± 0.2
0.034–0.039 6.833 ± 1.0 ± 0.5 ± 0.3 6.857 ± 1.0 ± 0.5 ± 0.3 6.781 ± 0.9 ± 0.2 ± 0.1 6.783 ± 0.9 ± 0.2 ± 0.1 6.828 ± 0.9 ± 0.2 ± 0.4 6.843 ± 0.7 ± 0.2 ± 0.2
0.039–0.045 6.468 ± 1.0 ± 0.4 ± 0.3 6.490 ± 1.0 ± 0.4 ± 0.3 6.415 ± 0.8 ± 0.1 ± 0.0 6.408 ± 0.8 ± 0.1 ± 0.0 6.441 ± 0.8 ± 0.1 ± 0.4 6.457 ± 0.6 ± 0.2 ± 0.2
0.045–0.051 5.717 ± 1.0 ± 0.4 ± 0.2 5.715 ± 1.0 ± 0.5 ± 0.3 5.865 ± 0.9 ± 0.2 ± 0.0 5.870 ± 0.9 ± 0.2 ± 0.0 5.854 ± 0.9 ± 0.2 ± 0.4 5.807 ± 0.7 ± 0.2 ± 0.2
0.051–0.057 5.413 ± 1.1 ± 0.4 ± 0.2 5.410 ± 1.1 ± 0.4 ± 0.2 5.333 ± 0.9 ± 0.2 ± 0.1 5.330 ± 0.9 ± 0.2 ± 0.1 5.336 ± 0.9 ± 0.2 ± 0.4 5.366 ± 0.7 ± 0.2 ± 0.2
0.057–0.064 4.935 ± 1.0 ± 0.4 ± 0.2 4.934 ± 1.0 ± 0.4 ± 0.2 4.923 ± 0.9 ± 0.2 ± 0.0 4.915 ± 0.9 ± 0.2 ± 0.0 4.906 ± 0.9 ± 0.2 ± 0.2 4.918 ± 0.7 ± 0.2 ± 0.1
0.064–0.072 4.502 ± 1.0 ± 0.4 ± 0.2 4.491 ± 1.0 ± 0.4 ± 0.2 4.434 ± 0.9 ± 0.2 ± 0.1 4.435 ± 0.9 ± 0.2 ± 0.1 4.427 ± 0.9 ± 0.2 ± 0.2 4.452 ± 0.7 ± 0.2 ± 0.1
0.072–0.081 3.994 ± 1.0 ± 0.5 ± 0.2 3.977 ± 1.0 ± 0.5 ± 0.2 3.978 ± 0.9 ± 0.1 ± 0.1 3.982 ± 0.9 ± 0.1 ± 0.1 3.968 ± 0.9 ± 0.1 ± 0.2 3.972 ± 0.7 ± 0.2 ± 0.2
0.081–0.091 3.517 ± 1.0 ± 0.5 ± 0.1 3.496 ± 1.0 ± 0.5 ± 0.2 3.572 ± 0.9 ± 0.1 ± 0.1 3.569 ± 0.9 ± 0.1 ± 0.1 3.563 ± 0.9 ± 0.1 ± 0.2 3.539 ± 0.7 ± 0.2 ± 0.1
0.091–0.102 3.161 ± 1.0 ± 0.6 ± 0.1 3.148 ± 1.0 ± 0.6 ± 0.2 3.146 ± 0.8 ± 0.2 ± 0.0 3.144 ± 0.8 ± 0.2 ± 0.0 3.122 ± 0.8 ± 0.2 ± 0.2 3.132 ± 0.7 ± 0.2 ± 0.1
0.102–0.114 2.793 ± 1.1 ± 0.6 ± 0.2 2.784 ± 1.1 ± 0.6 ± 0.2 2.775 ± 0.9 ± 0.1 ± 0.1 2.779 ± 0.9 ± 0.1 ± 0.1 2.762 ± 0.9 ± 0.1 ± 0.2 2.770 ± 0.7 ± 0.2 ± 0.1
0.114–0.128 2.404 ± 1.1 ± 0.6 ± 0.1 2.385 ± 1.1 ± 0.6 ± 0.1 2.441 ± 0.9 ± 0.1 ± 0.1 2.438 ± 0.9 ± 0.1 ± 0.1 2.420 ± 0.9 ± 0.1 ± 0.3 2.408 ± 0.7 ± 0.2 ± 0.2
0.128–0.145 2.036 ± 1.0 ± 0.6 ± 0.1 2.021 ± 1.0 ± 0.6 ± 0.1 2.074 ± 0.8 ± 0.2 ± 0.1 2.074 ± 0.8 ± 0.2 ± 0.1 2.053 ± 0.8 ± 0.2 ± 0.3 2.043 ± 0.7 ± 0.2 ± 0.2
0.145–0.165 1.743 ± 1.0 ± 0.6 ± 0.2 1.732 ± 1.0 ± 0.6 ± 0.2 1.736 ± 0.9 ± 0.1 ± 0.1 1.737 ± 0.9 ± 0.1 ± 0.1 1.730 ± 0.9 ± 0.1 ± 0.3 1.730 ± 0.7 ± 0.2 ± 0.2
0.165–0.189 1.447 ± 1.0 ± 0.6 ± 0.2 1.439 ± 1.0 ± 0.6 ± 0.2 1.453 ± 0.9 ± 0.1 ± 0.1 1.455 ± 0.9 ± 0.1 ± 0.1 1.449 ± 0.9 ± 0.1 ± 0.3 1.445 ± 0.7 ± 0.2 ± 0.2
0.189–0.219 1.175 ± 1.0 ± 0.4 ± 0.2 1.167 ± 1.0 ± 0.4 ± 0.2 1.147 ± 0.9 ± 0.1 ± 0.1 1.147 ± 0.9 ± 0.1 ± 0.1 1.139 ± 0.9 ± 0.1 ± 0.3 1.149 ± 0.7 ± 0.2 ± 0.2
0.219–0.258 0.894 ± 1.0 ± 0.5 ± 0.3 0.889 ± 1.0 ± 0.5 ± 0.3 0.888 ± 0.8 ± 0.2 ± 0.1 0.889 ± 0.8 ± 0.2 ± 0.1 0.883 ± 0.8 ± 0.2 ± 0.3 0.885 ± 0.7 ± 0.2 ± 0.2
0.258–0.312 0.656 ± 1.0 ± 0.6 ± 0.4 0.653 ± 1.0 ± 0.6 ± 0.4 0.646 ± 0.9 ± 0.1 ± 0.2 0.646 ± 0.9 ± 0.1 ± 0.2 0.643 ± 0.9 ± 0.1 ± 0.4 0.646 ± 0.7 ± 0.2 ± 0.3
0.312–0.391 0.438 ± 1.1 ± 0.6 ± 0.5 0.436 ± 1.1 ± 0.6 ± 0.5 0.436 ± 0.9 ± 0.1 ± 0.1 0.437 ± 0.9 ± 0.1 ± 0.1 0.435 ± 0.9 ± 0.1 ± 0.4 0.436 ± 0.7 ± 0.2 ± 0.3
0.391–0.524 0.255 ± 1.1 ± 0.6 ± 0.6 0.255 ± 1.1 ± 0.6 ± 0.6 0.253 ± 0.9 ± 0.1 ± 0.2 0.253 ± 0.9 ± 0.1 ± 0.2 0.253 ± 0.9 ± 0.1 ± 0.4 0.254 ± 0.7 ± 0.2 ± 0.3
0.524–0.695 0.131 ± 1.3 ± 0.4 ± 0.7 0.130 ± 1.3 ± 0.4 ± 0.7 0.134 ± 1.1 ± 0.2 ± 0.2 0.134 ± 1.1 ± 0.2 ± 0.2 0.134 ± 1.1 ± 0.2 ± 0.4 0.132 ± 0.8 ± 0.2 ± 0.3
0.695–0.918 0.0612 ± 1.7 ± 0.5 ± 0.9 0.0611 ± 1.7 ± 0.5 ± 0.9 0.0608 ± 1.4 ± 0.2 ± 0.3 0.0609 ± 1.4 ± 0.2 ± 0.3 0.0607 ± 1.4 ± 0.2 ± 0.4 0.0608 ± 1.1 ± 0.3 ± 0.4
0.918–1.153 0.0292 ± 2.3 ± 0.5 ± 1.1 0.0291 ± 2.3 ± 0.5 ± 1.1 0.0288 ± 2.0 ± 0.3 ± 0.3 0.0290 ± 2.0 ± 0.3 ± 0.3 0.0291 ± 2.0 ± 0.3 ± 0.4 0.0291 ± 1.5 ± 0.3 ± 0.4
1.153–1.496 0.0132 ± 2.8 ± 0.6 ± 1.3 0.0132 ± 2.8 ± 0.6 ± 1.3 0.0129 ± 2.4 ± 0.5 ± 0.3 0.0129 ± 2.4 ± 0.5 ± 0.3 0.0128 ± 2.4 ± 0.5 ± 1.0 0.0130 ± 1.8 ± 0.4 ± 0.6
1.496–1.947 0.00492 ± 4.0 ± 0.8 ± 1.6 0.00493 ± 4.0 ± 0.8 ± 1.6 0.00483 ± 3.5 ± 0.5 ± 0.4 0.00486 ± 3.5 ± 0.5 ± 0.4 0.00483 ± 3.5 ± 0.5 ± 1.0 0.00486 ± 2.6 ± 0.4 ± 0.7
1.947–2.522 0.00191 ± 5.7 ± 1.1 ± 2.0 0.00189 ± 5.7 ± 1.1 ± 1.9 0.00153 ± 5.4 ± 0.9 ± 0.7 0.00154 ± 5.4 ± 0.9 ± 0.7 0.00153 ± 5.4 ± 0.9 ± 1.2 0.00168 ± 3.9 ± 0.7 ± 0.9
2.522–3.277 0.000583 ± 8.9 ± 1.7 ± 2.3 0.000582 ± 8.9 ± 1.8 ± 2.3 0.000535 ± 8.3 ± 1.1 ± 0.7 0.000536 ± 8.3 ± 1.1 ± 0.7 0.000535 ± 8.3 ± 1.1 ± 1.2 0.000553 ± 6.1 ± 1.0 ± 1.0
3.277–5.000 0.000139 ± 12 ± 2.4 ± 3.1 0.000138 ± 12 ± 2.5 ± 3.1 0.000182 ± 9.3 ± 1.3 ± 1.4 0.000183 ± 9.3 ± 1.3 ± 1.4 0.000183 ± 9.3 ± 1.3 ± 1.7 0.000163 ± 7.4 ± 1.3 ± 1.4
5.000–10.000 0.0000247 ± 18 ± 5.4 ± 8.4 0.0000248 ± 18 ± 5.4 ± 8.5 0.0000308 ± 13 ± 2.4 ± 1.8 0.0000311 ± 13 ± 2.4 ± 1.8 0.0000314 ± 13 ± 2.4 ± 2.0 0.0000285 ± 11 ± 2.6 ± 3.2

Table 14.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 116GeVm<150GeV,0|y|<0.8. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 11.489 ± 2.7 ± 0.9 ± 2.9 11.576 ± 2.7 ± 0.9 ± 2.9 11.151 ± 1.8 ± 0.7 ± 3.4 11.135 ± 1.8 ± 0.7 ± 3.4 11.235 ± 1.8 ± 0.7 ± 3.5 11.412 ± 1.5 ± 0.6 ± 3.2
0.004–0.008 11.375 ± 2.7 ± 0.7 ± 1.3 11.449 ± 2.7 ± 0.8 ± 1.3 11.398 ± 1.7 ± 0.8 ± 1.5 11.361 ± 1.7 ± 0.8 ± 1.5 11.340 ± 1.7 ± 0.8 ± 1.6 11.355 ± 1.5 ± 0.6 ± 1.4
0.008–0.012 11.051 ± 2.7 ± 0.8 ± 0.9 11.091 ± 2.7 ± 0.8 ± 0.9 11.056 ± 1.8 ± 0.8 ± 1.2 10.980 ± 1.8 ± 0.8 ± 1.2 11.131 ± 1.8 ± 0.8 ± 1.4 11.077 ± 1.5 ± 0.6 ± 1.0
0.012–0.016 10.804 ± 2.7 ± 0.7 ± 1.2 10.904 ± 2.7 ± 0.8 ± 1.2 11.077 ± 1.8 ± 0.8 ± 0.9 11.006 ± 1.8 ± 0.8 ± 0.9 10.970 ± 1.8 ± 0.8 ± 1.2 10.920 ± 1.5 ± 0.6 ± 0.9
0.016–0.020 10.038 ± 2.8 ± 0.7 ± 0.8 10.105 ± 2.8 ± 0.8 ± 0.7 10.116 ± 1.9 ± 0.9 ± 0.9 10.039 ± 1.9 ± 0.9 ± 0.9 10.107 ± 1.9 ± 0.9 ± 1.2 10.068 ± 1.6 ± 0.6 ± 0.8
0.020–0.024 9.378 ± 2.9 ± 0.8 ± 0.7 9.372 ± 2.9 ± 0.8 ± 0.8 9.319 ± 1.9 ± 0.8 ± 1.0 9.293 ± 1.9 ± 0.8 ± 1.0 9.330 ± 1.9 ± 0.8 ± 1.2 9.307 ± 1.6 ± 0.6 ± 0.8
0.024–0.029 9.075 ± 2.7 ± 0.7 ± 0.6 9.117 ± 2.7 ± 0.8 ± 0.6 8.794 ± 1.8 ± 0.8 ± 0.5 8.773 ± 1.8 ± 0.8 ± 0.5 8.847 ± 1.8 ± 0.8 ± 0.7 8.907 ± 1.5 ± 0.6 ± 0.6
0.029–0.034 8.348 ± 2.7 ± 0.7 ± 0.6 8.376 ± 2.7 ± 0.8 ± 0.6 8.466 ± 1.8 ± 0.8 ± 0.9 8.532 ± 1.8 ± 0.8 ± 0.9 8.557 ± 1.8 ± 0.8 ± 1.0 8.437 ± 1.5 ± 0.6 ± 0.7
0.034–0.039 6.798 ± 3.1 ± 0.9 ± 0.7 6.776 ± 3.1 ± 0.9 ± 0.7 7.793 ± 1.9 ± 0.8 ± 0.9 7.781 ± 1.9 ± 0.8 ± 0.9 7.815 ± 1.9 ± 0.8 ± 1.0 7.449 ± 1.6 ± 0.6 ± 0.7
0.039–0.045 6.684 ± 2.8 ± 0.9 ± 0.7 6.689 ± 2.8 ± 0.9 ± 0.7 6.810 ± 1.9 ± 0.8 ± 1.1 6.826 ± 1.9 ± 0.8 ± 1.1 6.806 ± 1.9 ± 0.8 ± 1.1 6.711 ± 1.6 ± 0.6 ± 0.8
0.045–0.051 6.001 ± 2.9 ± 0.8 ± 0.7 5.999 ± 2.9 ± 0.9 ± 0.7 5.993 ± 2.0 ± 0.8 ± 1.0 5.965 ± 2.0 ± 0.8 ± 1.0 6.017 ± 2.0 ± 0.8 ± 1.1 5.961 ± 1.6 ± 0.6 ± 0.7
0.051–0.057 5.433 ± 3.1 ± 0.9 ± 0.9 5.384 ± 3.1 ± 0.9 ± 1.0 5.455 ± 2.1 ± 0.9 ± 1.1 5.439 ± 2.1 ± 0.9 ± 1.1 5.355 ± 2.1 ± 0.9 ± 1.2 5.316 ± 1.7 ± 0.7 ± 0.8
0.057–0.064 5.175 ± 2.9 ± 0.9 ± 0.7 5.210 ± 2.9 ± 0.9 ± 0.7 4.958 ± 2.0 ± 0.8 ± 0.8 4.949 ± 2.0 ± 0.8 ± 0.8 4.933 ± 2.0 ± 0.8 ± 0.8 4.999 ± 1.7 ± 0.6 ± 0.7
0.064–0.072 4.099 ± 3.1 ± 0.9 ± 0.7 4.049 ± 3.1 ± 0.9 ± 0.7 4.509 ± 2.0 ± 0.9 ± 0.8 4.528 ± 2.0 ± 0.9 ± 0.8 4.531 ± 2.0 ± 0.9 ± 0.9 4.356 ± 1.7 ± 0.7 ± 0.7
0.072–0.081 4.003 ± 3.0 ± 0.8 ± 0.7 4.009 ± 3.0 ± 0.8 ± 0.7 3.750 ± 2.0 ± 0.8 ± 0.9 3.744 ± 2.0 ± 0.8 ± 0.9 3.731 ± 2.0 ± 0.8 ± 0.9 3.802 ± 1.7 ± 0.6 ± 0.7
0.081–0.091 3.423 ± 3.1 ± 0.9 ± 0.9 3.437 ± 3.1 ± 1.0 ± 0.9 3.303 ± 2.1 ± 0.9 ± 0.6 3.302 ± 2.1 ± 0.9 ± 0.6 3.303 ± 2.1 ± 0.9 ± 0.7 3.339 ± 1.7 ± 0.7 ± 0.7
0.091–0.102 2.992 ± 3.1 ± 0.9 ± 0.9 2.983 ± 3.1 ± 1.0 ± 0.9 2.946 ± 2.1 ± 1.0 ± 0.7 2.958 ± 2.1 ± 1.0 ± 0.7 2.916 ± 2.1 ± 1.0 ± 0.8 2.934 ± 1.7 ± 0.7 ± 0.7
0.102–0.114 2.495 ± 3.3 ± 1.9 ± 2.8 2.489 ± 3.3 ± 1.9 ± 2.7 2.694 ± 2.1 ± 0.9 ± 0.7 2.697 ± 2.1 ± 0.9 ± 0.7 2.710 ± 2.1 ± 0.9 ± 0.8 2.644 ± 1.8 ± 0.8 ± 0.9
0.114–0.128 2.134 ± 3.3 ± 0.9 ± 0.7 2.125 ± 3.3 ± 0.9 ± 0.7 2.240 ± 2.1 ± 0.9 ± 0.9 2.246 ± 2.1 ± 0.9 ± 0.9 2.227 ± 2.1 ± 0.9 ± 0.9 2.195 ± 1.8 ± 0.7 ± 0.7
0.128–0.145 1.857 ± 3.3 ± 1.1 ± 1.1 1.843 ± 3.3 ± 1.1 ± 1.2 1.771 ± 2.2 ± 0.9 ± 0.8 1.785 ± 2.2 ± 0.9 ± 0.8 1.786 ± 2.2 ± 0.9 ± 0.9 1.796 ± 1.8 ± 0.7 ± 0.8
0.145–0.165 1.507 ± 3.3 ± 0.9 ± 0.8 1.505 ± 3.3 ± 1.0 ± 0.9 1.579 ± 2.2 ± 1.0 ± 0.8 1.582 ± 2.2 ± 1.0 ± 0.8 1.581 ± 2.2 ± 1.0 ± 0.8 1.553 ± 1.8 ± 0.7 ± 0.7
0.165–0.189 1.212 ± 3.5 ± 1.5 ± 1.5 1.200 ± 3.5 ± 1.5 ± 1.5 1.203 ± 2.3 ± 0.9 ± 0.8 1.211 ± 2.3 ± 0.9 ± 0.8 1.193 ± 2.3 ± 0.9 ± 0.8 1.199 ± 1.9 ± 0.8 ± 0.8
0.189–0.219 0.979 ± 3.4 ± 1.2 ± 1.2 0.978 ± 3.4 ± 1.2 ± 1.1 0.933 ± 2.3 ± 0.9 ± 1.9 0.933 ± 2.3 ± 0.9 ± 1.9 0.939 ± 2.3 ± 0.9 ± 1.9 0.964 ± 1.9 ± 0.7 ± 1.1
0.219–0.258 0.705 ± 3.6 ± 1.4 ± 1.2 0.701 ± 3.6 ± 1.4 ± 1.2 0.741 ± 2.2 ± 1.0 ± 2.1 0.740 ± 2.2 ± 1.0 ± 2.1 0.736 ± 2.2 ± 1.0 ± 2.1 0.736 ± 1.9 ± 0.8 ± 1.2
0.258–0.312 0.526 ± 3.7 ± 2.2 ± 2.0 0.524 ± 3.7 ± 2.2 ± 2.0 0.524 ± 2.3 ± 1.1 ± 1.6 0.524 ± 2.3 ± 1.1 ± 1.6 0.522 ± 2.3 ± 1.1 ± 1.8 0.531 ± 2.0 ± 1.0 ± 1.3
0.312–0.391 0.354 ± 3.8 ± 1.7 ± 2.3 0.354 ± 3.8 ± 1.7 ± 2.3 0.340 ± 2.4 ± 1.2 ± 2.2 0.341 ± 2.4 ± 1.2 ± 2.2 0.340 ± 2.4 ± 1.2 ± 2.4 0.351 ± 2.0 ± 1.0 ± 1.7
0.391–0.524 0.199 ± 4.1 ± 2.0 ± 3.3 0.199 ± 4.1 ± 2.0 ± 3.3 0.196 ± 2.6 ± 1.4 ± 3.0 0.197 ± 2.6 ± 1.4 ± 3.0 0.196 ± 2.6 ± 1.4 ± 3.1 0.201 ± 2.1 ± 1.2 ± 2.3
0.524–0.695 0.103 ± 5.3 ± 2.8 ± 3.8 0.103 ± 5.3 ± 2.8 ± 3.8 0.0918 ± 3.3 ± 2.7 ± 4.1 0.0920 ± 3.3 ± 2.7 ± 4.1 0.0910 ± 3.3 ± 2.7 ± 4.1 0.0994 ± 2.8 ± 2.0 ± 3.2
0.695–0.918 0.0540 ± 6.3 ± 2.9 ± 3.5 0.0538 ± 6.3 ± 2.9 ± 3.5 0.0527 ± 4.0 ± 2.9 ± 4.3 0.0529 ± 4.0 ± 2.9 ± 4.3 0.0528 ± 4.0 ± 2.9 ± 4.3 0.0558 ± 3.3 ± 2.1 ± 3.2
0.918–1.153 0.0258 ± 8.8 ± 6.1 ± 6.2 0.0258 ± 8.8 ± 6.1 ± 6.2 0.0259 ± 5.6 ± 3.3 ± 2.8 0.0262 ± 5.6 ± 3.3 ± 2.8 0.0263 ± 5.6 ± 3.3 ± 2.9 0.0264 ± 4.7 ± 2.9 ± 3.0
1.153–1.496 0.0180 ± 8.2 ± 3.2 ± 2.6 0.0181 ± 8.2 ± 3.2 ± 2.6 0.0135 ± 5.8 ± 3.0 ± 4.9 0.0137 ± 5.8 ± 3.0 ± 4.9 0.0141 ± 5.8 ± 3.0 ± 5.2 0.0161 ± 4.6 ± 2.3 ± 3.2
1.496–1.947 0.00804 ± 11 ± 4.5 ± 5.0 0.00804 ± 11 ± 4.5 ± 5.1 0.00542 ± 9.2 ± 4.8 ± 7.9 0.00546 ± 9.2 ± 4.8 ± 7.9 0.00537 ± 9.2 ± 4.8 ± 8.1 0.00681 ± 6.7 ± 3.5 ± 4.2
1.947–2.522 0.00285 ± 19 ± 14 ± 8.4 0.00281 ± 19 ± 14 ± 8.4 0.00312 ± 9.5 ± 4.7 ± 4.0 0.00320 ± 9.5 ± 4.7 ± 4.0 0.00319 ± 9.5 ± 4.7 ± 4.3 0.00328 ± 8.3 ± 4.6 ± 3.7
2.522–3.277 0.00136 ± 24 ± 12 ± 10 0.00134 ± 24 ± 12 ± 10.0 0.00260 ± 9.4 ± 5.5 ± 5.6 0.00262 ± 9.4 ± 5.5 ± 5.6 0.00259 ± 9.4 ± 5.5 ± 5.9 0.00246 ± 8.5 ± 5.0 ± 4.5
3.277–5.000 0.000850 ± 19 ± 9.6 ± 6.8 0.000843 ± 19 ± 9.6 ± 6.8 0.000517 ± 15 ± 8.7 ± 10 0.000532 ± 15 ± 8.7 ± 10 0.000530 ± 15 ± 8.7 ± 10 0.000696 ± 11 ± 6.6 ± 5.9
5.000–10.000 0.000285 ± 21 ± 9.8 ± 5.3 0.000280 ± 21 ± 9.8 ± 5.3 0.000215 ± 14 ± 7.2 ± 7.5 0.000218 ± 14 ± 7.2 ± 7.5 0.000226 ± 14 ± 7.2 ± 7.7 0.000260 ± 11 ± 5.8 ± 4.7

Table 15.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 116GeVm<150GeV,0.8|y|<1.6. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 10.972 ± 3.1 ± 1.0 ± 2.3 10.997 ± 3.1 ± 1.0 ± 2.3 12.244 ± 1.8 ± 0.8 ± 1.8 12.206 ± 1.8 ± 0.8 ± 1.8 12.288 ± 1.8 ± 0.8 ± 1.8 11.982 ± 1.6 ± 0.6 ± 1.9
0.004–0.008 11.989 ± 3.0 ± 0.9 ± 1.0 12.122 ± 3.0 ± 0.9 ± 1.0 11.775 ± 1.8 ± 0.8 ± 0.9 11.843 ± 1.8 ± 0.8 ± 0.9 11.904 ± 1.8 ± 0.8 ± 0.9 11.940 ± 1.6 ± 0.6 ± 0.8
0.008–0.012 10.628 ± 3.1 ± 0.9 ± 1.3 10.637 ± 3.1 ± 0.9 ± 1.3 10.892 ± 1.9 ± 0.8 ± 0.7 10.805 ± 1.9 ± 0.8 ± 0.7 10.871 ± 1.9 ± 0.8 ± 0.7 10.818 ± 1.6 ± 0.7 ± 0.7
0.012–0.016 10.718 ± 3.1 ± 1.0 ± 0.8 10.832 ± 3.1 ± 1.0 ± 0.8 11.265 ± 1.9 ± 0.8 ± 0.8 11.237 ± 1.9 ± 0.8 ± 0.8 11.211 ± 1.9 ± 0.8 ± 0.8 11.085 ± 1.6 ± 0.7 ± 0.7
0.016–0.020 9.871 ± 3.2 ± 0.9 ± 1.1 9.849 ± 3.2 ± 0.9 ± 1.1 9.966 ± 2.0 ± 0.9 ± 0.6 9.860 ± 2.0 ± 0.9 ± 0.6 10.009 ± 2.0 ± 0.9 ± 0.7 9.945 ± 1.7 ± 0.7 ± 0.6
0.020–0.024 9.754 ± 3.3 ± 1.1 ± 0.9 9.811 ± 3.3 ± 1.1 ± 0.9 9.756 ± 2.0 ± 0.9 ± 0.7 9.737 ± 2.0 ± 0.9 ± 0.7 9.765 ± 2.0 ± 0.9 ± 0.7 9.747 ± 1.7 ± 0.7 ± 0.6
0.024–0.029 8.577 ± 3.1 ± 1.0 ± 0.7 8.597 ± 3.1 ± 1.0 ± 0.7 8.647 ± 1.9 ± 0.8 ± 0.5 8.611 ± 1.9 ± 0.8 ± 0.5 8.609 ± 1.9 ± 0.8 ± 0.6 8.572 ± 1.6 ± 0.7 ± 0.5
0.029–0.034 7.516 ± 3.4 ± 1.4 ± 1.7 7.495 ± 3.4 ± 1.4 ± 1.7 8.261 ± 2.0 ± 0.9 ± 0.5 8.268 ± 2.0 ± 0.9 ± 0.5 8.305 ± 2.0 ± 0.9 ± 0.6 8.038 ± 1.7 ± 0.7 ± 0.6
0.034–0.039 7.643 ± 3.3 ± 1.0 ± 0.8 7.677 ± 3.3 ± 1.1 ± 0.8 7.411 ± 2.1 ± 0.9 ± 0.5 7.404 ± 2.1 ± 0.9 ± 0.5 7.432 ± 2.1 ± 0.9 ± 0.6 7.473 ± 1.8 ± 0.7 ± 0.5
0.039–0.045 6.365 ± 3.3 ± 1.0 ± 0.9 6.356 ± 3.3 ± 1.0 ± 0.9 6.576 ± 2.0 ± 0.9 ± 0.4 6.583 ± 2.0 ± 0.9 ± 0.4 6.552 ± 2.0 ± 0.9 ± 0.5 6.489 ± 1.7 ± 0.7 ± 0.5
0.045–0.051 6.080 ± 3.4 ± 1.0 ± 0.6 6.080 ± 3.4 ± 1.0 ± 0.6 5.937 ± 2.1 ± 0.9 ± 0.4 5.931 ± 2.1 ± 0.9 ± 0.4 5.947 ± 2.1 ± 0.9 ± 0.5 5.971 ± 1.8 ± 0.7 ± 0.5
0.051–0.057 5.577 ± 3.5 ± 1.0 ± 0.6 5.578 ± 3.5 ± 1.0 ± 0.6 5.636 ± 2.1 ± 0.9 ± 0.4 5.657 ± 2.1 ± 0.9 ± 0.4 5.652 ± 2.1 ± 0.9 ± 0.6 5.616 ± 1.8 ± 0.7 ± 0.5
0.057–0.064 4.794 ± 3.6 ± 1.0 ± 0.7 4.748 ± 3.6 ± 1.0 ± 0.7 4.936 ± 2.1 ± 0.9 ± 0.5 4.918 ± 2.1 ± 0.9 ± 0.5 4.927 ± 2.1 ± 0.9 ± 0.5 4.868 ± 1.8 ± 0.7 ± 0.5
0.064–0.072 4.645 ± 3.4 ± 1.7 ± 0.6 4.637 ± 3.4 ± 1.8 ± 0.6 4.375 ± 2.1 ± 0.9 ± 0.6 4.370 ± 2.1 ± 0.9 ± 0.6 4.333 ± 2.1 ± 0.9 ± 0.7 4.391 ± 1.8 ± 0.8 ± 0.6
0.072–0.081 4.082 ± 3.4 ± 1.1 ± 0.7 4.078 ± 3.4 ± 1.2 ± 0.7 3.774 ± 2.1 ± 0.9 ± 0.6 3.773 ± 2.1 ± 0.9 ± 0.6 3.727 ± 2.1 ± 0.9 ± 0.6 3.822 ± 1.8 ± 0.7 ± 0.6
0.081–0.091 3.474 ± 3.5 ± 1.0 ± 0.8 3.457 ± 3.5 ± 1.0 ± 0.8 3.262 ± 2.2 ± 0.9 ± 0.7 3.238 ± 2.2 ± 0.9 ± 0.7 3.269 ± 2.2 ± 0.9 ± 0.7 3.329 ± 1.9 ± 0.7 ± 0.6
0.091–0.102 3.205 ± 3.5 ± 1.1 ± 0.9 3.212 ± 3.5 ± 1.2 ± 0.9 3.119 ± 2.1 ± 0.9 ± 0.5 3.125 ± 2.1 ± 0.9 ± 0.5 3.116 ± 2.1 ± 0.9 ± 0.6 3.126 ± 1.8 ± 0.7 ± 0.5
0.102–0.114 2.435 ± 3.9 ± 1.2 ± 0.9 2.420 ± 3.9 ± 1.3 ± 0.9 2.528 ± 2.3 ± 0.9 ± 0.6 2.533 ± 2.3 ± 0.9 ± 0.6 2.509 ± 2.3 ± 0.9 ± 0.6 2.473 ± 2.0 ± 0.8 ± 0.5
0.114–0.128 2.051 ± 3.9 ± 1.2 ± 0.8 2.041 ± 3.9 ± 1.3 ± 0.8 2.071 ± 2.3 ± 1.1 ± 0.6 2.075 ± 2.3 ± 1.1 ± 0.6 2.066 ± 2.3 ± 1.1 ± 0.6 2.057 ± 2.0 ± 0.9 ± 0.5
0.128–0.145 1.828 ± 3.8 ± 1.5 ± 1.7 1.823 ± 3.8 ± 1.5 ± 1.8 1.907 ± 2.2 ± 0.9 ± 0.6 1.902 ± 2.2 ± 0.9 ± 0.6 1.905 ± 2.2 ± 0.9 ± 0.6 1.886 ± 1.9 ± 0.8 ± 0.6
0.145–0.165 1.608 ± 3.8 ± 1.2 ± 1.4 1.597 ± 3.8 ± 1.3 ± 1.4 1.579 ± 2.2 ± 1.1 ± 0.5 1.584 ± 2.2 ± 1.1 ± 0.5 1.580 ± 2.2 ± 1.1 ± 0.5 1.579 ± 1.9 ± 0.9 ± 0.5
0.165–0.189 1.211 ± 3.9 ± 1.3 ± 1.4 1.207 ± 3.9 ± 1.3 ± 1.5 1.177 ± 2.4 ± 1.0 ± 0.8 1.177 ± 2.4 ± 1.0 ± 0.8 1.173 ± 2.4 ± 1.0 ± 0.8 1.183 ± 2.0 ± 0.8 ± 0.7
0.189–0.219 0.940 ± 4.0 ± 1.8 ± 1.2 0.938 ± 4.0 ± 1.8 ± 1.3 0.970 ± 2.3 ± 1.3 ± 0.7 0.972 ± 2.3 ± 1.3 ± 0.7 0.968 ± 2.3 ± 1.3 ± 0.7 0.957 ± 2.0 ± 1.1 ± 0.6
0.219–0.258 0.774 ± 4.0 ± 1.7 ± 1.1 0.773 ± 4.0 ± 1.7 ± 1.0 0.784 ± 2.3 ± 1.3 ± 0.5 0.789 ± 2.3 ± 1.3 ± 0.5 0.786 ± 2.3 ± 1.3 ± 0.5 0.780 ± 2.0 ± 1.1 ± 0.5
0.258–0.312 0.547 ± 4.1 ± 1.6 ± 2.4 0.546 ± 4.1 ± 1.6 ± 2.4 0.543 ± 2.3 ± 0.9 ± 1.6 0.545 ± 2.3 ± 0.9 ± 1.6 0.542 ± 2.3 ± 0.9 ± 1.6 0.547 ± 2.0 ± 0.8 ± 1.2
0.312–0.391 0.355 ± 4.3 ± 1.8 ± 2.3 0.354 ± 4.3 ± 1.8 ± 2.3 0.329 ± 2.6 ± 1.1 ± 2.0 0.330 ± 2.6 ± 1.1 ± 2.0 0.330 ± 2.6 ± 1.1 ± 2.0 0.341 ± 2.2 ± 0.9 ± 1.5
0.391–0.524 0.212 ± 4.4 ± 2.0 ± 2.1 0.212 ± 4.4 ± 2.0 ± 2.1 0.186 ± 2.6 ± 1.1 ± 2.0 0.188 ± 2.6 ± 1.1 ± 2.0 0.188 ± 2.6 ± 1.1 ± 2.0 0.195 ± 2.3 ± 1.0 ± 1.7
0.524–0.695 0.101 ± 5.9 ± 2.8 ± 3.0 0.101 ± 5.9 ± 2.8 ± 3.0 0.0959 ± 3.4 ± 1.9 ± 1.8 0.0964 ± 3.4 ± 1.9 ± 1.8 0.0969 ± 3.4 ± 1.9 ± 1.8 0.0977 ± 2.9 ± 1.6 ± 1.8
0.695–0.918 0.0504 ± 7.3 ± 3.3 ± 3.1 0.0507 ± 7.3 ± 3.3 ± 3.1 0.0475 ± 4.3 ± 2.2 ± 2.5 0.0477 ± 4.3 ± 2.2 ± 2.5 0.0473 ± 4.3 ± 2.2 ± 2.5 0.0486 ± 3.7 ± 1.9 ± 2.3
0.918–1.153 0.0254 ± 9.5 ± 3.9 ± 5.0 0.0252 ± 9.5 ± 4.0 ± 5.0 0.0247 ± 5.6 ± 2.7 ± 2.2 0.0251 ± 5.6 ± 2.7 ± 2.2 0.0251 ± 5.6 ± 2.7 ± 2.2 0.0250 ± 4.9 ± 2.2 ± 2.2
1.153–1.496 0.0114 ± 12 ± 12 ± 25 0.0115 ± 12 ± 12 ± 25 0.0109 ± 7.1 ± 3.5 ± 2.5 0.0111 ± 7.1 ± 3.5 ± 2.5 0.0107 ± 7.1 ± 3.5 ± 2.6 0.0108 ± 6.3 ± 3.6 ± 3.4
1.496–1.947 0.00523 ± 15 ± 6.7 ± 5.6 0.00520 ± 15 ± 6.7 ± 5.6 0.00588 ± 7.9 ± 4.1 ± 2.4 0.00597 ± 7.9 ± 4.1 ± 2.4 0.00592 ± 7.9 ± 4.1 ± 2.5 0.00579 ± 7.0 ± 3.5 ± 2.5
1.947–2.522 0.00236 ± 20 ± 8.6 ± 8.2 0.00237 ± 20 ± 8.6 ± 8.2 0.00407 ± 8.9 ± 4.3 ± 4.6 0.00407 ± 8.9 ± 4.3 ± 4.6 0.00403 ± 8.9 ± 4.3 ± 4.7 0.00374 ± 8.0 ± 3.9 ± 3.6
2.522–3.277 0.00147 ± 22 ± 9.3 ± 10.0 0.00153 ± 22 ± 9.4 ± 10 0.00124 ± 15 ± 7.3 ± 4.2 0.00128 ± 15 ± 7.3 ± 4.2 0.00129 ± 15 ± 7.3 ± 4.2 0.00138 ± 12 ± 5.8 ± 4.1
3.277–5.000 0.000654 ± 22 ± 13 ± 9.8 0.000644 ± 22 ± 13 ± 9.9 0.000505 ± 15 ± 7.9 ± 6.5 0.000511 ± 15 ± 7.9 ± 6.5 0.000506 ± 15 ± 7.9 ± 6.5 0.000559 ± 12 ± 6.8 ± 5.0
5.000–10.000 0.000228 ± 21 ± 8.2 ± 9.0 0.000230 ± 21 ± 8.3 ± 8.7 0.000168 ± 16 ± 8.2 ± 2.4 0.000171 ± 16 ± 8.2 ± 2.4 0.000169 ± 16 ± 8.2 ± 2.5 0.000187 ± 13 ± 6.2 ± 3.0

Table 16.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 116GeVm<150GeV,1.6|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 11.892 ± 5.1 ± 1.6 ± 1.5 12.002 ± 5.1 ± 1.7 ± 1.5 11.291 ± 2.9 ± 1.2 ± 1.3 11.291 ± 2.9 ± 1.2 ± 1.3 11.263 ± 2.9 ± 1.2 ± 1.4 11.481 ± 2.5 ± 1.0 ± 1.2
0.004–0.008 11.648 ± 5.2 ± 2.7 ± 1.8 11.765 ± 5.2 ± 2.8 ± 1.8 11.245 ± 2.9 ± 1.2 ± 0.7 11.207 ± 2.9 ± 1.2 ± 0.7 11.271 ± 2.9 ± 1.2 ± 0.9 11.391 ± 2.6 ± 1.1 ± 0.8
0.008–0.012 11.455 ± 5.0 ± 1.5 ± 1.0 11.528 ± 5.0 ± 1.6 ± 1.0 11.166 ± 2.9 ± 1.2 ± 0.6 11.164 ± 2.9 ± 1.2 ± 0.6 11.356 ± 2.9 ± 1.2 ± 0.8 11.419 ± 2.5 ± 1.0 ± 0.7
0.012–0.016 11.171 ± 5.1 ± 1.6 ± 1.0 11.159 ± 5.1 ± 1.7 ± 1.0 10.965 ± 2.9 ± 1.2 ± 0.8 10.902 ± 2.9 ± 1.2 ± 0.8 10.904 ± 2.9 ± 1.2 ± 1.0 10.991 ± 2.6 ± 1.0 ± 0.8
0.016–0.020 9.714 ± 5.6 ± 1.9 ± 1.2 9.678 ± 5.6 ± 2.0 ± 1.2 10.150 ± 3.1 ± 1.3 ± 0.8 10.200 ± 3.1 ± 1.3 ± 0.8 10.303 ± 3.1 ± 1.3 ± 1.0 10.167 ± 2.7 ± 1.1 ± 0.8
0.020–0.024 9.337 ± 5.7 ± 2.5 ± 1.9 9.362 ± 5.7 ± 2.5 ± 1.8 10.034 ± 3.1 ± 1.3 ± 0.5 10.084 ± 3.1 ± 1.3 ± 0.5 9.997 ± 3.1 ± 1.3 ± 0.7 9.850 ± 2.7 ± 1.1 ± 0.7
0.024–0.029 9.075 ± 5.1 ± 2.4 ± 1.7 9.100 ± 5.1 ± 2.4 ± 1.7 9.051 ± 2.9 ± 1.2 ± 0.3 9.019 ± 2.9 ± 1.2 ± 0.3 9.027 ± 2.9 ± 1.2 ± 0.4 9.049 ± 2.5 ± 1.1 ± 0.5
0.029–0.034 7.757 ± 5.6 ± 1.9 ± 1.1 7.764 ± 5.6 ± 1.9 ± 1.1 8.218 ± 3.1 ± 1.2 ± 0.6 8.239 ± 3.1 ± 1.2 ± 0.6 8.263 ± 3.1 ± 1.2 ± 0.7 8.151 ± 2.7 ± 1.1 ± 0.6
0.034–0.039 7.263 ± 5.7 ± 1.9 ± 1.6 7.270 ± 5.7 ± 2.0 ± 1.6 7.469 ± 3.2 ± 1.3 ± 0.3 7.356 ± 3.2 ± 1.3 ± 0.3 7.515 ± 3.2 ± 1.3 ± 0.5 7.462 ± 2.8 ± 1.1 ± 0.5
0.039–0.045 6.336 ± 5.6 ± 1.8 ± 1.3 6.324 ± 5.6 ± 1.8 ± 1.3 6.501 ± 3.2 ± 1.3 ± 0.5 6.463 ± 3.2 ± 1.3 ± 0.5 6.425 ± 3.2 ± 1.3 ± 0.6 6.409 ± 2.7 ± 1.1 ± 0.5
0.045–0.051 6.574 ± 5.5 ± 1.9 ± 1.4 6.582 ± 5.5 ± 1.9 ± 1.4 5.615 ± 3.3 ± 1.3 ± 0.9 5.675 ± 3.3 ± 1.3 ± 0.9 5.648 ± 3.3 ± 1.3 ± 1.0 5.886 ± 2.9 ± 1.1 ± 0.8
0.051–0.057 5.317 ± 6.0 ± 2.0 ± 1.3 5.312 ± 6.0 ± 2.0 ± 1.3 5.470 ± 3.3 ± 1.3 ± 0.6 5.445 ± 3.3 ± 1.3 ± 0.6 5.424 ± 3.3 ± 1.3 ± 0.6 5.405 ± 2.9 ± 1.1 ± 0.6
0.057–0.064 4.755 ± 6.0 ± 2.0 ± 1.5 4.707 ± 6.0 ± 2.1 ± 1.6 5.408 ± 3.2 ± 1.3 ± 0.9 5.424 ± 3.2 ± 1.3 ± 0.9 5.460 ± 3.2 ± 1.3 ± 1.0 5.277 ± 2.8 ± 1.1 ± 0.8
0.064–0.072 4.983 ± 5.5 ± 1.8 ± 1.6 5.002 ± 5.5 ± 1.8 ± 1.6 4.468 ± 3.4 ± 1.4 ± 0.6 4.460 ± 3.4 ± 1.4 ± 0.6 4.476 ± 3.4 ± 1.4 ± 0.7 4.619 ± 2.9 ± 1.1 ± 0.7
0.072–0.081 3.911 ± 5.8 ± 2.4 ± 1.6 3.870 ± 5.8 ± 2.4 ± 1.5 4.120 ± 3.2 ± 1.3 ± 0.8 4.103 ± 3.2 ± 1.3 ± 0.8 4.090 ± 3.2 ± 1.3 ± 0.9 4.051 ± 2.8 ± 1.1 ± 0.8
0.081–0.091 3.070 ± 6.3 ± 2.4 ± 1.5 3.030 ± 6.3 ± 2.5 ± 1.5 3.441 ± 3.4 ± 1.4 ± 0.6 3.426 ± 3.4 ± 1.4 ± 0.6 3.388 ± 3.4 ± 1.4 ± 0.7 3.298 ± 3.0 ± 1.2 ± 0.6
0.091–0.102 3.005 ± 6.1 ± 1.8 ± 4.8 3.011 ± 6.1 ± 1.9 ± 4.8 2.876 ± 3.5 ± 1.6 ± 0.7 2.874 ± 3.5 ± 1.6 ± 0.7 2.852 ± 3.5 ± 1.6 ± 0.8 2.902 ± 3.0 ± 1.3 ± 1.0
0.102–0.114 2.530 ± 6.3 ± 1.9 ± 2.2 2.520 ± 6.3 ± 2.0 ± 2.2 2.595 ± 3.6 ± 1.4 ± 0.3 2.590 ± 3.6 ± 1.4 ± 0.3 2.595 ± 3.6 ± 1.4 ± 0.5 2.578 ± 3.1 ± 1.2 ± 0.5
0.114–0.128 2.350 ± 6.1 ± 1.8 ± 2.2 2.358 ± 6.1 ± 1.9 ± 2.2 2.160 ± 3.6 ± 1.4 ± 0.6 2.157 ± 3.6 ± 1.4 ± 0.6 2.152 ± 3.6 ± 1.4 ± 0.7 2.205 ± 3.1 ± 1.2 ± 0.7
0.128–0.145 1.975 ± 5.9 ± 1.6 ± 1.2 1.985 ± 5.9 ± 1.7 ± 1.2 1.806 ± 3.6 ± 1.6 ± 0.4 1.814 ± 3.6 ± 1.6 ± 0.4 1.825 ± 3.6 ± 1.6 ± 0.5 1.871 ± 3.1 ± 1.2 ± 0.5
0.145–0.165 1.409 ± 6.5 ± 1.9 ± 0.8 1.406 ± 6.5 ± 1.9 ± 0.8 1.626 ± 3.5 ± 1.4 ± 0.8 1.634 ± 3.5 ± 1.4 ± 0.8 1.617 ± 3.5 ± 1.4 ± 0.8 1.562 ± 3.1 ± 1.2 ± 0.6
0.165–0.189 1.252 ± 6.4 ± 2.4 ± 3.5 1.252 ± 6.4 ± 2.5 ± 3.5 1.333 ± 3.4 ± 1.4 ± 0.9 1.343 ± 3.4 ± 1.4 ± 0.9 1.327 ± 3.4 ± 1.4 ± 0.9 1.316 ± 3.0 ± 1.2 ± 0.9
0.189–0.219 0.970 ± 6.6 ± 4.5 ± 4.3 0.970 ± 6.6 ± 4.6 ± 4.3 0.970 ± 3.7 ± 1.5 ± 1.0 0.963 ± 3.7 ± 1.5 ± 1.0 0.962 ± 3.7 ± 1.5 ± 1.0 0.963 ± 3.3 ± 1.5 ± 1.0
0.219–0.258 0.856 ± 6.1 ± 2.3 ± 2.3 0.859 ± 6.1 ± 2.3 ± 2.3 0.789 ± 3.6 ± 1.4 ± 0.7 0.788 ± 3.6 ± 1.4 ± 0.7 0.784 ± 3.6 ± 1.4 ± 0.8 0.805 ± 3.1 ± 1.2 ± 0.8
0.258–0.312 0.538 ± 6.6 ± 2.1 ± 1.1 0.535 ± 6.6 ± 2.2 ± 1.1 0.541 ± 3.7 ± 1.7 ± 1.0 0.543 ± 3.7 ± 1.7 ± 1.0 0.540 ± 3.7 ± 1.7 ± 1.2 0.541 ± 3.2 ± 1.4 ± 1.0
0.312–0.391 0.356 ± 6.8 ± 2.7 ± 2.5 0.357 ± 6.8 ± 2.7 ± 2.4 0.339 ± 3.9 ± 1.6 ± 1.0 0.342 ± 3.9 ± 1.6 ± 1.0 0.341 ± 3.9 ± 1.6 ± 1.2 0.347 ± 3.3 ± 1.4 ± 1.1
0.391–0.524 0.194 ± 7.4 ± 3.2 ± 2.4 0.194 ± 7.4 ± 3.2 ± 2.4 0.201 ± 4.0 ± 1.7 ± 1.5 0.199 ± 4.0 ± 1.7 ± 1.5 0.199 ± 4.0 ± 1.7 ± 1.7 0.198 ± 3.5 ± 1.5 ± 1.5
0.524–0.695 0.0787 ± 10 ± 5.9 ± 8.2 0.0779 ± 10 ± 6.0 ± 8.2 0.0865 ± 5.4 ± 2.2 ± 1.3 0.0878 ± 5.4 ± 2.2 ± 1.3 0.0873 ± 5.4 ± 2.2 ± 1.5 0.0861 ± 4.7 ± 2.1 ± 1.7
0.695–0.918 0.0465 ± 11 ± 4.1 ± 4.6 0.0464 ± 11 ± 4.1 ± 4.6 0.0440 ± 6.4 ± 2.6 ± 2.6 0.0448 ± 6.4 ± 2.6 ± 2.6 0.0450 ± 6.4 ± 2.6 ± 2.6 0.0454 ± 5.6 ± 2.2 ± 2.2
0.918–1.153 0.0228 ± 16 ± 5.2 ± 4.6 0.0227 ± 16 ± 5.3 ± 4.6 0.0230 ± 8.8 ± 3.7 ± 2.8 0.0238 ± 8.8 ± 3.7 ± 2.8 0.0235 ± 8.8 ± 3.7 ± 2.9 0.0233 ± 7.6 ± 3.0 ± 2.3
1.153–1.496 0.00970 ± 19 ± 6.6 ± 6.5 0.00955 ± 19 ± 6.7 ± 6.5 0.00973 ± 12 ± 5.0 ± 4.7 0.00960 ± 12 ± 5.0 ± 4.7 0.00981 ± 12 ± 5.0 ± 4.8 0.00994 ± 10 ± 4.0 ± 3.6
1.496–1.947 0.00496 ± 22 ± 6.7 ± 7.6 0.00491 ± 22 ± 6.8 ± 8.0 0.00262 ± 19 ± 7.6 ± 11 0.00272 ± 19 ± 7.6 ± 11 0.00277 ± 19 ± 7.6 ± 11 0.00343 ± 14 ± 5.6 ± 7.0
1.947–2.522 0.00155 ± 34 ± 9.4 ± 3.9 0.00155 ± 34 ± 9.5 ± 3.9 0.000971 ± 23 ± 9.6 ± 10 0.000988 ± 23 ± 9.6 ± 10 0.00101 ± 23 ± 9.6 ± 10 0.00119 ± 19 ± 7.5 ± 6.9
2.522–3.277 0.000678 ± 44 ± 9.9 ± 9.2 0.000631 ± 44 ± 11 ± 9.5 0.0000976 ± 116 ± 49 ± 8.2 0.000101 ± 116 ± 49 ± 8.2 0.000106 ± 116 ± 49 ± 8.2 0.000458 ± 38 ± 17 ± 5.4
3.277–5.000 0.0000936 ± 101 ± 83 ± 84 0.0000944 ± 101 ± 83 ± 84 0.0000533 ± 65 ± 30 ± 7.0 0.0000535 ± 65 ± 30 ± 7.0 0.0000513 ± 65 ± 30 ± 7.1 0.0000589 ± 55 ± 29 ± 12
5.000–10.000 0.0000540 ± 68 ± 19 ± 38 0.0000506 ± 68 ± 19 ± 38 0.0000431 ± 37 ± 17 ± 8.4 0.0000416 ± 37 ± 17 ± 8.4 0.0000387 ± 37 ± 17 ± 8.5 0.0000404 ± 33 ± 14 ± 8.4

Table 17.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 46GeVm<66GeV,|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 6.941 ± 1.6 ± 0.7 ± 5.3 7.435 ± 1.6 ± 0.8 ± 5.4 6.741 ± 1.3 ± 0.3 ± 4.2 6.724 ± 1.3 ± 0.3 ± 4.2 7.169 ± 1.3 ± 0.3 ± 4.4 7.655 ± 1.0 ± 0.3 ± 3.0
0.004–0.008 6.819 ± 1.6 ± 0.7 ± 2.3 7.209 ± 1.6 ± 0.7 ± 2.5 6.967 ± 1.2 ± 0.4 ± 1.2 6.909 ± 1.2 ± 0.4 ± 1.2 7.307 ± 1.2 ± 0.4 ± 1.8 7.439 ± 1.0 ± 0.3 ± 1.3
0.008–0.012 6.793 ± 1.6 ± 0.7 ± 1.5 7.176 ± 1.6 ± 0.7 ± 1.8 6.877 ± 1.2 ± 0.3 ± 0.6 6.827 ± 1.2 ± 0.3 ± 0.6 7.251 ± 1.2 ± 0.3 ± 1.5 7.346 ± 1.0 ± 0.3 ± 1.1
0.012–0.016 6.507 ± 1.6 ± 0.7 ± 1.0 6.895 ± 1.6 ± 0.7 ± 1.5 6.851 ± 1.2 ± 0.3 ± 0.4 6.814 ± 1.2 ± 0.3 ± 0.4 7.265 ± 1.2 ± 0.3 ± 1.4 7.235 ± 0.9 ± 0.3 ± 1.1
0.016–0.020 6.498 ± 1.6 ± 0.7 ± 1.2 6.844 ± 1.6 ± 0.7 ± 1.6 6.648 ± 1.2 ± 0.4 ± 0.3 6.627 ± 1.2 ± 0.4 ± 0.3 7.035 ± 1.2 ± 0.4 ± 1.4 7.039 ± 1.0 ± 0.3 ± 1.1
0.020–0.024 6.428 ± 1.6 ± 0.7 ± 0.8 6.768 ± 1.6 ± 0.7 ± 1.4 6.445 ± 1.3 ± 0.4 ± 0.2 6.440 ± 1.3 ± 0.4 ± 0.2 6.774 ± 1.3 ± 0.4 ± 1.4 6.852 ± 1.0 ± 0.4 ± 1.1
0.024–0.029 6.261 ± 1.4 ± 0.6 ± 0.8 6.573 ± 1.4 ± 0.6 ± 1.4 6.167 ± 1.2 ± 0.3 ± 0.3 6.145 ± 1.2 ± 0.3 ± 0.3 6.514 ± 1.2 ± 0.3 ± 1.3 6.597 ± 0.9 ± 0.3 ± 1.0
0.029–0.034 5.900 ± 1.5 ± 0.6 ± 0.7 6.193 ± 1.5 ± 0.6 ± 1.3 5.940 ± 1.2 ± 0.3 ± 0.3 5.959 ± 1.2 ± 0.3 ± 0.3 6.288 ± 1.2 ± 0.3 ± 1.3 6.316 ± 0.9 ± 0.3 ± 1.0
0.034–0.039 5.934 ± 1.5 ± 0.6 ± 0.8 6.232 ± 1.5 ± 0.7 ± 1.4 5.545 ± 1.2 ± 0.3 ± 0.4 5.539 ± 1.2 ± 0.3 ± 0.4 5.867 ± 1.2 ± 0.3 ± 1.3 6.041 ± 1.0 ± 0.3 ± 1.1
0.039–0.045 5.324 ± 1.4 ± 0.7 ± 0.5 5.547 ± 1.4 ± 0.7 ± 1.3 5.466 ± 1.1 ± 0.3 ± 0.4 5.475 ± 1.1 ± 0.3 ± 0.4 5.753 ± 1.1 ± 0.3 ± 1.3 5.729 ± 0.9 ± 0.3 ± 1.0
0.045–0.051 5.159 ± 1.4 ± 0.7 ± 0.6 5.379 ± 1.4 ± 0.8 ± 1.3 5.181 ± 1.1 ± 0.3 ± 0.6 5.208 ± 1.1 ± 0.3 ± 0.6 5.446 ± 1.1 ± 0.3 ± 1.4 5.451 ± 0.9 ± 0.3 ± 1.1
0.051–0.057 4.874 ± 1.5 ± 0.6 ± 0.6 5.071 ± 1.5 ± 0.6 ± 1.3 4.960 ± 1.1 ± 0.3 ± 0.6 4.977 ± 1.1 ± 0.3 ± 0.6 5.208 ± 1.1 ± 0.3 ± 1.4 5.194 ± 0.9 ± 0.3 ± 1.1
0.057–0.064 4.499 ± 1.4 ± 0.6 ± 0.6 4.661 ± 1.4 ± 0.6 ± 1.3 4.575 ± 1.1 ± 0.3 ± 0.7 4.600 ± 1.1 ± 0.3 ± 0.7 4.802 ± 1.1 ± 0.3 ± 1.4 4.781 ± 0.9 ± 0.3 ± 1.1
0.064–0.072 4.231 ± 1.4 ± 0.6 ± 0.6 4.374 ± 1.4 ± 0.7 ± 1.3 4.124 ± 1.1 ± 0.3 ± 0.7 4.148 ± 1.1 ± 0.3 ± 0.7 4.313 ± 1.1 ± 0.3 ± 1.4 4.369 ± 0.9 ± 0.3 ± 1.1
0.072–0.081 3.805 ± 1.4 ± 0.6 ± 0.6 3.907 ± 1.4 ± 0.6 ± 1.3 3.920 ± 1.1 ± 0.3 ± 0.8 3.945 ± 1.1 ± 0.3 ± 0.8 4.080 ± 1.1 ± 0.3 ± 1.4 4.042 ± 0.8 ± 0.3 ± 1.1
0.081–0.091 3.526 ± 1.3 ± 0.7 ± 0.7 3.620 ± 1.3 ± 0.7 ± 1.3 3.494 ± 1.0 ± 0.3 ± 0.9 3.509 ± 1.0 ± 0.3 ± 0.9 3.633 ± 1.0 ± 0.3 ± 1.5 3.657 ± 0.8 ± 0.3 ± 1.1
0.091–0.102 3.202 ± 1.4 ± 0.6 ± 0.6 3.273 ± 1.4 ± 0.6 ± 1.3 3.169 ± 1.0 ± 0.3 ± 0.9 3.184 ± 1.0 ± 0.3 ± 0.9 3.260 ± 1.0 ± 0.3 ± 1.5 3.289 ± 0.8 ± 0.3 ± 1.1
0.102–0.114 2.856 ± 1.4 ± 0.6 ± 0.8 2.886 ± 1.4 ± 0.6 ± 1.4 2.817 ± 1.1 ± 0.3 ± 1.0 2.824 ± 1.1 ± 0.3 ± 1.0 2.871 ± 1.1 ± 0.3 ± 1.5 2.896 ± 0.8 ± 0.3 ± 1.1
0.114–0.128 2.549 ± 1.3 ± 0.6 ± 0.6 2.577 ± 1.3 ± 0.6 ± 1.3 2.515 ± 1.0 ± 0.2 ± 1.1 2.524 ± 1.0 ± 0.2 ± 1.1 2.557 ± 1.0 ± 0.2 ± 1.2 2.576 ± 0.8 ± 0.2 ± 0.9
0.128–0.145 2.122 ± 1.3 ± 0.5 ± 0.6 2.114 ± 1.3 ± 0.6 ± 1.3 2.183 ± 1.0 ± 0.3 ± 1.0 2.180 ± 1.0 ± 0.3 ± 1.0 2.174 ± 1.0 ± 0.3 ± 1.2 2.163 ± 0.8 ± 0.3 ± 0.9
0.145–0.165 1.817 ± 1.3 ± 0.6 ± 0.8 1.787 ± 1.3 ± 0.6 ± 1.4 1.868 ± 1.0 ± 0.3 ± 1.0 1.868 ± 1.0 ± 0.3 ± 1.0 1.847 ± 1.0 ± 0.3 ± 1.2 1.834 ± 0.8 ± 0.3 ± 0.9
0.165–0.189 1.512 ± 1.3 ± 0.6 ± 0.8 1.474 ± 1.3 ± 0.6 ± 1.4 1.535 ± 1.0 ± 0.3 ± 1.2 1.539 ± 1.0 ± 0.3 ± 1.2 1.495 ± 1.0 ± 0.3 ± 1.3 1.497 ± 0.8 ± 0.3 ± 0.9
0.189–0.219 1.240 ± 1.3 ± 0.8 ± 0.8 1.188 ± 1.3 ± 0.8 ± 1.4 1.269 ± 1.0 ± 0.3 ± 1.1 1.269 ± 1.0 ± 0.3 ± 1.1 1.214 ± 1.0 ± 0.3 ± 1.3 1.213 ± 0.8 ± 0.3 ± 0.9
0.219–0.258 0.999 ± 1.3 ± 0.6 ± 0.8 0.942 ± 1.3 ± 0.6 ± 1.4 0.987 ± 1.0 ± 0.3 ± 1.2 0.991 ± 1.0 ± 0.3 ± 1.2 0.931 ± 1.0 ± 0.3 ± 1.3 0.940 ± 0.8 ± 0.3 ± 0.9
0.258–0.312 0.748 ± 1.2 ± 0.6 ± 0.8 0.685 ± 1.2 ± 0.7 ± 2.2 0.763 ± 0.9 ± 0.2 ± 1.3 0.762 ± 0.9 ± 0.2 ± 1.3 0.696 ± 0.9 ± 0.2 ± 2.4 0.704 ± 0.7 ± 0.3 ± 1.8
0.312–0.391 0.545 ± 1.2 ± 0.7 ± 1.0 0.490 ± 1.2 ± 0.7 ± 2.2 0.528 ± 1.0 ± 0.3 ± 1.7 0.529 ± 1.0 ± 0.3 ± 1.7 0.469 ± 1.0 ± 0.3 ± 2.6 0.487 ± 0.8 ± 0.3 ± 1.8
0.391–0.524 0.333 ± 1.2 ± 0.6 ± 1.1 0.297 ± 1.2 ± 0.6 ± 2.3 0.331 ± 1.0 ± 0.3 ± 2.1 0.330 ± 1.0 ± 0.3 ± 2.1 0.290 ± 1.0 ± 0.3 ± 2.9 0.301 ± 0.7 ± 0.3 ± 1.8
0.524–0.695 0.197 ± 1.4 ± 0.9 ± 1.6 0.179 ± 1.4 ± 1.0 ± 2.6 0.187 ± 1.1 ± 0.3 ± 2.9 0.187 ± 1.1 ± 0.3 ± 2.9 0.165 ± 1.1 ± 0.3 ± 3.5 0.176 ± 0.9 ± 0.3 ± 2.0
0.695–0.918 0.103 ± 1.7 ± 1.1 ± 1.5 0.0972 ± 1.7 ± 1.1 ± 2.5 0.105 ± 1.3 ± 0.4 ± 3.1 0.104 ± 1.3 ± 0.4 ± 3.1 0.0963 ± 1.3 ± 0.4 ± 3.7 0.100 ± 1.0 ± 0.4 ± 2.0
0.918–1.153 0.0611 ± 2.2 ± 1.3 ± 1.8 0.0590 ± 2.2 ± 1.3 ± 2.7 0.0591 ± 1.8 ± 0.5 ± 3.5 0.0586 ± 1.8 ± 0.5 ± 3.5 0.0550 ± 1.8 ± 0.5 ± 4.0 0.0586 ± 1.4 ± 0.6 ± 2.2
1.153–1.496 0.0333 ± 2.6 ± 2.1 ± 2.3 0.0324 ± 2.6 ± 2.1 ± 3.1 0.0320 ± 2.1 ± 1.1 ± 3.6 0.0315 ± 2.1 ± 1.1 ± 3.6 0.0303 ± 2.1 ± 1.1 ± 4.1 0.0322 ± 1.6 ± 1.0 ± 2.4
1.496–1.947 0.0174 ± 3.1 ± 2.0 ± 2.5 0.0171 ± 3.1 ± 2.0 ± 3.3 0.0168 ± 2.5 ± 1.1 ± 3.0 0.0167 ± 2.5 ± 1.1 ± 3.0 0.0161 ± 2.5 ± 1.1 ± 3.5 0.0169 ± 1.9 ± 1.0 ± 2.4
1.947–2.522 0.00863 ± 4.0 ± 2.3 ± 3.0 0.00850 ± 4.0 ± 2.3 ± 3.7 0.00885 ± 3.0 ± 1.2 ± 3.0 0.00875 ± 3.0 ± 1.2 ± 3.0 0.00855 ± 3.0 ± 1.2 ± 3.5 0.00880 ± 2.4 ± 1.1 ± 2.5
2.522–3.277 0.00457 ± 4.6 ± 3.0 ± 5.8 0.00456 ± 4.6 ± 3.0 ± 6.2 0.00432 ± 3.8 ± 1.6 ± 3.1 0.00430 ± 3.8 ± 1.6 ± 3.1 0.00420 ± 3.8 ± 1.6 ± 3.6 0.00445 ± 2.9 ± 1.5 ± 2.7
3.277–5.000 0.00207 ± 4.4 ± 2.6 ± 3.0 0.00206 ± 4.4 ± 2.6 ± 3.7 0.00187 ± 3.8 ± 1.6 ± 4.0 0.00187 ± 3.8 ± 1.6 ± 4.0 0.00183 ± 3.8 ± 1.6 ± 4.4 0.00198 ± 2.9 ± 1.4 ± 2.6
5.000–10.000 0.000486 ± 5.6 ± 3.0 ± 3.3 0.000478 ± 5.6 ± 3.0 ± 3.9 0.000501 ± 4.5 ± 1.7 ± 3.9 0.000497 ± 4.5 ± 1.7 ± 3.9 0.000487 ± 4.5 ± 1.7 ± 4.3 0.000502 ± 3.4 ± 1.5 ± 2.7

Table 18.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 9.362 ± 0.2 ± 0.1 ± 0.2 9.451 ± 0.2 ± 0.1 ± 0.2 9.364 ± 0.2 ± 0.0 ± 0.1 9.359 ± 0.2 ± 0.0 ± 0.1 9.433 ± 0.2 ± 0.0 ± 0.1 9.441 ± 0.1 ± 0.0 ± 0.1
0.004–0.008 9.267 ± 0.2 ± 0.1 ± 0.1 9.352 ± 0.2 ± 0.1 ± 0.1 9.299 ± 0.2 ± 0.0 ± 0.1 9.294 ± 0.2 ± 0.0 ± 0.1 9.376 ± 0.2 ± 0.0 ± 0.1 9.365 ± 0.1 ± 0.0 ± 0.1
0.008–0.012 9.094 ± 0.2 ± 0.1 ± 0.1 9.169 ± 0.2 ± 0.1 ± 0.1 9.101 ± 0.2 ± 0.0 ± 0.1 9.098 ± 0.2 ± 0.0 ± 0.1 9.173 ± 0.2 ± 0.0 ± 0.1 9.171 ± 0.1 ± 0.0 ± 0.1
0.012–0.016 8.855 ± 0.2 ± 0.1 ± 0.1 8.926 ± 0.2 ± 0.1 ± 0.1 8.894 ± 0.2 ± 0.0 ± 0.0 8.888 ± 0.2 ± 0.0 ± 0.0 8.959 ± 0.2 ± 0.0 ± 0.1 8.945 ± 0.1 ± 0.0 ± 0.1
0.016–0.020 8.601 ± 0.2 ± 0.1 ± 0.1 8.668 ± 0.2 ± 0.1 ± 0.1 8.562 ± 0.2 ± 0.0 ± 0.0 8.556 ± 0.2 ± 0.0 ± 0.0 8.620 ± 0.2 ± 0.0 ± 0.1 8.640 ± 0.1 ± 0.0 ± 0.1
0.020–0.024 8.188 ± 0.2 ± 0.1 ± 0.1 8.238 ± 0.2 ± 0.1 ± 0.1 8.231 ± 0.2 ± 0.0 ± 0.0 8.229 ± 0.2 ± 0.0 ± 0.0 8.284 ± 0.2 ± 0.0 ± 0.1 8.264 ± 0.1 ± 0.0 ± 0.1
0.024–0.029 7.825 ± 0.2 ± 0.1 ± 0.1 7.868 ± 0.2 ± 0.1 ± 0.1 7.816 ± 0.2 ± 0.0 ± 0.0 7.811 ± 0.2 ± 0.0 ± 0.0 7.861 ± 0.2 ± 0.0 ± 0.1 7.863 ± 0.1 ± 0.0 ± 0.1
0.029–0.034 7.356 ± 0.2 ± 0.1 ± 0.1 7.389 ± 0.2 ± 0.1 ± 0.1 7.389 ± 0.2 ± 0.0 ± 0.0 7.384 ± 0.2 ± 0.0 ± 0.0 7.422 ± 0.2 ± 0.0 ± 0.1 7.408 ± 0.1 ± 0.0 ± 0.1
0.034–0.039 6.883 ± 0.2 ± 0.1 ± 0.1 6.905 ± 0.2 ± 0.1 ± 0.1 6.883 ± 0.2 ± 0.0 ± 0.0 6.881 ± 0.2 ± 0.0 ± 0.0 6.911 ± 0.2 ± 0.0 ± 0.1 6.908 ± 0.1 ± 0.0 ± 0.1
0.039–0.045 6.403 ± 0.2 ± 0.1 ± 0.1 6.419 ± 0.2 ± 0.1 ± 0.1 6.419 ± 0.2 ± 0.0 ± 0.1 6.417 ± 0.2 ± 0.0 ± 0.1 6.438 ± 0.2 ± 0.0 ± 0.1 6.429 ± 0.1 ± 0.0 ± 0.1
0.045–0.051 5.871 ± 0.2 ± 0.1 ± 0.1 5.876 ± 0.2 ± 0.1 ± 0.1 5.893 ± 0.2 ± 0.0 ± 0.1 5.891 ± 0.2 ± 0.0 ± 0.1 5.899 ± 0.2 ± 0.0 ± 0.1 5.888 ± 0.1 ± 0.0 ± 0.1
0.051–0.057 5.404 ± 0.2 ± 0.1 ± 0.1 5.404 ± 0.2 ± 0.1 ± 0.1 5.434 ± 0.2 ± 0.0 ± 0.0 5.434 ± 0.2 ± 0.0 ± 0.0 5.435 ± 0.2 ± 0.0 ± 0.1 5.422 ± 0.1 ± 0.0 ± 0.1
0.057–0.064 4.960 ± 0.2 ± 0.1 ± 0.1 4.957 ± 0.2 ± 0.1 ± 0.1 4.975 ± 0.2 ± 0.0 ± 0.1 4.972 ± 0.2 ± 0.0 ± 0.1 4.971 ± 0.2 ± 0.0 ± 0.1 4.964 ± 0.1 ± 0.0 ± 0.1
0.064–0.072 4.509 ± 0.2 ± 0.1 ± 0.1 4.502 ± 0.2 ± 0.1 ± 0.1 4.506 ± 0.2 ± 0.0 ± 0.1 4.505 ± 0.2 ± 0.0 ± 0.1 4.494 ± 0.2 ± 0.0 ± 0.1 4.496 ± 0.1 ± 0.0 ± 0.1
0.072–0.081 4.022 ± 0.2 ± 0.1 ± 0.1 4.011 ± 0.2 ± 0.1 ± 0.1 4.026 ± 0.2 ± 0.0 ± 0.1 4.025 ± 0.2 ± 0.0 ± 0.1 4.013 ± 0.2 ± 0.0 ± 0.1 4.011 ± 0.1 ± 0.0 ± 0.1
0.081–0.091 3.580 ± 0.2 ± 0.1 ± 0.1 3.566 ± 0.2 ± 0.1 ± 0.1 3.577 ± 0.2 ± 0.0 ± 0.1 3.577 ± 0.2 ± 0.0 ± 0.1 3.565 ± 0.2 ± 0.0 ± 0.1 3.564 ± 0.1 ± 0.0 ± 0.1
0.091–0.102 3.155 ± 0.2 ± 0.1 ± 0.1 3.141 ± 0.2 ± 0.1 ± 0.1 3.154 ± 0.2 ± 0.0 ± 0.1 3.153 ± 0.2 ± 0.0 ± 0.1 3.137 ± 0.2 ± 0.0 ± 0.1 3.138 ± 0.1 ± 0.0 ± 0.1
0.102–0.114 2.771 ± 0.2 ± 0.1 ± 0.1 2.758 ± 0.2 ± 0.1 ± 0.1 2.765 ± 0.2 ± 0.0 ± 0.1 2.765 ± 0.2 ± 0.0 ± 0.1 2.752 ± 0.2 ± 0.0 ± 0.1 2.753 ± 0.1 ± 0.0 ± 0.1
0.114–0.128 2.394 ± 0.2 ± 0.1 ± 0.1 2.380 ± 0.2 ± 0.1 ± 0.1 2.394 ± 0.2 ± 0.0 ± 0.1 2.394 ± 0.2 ± 0.0 ± 0.1 2.380 ± 0.2 ± 0.0 ± 0.1 2.379 ± 0.1 ± 0.0 ± 0.1
0.128–0.145 2.039 ± 0.2 ± 0.1 ± 0.1 2.026 ± 0.2 ± 0.1 ± 0.1 2.040 ± 0.2 ± 0.0 ± 0.1 2.040 ± 0.2 ± 0.0 ± 0.1 2.028 ± 0.2 ± 0.0 ± 0.1 2.026 ± 0.1 ± 0.0 ± 0.1
0.145–0.165 1.704 ± 0.2 ± 0.1 ± 0.1 1.693 ± 0.2 ± 0.1 ± 0.1 1.701 ± 0.2 ± 0.0 ± 0.1 1.702 ± 0.2 ± 0.0 ± 0.1 1.691 ± 0.2 ± 0.0 ± 0.1 1.691 ± 0.1 ± 0.0 ± 0.1
0.165–0.189 1.398 ± 0.2 ± 0.1 ± 0.1 1.389 ± 0.2 ± 0.1 ± 0.1 1.398 ± 0.2 ± 0.0 ± 0.1 1.399 ± 0.2 ± 0.0 ± 0.1 1.390 ± 0.2 ± 0.0 ± 0.1 1.389 ± 0.1 ± 0.0 ± 0.1
0.189–0.219 1.117 ± 0.2 ± 0.1 ± 0.1 1.110 ± 0.2 ± 0.1 ± 0.1 1.116 ± 0.2 ± 0.0 ± 0.1 1.117 ± 0.2 ± 0.0 ± 0.1 1.110 ± 0.2 ± 0.0 ± 0.1 1.110 ± 0.1 ± 0.0 ± 0.1
0.219–0.258 0.854 ± 0.2 ± 0.1 ± 0.1 0.849 ± 0.2 ± 0.1 ± 0.1 0.855 ± 0.2 ± 0.0 ± 0.1 0.856 ± 0.2 ± 0.0 ± 0.1 0.851 ± 0.2 ± 0.0 ± 0.1 0.850 ± 0.1 ± 0.0 ± 0.1
0.258–0.312 0.621 ± 0.2 ± 0.1 ± 0.3 0.618 ± 0.2 ± 0.1 ± 0.3 0.618 ± 0.2 ± 0.0 ± 0.1 0.619 ± 0.2 ± 0.0 ± 0.1 0.615 ± 0.2 ± 0.0 ± 0.2 0.616 ± 0.1 ± 0.0 ± 0.2
0.312–0.391 0.414 ± 0.2 ± 0.1 ± 0.3 0.412 ± 0.2 ± 0.1 ± 0.3 0.413 ± 0.2 ± 0.0 ± 0.1 0.413 ± 0.2 ± 0.0 ± 0.1 0.411 ± 0.2 ± 0.0 ± 0.2 0.411 ± 0.1 ± 0.0 ± 0.2
0.391–0.524 0.241 ± 0.2 ± 0.1 ± 0.3 0.240 ± 0.2 ± 0.1 ± 0.3 0.239 ± 0.2 ± 0.0 ± 0.2 0.239 ± 0.2 ± 0.0 ± 0.2 0.238 ± 0.2 ± 0.0 ± 0.2 0.239 ± 0.1 ± 0.0 ± 0.2
0.524–0.695 0.124 ± 0.3 ± 0.1 ± 0.3 0.124 ± 0.3 ± 0.1 ± 0.3 0.124 ± 0.2 ± 0.1 ± 0.2 0.124 ± 0.2 ± 0.1 ± 0.2 0.124 ± 0.2 ± 0.1 ± 0.2 0.124 ± 0.2 ± 0.1 ± 0.2
0.695–0.918 0.0625 ± 0.3 ± 0.1 ± 0.3 0.0623 ± 0.3 ± 0.1 ± 0.3 0.0619 ± 0.3 ± 0.1 ± 0.2 0.0620 ± 0.3 ± 0.1 ± 0.2 0.0619 ± 0.3 ± 0.1 ± 0.2 0.0620 ± 0.2 ± 0.1 ± 0.2
0.918–1.153 0.0322 ± 0.4 ± 0.2 ± 0.4 0.0321 ± 0.4 ± 0.2 ± 0.4 0.0320 ± 0.4 ± 0.1 ± 0.2 0.0320 ± 0.4 ± 0.1 ± 0.2 0.0319 ± 0.4 ± 0.1 ± 0.3 0.0320 ± 0.3 ± 0.1 ± 0.2
1.153–1.496 0.0166 ± 0.5 ± 0.1 ± 0.4 0.0166 ± 0.5 ± 0.1 ± 0.4 0.0165 ± 0.5 ± 0.1 ± 0.2 0.0165 ± 0.5 ± 0.1 ± 0.2 0.0164 ± 0.5 ± 0.1 ± 0.3 0.0165 ± 0.3 ± 0.1 ± 0.3
1.496–1.947 0.00791 ± 0.6 ± 0.2 ± 0.5 0.00789 ± 0.6 ± 0.2 ± 0.5 0.00796 ± 0.6 ± 0.1 ± 0.3 0.00798 ± 0.6 ± 0.1 ± 0.3 0.00796 ± 0.6 ± 0.1 ± 0.3 0.00791 ± 0.4 ± 0.1 ± 0.3
1.947–2.522 0.00392 ± 0.8 ± 0.2 ± 0.5 0.00390 ± 0.8 ± 0.2 ± 0.5 0.00390 ± 0.7 ± 0.2 ± 0.3 0.00391 ± 0.7 ± 0.2 ± 0.3 0.00390 ± 0.7 ± 0.2 ± 0.4 0.00389 ± 0.5 ± 0.1 ± 0.3
2.522–3.277 0.00198 ± 1.0 ± 0.2 ± 0.6 0.00198 ± 1.0 ± 0.2 ± 0.6 0.00194 ± 0.9 ± 0.2 ± 0.3 0.00195 ± 0.9 ± 0.2 ± 0.3 0.00194 ± 0.9 ± 0.2 ± 0.4 0.00195 ± 0.7 ± 0.2 ± 0.3
3.277–5.000 0.000860 ± 1.0 ± 0.3 ± 0.7 0.000859 ± 1.0 ± 0.3 ± 0.7 0.000861 ± 0.9 ± 0.2 ± 0.3 0.000863 ± 0.9 ± 0.2 ± 0.3 0.000864 ± 0.9 ± 0.2 ± 0.3 0.000859 ± 0.7 ± 0.2 ± 0.3
5.000–10.000 0.000255 ± 1.1 ± 0.3 ± 0.7 0.000255 ± 1.1 ± 0.3 ± 0.7 0.000247 ± 1.0 ± 0.2 ± 0.3 0.000247 ± 1.0 ± 0.2 ± 0.3 0.000247 ± 1.0 ± 0.2 ± 0.4 0.000250 ± 0.7 ± 0.2 ± 0.4

Table 19.

The values of (1/σ)dσ/dϕη in each bin of ϕη for the electron and muon channels separately (for various particle-level definitions) and for the Born-level combination in the kinematic region 116GeVm<150GeV,|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins of ϕη) are provided in percentage form

Bin (1/σ)dσ/dϕη ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.000–0.004 11.378 ± 1.9 ± 0.6 ± 2.4 11.447 ± 1.9 ± 0.6 ± 2.4 11.623 ± 1.6 ± 0.4 ± 2.1 11.601 ± 1.6 ± 0.4 ± 2.1 11.676 ± 1.6 ± 0.4 ± 2.2 11.634 ± 1.2 ± 0.3 ± 2.1
0.004–0.008 11.623 ± 1.8 ± 0.6 ± 1.0 11.722 ± 1.8 ± 0.7 ± 1.0 11.447 ± 1.6 ± 0.4 ± 0.6 11.449 ± 1.6 ± 0.4 ± 0.6 11.472 ± 1.6 ± 0.4 ± 0.9 11.593 ± 1.2 ± 0.4 ± 0.8
0.008–0.012 10.950 ± 1.9 ± 0.6 ± 0.8 10.983 ± 1.9 ± 0.6 ± 0.8 10.949 ± 1.6 ± 0.4 ± 0.3 10.880 ± 1.6 ± 0.4 ± 0.3 11.003 ± 1.6 ± 0.4 ± 0.7 10.994 ± 1.2 ± 0.3 ± 0.6
0.012–0.016 10.819 ± 1.9 ± 0.6 ± 0.7 10.908 ± 1.9 ± 0.6 ± 0.7 11.071 ± 1.7 ± 0.4 ± 0.2 11.018 ± 1.7 ± 0.4 ± 0.2 10.992 ± 1.7 ± 0.4 ± 0.6 10.948 ± 1.2 ± 0.3 ± 0.5
0.016–0.020 9.950 ± 2.0 ± 0.6 ± 0.6 9.968 ± 2.0 ± 0.6 ± 0.6 10.060 ± 1.7 ± 0.5 ± 0.3 9.989 ± 1.7 ± 0.5 ± 0.3 10.094 ± 1.7 ± 0.5 ± 0.7 10.022 ± 1.3 ± 0.4 ± 0.5
0.020–0.024 9.516 ± 2.0 ± 0.6 ± 0.6 9.538 ± 2.0 ± 0.6 ± 0.6 9.632 ± 1.8 ± 0.4 ± 0.3 9.619 ± 1.8 ± 0.4 ± 0.3 9.636 ± 1.8 ± 0.4 ± 0.7 9.585 ± 1.3 ± 0.3 ± 0.5
0.024–0.029 8.890 ± 1.9 ± 0.5 ± 0.6 8.922 ± 1.9 ± 0.6 ± 0.6 8.811 ± 1.6 ± 0.4 ± 0.3 8.783 ± 1.6 ± 0.4 ± 0.3 8.818 ± 1.6 ± 0.4 ± 0.5 8.863 ± 1.2 ± 0.3 ± 0.4
0.029–0.034 7.962 ± 2.0 ± 0.7 ± 0.7 7.970 ± 2.0 ± 0.7 ± 0.7 8.308 ± 1.7 ± 0.4 ± 0.4 8.344 ± 1.7 ± 0.4 ± 0.4 8.373 ± 1.7 ± 0.4 ± 0.5 8.201 ± 1.3 ± 0.4 ± 0.5
0.034–0.039 7.172 ± 2.1 ± 0.6 ± 0.5 7.175 ± 2.1 ± 0.7 ± 0.5 7.551 ± 1.8 ± 0.4 ± 0.4 7.526 ± 1.8 ± 0.4 ± 0.4 7.576 ± 1.8 ± 0.4 ± 0.5 7.393 ± 1.3 ± 0.4 ± 0.5
0.039–0.045 6.523 ± 2.0 ± 0.6 ± 0.6 6.520 ± 2.0 ± 0.7 ± 0.6 6.667 ± 1.6 ± 0.4 ± 0.5 6.672 ± 1.6 ± 0.4 ± 0.5 6.645 ± 1.6 ± 0.4 ± 0.6 6.587 ± 1.3 ± 0.4 ± 0.5
0.045–0.051 6.099 ± 2.1 ± 0.6 ± 0.6 6.099 ± 2.1 ± 0.6 ± 0.6 5.978 ± 1.8 ± 0.4 ± 0.5 5.971 ± 1.8 ± 0.4 ± 0.5 5.998 ± 1.8 ± 0.4 ± 0.6 6.034 ± 1.4 ± 0.3 ± 0.5
0.051–0.057 5.466 ± 2.2 ± 0.6 ± 0.6 5.442 ± 2.2 ± 0.7 ± 0.6 5.484 ± 1.9 ± 0.4 ± 0.5 5.480 ± 1.9 ± 0.4 ± 0.5 5.435 ± 1.9 ± 0.4 ± 0.6 5.435 ± 1.4 ± 0.4 ± 0.5
0.057–0.064 4.992 ± 2.1 ± 0.6 ± 0.6 4.984 ± 2.1 ± 0.6 ± 0.6 5.037 ± 1.8 ± 0.4 ± 0.6 5.028 ± 1.8 ± 0.4 ± 0.6 5.029 ± 1.8 ± 0.4 ± 0.7 5.014 ± 1.4 ± 0.4 ± 0.6
0.064–0.072 4.404 ± 2.1 ± 0.8 ± 0.6 4.379 ± 2.1 ± 0.9 ± 0.6 4.420 ± 1.9 ± 0.4 ± 0.6 4.426 ± 1.9 ± 0.4 ± 0.6 4.415 ± 1.9 ± 0.4 ± 0.7 4.400 ± 1.4 ± 0.4 ± 0.6
0.072–0.081 4.017 ± 2.1 ± 0.6 ± 0.6 4.013 ± 2.1 ± 0.7 ± 0.6 3.839 ± 1.8 ± 0.4 ± 0.6 3.834 ± 1.8 ± 0.4 ± 0.6 3.808 ± 1.8 ± 0.4 ± 0.7 3.892 ± 1.4 ± 0.4 ± 0.6
0.081–0.091 3.397 ± 2.2 ± 0.6 ± 0.6 3.392 ± 2.2 ± 0.7 ± 0.6 3.324 ± 1.8 ± 0.5 ± 0.8 3.311 ± 1.8 ± 0.5 ± 0.8 3.318 ± 1.8 ± 0.5 ± 0.9 3.356 ± 1.4 ± 0.4 ± 0.6
0.091–0.102 3.067 ± 2.2 ± 0.7 ± 1.2 3.066 ± 2.2 ± 0.7 ± 1.2 3.023 ± 1.9 ± 0.5 ± 0.6 3.031 ± 1.9 ± 0.5 ± 0.6 3.004 ± 1.9 ± 0.5 ± 0.7 3.019 ± 1.4 ± 0.4 ± 0.7
0.102–0.114 2.480 ± 2.3 ± 1.1 ± 1.7 2.470 ± 2.3 ± 1.1 ± 1.7 2.617 ± 1.9 ± 0.4 ± 0.6 2.620 ± 1.9 ± 0.4 ± 0.6 2.617 ± 1.9 ± 0.4 ± 0.7 2.568 ± 1.5 ± 0.5 ± 0.7
0.114–0.128 2.131 ± 2.3 ± 0.7 ± 0.6 2.124 ± 2.3 ± 0.7 ± 0.6 2.165 ± 1.9 ± 0.6 ± 0.9 2.169 ± 1.9 ± 0.6 ± 0.9 2.156 ± 1.9 ± 0.6 ± 1.0 2.147 ± 1.5 ± 0.4 ± 0.6
0.128–0.145 1.859 ± 2.3 ± 0.8 ± 0.5 1.852 ± 2.3 ± 0.8 ± 0.6 1.821 ± 2.0 ± 0.5 ± 0.7 1.828 ± 2.0 ± 0.5 ± 0.7 1.831 ± 2.0 ± 0.5 ± 0.8 1.840 ± 1.5 ± 0.4 ± 0.6
0.145–0.165 1.530 ± 2.3 ± 0.7 ± 0.6 1.524 ± 2.3 ± 0.7 ± 0.6 1.572 ± 2.0 ± 0.5 ± 0.7 1.577 ± 2.0 ± 0.5 ± 0.7 1.572 ± 2.0 ± 0.5 ± 0.8 1.552 ± 1.5 ± 0.4 ± 0.5
0.165–0.189 1.219 ± 2.4 ± 0.9 ± 0.8 1.213 ± 2.4 ± 0.9 ± 0.8 1.219 ± 2.0 ± 0.4 ± 1.1 1.224 ± 2.0 ± 0.4 ± 1.1 1.212 ± 2.0 ± 0.4 ± 1.2 1.215 ± 1.6 ± 0.4 ± 0.7
0.189–0.219 0.966 ± 2.4 ± 1.1 ± 1.2 0.965 ± 2.4 ± 1.1 ± 1.2 0.948 ± 2.1 ± 0.4 ± 1.7 0.948 ± 2.1 ± 0.4 ± 1.7 0.949 ± 2.1 ± 0.4 ± 1.7 0.961 ± 1.6 ± 0.5 ± 0.8
0.219–0.258 0.751 ± 2.5 ± 1.0 ± 0.8 0.749 ± 2.5 ± 1.1 ± 0.8 0.767 ± 2.1 ± 0.5 ± 1.8 0.768 ± 2.1 ± 0.5 ± 1.8 0.764 ± 2.1 ± 0.5 ± 1.8 0.764 ± 1.6 ± 0.5 ± 0.8
0.258–0.312 0.536 ± 2.5 ± 1.3 ± 1.9 0.534 ± 2.5 ± 1.3 ± 1.9 0.538 ± 2.2 ± 0.6 ± 1.8 0.539 ± 2.2 ± 0.6 ± 1.8 0.536 ± 2.2 ± 0.6 ± 1.8 0.538 ± 1.7 ± 0.6 ± 1.1
0.312–0.391 0.356 ± 2.6 ± 1.1 ± 1.8 0.355 ± 2.6 ± 1.1 ± 1.8 0.335 ± 2.4 ± 0.7 ± 2.3 0.337 ± 2.4 ± 0.7 ± 2.3 0.336 ± 2.4 ± 0.7 ± 2.3 0.346 ± 1.8 ± 0.6 ± 1.3
0.391–0.524 0.204 ± 2.8 ± 1.3 ± 2.0 0.203 ± 2.8 ± 1.3 ± 2.0 0.192 ± 2.5 ± 0.8 ± 2.8 0.193 ± 2.5 ± 0.8 ± 2.8 0.192 ± 2.5 ± 0.8 ± 2.8 0.198 ± 1.9 ± 0.7 ± 1.7
0.524–0.695 0.0988 ± 3.7 ± 1.9 ± 3.1 0.0985 ± 3.7 ± 1.9 ± 3.1 0.0935 ± 3.3 ± 2.0 ± 2.5 0.0940 ± 3.3 ± 2.0 ± 2.5 0.0936 ± 3.3 ± 2.0 ± 2.5 0.0959 ± 2.5 ± 1.4 ± 2.2
0.695–0.918 0.0515 ± 4.4 ± 2.0 ± 3.0 0.0515 ± 4.4 ± 2.0 ± 3.0 0.0493 ± 4.1 ± 2.1 ± 3.6 0.0496 ± 4.1 ± 2.1 ± 3.6 0.0494 ± 4.1 ± 2.1 ± 3.6 0.0511 ± 3.0 ± 1.5 ± 2.4
0.918–1.153 0.0252 ± 6.0 ± 3.5 ± 2.8 0.0251 ± 6.0 ± 3.5 ± 2.9 0.0255 ± 5.3 ± 2.2 ± 2.4 0.0259 ± 5.3 ± 2.2 ± 2.4 0.0259 ± 5.3 ± 2.2 ± 2.5 0.0255 ± 4.0 ± 1.9 ± 2.0
1.153–1.496 0.0144 ± 6.4 ± 4.1 ± 7.8 0.0145 ± 6.4 ± 4.2 ± 7.7 0.0122 ± 6.4 ± 1.6 ± 3.5 0.0123 ± 6.4 ± 1.6 ± 3.5 0.0124 ± 6.4 ± 1.6 ± 3.6 0.0136 ± 4.5 ± 1.9 ± 3.0
1.496–1.947 0.00651 ± 8.3 ± 3.3 ± 2.9 0.00649 ± 8.3 ± 3.4 ± 2.9 0.00525 ± 8.5 ± 2.3 ± 5.5 0.00532 ± 8.5 ± 2.3 ± 5.5 0.00527 ± 8.5 ± 2.3 ± 5.6 0.00594 ± 5.9 ± 2.0 ± 2.7
1.947–2.522 0.00250 ± 13 ± 7.9 ± 6.5 0.00248 ± 13 ± 7.9 ± 6.6 0.00313 ± 9.9 ± 2.1 ± 4.3 0.00318 ± 9.9 ± 2.1 ± 4.3 0.00317 ± 9.9 ± 2.1 ± 4.4 0.00299 ± 7.8 ± 3.1 ± 3.0
2.522–3.277 0.00132 ± 15 ± 6.7 ± 7.2 0.00133 ± 15 ± 6.7 ± 7.2 0.00170 ± 12 ± 4.6 ± 4.3 0.00174 ± 12 ± 4.6 ± 4.3 0.00174 ± 12 ± 4.6 ± 4.4 0.00162 ± 9.1 ± 3.9 ± 3.4
3.277–5.000 0.000668 ± 14 ± 7.3 ± 5.2 0.000662 ± 14 ± 7.3 ± 5.2 0.000466 ± 16 ± 5.3 ± 9.3 0.000476 ± 16 ± 5.3 ± 9.3 0.000472 ± 16 ± 5.3 ± 9.3 0.000587 ± 11 ± 4.4 ± 4.3
5.000–10.000 0.000229 ± 15 ± 6.2 ± 4.7 0.000226 ± 15 ± 6.3 ± 4.6 0.000177 ± 15 ± 4.4 ± 6.8 0.000179 ± 15 ± 4.4 ± 6.8 0.000181 ± 15 ± 4.4 ± 6.8 0.000206 ± 10 ± 3.7 ± 3.6

Table 20.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,0.0|y|<0.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.622e−02 ± 0.5 ± 0.2 ± 0.8 2.688e−02 ± 0.5 ± 0.2 ± 0.8 2.586e−02 ± 0.4 ± 0.2 ± 0.9 2.638e−02 ± 0.4 ± 0.2 ± 0.9 2.704e−02 ± 0.4 ± 0.2 ± 1.0 2.704e−02 ± 0.3 ± 0.2 ± 0.7
2.0–4.0 5.438e−02 ± 0.3 ± 0.1 ± 0.4 5.544e−02 ± 0.3 ± 0.1 ± 0.4 5.385e−02 ± 0.3 ± 0.1 ± 0.4 5.472e−02 ± 0.3 ± 0.1 ± 0.4 5.582e−02 ± 0.3 ± 0.1 ± 0.6 5.569e−02 ± 0.2 ± 0.1 ± 0.3
4.0–6.0 5.513e−02 ± 0.3 ± 0.2 ± 0.4 5.562e−02 ± 0.3 ± 0.2 ± 0.4 5.502e−02 ± 0.3 ± 0.2 ± 0.5 5.534e−02 ± 0.3 ± 0.2 ± 0.5 5.584e−02 ± 0.3 ± 0.2 ± 0.6 5.571e−02 ± 0.2 ± 0.1 ± 0.4
6.0–8.0 4.896e−02 ± 0.4 ± 0.2 ± 0.3 4.897e−02 ± 0.4 ± 0.2 ± 0.3 4.887e−02 ± 0.3 ± 0.2 ± 0.3 4.879e−02 ± 0.3 ± 0.2 ± 0.3 4.875e−02 ± 0.3 ± 0.2 ± 0.6 4.883e−02 ± 0.2 ± 0.1 ± 0.3
8.0–10.0 4.127e−02 ± 0.4 ± 0.2 ± 0.4 4.096e−02 ± 0.4 ± 0.2 ± 0.6 4.139e−02 ± 0.4 ± 0.2 ± 0.4 4.111e−02 ± 0.4 ± 0.2 ± 0.4 4.082e−02 ± 0.4 ± 0.2 ± 0.7 4.086e−02 ± 0.3 ± 0.1 ± 0.4
10.0–13.0 3.293e−02 ± 0.3 ± 0.2 ± 0.3 3.256e−02 ± 0.3 ± 0.2 ± 0.3 3.324e−02 ± 0.3 ± 0.1 ± 0.3 3.287e−02 ± 0.3 ± 0.1 ± 0.3 3.247e−02 ± 0.3 ± 0.1 ± 0.4 3.251e−02 ± 0.2 ± 0.1 ± 0.2
13.0–16.0 2.532e−02 ± 0.4 ± 0.2 ± 0.3 2.495e−02 ± 0.4 ± 0.2 ± 0.3 2.587e−02 ± 0.3 ± 0.1 ± 0.3 2.551e−02 ± 0.3 ± 0.1 ± 0.3 2.513e−02 ± 0.3 ± 0.1 ± 0.4 2.505e−02 ± 0.3 ± 0.1 ± 0.2
16.0–20.0 1.920e−02 ± 0.4 ± 0.2 ± 0.3 1.891e−02 ± 0.4 ± 0.2 ± 0.3 1.943e−02 ± 0.3 ± 0.1 ± 0.3 1.920e−02 ± 0.3 ± 0.1 ± 0.3 1.892e−02 ± 0.3 ± 0.1 ± 0.3 1.892e−02 ± 0.2 ± 0.1 ± 0.2
20.0–25.0 1.377e−02 ± 0.4 ± 0.1 ± 0.2 1.363e−02 ± 0.4 ± 0.1 ± 0.2 1.391e−02 ± 0.3 ± 0.1 ± 0.3 1.380e−02 ± 0.3 ± 0.1 ± 0.3 1.366e−02 ± 0.3 ± 0.1 ± 0.3 1.365e−02 ± 0.2 ± 0.1 ± 0.2
25.0–30.0 9.812e−03 ± 0.4 ± 0.1 ± 0.3 9.758e−03 ± 0.4 ± 0.1 ± 0.3 9.802e−03 ± 0.4 ± 0.2 ± 0.3 9.772e−03 ± 0.4 ± 0.2 ± 0.3 9.707e−03 ± 0.4 ± 0.2 ± 0.3 9.728e−03 ± 0.3 ± 0.1 ± 0.2
30.0–37.0 6.865e−03 ± 0.4 ± 0.2 ± 0.3 6.850e−03 ± 0.4 ± 0.2 ± 0.3 6.843e−03 ± 0.4 ± 0.1 ± 0.3 6.845e−03 ± 0.4 ± 0.1 ± 0.3 6.835e−03 ± 0.4 ± 0.1 ± 0.3 6.840e−03 ± 0.3 ± 0.1 ± 0.2
37.0–45.0 4.627e−03 ± 0.5 ± 0.2 ± 0.5 4.634e−03 ± 0.5 ± 0.2 ± 0.5 4.568e−03 ± 0.4 ± 0.1 ± 0.3 4.580e−03 ± 0.4 ± 0.1 ± 0.3 4.591e−03 ± 0.4 ± 0.1 ± 0.3 4.609e−03 ± 0.3 ± 0.1 ± 0.2
45.0–55.0 3.029e−03 ± 0.5 ± 0.2 ± 0.7 3.042e−03 ± 0.5 ± 0.2 ± 0.7 2.998e−03 ± 0.5 ± 0.2 ± 0.4 3.018e−03 ± 0.5 ± 0.2 ± 0.4 3.033e−03 ± 0.5 ± 0.2 ± 0.4 3.033e−03 ± 0.3 ± 0.1 ± 0.3
55.0–65.0 1.926e−03 ± 0.6 ± 0.2 ± 0.8 1.939e−03 ± 0.6 ± 0.2 ± 0.8 1.900e−03 ± 0.6 ± 0.3 ± 0.4 1.917e−03 ± 0.6 ± 0.3 ± 0.4 1.931e−03 ± 0.6 ± 0.3 ± 0.5 1.932e−03 ± 0.4 ± 0.2 ± 0.4
65.0–75.0 1.275e−03 ± 0.8 ± 0.3 ± 0.9 1.286e−03 ± 0.8 ± 0.3 ± 0.9 1.266e−03 ± 0.8 ± 0.3 ± 0.5 1.282e−03 ± 0.8 ± 0.3 ± 0.5 1.291e−03 ± 0.8 ± 0.3 ± 0.6 1.287e−03 ± 0.5 ± 0.2 ± 0.4
75.0–85.0 8.504e−04 ± 0.9 ± 0.4 ± 0.9 8.597e−04 ± 0.9 ± 0.4 ± 0.9 8.383e−04 ± 1.0 ± 0.4 ± 0.6 8.486e−04 ± 1.0 ± 0.4 ± 0.6 8.565e−04 ± 1.0 ± 0.4 ± 0.6 8.569e−04 ± 0.7 ± 0.3 ± 0.5
85.0–105.0 4.956e−04 ± 0.8 ± 0.3 ± 0.8 4.995e−04 ± 0.8 ± 0.3 ± 0.8 4.774e−04 ± 0.8 ± 0.3 ± 0.5 4.833e−04 ± 0.8 ± 0.3 ± 0.5 4.868e−04 ± 0.8 ± 0.3 ± 0.5 4.927e−04 ± 0.6 ± 0.2 ± 0.4
105.0–150.0 1.896e−04 ± 0.9 ± 0.3 ± 0.7 1.904e−04 ± 0.9 ± 0.3 ± 0.7 1.826e−04 ± 0.9 ± 0.3 ± 0.5 1.852e−04 ± 0.9 ± 0.3 ± 0.5 1.865e−04 ± 0.9 ± 0.3 ± 0.5 1.884e−04 ± 0.6 ± 0.2 ± 0.4
150.0–200.0 5.379e−05 ± 1.4 ± 0.5 ± 0.9 5.409e−05 ± 1.4 ± 0.5 ± 0.9 5.278e−05 ± 1.6 ± 0.5 ± 0.7 5.377e−05 ± 1.6 ± 0.5 ± 0.7 5.402e−05 ± 1.6 ± 0.5 ± 0.7 5.399e−05 ± 1.1 ± 0.4 ± 0.5
200.0–900.0 2.288e−06 ± 1.8 ± 0.6 ± 1.4 2.296e−06 ± 1.8 ± 0.6 ± 1.5 2.220e−06 ± 2.1 ± 0.5 ± 0.9 2.277e−06 ± 2.1 ± 0.5 ± 0.9 2.287e−06 ± 2.1 ± 0.5 ± 1.0 2.284e−06 ± 1.4 ± 0.4 ± 0.8

Table 21.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,0.4|y|<0.8. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.601e−02 ± 0.6 ± 0.3 ± 1.2 2.663e−02 ± 0.6 ± 0.3 ± 1.2 2.620e−02 ± 0.4 ± 0.2 ± 0.9 2.672e−02 ± 0.4 ± 0.2 ± 0.9 2.739e−02 ± 0.4 ± 0.2 ± 0.9 2.690e−02 ± 0.3 ± 0.2 ± 0.8
2.0–4.0 5.469e−02 ± 0.4 ± 0.2 ± 0.6 5.577e−02 ± 0.4 ± 0.2 ± 0.6 5.405e−02 ± 0.3 ± 0.1 ± 0.3 5.485e−02 ± 0.3 ± 0.1 ± 0.3 5.590e−02 ± 0.3 ± 0.1 ± 0.4 5.575e−02 ± 0.2 ± 0.1 ± 0.3
4.0–6.0 5.582e−02 ± 0.4 ± 0.1 ± 0.4 5.634e−02 ± 0.4 ± 0.1 ± 0.4 5.530e−02 ± 0.3 ± 0.1 ± 0.4 5.569e−02 ± 0.3 ± 0.1 ± 0.4 5.617e−02 ± 0.3 ± 0.1 ± 0.5 5.642e−02 ± 0.2 ± 0.1 ± 0.3
6.0–8.0 4.875e−02 ± 0.4 ± 0.2 ± 0.5 4.874e−02 ± 0.4 ± 0.2 ± 0.6 4.941e−02 ± 0.3 ± 0.2 ± 0.2 4.936e−02 ± 0.3 ± 0.2 ± 0.2 4.933e−02 ± 0.3 ± 0.2 ± 0.5 4.922e−02 ± 0.3 ± 0.1 ± 0.4
8.0–10.0 4.085e−02 ± 0.4 ± 0.2 ± 0.5 4.054e−02 ± 0.4 ± 0.2 ± 0.5 4.143e−02 ± 0.4 ± 0.2 ± 0.3 4.112e−02 ± 0.4 ± 0.2 ± 0.3 4.085e−02 ± 0.4 ± 0.2 ± 0.5 4.071e−02 ± 0.3 ± 0.1 ± 0.4
10.0–13.0 3.303e−02 ± 0.4 ± 0.2 ± 0.3 3.265e−02 ± 0.4 ± 0.2 ± 0.3 3.325e−02 ± 0.3 ± 0.1 ± 0.2 3.290e−02 ± 0.3 ± 0.1 ± 0.2 3.251e−02 ± 0.3 ± 0.1 ± 0.3 3.256e−02 ± 0.2 ± 0.1 ± 0.2
13.0–16.0 2.548e−02 ± 0.4 ± 0.2 ± 0.3 2.511e−02 ± 0.4 ± 0.2 ± 0.3 2.569e−02 ± 0.3 ± 0.1 ± 0.2 2.533e−02 ± 0.3 ± 0.1 ± 0.2 2.498e−02 ± 0.3 ± 0.1 ± 0.2 2.501e−02 ± 0.3 ± 0.1 ± 0.2
16.0–20.0 1.933e−02 ± 0.4 ± 0.2 ± 0.3 1.905e−02 ± 0.4 ± 0.2 ± 0.4 1.940e−02 ± 0.3 ± 0.1 ± 0.2 1.916e−02 ± 0.3 ± 0.1 ± 0.2 1.887e−02 ± 0.3 ± 0.1 ± 0.3 1.894e−02 ± 0.3 ± 0.1 ± 0.2
20.0–25.0 1.380e−02 ± 0.4 ± 0.2 ± 0.3 1.365e−02 ± 0.4 ± 0.2 ± 0.3 1.379e−02 ± 0.3 ± 0.1 ± 0.2 1.368e−02 ± 0.3 ± 0.1 ± 0.2 1.355e−02 ± 0.3 ± 0.1 ± 0.3 1.359e−02 ± 0.3 ± 0.1 ± 0.2
25.0–30.0 9.832e−03 ± 0.5 ± 0.2 ± 0.3 9.771e−03 ± 0.5 ± 0.2 ± 0.3 9.800e−03 ± 0.4 ± 0.1 ± 0.2 9.759e−03 ± 0.4 ± 0.1 ± 0.2 9.695e−03 ± 0.4 ± 0.1 ± 0.2 9.719e−03 ± 0.3 ± 0.1 ± 0.2
30.0–37.0 6.765e−03 ± 0.4 ± 0.2 ± 0.3 6.759e−03 ± 0.4 ± 0.2 ± 0.3 6.786e−03 ± 0.4 ± 0.1 ± 0.3 6.791e−03 ± 0.4 ± 0.1 ± 0.3 6.779e−03 ± 0.4 ± 0.1 ± 0.3 6.763e−03 ± 0.3 ± 0.1 ± 0.2
37.0–45.0 4.625e−03 ± 0.5 ± 0.2 ± 0.5 4.630e−03 ± 0.5 ± 0.2 ± 0.5 4.538e−03 ± 0.4 ± 0.2 ± 0.3 4.555e−03 ± 0.4 ± 0.2 ± 0.3 4.564e−03 ± 0.4 ± 0.2 ± 0.4 4.589e−03 ± 0.3 ± 0.1 ± 0.3
45.0–55.0 2.993e−03 ± 0.5 ± 0.2 ± 0.7 3.006e−03 ± 0.5 ± 0.2 ± 0.7 2.939e−03 ± 0.5 ± 0.2 ± 0.4 2.955e−03 ± 0.5 ± 0.2 ± 0.4 2.969e−03 ± 0.5 ± 0.2 ± 0.4 2.984e−03 ± 0.4 ± 0.1 ± 0.3
55.0–65.0 1.915e−03 ± 0.7 ± 0.3 ± 0.9 1.928e−03 ± 0.7 ± 0.3 ± 0.9 1.894e−03 ± 0.6 ± 0.2 ± 0.5 1.912e−03 ± 0.6 ± 0.2 ± 0.5 1.925e−03 ± 0.6 ± 0.2 ± 0.5 1.926e−03 ± 0.4 ± 0.2 ± 0.4
65.0–75.0 1.282e−03 ± 0.8 ± 0.4 ± 1.0 1.294e−03 ± 0.8 ± 0.4 ± 1.0 1.246e−03 ± 0.8 ± 0.3 ± 0.5 1.260e−03 ± 0.8 ± 0.3 ± 0.5 1.271e−03 ± 0.8 ± 0.3 ± 0.5 1.283e−03 ± 0.6 ± 0.2 ± 0.5
75.0–85.0 8.543e−04 ± 1.0 ± 0.4 ± 1.1 8.627e−04 ± 1.0 ± 0.4 ± 1.1 8.402e−04 ± 1.0 ± 0.4 ± 0.6 8.501e−04 ± 1.0 ± 0.4 ± 0.6 8.586e−04 ± 1.0 ± 0.4 ± 0.6 8.633e−04 ± 0.7 ± 0.3 ± 0.5
85.0–105.0 4.796e−04 ± 0.9 ± 0.3 ± 1.0 4.830e−04 ± 0.9 ± 0.3 ± 1.0 4.773e−04 ± 0.8 ± 0.3 ± 0.5 4.833e−04 ± 0.8 ± 0.3 ± 0.5 4.873e−04 ± 0.8 ± 0.3 ± 0.5 4.858e−04 ± 0.6 ± 0.2 ± 0.5
105.0–150.0 1.855e−04 ± 0.9 ± 0.3 ± 1.0 1.867e−04 ± 0.9 ± 0.3 ± 1.0 1.821e−04 ± 0.9 ± 0.2 ± 0.4 1.850e−04 ± 0.9 ± 0.2 ± 0.4 1.866e−04 ± 0.9 ± 0.2 ± 0.6 1.874e−04 ± 0.6 ± 0.2 ± 0.5
150.0–200.0 5.087e−05 ± 1.5 ± 0.5 ± 1.3 5.110e−05 ± 1.5 ± 0.5 ± 1.3 5.338e−05 ± 1.6 ± 0.5 ± 0.7 5.453e−05 ± 1.6 ± 0.5 ± 0.7 5.481e−05 ± 1.6 ± 0.5 ± 0.8 5.303e−05 ± 1.1 ± 0.4 ± 0.7
200.0–900.0 2.117e−06 ± 2.0 ± 0.6 ± 1.7 2.124e−06 ± 1.9 ± 0.6 ± 1.8 2.095e−06 ± 2.0 ± 0.6 ± 1.1 2.138e−06 ± 2.0 ± 0.6 ± 1.1 2.142e−06 ± 2.0 ± 0.6 ± 1.1 2.145e−06 ± 1.4 ± 0.4 ± 1.0

Table 22.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,0.8|y|<1.2. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.640e−02 ± 0.6 ± 0.3 ± 1.0 2.708e−02 ± 0.6 ± 0.3 ± 1.0 2.606e−02 ± 0.5 ± 0.2 ± 0.9 2.662e−02 ± 0.5 ± 0.2 ± 0.9 2.731e−02 ± 0.5 ± 0.2 ± 0.9 2.711e−02 ± 0.4 ± 0.2 ± 0.6
2.0–4.0 5.532e−02 ± 0.4 ± 0.2 ± 0.6 5.639e−02 ± 0.4 ± 0.2 ± 0.6 5.406e−02 ± 0.3 ± 0.2 ± 0.3 5.491e−02 ± 0.3 ± 0.2 ± 0.3 5.597e−02 ± 0.3 ± 0.2 ± 0.4 5.611e−02 ± 0.2 ± 0.1 ± 0.3
4.0–6.0 5.598e−02 ± 0.4 ± 0.2 ± 0.3 5.653e−02 ± 0.4 ± 0.2 ± 0.3 5.608e−02 ± 0.3 ± 0.1 ± 0.4 5.645e−02 ± 0.3 ± 0.1 ± 0.4 5.700e−02 ± 0.3 ± 0.1 ± 0.5 5.691e−02 ± 0.2 ± 0.1 ± 0.3
6.0–8.0 4.889e−02 ± 0.4 ± 0.2 ± 0.4 4.887e−02 ± 0.4 ± 0.2 ± 0.4 4.919e−02 ± 0.3 ± 0.1 ± 0.4 4.913e−02 ± 0.3 ± 0.1 ± 0.4 4.913e−02 ± 0.3 ± 0.1 ± 0.5 4.906e−02 ± 0.3 ± 0.1 ± 0.3
8.0–10.0 4.126e−02 ± 0.5 ± 0.3 ± 0.5 4.095e−02 ± 0.5 ± 0.3 ± 0.6 4.159e−02 ± 0.4 ± 0.2 ± 0.4 4.132e−02 ± 0.4 ± 0.2 ± 0.4 4.098e−02 ± 0.4 ± 0.2 ± 0.6 4.096e−02 ± 0.3 ± 0.1 ± 0.4
10.0–13.0 3.288e−02 ± 0.4 ± 0.2 ± 0.4 3.246e−02 ± 0.4 ± 0.2 ± 0.4 3.324e−02 ± 0.3 ± 0.1 ± 0.3 3.284e−02 ± 0.3 ± 0.1 ± 0.3 3.242e−02 ± 0.3 ± 0.1 ± 0.5 3.244e−02 ± 0.3 ± 0.1 ± 0.3
13.0–16.0 2.552e−02 ± 0.5 ± 0.2 ± 0.4 2.515e−02 ± 0.5 ± 0.2 ± 0.4 2.592e−02 ± 0.4 ± 0.1 ± 0.3 2.556e−02 ± 0.4 ± 0.1 ± 0.3 2.518e−02 ± 0.4 ± 0.1 ± 0.3 2.519e−02 ± 0.3 ± 0.1 ± 0.2
16.0–20.0 1.917e−02 ± 0.4 ± 0.2 ± 0.3 1.888e−02 ± 0.4 ± 0.2 ± 0.3 1.942e−02 ± 0.3 ± 0.1 ± 0.2 1.916e−02 ± 0.3 ± 0.1 ± 0.2 1.887e−02 ± 0.3 ± 0.1 ± 0.2 1.888e−02 ± 0.3 ± 0.1 ± 0.2
20.0–25.0 1.360e−02 ± 0.4 ± 0.2 ± 0.3 1.346e−02 ± 0.4 ± 0.2 ± 0.3 1.384e−02 ± 0.3 ± 0.1 ± 0.2 1.373e−02 ± 0.3 ± 0.1 ± 0.2 1.360e−02 ± 0.3 ± 0.1 ± 0.2 1.355e−02 ± 0.3 ± 0.1 ± 0.2
25.0–30.0 9.826e−03 ± 0.5 ± 0.2 ± 0.3 9.766e−03 ± 0.5 ± 0.2 ± 0.3 9.730e−03 ± 0.4 ± 0.1 ± 0.2 9.698e−03 ± 0.4 ± 0.1 ± 0.2 9.646e−03 ± 0.4 ± 0.1 ± 0.3 9.693e−03 ± 0.3 ± 0.1 ± 0.2
30.0–37.0 6.841e−03 ± 0.5 ± 0.2 ± 0.4 6.830e−03 ± 0.5 ± 0.2 ± 0.4 6.760e−03 ± 0.4 ± 0.1 ± 0.2 6.757e−03 ± 0.4 ± 0.1 ± 0.2 6.747e−03 ± 0.4 ± 0.1 ± 0.3 6.777e−03 ± 0.3 ± 0.1 ± 0.2
37.0–45.0 4.559e−03 ± 0.5 ± 0.2 ± 0.6 4.568e−03 ± 0.5 ± 0.2 ± 0.6 4.510e−03 ± 0.5 ± 0.1 ± 0.3 4.527e−03 ± 0.5 ± 0.1 ± 0.3 4.532e−03 ± 0.5 ± 0.1 ± 0.3 4.544e−03 ± 0.3 ± 0.1 ± 0.3
45.0–55.0 2.962e−03 ± 0.6 ± 0.3 ± 0.8 2.975e−03 ± 0.6 ± 0.3 ± 0.8 2.890e−03 ± 0.5 ± 0.2 ± 0.3 2.909e−03 ± 0.5 ± 0.2 ± 0.3 2.924e−03 ± 0.5 ± 0.2 ± 0.4 2.940e−03 ± 0.4 ± 0.2 ± 0.3
55.0–65.0 1.903e−03 ± 0.7 ± 0.3 ± 1.0 1.916e−03 ± 0.7 ± 0.3 ± 1.0 1.873e−03 ± 0.6 ± 0.2 ± 0.4 1.893e−03 ± 0.6 ± 0.2 ± 0.4 1.907e−03 ± 0.6 ± 0.2 ± 0.5 1.907e−03 ± 0.5 ± 0.2 ± 0.5
65.0–75.0 1.238e−03 ± 0.9 ± 0.4 ± 1.2 1.249e−03 ± 0.9 ± 0.4 ± 1.2 1.228e−03 ± 0.8 ± 0.3 ± 0.5 1.242e−03 ± 0.8 ± 0.3 ± 0.5 1.253e−03 ± 0.8 ± 0.3 ± 0.5 1.249e−03 ± 0.6 ± 0.2 ± 0.5
75.0–85.0 8.166e−04 ± 1.1 ± 0.6 ± 1.2 8.235e−04 ± 1.1 ± 0.6 ± 1.2 8.238e−04 ± 1.0 ± 0.4 ± 0.5 8.348e−04 ± 1.0 ± 0.4 ± 0.5 8.421e−04 ± 1.0 ± 0.4 ± 0.5 8.337e−04 ± 0.7 ± 0.3 ± 0.5
85.0–105.0 4.798e−04 ± 1.0 ± 0.4 ± 1.0 4.844e−04 ± 1.0 ± 0.4 ± 1.0 4.718e−04 ± 0.8 ± 0.3 ± 0.5 4.786e−04 ± 0.8 ± 0.3 ± 0.5 4.829e−04 ± 0.8 ± 0.3 ± 0.5 4.832e−04 ± 0.6 ± 0.2 ± 0.4
105.0–150.0 1.807e−04 ± 1.0 ± 0.4 ± 0.9 1.821e−04 ± 1.0 ± 0.4 ± 0.9 1.802e−04 ± 0.9 ± 0.3 ± 0.5 1.829e−04 ± 0.9 ± 0.3 ± 0.5 1.840e−04 ± 0.9 ± 0.3 ± 0.5 1.831e−04 ± 0.6 ± 0.3 ± 0.5
150.0–200.0 5.136e−05 ± 1.7 ± 0.7 ± 1.4 5.166e−05 ± 1.7 ± 0.7 ± 1.4 5.053e−05 ± 1.6 ± 0.5 ± 1.0 5.152e−05 ± 1.6 ± 0.5 ± 1.0 5.186e−05 ± 1.6 ± 0.5 ± 1.0 5.182e−05 ± 1.2 ± 0.4 ± 0.7
200.0–900.0 2.031e−06 ± 2.2 ± 0.7 ± 1.6 2.040e−06 ± 2.2 ± 0.7 ± 1.6 2.025e−06 ± 2.0 ± 0.7 ± 1.3 2.067e−06 ± 2.0 ± 0.7 ± 1.3 2.078e−06 ± 2.0 ± 0.7 ± 1.3 2.061e−06 ± 1.5 ± 0.5 ± 0.9

Table 23.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,1.2|y|<1.6. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.584e−02 ± 0.6 ± 0.3 ± 1.1 2.655e−02 ± 0.6 ± 0.3 ± 1.1 2.512e−02 ± 0.5 ± 0.2 ± 0.9 2.573e−02 ± 0.5 ± 0.2 ± 0.9 2.645e−02 ± 0.5 ± 0.2 ± 0.9 2.658e−02 ± 0.4 ± 0.2 ± 0.7
2.0–4.0 5.405e−02 ± 0.4 ± 0.2 ± 0.8 5.522e−02 ± 0.4 ± 0.2 ± 0.8 5.308e−02 ± 0.3 ± 0.2 ± 0.5 5.405e−02 ± 0.3 ± 0.2 ± 0.5 5.525e−02 ± 0.3 ± 0.2 ± 0.5 5.536e−02 ± 0.3 ± 0.1 ± 0.4
4.0–6.0 5.436e−02 ± 0.4 ± 0.2 ± 0.5 5.494e−02 ± 0.4 ± 0.2 ± 0.5 5.453e−02 ± 0.3 ± 0.2 ± 0.4 5.498e−02 ± 0.3 ± 0.2 ± 0.4 5.554e−02 ± 0.3 ± 0.2 ± 0.4 5.529e−02 ± 0.3 ± 0.2 ± 0.4
6.0–8.0 4.804e−02 ± 0.5 ± 0.3 ± 0.6 4.803e−02 ± 0.5 ± 0.3 ± 0.6 4.836e−02 ± 0.4 ± 0.2 ± 0.3 4.831e−02 ± 0.4 ± 0.2 ± 0.3 4.829e−02 ± 0.4 ± 0.2 ± 0.6 4.816e−02 ± 0.3 ± 0.1 ± 0.5
8.0–10.0 4.096e−02 ± 0.5 ± 0.2 ± 0.5 4.057e−02 ± 0.5 ± 0.2 ± 0.6 4.138e−02 ± 0.4 ± 0.2 ± 0.4 4.104e−02 ± 0.4 ± 0.2 ± 0.4 4.068e−02 ± 0.4 ± 0.2 ± 0.6 4.066e−02 ± 0.3 ± 0.2 ± 0.5
10.0–13.0 3.316e−02 ± 0.4 ± 0.2 ± 0.3 3.271e−02 ± 0.4 ± 0.2 ± 0.4 3.354e−02 ± 0.4 ± 0.1 ± 0.2 3.313e−02 ± 0.4 ± 0.1 ± 0.2 3.268e−02 ± 0.4 ± 0.1 ± 0.3 3.270e−02 ± 0.3 ± 0.1 ± 0.3
13.0–16.0 2.573e−02 ± 0.5 ± 0.3 ± 0.4 2.531e−02 ± 0.5 ± 0.3 ± 0.4 2.620e−02 ± 0.4 ± 0.2 ± 0.3 2.580e−02 ± 0.4 ± 0.2 ± 0.3 2.536e−02 ± 0.4 ± 0.2 ± 0.3 2.534e−02 ± 0.3 ± 0.1 ± 0.2
16.0–20.0 1.956e−02 ± 0.5 ± 0.2 ± 0.4 1.922e−02 ± 0.5 ± 0.2 ± 0.4 1.974e−02 ± 0.4 ± 0.2 ± 0.2 1.947e−02 ± 0.4 ± 0.2 ± 0.2 1.914e−02 ± 0.4 ± 0.2 ± 0.3 1.917e−02 ± 0.3 ± 0.1 ± 0.2
20.0–25.0 1.390e−02 ± 0.5 ± 0.3 ± 0.4 1.375e−02 ± 0.5 ± 0.3 ± 0.4 1.405e−02 ± 0.4 ± 0.2 ± 0.3 1.390e−02 ± 0.4 ± 0.2 ± 0.3 1.374e−02 ± 0.4 ± 0.2 ± 0.3 1.374e−02 ± 0.3 ± 0.1 ± 0.2
25.0–30.0 1.000e−02 ± 0.6 ± 0.3 ± 0.6 9.947e−03 ± 0.6 ± 0.3 ± 0.6 1.002e−02 ± 0.5 ± 0.2 ± 0.3 9.973e−03 ± 0.5 ± 0.2 ± 0.3 9.918e−03 ± 0.5 ± 0.2 ± 0.3 9.915e−03 ± 0.4 ± 0.1 ± 0.3
30.0–37.0 6.933e−03 ± 0.6 ± 0.3 ± 0.6 6.929e−03 ± 0.6 ± 0.3 ± 0.6 6.924e−03 ± 0.4 ± 0.1 ± 0.3 6.928e−03 ± 0.4 ± 0.1 ± 0.3 6.921e−03 ± 0.4 ± 0.1 ± 0.3 6.918e−03 ± 0.4 ± 0.1 ± 0.2
37.0–45.0 4.611e−03 ± 0.6 ± 0.3 ± 0.8 4.628e−03 ± 0.6 ± 0.3 ± 0.8 4.576e−03 ± 0.5 ± 0.2 ± 0.3 4.594e−03 ± 0.5 ± 0.2 ± 0.3 4.605e−03 ± 0.5 ± 0.2 ± 0.3 4.606e−03 ± 0.4 ± 0.2 ± 0.3
45.0–55.0 2.995e−03 ± 0.7 ± 0.3 ± 1.0 3.012e−03 ± 0.7 ± 0.3 ± 1.0 2.928e−03 ± 0.5 ± 0.2 ± 0.3 2.949e−03 ± 0.5 ± 0.2 ± 0.3 2.967e−03 ± 0.5 ± 0.2 ± 0.3 2.978e−03 ± 0.4 ± 0.2 ± 0.3
55.0–65.0 1.940e−03 ± 0.9 ± 0.4 ± 1.1 1.953e−03 ± 0.9 ± 0.4 ± 1.1 1.902e−03 ± 0.7 ± 0.3 ± 0.5 1.921e−03 ± 0.7 ± 0.3 ± 0.5 1.938e−03 ± 0.7 ± 0.3 ± 0.5 1.939e−03 ± 0.5 ± 0.2 ± 0.4
65.0–75.0 1.290e−03 ± 1.1 ± 0.4 ± 1.2 1.303e−03 ± 1.1 ± 0.4 ± 1.2 1.247e−03 ± 0.9 ± 0.3 ± 0.5 1.263e−03 ± 0.9 ± 0.3 ± 0.5 1.276e−03 ± 0.9 ± 0.3 ± 0.6 1.284e−03 ± 0.7 ± 0.3 ± 0.5
75.0–85.0 8.719e−04 ± 1.3 ± 0.5 ± 1.1 8.814e−04 ± 1.3 ± 0.5 ± 1.1 8.569e−04 ± 1.1 ± 0.4 ± 0.6 8.689e−04 ± 1.1 ± 0.4 ± 0.6 8.800e−04 ± 1.1 ± 0.4 ± 0.6 8.786e−04 ± 0.8 ± 0.3 ± 0.5
85.0–105.0 4.966e−04 ± 1.1 ± 0.5 ± 1.0 5.025e−04 ± 1.1 ± 0.5 ± 1.1 4.805e−04 ± 0.9 ± 0.3 ± 0.5 4.877e−04 ± 0.9 ± 0.3 ± 0.5 4.928e−04 ± 0.9 ± 0.3 ± 0.5 4.959e−04 ± 0.7 ± 0.3 ± 0.5
105.0–150.0 1.933e−04 ± 1.1 ± 0.4 ± 1.2 1.950e−04 ± 1.1 ± 0.4 ± 1.2 1.879e−04 ± 0.9 ± 0.3 ± 0.5 1.909e−04 ± 0.9 ± 0.3 ± 0.5 1.927e−04 ± 0.9 ± 0.3 ± 0.6 1.936e−04 ± 0.7 ± 0.2 ± 0.5
150.0–200.0 5.229e−05 ± 2.0 ± 0.7 ± 1.7 5.271e−05 ± 2.0 ± 0.7 ± 1.7 5.304e−05 ± 1.7 ± 0.5 ± 0.7 5.410e−05 ± 1.7 ± 0.5 ± 0.7 5.445e−05 ± 1.7 ± 0.5 ± 0.7 5.363e−05 ± 1.3 ± 0.4 ± 0.7
200.0–900.0 2.078e−06 ± 2.7 ± 1.0 ± 3.3 2.084e−06 ± 2.7 ± 1.0 ± 3.3 2.031e−06 ± 2.2 ± 0.6 ± 0.8 2.095e−06 ± 2.2 ± 0.6 ± 0.8 2.109e−06 ± 2.2 ± 0.6 ± 0.9 2.099e−06 ± 1.7 ± 0.5 ± 1.1

Table 24.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,1.6|y|<2.0. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.536e−02 ± 0.8 ± 0.5 ± 1.5 2.616e−02 ± 0.8 ± 0.5 ± 1.5 2.466e−02 ± 0.6 ± 0.3 ± 1.2 2.541e−02 ± 0.6 ± 0.3 ± 1.2 2.618e−02 ± 0.6 ± 0.3 ± 1.2 2.606e−02 ± 0.5 ± 0.3 ± 0.9
2.0–4.0 5.324e−02 ± 0.5 ± 0.3 ± 1.1 5.454e−02 ± 0.5 ± 0.3 ± 1.2 5.139e−02 ± 0.4 ± 0.2 ± 0.6 5.254e−02 ± 0.4 ± 0.2 ± 0.6 5.382e−02 ± 0.4 ± 0.2 ± 0.7 5.394e−02 ± 0.3 ± 0.2 ± 0.6
4.0–6.0 5.345e−02 ± 0.5 ± 0.3 ± 0.6 5.408e−02 ± 0.5 ± 0.3 ± 0.6 5.307e−02 ± 0.4 ± 0.2 ± 0.3 5.366e−02 ± 0.4 ± 0.2 ± 0.3 5.433e−02 ± 0.4 ± 0.2 ± 0.5 5.425e−02 ± 0.3 ± 0.2 ± 0.4
6.0–8.0 4.640e−02 ± 0.6 ± 0.3 ± 0.9 4.646e−02 ± 0.6 ± 0.3 ± 0.9 4.678e−02 ± 0.4 ± 0.3 ± 0.5 4.674e−02 ± 0.4 ± 0.3 ± 0.5 4.679e−02 ± 0.4 ± 0.3 ± 0.9 4.667e−02 ± 0.3 ± 0.2 ± 0.6
8.0–10.0 3.960e−02 ± 0.6 ± 0.3 ± 0.8 3.931e−02 ± 0.6 ± 0.3 ± 0.9 3.978e−02 ± 0.5 ± 0.2 ± 0.4 3.950e−02 ± 0.5 ± 0.2 ± 0.4 3.922e−02 ± 0.5 ± 0.2 ± 0.5 3.925e−02 ± 0.4 ± 0.2 ± 0.4
10.0–13.0 3.241e−02 ± 0.6 ± 0.3 ± 0.5 3.194e−02 ± 0.6 ± 0.3 ± 0.5 3.259e−02 ± 0.4 ± 0.2 ± 0.3 3.216e−02 ± 0.4 ± 0.2 ± 0.3 3.170e−02 ± 0.4 ± 0.2 ± 0.3 3.180e−02 ± 0.3 ± 0.2 ± 0.2
13.0–16.0 2.554e−02 ± 0.7 ± 0.3 ± 0.6 2.503e−02 ± 0.7 ± 0.3 ± 0.6 2.580e−02 ± 0.5 ± 0.2 ± 0.4 2.531e−02 ± 0.5 ± 0.2 ± 0.4 2.480e−02 ± 0.5 ± 0.2 ± 0.4 2.489e−02 ± 0.4 ± 0.2 ± 0.3
16.0–20.0 1.920e−02 ± 0.6 ± 0.3 ± 0.6 1.882e−02 ± 0.6 ± 0.3 ± 0.6 2.009e−02 ± 0.5 ± 0.2 ± 0.3 1.968e−02 ± 0.5 ± 0.2 ± 0.3 1.929e−02 ± 0.5 ± 0.2 ± 0.4 1.914e−02 ± 0.4 ± 0.2 ± 0.3
20.0–25.0 1.431e−02 ± 0.6 ± 0.3 ± 0.5 1.409e−02 ± 0.6 ± 0.3 ± 0.5 1.436e−02 ± 0.5 ± 0.2 ± 0.4 1.419e−02 ± 0.5 ± 0.2 ± 0.4 1.398e−02 ± 0.5 ± 0.2 ± 0.5 1.403e−02 ± 0.4 ± 0.2 ± 0.3
25.0–30.0 1.042e−02 ± 0.8 ± 0.4 ± 0.7 1.033e−02 ± 0.8 ± 0.4 ± 0.7 1.036e−02 ± 0.6 ± 0.2 ± 0.4 1.029e−02 ± 0.6 ± 0.2 ± 0.4 1.020e−02 ± 0.6 ± 0.2 ± 0.5 1.025e−02 ± 0.5 ± 0.2 ± 0.4
30.0–37.0 7.322e−03 ± 0.7 ± 0.3 ± 0.8 7.307e−03 ± 0.7 ± 0.3 ± 0.8 7.463e−03 ± 0.5 ± 0.2 ± 0.4 7.452e−03 ± 0.5 ± 0.2 ± 0.4 7.429e−03 ± 0.5 ± 0.2 ± 0.4 7.398e−03 ± 0.4 ± 0.2 ± 0.3
37.0–45.0 4.924e−03 ± 0.8 ± 0.4 ± 1.0 4.937e−03 ± 0.8 ± 0.4 ± 1.0 4.975e−03 ± 0.6 ± 0.2 ± 0.4 4.998e−03 ± 0.6 ± 0.2 ± 0.4 5.015e−03 ± 0.6 ± 0.2 ± 0.4 4.994e−03 ± 0.5 ± 0.2 ± 0.4
45.0–55.0 3.207e−03 ± 0.8 ± 0.4 ± 1.4 3.225e−03 ± 0.8 ± 0.4 ± 1.4 3.196e−03 ± 0.7 ± 0.2 ± 0.4 3.221e−03 ± 0.7 ± 0.2 ± 0.4 3.241e−03 ± 0.7 ± 0.2 ± 0.4 3.241e−03 ± 0.5 ± 0.2 ± 0.4
55.0–65.0 2.042e−03 ± 1.0 ± 0.5 ± 1.6 2.062e−03 ± 1.0 ± 0.5 ± 1.6 2.002e−03 ± 0.9 ± 0.4 ± 0.6 2.022e−03 ± 0.9 ± 0.4 ± 0.6 2.044e−03 ± 0.9 ± 0.4 ± 0.6 2.052e−03 ± 0.7 ± 0.3 ± 0.6
65.0–75.0 1.333e−03 ± 1.3 ± 0.6 ± 1.8 1.350e−03 ± 1.3 ± 0.6 ± 1.8 1.311e−03 ± 1.1 ± 0.4 ± 0.6 1.330e−03 ± 1.1 ± 0.4 ± 0.6 1.344e−03 ± 1.1 ± 0.4 ± 0.6 1.349e−03 ± 0.8 ± 0.4 ± 0.6
75.0–85.0 9.113e−04 ± 1.5 ± 0.6 ± 2.0 9.246e−04 ± 1.5 ± 0.6 ± 2.0 8.804e−04 ± 1.4 ± 0.5 ± 0.9 8.952e−04 ± 1.4 ± 0.5 ± 0.9 9.085e−04 ± 1.4 ± 0.5 ± 0.9 9.165e−04 ± 1.0 ± 0.4 ± 0.8
85.0–105.0 5.245e−04 ± 1.3 ± 0.6 ± 1.3 5.298e−04 ± 1.3 ± 0.6 ± 1.3 5.142e−04 ± 1.1 ± 0.4 ± 0.7 5.206e−04 ± 1.1 ± 0.4 ± 0.7 5.271e−04 ± 1.1 ± 0.4 ± 0.8 5.290e−04 ± 0.8 ± 0.4 ± 0.6
105.0–150.0 2.042e−04 ± 1.3 ± 0.5 ± 1.3 2.064e−04 ± 1.3 ± 0.5 ± 1.3 1.994e−04 ± 1.1 ± 0.3 ± 0.6 2.030e−04 ± 1.1 ± 0.3 ± 0.6 2.053e−04 ± 1.1 ± 0.3 ± 0.6 2.056e−04 ± 0.8 ± 0.3 ± 0.5
150.0–200.0 5.886e−05 ± 2.2 ± 0.9 ± 1.9 5.962e−05 ± 2.2 ± 0.9 ± 1.9 5.851e−05 ± 1.9 ± 0.6 ± 0.8 5.976e−05 ± 1.9 ± 0.6 ± 0.8 6.050e−05 ± 1.9 ± 0.6 ± 0.9 6.014e−05 ± 1.5 ± 0.5 ± 0.8
200.0–900.0 2.048e−06 ± 3.2 ± 1.3 ± 3.4 2.078e−06 ± 3.2 ± 1.3 ± 3.5 1.972e−06 ± 2.8 ± 0.8 ± 1.1 2.036e−06 ± 2.8 ± 0.8 ± 1.1 2.054e−06 ± 2.8 ± 0.8 ± 1.2 2.060e−06 ± 2.1 ± 0.7 ± 1.3

Table 25.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,2.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.582e−02 ± 1.3 ± 0.6 ± 2.3 2.668e−02 ± 1.3 ± 0.6 ± 2.3 2.483e−02 ± 1.1 ± 0.5 ± 2.0 2.563e−02 ± 1.1 ± 0.5 ± 2.0 2.646e−02 ± 1.1 ± 0.5 ± 2.0 2.676e−02 ± 0.8 ± 0.4 ± 1.5
2.0–4.0 5.224e−02 ± 0.8 ± 0.5 ± 1.5 5.354e−02 ± 0.8 ± 0.5 ± 1.5 5.173e−02 ± 0.7 ± 0.3 ± 1.1 5.296e−02 ± 0.7 ± 0.3 ± 1.1 5.432e−02 ± 0.7 ± 0.3 ± 1.2 5.429e−02 ± 0.5 ± 0.3 ± 0.9
4.0–6.0 5.276e−02 ± 0.8 ± 0.5 ± 1.0 5.345e−02 ± 0.8 ± 0.5 ± 1.0 5.203e−02 ± 0.7 ± 0.4 ± 0.8 5.274e−02 ± 0.7 ± 0.4 ± 0.8 5.337e−02 ± 0.7 ± 0.4 ± 0.8 5.338e−02 ± 0.6 ± 0.3 ± 0.6
6.0–8.0 4.545e−02 ± 0.9 ± 0.5 ± 0.9 4.558e−02 ± 0.9 ± 0.5 ± 1.0 4.548e−02 ± 0.8 ± 0.4 ± 1.0 4.556e−02 ± 0.8 ± 0.4 ± 1.0 4.575e−02 ± 0.8 ± 0.4 ± 1.0 4.567e−02 ± 0.6 ± 0.3 ± 0.7
8.0–10.0 3.928e−02 ± 1.0 ± 0.5 ± 0.9 3.904e−02 ± 1.0 ± 0.5 ± 0.9 3.903e−02 ± 0.8 ± 0.4 ± 0.7 3.872e−02 ± 0.8 ± 0.4 ± 0.7 3.850e−02 ± 0.8 ± 0.4 ± 0.8 3.867e−02 ± 0.6 ± 0.3 ± 0.6
10.0–13.0 3.116e−02 ± 0.9 ± 0.4 ± 0.7 3.075e−02 ± 0.9 ± 0.4 ± 0.7 3.216e−02 ± 0.7 ± 0.4 ± 0.7 3.175e−02 ± 0.7 ± 0.4 ± 0.7 3.121e−02 ± 0.7 ± 0.4 ± 0.8 3.100e−02 ± 0.6 ± 0.3 ± 0.5
13.0–16.0 2.418e−02 ± 1.1 ± 0.6 ± 0.8 2.369e−02 ± 1.1 ± 0.6 ± 0.8 2.523e−02 ± 0.9 ± 0.4 ± 0.7 2.473e−02 ± 0.9 ± 0.4 ± 0.7 2.423e−02 ± 0.9 ± 0.4 ± 0.7 2.401e−02 ± 0.7 ± 0.3 ± 0.5
16.0–20.0 1.935e−02 ± 1.0 ± 0.4 ± 0.6 1.890e−02 ± 1.0 ± 0.4 ± 0.6 1.954e−02 ± 0.8 ± 0.4 ± 0.5 1.909e−02 ± 0.8 ± 0.4 ± 0.5 1.870e−02 ± 0.8 ± 0.4 ± 0.6 1.877e−02 ± 0.6 ± 0.3 ± 0.4
20.0–25.0 1.407e−02 ± 1.0 ± 0.6 ± 0.8 1.383e−02 ± 1.0 ± 0.6 ± 0.8 1.438e−02 ± 0.9 ± 0.3 ± 0.5 1.417e−02 ± 0.9 ± 0.3 ± 0.5 1.390e−02 ± 0.9 ± 0.3 ± 0.8 1.386e−02 ± 0.7 ± 0.3 ± 0.5
25.0–30.0 1.040e−02 ± 1.1 ± 0.7 ± 0.9 1.032e−02 ± 1.1 ± 0.7 ± 0.9 1.029e−02 ± 1.0 ± 0.5 ± 0.7 1.020e−02 ± 1.0 ± 0.5 ± 0.7 1.011e−02 ± 1.0 ± 0.5 ± 0.9 1.019e−02 ± 0.8 ± 0.4 ± 0.6
30.0–37.0 7.412e−03 ± 1.1 ± 0.7 ± 0.8 7.365e−03 ± 1.1 ± 0.7 ± 0.8 7.470e−03 ± 1.0 ± 0.3 ± 0.5 7.424e−03 ± 1.0 ± 0.3 ± 0.5 7.404e−03 ± 1.0 ± 0.3 ± 0.6 7.377e−03 ± 0.7 ± 0.3 ± 0.5
37.0–45.0 5.299e−03 ± 1.1 ± 0.5 ± 0.9 5.288e−03 ± 1.1 ± 0.5 ± 1.0 5.210e−03 ± 1.1 ± 0.3 ± 0.5 5.215e−03 ± 1.1 ± 0.3 ± 0.5 5.197e−03 ± 1.1 ± 0.3 ± 0.5 5.226e−03 ± 0.8 ± 0.3 ± 0.5
45.0–55.0 3.549e−03 ± 1.2 ± 0.7 ± 1.3 3.566e−03 ± 1.2 ± 0.7 ± 1.3 3.461e−03 ± 1.1 ± 0.4 ± 0.6 3.478e−03 ± 1.1 ± 0.4 ± 0.6 3.502e−03 ± 1.1 ± 0.4 ± 0.6 3.517e−03 ± 0.8 ± 0.3 ± 0.6
55.0–65.0 2.400e−03 ± 1.5 ± 0.6 ± 1.5 2.423e−03 ± 1.5 ± 0.6 ± 1.5 2.295e−03 ± 1.4 ± 0.5 ± 0.7 2.325e−03 ± 1.4 ± 0.5 ± 0.7 2.342e−03 ± 1.4 ± 0.5 ± 0.7 2.368e−03 ± 1.0 ± 0.4 ± 0.6
65.0–75.0 1.534e−03 ± 1.8 ± 0.9 ± 1.9 1.556e−03 ± 1.8 ± 0.9 ± 2.0 1.499e−03 ± 1.7 ± 0.7 ± 1.4 1.519e−03 ± 1.7 ± 0.7 ± 1.4 1.541e−03 ± 1.7 ± 0.7 ± 1.4 1.538e−03 ± 1.3 ± 0.6 ± 1.0
75.0–85.0 9.811e−04 ± 2.4 ± 0.8 ± 1.8 9.940e−04 ± 2.4 ± 0.8 ± 1.8 1.020e−03 ± 2.2 ± 1.0 ± 1.5 1.037e−03 ± 2.2 ± 1.0 ± 1.5 1.052e−03 ± 2.2 ± 1.0 ± 1.6 1.021e−03 ± 1.6 ± 0.6 ± 1.1
85.0–105.0 5.455e−04 ± 2.0 ± 0.6 ± 1.6 5.523e−04 ± 2.0 ± 0.6 ± 1.6 5.396e−04 ± 1.9 ± 0.7 ± 1.3 5.498e−04 ± 1.9 ± 0.7 ± 1.3 5.603e−04 ± 1.9 ± 0.7 ± 1.4 5.546e−04 ± 1.4 ± 0.5 ± 1.0
105.0–150.0 2.015e−04 ± 2.1 ± 0.8 ± 1.4 2.045e−04 ± 2.1 ± 0.8 ± 1.4 1.935e−04 ± 1.9 ± 0.6 ± 1.3 1.975e−04 ± 1.9 ± 0.6 ± 1.3 1.993e−04 ± 1.9 ± 0.6 ± 1.4 2.005e−04 ± 1.4 ± 0.5 ± 0.9
150.0–200.0 5.896e−05 ± 3.6 ± 1.6 ± 2.6 5.955e−05 ± 3.6 ± 1.6 ± 2.6 5.369e−05 ± 3.6 ± 1.2 ± 1.6 5.514e−05 ± 3.6 ± 1.2 ± 1.6 5.579e−05 ± 3.6 ± 1.2 ± 1.7 5.744e−05 ± 2.6 ± 1.0 ± 1.5
200.0–900.0 1.803e−06 ± 5.4 ± 1.8 ± 3.7 1.818e−06 ± 5.4 ± 1.8 ± 3.7 1.692e−06 ± 5.2 ± 1.7 ± 2.4 1.745e−06 ± 5.2 ± 1.7 ± 2.4 1.747e−06 ± 5.2 ± 1.7 ± 2.5 1.765e−06 ± 3.8 ± 1.2 ± 2.2

Table 26.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 12GeVm<20GeV,0.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
45.0–55.0 2.720e−02 ± 1.9 ± 1.4 ± 2.3 2.719e−02 ± 1.9 ± 1.4 ± 2.3 2.820e−02 ± 1.3 ± 0.3 ± 0.7 2.815e−02 ± 1.3 ± 0.3 ± 0.7 2.807e−02 ± 1.3 ± 0.3 ± 1.3 2.792e−02 ± 1.1 ± 0.4 ± 1.1
55.0–65.0 2.137e−02 ± 2.3 ± 1.6 ± 1.6 2.140e−02 ± 2.3 ± 1.6 ± 1.8 2.166e−02 ± 1.6 ± 0.5 ± 0.5 2.156e−02 ± 1.6 ± 0.5 ± 0.5 2.158e−02 ± 1.6 ± 0.5 ± 0.7 2.150e−02 ± 1.3 ± 0.5 ± 0.8
65.0–75.0 1.526e−02 ± 2.6 ± 2.7 ± 2.9 1.526e−02 ± 2.6 ± 2.7 ± 3.0 1.534e−02 ± 1.9 ± 0.5 ± 0.6 1.532e−02 ± 1.9 ± 0.5 ± 0.6 1.538e−02 ± 1.9 ± 0.5 ± 1.3 1.534e−02 ± 1.6 ± 0.7 ± 1.2
75.0–85.0 1.014e−02 ± 3.2 ± 1.4 ± 1.9 1.014e−02 ± 3.2 ± 1.4 ± 2.1 1.038e−02 ± 2.3 ± 0.7 ± 1.1 1.042e−02 ± 2.3 ± 0.7 ± 1.1 1.044e−02 ± 2.3 ± 0.7 ± 1.1 1.030e−02 ± 1.9 ± 0.7 ± 1.1
85.0–105.0 6.223e−03 ± 2.5 ± 1.1 ± 2.0 6.239e−03 ± 2.5 ± 1.1 ± 2.1 5.958e−03 ± 2.1 ± 0.6 ± 1.1 5.974e−03 ± 2.1 ± 0.6 ± 1.1 5.974e−03 ± 2.1 ± 0.6 ± 1.4 6.042e−03 ± 1.6 ± 0.6 ± 1.3
105.0–150.0 2.116e−03 ± 2.7 ± 1.0 ± 2.2 2.106e−03 ± 2.7 ± 1.0 ± 2.3 2.007e−03 ± 2.4 ± 0.7 ± 1.4 2.023e−03 ± 2.4 ± 0.7 ± 1.4 2.027e−03 ± 2.4 ± 0.7 ± 1.4 2.044e−03 ± 1.8 ± 0.6 ± 1.3
150.0–200.0 5.489e−04 ± 4.7 ± 1.9 ± 3.5 5.472e−04 ± 4.7 ± 1.9 ± 3.7 4.873e−04 ± 4.6 ± 1.7 ± 2.5 4.940e−04 ± 4.6 ± 1.7 ± 2.5 4.897e−04 ± 4.6 ± 1.7 ± 2.6 5.105e−04 ± 3.3 ± 1.2 ± 2.3
200.0–900.0 1.888e−05 ± 9.6 ± 3.0 ± 4.6 1.880e−05 ± 9.6 ± 3.0 ± 4.9 1.467e−05 ± 7.1 ± 1.9 ± 3.4 1.460e−05 ± 7.1 ± 1.9 ± 3.4 1.448e−05 ± 7.1 ± 1.9 ± 4.3 1.574e−05 ± 5.7 ± 1.6 ± 3.5

Table 27.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 20GeVm<30GeV,0.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
45.0–55.0 2.771e−02 ± 2.3 ± 0.9 ± 2.2 2.745e−02 ± 2.3 ± 0.9 ± 2.4 2.775e−02 ± 1.6 ± 0.6 ± 1.1 2.766e−02 ± 1.6 ± 0.6 ± 1.1 2.750e−02 ± 1.6 ± 0.6 ± 1.4 2.751e−02 ± 1.3 ± 0.5 ± 1.3
55.0–65.0 2.081e−02 ± 2.7 ± 1.4 ± 1.8 2.085e−02 ± 2.7 ± 1.4 ± 1.8 2.122e−02 ± 1.9 ± 0.7 ± 0.9 2.114e−02 ± 1.9 ± 0.7 ± 0.9 2.134e−02 ± 1.9 ± 0.7 ± 1.3 2.122e−02 ± 1.6 ± 0.6 ± 1.1
65.0–75.0 1.441e−02 ± 3.1 ± 1.3 ± 2.3 1.447e−02 ± 3.1 ± 1.3 ± 2.3 1.475e−02 ± 2.4 ± 1.0 ± 1.5 1.480e−02 ± 2.4 ± 1.0 ± 1.5 1.479e−02 ± 2.4 ± 1.0 ± 1.6 1.468e−02 ± 1.9 ± 0.8 ± 1.3
75.0–85.0 1.048e−02 ± 3.7 ± 1.7 ± 3.1 1.052e−02 ± 3.7 ± 1.7 ± 3.1 1.012e−02 ± 2.9 ± 1.3 ± 2.0 1.010e−02 ± 2.9 ± 1.3 ± 2.0 1.014e−02 ± 2.9 ± 1.3 ± 2.0 1.027e−02 ± 2.3 ± 1.0 ± 1.7
85.0–105.0 6.007e−03 ± 3.0 ± 1.4 ± 3.4 6.029e−03 ± 3.0 ± 1.4 ± 3.4 6.245e−03 ± 2.5 ± 1.2 ± 1.9 6.240e−03 ± 2.5 ± 1.2 ± 1.9 6.245e−03 ± 2.5 ± 1.2 ± 2.0 6.140e−03 ± 1.9 ± 0.9 ± 1.9
105.0–150.0 2.236e−03 ± 3.0 ± 1.4 ± 3.9 2.247e−03 ± 3.0 ± 1.4 ± 3.9 2.176e−03 ± 2.7 ± 1.0 ± 2.1 2.201e−03 ± 2.7 ± 1.0 ± 2.1 2.191e−03 ± 2.7 ± 1.0 ± 2.2 2.199e−03 ± 2.0 ± 0.8 ± 2.1
150.0–200.0 5.916e−04 ± 5.1 ± 2.4 ± 4.8 5.999e−04 ± 5.1 ± 2.4 ± 5.6 5.085e−04 ± 5.3 ± 2.3 ± 3.2 5.107e−04 ± 5.3 ± 2.3 ± 3.2 5.077e−04 ± 5.3 ± 2.3 ± 3.4 5.446e−04 ± 3.7 ± 1.6 ± 3.2
200.0–900.0 2.228e−05 ± 7.0 ± 2.8 ± 5.4 2.208e−05 ± 7.0 ± 2.8 ± 6.2 1.924e−05 ± 6.9 ± 2.7 ± 3.4 1.947e−05 ± 6.9 ± 2.7 ± 3.4 1.923e−05 ± 6.9 ± 2.7 ± 3.4 2.023e−05 ± 5.0 ± 1.9 ± 3.3

Table 28.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 30GeVm<46GeV,0.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
45.0–55.0 2.853e−02 ± 2.2 ± 0.6 ± 1.7 2.821e−02 ± 2.2 ± 0.6 ± 2.0 2.974e−02 ± 1.6 ± 0.5 ± 1.1 2.977e−02 ± 1.6 ± 0.5 ± 1.1 2.953e−02 ± 1.6 ± 0.5 ± 1.3 2.909e−02 ± 1.3 ± 0.4 ± 1.2
55.0–65.0 2.153e−02 ± 2.6 ± 1.4 ± 1.4 2.165e−02 ± 2.7 ± 1.4 ± 1.6 2.118e−02 ± 2.0 ± 0.8 ± 1.0 2.119e−02 ± 2.0 ± 0.8 ± 1.0 2.132e−02 ± 2.0 ± 0.8 ± 1.3 2.146e−02 ± 1.6 ± 0.7 ± 1.1
65.0–75.0 1.517e−02 ± 3.3 ± 1.1 ± 1.6 1.529e−02 ± 3.3 ± 1.1 ± 1.7 1.412e−02 ± 2.6 ± 1.1 ± 1.3 1.405e−02 ± 2.6 ± 1.1 ± 1.3 1.410e−02 ± 2.6 ± 1.1 ± 1.3 1.452e−02 ± 2.1 ± 0.8 ± 1.1
75.0–85.0 9.428e−03 ± 4.2 ± 1.5 ± 2.3 9.462e−03 ± 4.2 ± 1.5 ± 2.3 1.001e−02 ± 3.2 ± 1.2 ± 1.6 9.895e−03 ± 3.2 ± 1.2 ± 1.6 9.917e−03 ± 3.2 ± 1.2 ± 2.8 9.763e−03 ± 2.6 ± 0.9 ± 2.0
85.0–105.0 5.793e−03 ± 3.4 ± 1.4 ± 2.5 5.807e−03 ± 3.4 ± 1.4 ± 2.6 5.772e−03 ± 2.9 ± 1.2 ± 1.8 5.799e−03 ± 2.9 ± 1.2 ± 1.8 5.808e−03 ± 2.9 ± 1.2 ± 2.0 5.793e−03 ± 2.2 ± 0.9 ± 1.7
105.0–150.0 2.114e−03 ± 3.3 ± 1.5 ± 3.0 2.118e−03 ± 3.3 ± 1.5 ± 3.0 2.028e−03 ± 3.0 ± 1.1 ± 2.4 2.042e−03 ± 3.0 ± 1.1 ± 2.4 2.053e−03 ± 3.0 ± 1.1 ± 2.4 2.076e−03 ± 2.2 ± 0.9 ± 1.9
150.0–200.0 5.464e−04 ± 5.6 ± 1.7 ± 3.6 5.430e−04 ± 5.6 ± 1.7 ± 4.1 5.930e−04 ± 5.2 ± 2.3 ± 4.3 5.911e−04 ± 5.2 ± 2.3 ± 4.3 5.853e−04 ± 5.2 ± 2.3 ± 4.6 5.617e−04 ± 3.8 ± 1.4 ± 3.5
200.0–900.0 2.155e−05 ± 7.7 ± 5.1 ± 6.0 2.182e−05 ± 7.7 ± 5.1 ± 6.1 1.887e−05 ± 7.7 ± 3.4 ± 7.4 1.923e−05 ± 7.7 ± 3.4 ± 7.4 1.926e−05 ± 7.7 ± 3.4 ± 7.5 2.037e−05 ± 5.4 ± 2.9 ± 5.0

Table 29.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 46GeVm<66GeV,0.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 3.886e−02 ± 1.4 ± 0.7 ± 4.5 4.361e−02 ± 1.4 ± 0.7 ± 5.2 3.680e−02 ± 1.0 ± 0.3 ± 4.4 3.927e−02 ± 1.0 ± 0.3 ± 4.4 4.420e−02 ± 1.0 ± 0.3 ± 4.8 4.347e−02 ± 0.8 ± 0.3 ± 4.4
2.0–4.0 7.415e−02 ± 1.0 ± 0.5 ± 1.3 8.265e−02 ± 1.0 ± 0.5 ± 3.1 6.865e−02 ± 0.7 ± 0.3 ± 0.8 7.302e−02 ± 0.7 ± 0.3 ± 0.8 8.110e−02 ± 0.7 ± 0.3 ± 2.1 8.148e−02 ± 0.6 ± 0.3 ± 1.2
4.0–6.0 6.674e−02 ± 1.0 ± 0.5 ± 1.1 7.307e−02 ± 1.0 ± 0.5 ± 2.7 6.451e−02 ± 0.7 ± 0.3 ± 0.7 6.764e−02 ± 0.7 ± 0.3 ± 0.7 7.414e−02 ± 0.7 ± 0.3 ± 1.8 7.390e−02 ± 0.6 ± 0.2 ± 1.1
6.0–8.0 5.417e−02 ± 1.1 ± 0.5 ± 0.9 5.822e−02 ± 1.1 ± 0.5 ± 2.0 5.296e−02 ± 0.8 ± 0.3 ± 0.8 5.484e−02 ± 0.8 ± 0.3 ± 0.8 5.885e−02 ± 0.8 ± 0.3 ± 1.5 5.877e−02 ± 0.6 ± 0.2 ± 0.9
8.0–10.0 4.119e−02 ± 1.3 ± 0.5 ± 1.1 4.293e−02 ± 1.3 ± 0.5 ± 1.6 4.097e−02 ± 0.9 ± 0.4 ± 0.8 4.163e−02 ± 0.9 ± 0.4 ± 0.8 4.361e−02 ± 0.9 ± 0.4 ± 1.3 4.355e−02 ± 0.8 ± 0.3 ± 0.9
10.0–13.0 3.160e−02 ± 1.1 ± 0.4 ± 1.4 3.175e−02 ± 1.1 ± 0.4 ± 2.0 3.180e−02 ± 0.8 ± 0.3 ± 0.9 3.166e−02 ± 0.8 ± 0.3 ± 0.9 3.179e−02 ± 0.8 ± 0.3 ± 1.3 3.187e−02 ± 0.6 ± 0.2 ± 1.0
13.0–16.0 2.289e−02 ± 1.3 ± 0.5 ± 1.5 2.152e−02 ± 1.3 ± 0.5 ± 1.9 2.374e−02 ± 0.9 ± 0.3 ± 0.9 2.283e−02 ± 0.9 ± 0.3 ± 0.9 2.137e−02 ± 0.9 ± 0.3 ± 1.6 2.148e−02 ± 0.7 ± 0.3 ± 1.0
16.0–20.0 1.705e−02 ± 1.3 ± 0.5 ± 1.3 1.438e−02 ± 1.3 ± 0.5 ± 2.2 1.904e−02 ± 0.9 ± 0.3 ± 0.9 1.738e−02 ± 0.9 ± 0.3 ± 0.9 1.462e−02 ± 0.9 ± 0.3 ± 2.0 1.456e−02 ± 0.7 ± 0.2 ± 1.2
20.0–25.0 1.254e−02 ± 1.2 ± 0.5 ± 1.2 9.316e−03 ± 1.2 ± 0.5 ± 1.7 1.432e−02 ± 0.8 ± 0.4 ± 1.1 1.254e−02 ± 0.8 ± 0.4 ± 1.1 9.367e−03 ± 0.8 ± 0.4 ± 3.9 9.327e−03 ± 0.7 ± 0.3 ± 1.7
25.0–30.0 7.907e−03 ± 1.5 ± 0.7 ± 1.5 6.033e−03 ± 1.5 ± 0.7 ± 1.7 8.560e−03 ± 1.1 ± 0.5 ± 1.2 7.862e−03 ± 1.1 ± 0.5 ± 1.2 5.972e−03 ± 1.1 ± 0.5 ± 1.5 5.999e−03 ± 0.9 ± 0.4 ± 1.1
30.0–37.0 4.606e−03 ± 1.6 ± 0.8 ± 1.8 3.857e−03 ± 1.6 ± 0.8 ± 2.6 4.580e−03 ± 1.2 ± 0.6 ± 1.5 4.428e−03 ± 1.2 ± 0.6 ± 1.5 3.711e−03 ± 1.2 ± 0.6 ± 2.4 3.768e−03 ± 1.0 ± 0.5 ± 1.5
37.0–45.0 2.797e−03 ± 2.0 ± 1.0 ± 2.1 2.515e−03 ± 2.0 ± 1.0 ± 2.5 2.844e−03 ± 1.5 ± 0.7 ± 2.0 2.784e−03 ± 1.5 ± 0.7 ± 2.0 2.504e−03 ± 1.5 ± 0.7 ± 2.4 2.520e−03 ± 1.2 ± 0.6 ± 1.7
45.0–55.0 1.915e−03 ± 2.1 ± 1.0 ± 2.3 1.781e−03 ± 2.1 ± 1.0 ± 2.7 1.859e−03 ± 1.6 ± 0.6 ± 2.0 1.819e−03 ± 1.6 ± 0.6 ± 2.0 1.670e−03 ± 1.6 ± 0.6 ± 3.3 1.712e−03 ± 1.3 ± 0.5 ± 1.9
55.0–65.0 1.213e−03 ± 2.8 ± 1.2 ± 2.8 1.139e−03 ± 2.8 ± 1.2 ± 3.1 1.262e−03 ± 2.2 ± 0.8 ± 2.1 1.236e−03 ± 2.2 ± 0.8 ± 2.1 1.152e−03 ± 2.2 ± 0.8 ± 3.1 1.146e−03 ± 1.7 ± 0.7 ± 2.1
65.0–75.0 8.436e−04 ± 3.4 ± 1.5 ± 3.4 7.991e−04 ± 3.4 ± 1.5 ± 3.5 8.045e−04 ± 2.8 ± 1.0 ± 2.2 7.838e−04 ± 2.8 ± 1.0 ± 2.2 7.582e−04 ± 2.8 ± 1.0 ± 2.2 7.712e−04 ± 2.2 ± 0.8 ± 2.1
75.0–85.0 6.112e−04 ± 4.0 ± 1.8 ± 3.8 5.812e−04 ± 4.0 ± 1.8 ± 4.4 5.686e−04 ± 3.4 ± 1.3 ± 2.5 5.533e−04 ± 3.4 ± 1.3 ± 2.5 5.292e−04 ± 3.4 ± 1.3 ± 2.9 5.473e−04 ± 2.6 ± 1.1 ± 2.5
85.0–105.0 3.534e−04 ± 3.4 ± 0.9 ± 3.8 3.374e−04 ± 3.4 ± 0.9 ± 4.0 3.460e−04 ± 2.9 ± 1.0 ± 2.4 3.396e−04 ± 2.9 ± 1.0 ± 2.4 3.246e−04 ± 2.9 ± 1.0 ± 3.0 3.267e−04 ± 2.2 ± 0.7 ± 2.5
105.0–150.0 1.279e−04 ± 3.5 ± 1.3 ± 4.3 1.225e−04 ± 3.5 ± 1.3 ± 4.8 1.250e−04 ± 3.1 ± 1.0 ± 2.1 1.229e−04 ± 3.1 ± 1.0 ± 2.1 1.193e−04 ± 3.1 ± 1.0 ± 2.3 1.191e−04 ± 2.4 ± 0.8 ± 2.3
150.0–200.0 3.507e−05 ± 5.6 ± 1.6 ± 4.4 3.436e−05 ± 5.6 ± 1.6 ± 4.4 3.548e−05 ± 5.1 ± 1.8 ± 2.4 3.488e−05 ± 5.1 ± 1.8 ± 2.4 3.385e−05 ± 5.1 ± 1.8 ± 3.3 3.363e−05 ± 3.8 ± 1.2 ± 2.3
200.0–900.0 1.279e−06 ± 7.5 ± 2.3 ± 6.0 1.240e−06 ± 7.5 ± 2.3 ± 6.1 1.361e−06 ± 6.7 ± 2.6 ± 3.2 1.315e−06 ± 6.7 ± 2.6 ± 3.2 1.294e−06 ± 6.7 ± 2.6 ± 3.8 1.247e−06 ± 5.1 ± 1.8 ± 3.0

Table 30.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 66GeVm<116GeV,0.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.608e−02 ± 0.3 ± 0.1 ± 0.9 2.677e−02 ± 0.3 ± 0.1 ± 0.9 2.568e−02 ± 0.2 ± 0.1 ± 0.9 2.626e−02 ± 0.2 ± 0.1 ± 0.9 2.696e−02 ± 0.2 ± 0.1 ± 0.9 2.669e−02 ± 0.2 ± 0.1 ± 0.5
2.0–4.0 5.441e−02 ± 0.2 ± 0.1 ± 0.5 5.553e−02 ± 0.2 ± 0.1 ± 0.6 5.337e−02 ± 0.1 ± 0.1 ± 0.3 5.428e−02 ± 0.1 ± 0.1 ± 0.3 5.541e−02 ± 0.2 ± 0.1 ± 0.4 5.545e−02 ± 0.1 ± 0.1 ± 0.2
4.0–6.0 5.505e−02 ± 0.2 ± 0.1 ± 0.3 5.560e−02 ± 0.2 ± 0.1 ± 0.3 5.483e−02 ± 0.1 ± 0.1 ± 0.4 5.525e−02 ± 0.1 ± 0.1 ± 0.4 5.579e−02 ± 0.1 ± 0.1 ± 0.5 5.590e−02 ± 0.1 ± 0.1 ± 0.3
6.0–8.0 4.831e−02 ± 0.2 ± 0.1 ± 0.4 4.831e−02 ± 0.2 ± 0.1 ± 0.5 4.856e−02 ± 0.2 ± 0.1 ± 0.2 4.851e−02 ± 0.2 ± 0.1 ± 0.2 4.851e−02 ± 0.2 ± 0.1 ± 0.6 4.847e−02 ± 0.1 ± 0.1 ± 0.3
8.0–10.0 4.084e−02 ± 0.2 ± 0.1 ± 0.4 4.052e−02 ± 0.2 ± 0.1 ± 0.5 4.115e−02 ± 0.2 ± 0.1 ± 0.2 4.085e−02 ± 0.2 ± 0.1 ± 0.2 4.055e−02 ± 0.2 ± 0.1 ± 0.6 4.047e−02 ± 0.1 ± 0.1 ± 0.3
10.0–12.0 3.429e−02 ± 0.2 ± 0.1 ± 0.2 3.389e−02 ± 0.2 ± 0.1 ± 0.3 3.458e−02 ± 0.2 ± 0.1 ± 0.2 3.420e−02 ± 0.2 ± 0.1 ± 0.2 3.378e−02 ± 0.2 ± 0.1 ± 0.4 3.384e−02 ± 0.1 ± 0.1 ± 0.2
12.0–14.0 2.881e−02 ± 0.2 ± 0.1 ± 0.3 2.838e−02 ± 0.2 ± 0.1 ± 0.3 2.919e−02 ± 0.2 ± 0.1 ± 0.2 2.878e−02 ± 0.2 ± 0.1 ± 0.2 2.835e−02 ± 0.2 ± 0.1 ± 0.3 2.838e−02 ± 0.2 ± 0.1 ± 0.2
14.0–16.0 2.431e−02 ± 0.3 ± 0.1 ± 0.3 2.393e−02 ± 0.3 ± 0.1 ± 0.3 2.479e−02 ± 0.2 ± 0.1 ± 0.2 2.443e−02 ± 0.2 ± 0.1 ± 0.2 2.403e−02 ± 0.2 ± 0.1 ± 0.2 2.404e−02 ± 0.2 ± 0.1 ± 0.1
16.0–18.0 2.076e−02 ± 0.3 ± 0.1 ± 0.2 2.041e−02 ± 0.3 ± 0.1 ± 0.2 2.109e−02 ± 0.2 ± 0.1 ± 0.2 2.077e−02 ± 0.2 ± 0.1 ± 0.2 2.042e−02 ± 0.2 ± 0.1 ± 0.2 2.043e−02 ± 0.2 ± 0.1 ± 0.1
18.0–20.0 1.782e−02 ± 0.3 ± 0.2 ± 0.3 1.755e−02 ± 0.3 ± 0.2 ± 0.3 1.805e−02 ± 0.3 ± 0.1 ± 0.2 1.781e−02 ± 0.3 ± 0.1 ± 0.2 1.754e−02 ± 0.3 ± 0.1 ± 0.2 1.756e−02 ± 0.2 ± 0.1 ± 0.2
20.0–22.5 1.510e−02 ± 0.3 ± 0.1 ± 0.3 1.490e−02 ± 0.3 ± 0.1 ± 0.3 1.520e−02 ± 0.3 ± 0.1 ± 0.3 1.503e−02 ± 0.3 ± 0.1 ± 0.3 1.485e−02 ± 0.3 ± 0.1 ± 0.3 1.488e−02 ± 0.2 ± 0.1 ± 0.2
22.5–25.0 1.259e−02 ± 0.3 ± 0.2 ± 0.4 1.247e−02 ± 0.3 ± 0.2 ± 0.4 1.275e−02 ± 0.3 ± 0.1 ± 0.2 1.266e−02 ± 0.3 ± 0.1 ± 0.2 1.253e−02 ± 0.3 ± 0.1 ± 0.2 1.251e−02 ± 0.2 ± 0.1 ± 0.2
25.0–27.5 1.072e−02 ± 0.4 ± 0.2 ± 0.4 1.065e−02 ± 0.4 ± 0.2 ± 0.4 1.074e−02 ± 0.3 ± 0.1 ± 0.3 1.068e−02 ± 0.3 ± 0.1 ± 0.3 1.061e−02 ± 0.3 ± 0.1 ± 0.3 1.062e−02 ± 0.2 ± 0.1 ± 0.2
27.5–30.0 9.172e−03 ± 0.4 ± 0.2 ± 0.5 9.124e−03 ± 0.4 ± 0.2 ± 0.5 9.089e−03 ± 0.3 ± 0.1 ± 0.3 9.064e−03 ± 0.3 ± 0.1 ± 0.3 9.014e−03 ± 0.3 ± 0.1 ± 0.3 9.062e−03 ± 0.3 ± 0.1 ± 0.2
30.0–33.0 7.677e−03 ± 0.4 ± 0.2 ± 0.4 7.657e−03 ± 0.4 ± 0.2 ± 0.4 7.721e−03 ± 0.3 ± 0.1 ± 0.3 7.709e−03 ± 0.3 ± 0.1 ± 0.3 7.687e−03 ± 0.3 ± 0.1 ± 0.3 7.677e−03 ± 0.2 ± 0.1 ± 0.2
33.0–36.0 6.558e−03 ± 0.4 ± 0.2 ± 0.5 6.552e−03 ± 0.4 ± 0.2 ± 0.5 6.536e−03 ± 0.3 ± 0.2 ± 0.3 6.541e−03 ± 0.3 ± 0.2 ± 0.3 6.536e−03 ± 0.3 ± 0.2 ± 0.4 6.534e−03 ± 0.3 ± 0.1 ± 0.2
36.0–39.0 5.537e−03 ± 0.4 ± 0.2 ± 0.6 5.536e−03 ± 0.4 ± 0.2 ± 0.6 5.476e−03 ± 0.4 ± 0.2 ± 0.3 5.487e−03 ± 0.4 ± 0.2 ± 0.3 5.491e−03 ± 0.4 ± 0.2 ± 0.3 5.507e−03 ± 0.3 ± 0.1 ± 0.2
39.0–42.0 4.745e−03 ± 0.5 ± 0.2 ± 0.6 4.754e−03 ± 0.5 ± 0.2 ± 0.6 4.712e−03 ± 0.4 ± 0.2 ± 0.3 4.728e−03 ± 0.4 ± 0.2 ± 0.3 4.734e−03 ± 0.4 ± 0.2 ± 0.3 4.738e−03 ± 0.3 ± 0.1 ± 0.2
42.0–45.0 4.085e−03 ± 0.5 ± 0.3 ± 0.7 4.100e−03 ± 0.5 ± 0.3 ± 0.7 4.066e−03 ± 0.4 ± 0.2 ± 0.3 4.086e−03 ± 0.4 ± 0.2 ± 0.3 4.098e−03 ± 0.4 ± 0.2 ± 0.3 4.094e−03 ± 0.3 ± 0.2 ± 0.3
45.0–48.0 3.557e−03 ± 0.6 ± 0.3 ± 0.7 3.570e−03 ± 0.6 ± 0.3 ± 0.7 3.519e−03 ± 0.5 ± 0.2 ± 0.4 3.541e−03 ± 0.5 ± 0.2 ± 0.4 3.555e−03 ± 0.5 ± 0.2 ± 0.4 3.558e−03 ± 0.4 ± 0.2 ± 0.3
48.0–51.0 3.060e−03 ± 0.6 ± 0.3 ± 0.7 3.072e−03 ± 0.6 ± 0.3 ± 0.8 3.009e−03 ± 0.5 ± 0.2 ± 0.4 3.027e−03 ± 0.5 ± 0.2 ± 0.4 3.041e−03 ± 0.5 ± 0.2 ± 0.5 3.050e−03 ± 0.4 ± 0.2 ± 0.3
51.0–54.0 2.706e−03 ± 0.6 ± 0.4 ± 0.9 2.720e−03 ± 0.6 ± 0.4 ± 0.9 2.640e−03 ± 0.6 ± 0.2 ± 0.5 2.660e−03 ± 0.5 ± 0.2 ± 0.5 2.676e−03 ± 0.5 ± 0.2 ± 0.5 2.690e−03 ± 0.4 ± 0.2 ± 0.4
54.0–57.0 2.358e−03 ± 0.7 ± 0.4 ± 0.9 2.378e−03 ± 0.7 ± 0.4 ± 0.9 2.302e−03 ± 0.6 ± 0.2 ± 0.4 2.322e−03 ± 0.6 ± 0.2 ± 0.4 2.339e−03 ± 0.6 ± 0.2 ± 0.4 2.350e−03 ± 0.5 ± 0.2 ± 0.3
57.0–61.0 2.011e−03 ± 0.6 ± 0.3 ± 0.8 2.025e−03 ± 0.6 ± 0.3 ± 0.8 2.017e−03 ± 0.5 ± 0.3 ± 0.4 2.036e−03 ± 0.5 ± 0.3 ± 0.4 2.051e−03 ± 0.5 ± 0.3 ± 0.4 2.038e−03 ± 0.4 ± 0.2 ± 0.3
61.0–65.0 1.702e−03 ± 0.7 ± 0.3 ± 1.0 1.715e−03 ± 0.7 ± 0.3 ± 1.0 1.665e−03 ± 0.6 ± 0.2 ± 0.4 1.683e−03 ± 0.6 ± 0.2 ± 0.4 1.698e−03 ± 0.6 ± 0.2 ± 0.4 1.704e−03 ± 0.5 ± 0.2 ± 0.4
65.0–70.0 1.440e−03 ± 0.6 ± 0.3 ± 1.0 1.454e−03 ± 0.6 ± 0.3 ± 1.0 1.400e−03 ± 0.6 ± 0.2 ± 0.4 1.417e−03 ± 0.6 ± 0.2 ± 0.4 1.429e−03 ± 0.6 ± 0.2 ± 0.4 1.438e−03 ± 0.4 ± 0.2 ± 0.4
70.0–75.0 1.138e−03 ± 0.7 ± 0.3 ± 1.2 1.149e−03 ± 0.7 ± 0.3 ± 1.2 1.131e−03 ± 0.7 ± 0.3 ± 0.5 1.144e−03 ± 0.7 ± 0.3 ± 0.5 1.156e−03 ± 0.7 ± 0.3 ± 0.6 1.151e−03 ± 0.5 ± 0.2 ± 0.5
75.0–80.0 9.443e−04 ± 0.8 ± 0.4 ± 1.1 9.550e−04 ± 0.8 ± 0.4 ± 1.1 9.420e−04 ± 0.7 ± 0.3 ± 0.6 9.545e−04 ± 0.7 ± 0.3 ± 0.6 9.645e−04 ± 0.7 ± 0.3 ± 0.6 9.582e−04 ± 0.5 ± 0.3 ± 0.5
80.0–85.0 7.761e−04 ± 0.9 ± 0.5 ± 1.2 7.837e−04 ± 0.9 ± 0.5 ± 1.2 7.617e−04 ± 0.8 ± 0.4 ± 0.7 7.721e−04 ± 0.8 ± 0.4 ± 0.7 7.808e−04 ± 0.8 ± 0.4 ± 0.7 7.810e−04 ± 0.6 ± 0.3 ± 0.5
85.0–95.0 5.740e−04 ± 0.6 ± 0.3 ± 0.9 5.794e−04 ± 0.6 ± 0.3 ± 0.9 5.691e−04 ± 0.6 ± 0.2 ± 0.5 5.771e−04 ± 0.6 ± 0.2 ± 0.5 5.826e−04 ± 0.6 ± 0.2 ± 0.5 5.811e−04 ± 0.4 ± 0.2 ± 0.4
95.0–105.0 4.122e−04 ± 0.7 ± 0.3 ± 1.0 4.158e−04 ± 0.7 ± 0.3 ± 1.0 3.992e−04 ± 0.7 ± 0.2 ± 0.5 4.044e−04 ± 0.7 ± 0.2 ± 0.5 4.082e−04 ± 0.7 ± 0.2 ± 0.5 4.114e−04 ± 0.5 ± 0.2 ± 0.4
105.0–125.0 2.591e−04 ± 0.6 ± 0.3 ± 0.9 2.612e−04 ± 0.6 ± 0.3 ± 0.9 2.523e−04 ± 0.6 ± 0.2 ± 0.4 2.562e−04 ± 0.6 ± 0.2 ± 0.4 2.584e−04 ± 0.6 ± 0.2 ± 0.4 2.593e−04 ± 0.4 ± 0.2 ± 0.4
125.0–150.0 1.337e−04 ± 0.7 ± 0.3 ± 0.9 1.347e−04 ± 0.7 ± 0.3 ± 0.9 1.316e−04 ± 0.7 ± 0.2 ± 0.4 1.337e−04 ± 0.7 ± 0.2 ± 0.4 1.347e−04 ± 0.7 ± 0.2 ± 0.4 1.346e−04 ± 0.5 ± 0.2 ± 0.4
150.0–175.0 6.769e−05 ± 1.0 ± 0.4 ± 1.0 6.816e−05 ± 1.0 ± 0.4 ± 1.0 6.974e−05 ± 1.0 ± 0.4 ± 0.5 7.115e−05 ± 1.0 ± 0.4 ± 0.5 7.163e−05 ± 1.0 ± 0.4 ± 0.6 6.980e−05 ± 0.7 ± 0.3 ± 0.5
175.0–200.0 3.840e−05 ± 1.3 ± 0.5 ± 1.3 3.865e−05 ± 1.3 ± 0.5 ± 1.3 3.668e−05 ± 1.5 ± 0.7 ± 0.8 3.744e−05 ± 1.5 ± 0.7 ± 0.8 3.769e−05 ± 1.5 ± 0.7 ± 0.8 3.809e−05 ± 1.0 ± 0.4 ± 0.6
200.0–250.0 1.753e−05 ± 1.3 ± 0.5 ± 1.5 1.766e−05 ± 1.3 ± 0.5 ± 1.6 1.725e−05 ± 1.4 ± 0.6 ± 0.8 1.762e−05 ± 1.4 ± 0.6 ± 0.8 1.772e−05 ± 1.4 ± 0.6 ± 0.8 1.769e−05 ± 0.9 ± 0.4 ± 0.7
250.0–300.0 6.578e−06 ± 2.1 ± 0.7 ± 2.2 6.591e−06 ± 2.1 ± 0.7 ± 2.2 6.569e−06 ± 2.4 ± 1.1 ± 1.4 6.756e−06 ± 2.4 ± 1.1 ± 1.4 6.793e−06 ± 2.4 ± 1.1 ± 1.5 6.658e−06 ± 1.6 ± 0.6 ± 1.0
300.0–350.0 2.813e−06 ± 3.3 ± 1.2 ± 2.8 2.814e−06 ± 3.3 ± 1.2 ± 2.8 2.653e−06 ± 4.2 ± 2.0 ± 3.1 2.735e−06 ± 4.2 ± 2.0 ± 3.1 2.747e−06 ± 4.2 ± 2.0 ± 3.1 2.789e−06 ± 2.6 ± 1.1 ± 1.6
350.0–400.0 1.194e−06 ± 4.9 ± 1.7 ± 2.2 1.207e−06 ± 4.9 ± 1.7 ± 2.3 1.172e−06 ± 6.6 ± 3.1 ± 4.8 1.228e−06 ± 6.6 ± 3.1 ± 4.8 1.227e−06 ± 6.6 ± 3.1 ± 4.9 1.217e−06 ± 4.0 ± 1.5 ± 2.0
400.0–470.0 5.587e−07 ± 6.2 ± 1.9 ± 4.6 5.537e−07 ± 6.2 ± 1.9 ± 4.8 5.578e−07 ± 8.0 ± 3.9 ± 4.6 5.711e−07 ± 8.0 ± 3.9 ± 4.6 5.698e−07 ± 8.0 ± 3.9 ± 4.6 5.565e−07 ± 4.9 ± 1.8 ± 2.6
470.0–550.0 1.882e−07 ± 9.6 ± 2.6 ± 4.1 1.868e−07 ± 9.6 ± 2.6 ± 4.1 2.055e−07 ± 12.7 ± 7.5 ± 9.0 2.118e−07 ± 12.7 ± 7.5 ± 9.0 2.113e−07 ± 12.7 ± 7.5 ± 9.1 1.920e−07 ± 7.7 ± 2.9 ± 3.5
550.0–650.0 6.450e−08 ± 14.1 ± 3.8 ± 6.6 6.470e−08 ± 14.1 ± 3.8 ± 6.6 8.090e−08 ± 17.4 ± 10.2 ± 16.6 8.540e−08 ± 17.4 ± 10.2 ± 16.6 8.560e−08 ± 17.4 ± 10.2 ± 16.9 7.065e−08 ± 11.1 ± 4.1 ± 5.8
650.0–900.0 1.500e−08 ± 17.9 ± 4.8 ± 7.8 1.530e−08 ± 17.9 ± 4.8 ± 8.3 6.800e−09 ± 42.2 ± 20.3 ± 25.7 7.000e−09 ± 42.2 ± 20.3 ± 25.7 6.900e−09 ± 42.2 ± 20.3 ± 25.7 1.386e−08 ± 16.0 ± 5.9 ± 7.3

Table 31.

The values of (1/σ)dσ/dpT in each bin of pT for the electron and muon channels separately (for various generator-level definitions) and for the Born-level combination in the kinematic region 116GeVm<150GeV,0.0|y|<2.4. The associated statistical and systematic (both uncorrelated and correlated between bins) are provided in percentage form

Bin (1/σ)dσ/dpT ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%]
Electron channel Muon channel Combination
Dressed Born Bare Dressed Born Born
0.0–2.0 2.181e−02 ± 3.0 ± 1.3 ± 4.4 2.228e−02 ± 3.0 ± 1.3 ± 4.4 1.967e−02 ± 2.7 ± 1.4 ± 5.0 2.023e−02 ± 2.7 ± 1.4 ± 5.0 2.071e−02 ± 2.7 ± 1.4 ± 5.1 2.130e−02 ± 2.0 ± 1.0 ± 4.3
2.0–4.0 4.492e−02 ± 1.9 ± 0.9 ± 1.8 4.572e−02 ± 1.9 ± 0.9 ± 1.8 4.413e−02 ± 1.7 ± 0.8 ± 1.2 4.488e−02 ± 1.7 ± 0.8 ± 1.2 4.597e−02 ± 1.7 ± 0.8 ± 1.2 4.563e−02 ± 1.2 ± 0.6 ± 1.1
4.0–6.0 4.604e−02 ± 1.9 ± 0.9 ± 1.4 4.659e−02 ± 1.9 ± 0.9 ± 1.4 4.842e−02 ± 1.6 ± 0.9 ± 1.1 4.882e−02 ± 1.6 ± 0.9 ± 1.1 4.949e−02 ± 1.6 ± 0.9 ± 1.5 4.826e−02 ± 1.2 ± 0.6 ± 1.0
6.0–8.0 4.296e−02 ± 1.9 ± 0.9 ± 1.3 4.332e−02 ± 1.9 ± 0.9 ± 1.3 4.296e−02 ± 1.6 ± 0.8 ± 1.4 4.326e−02 ± 1.6 ± 0.8 ± 1.4 4.336e−02 ± 1.6 ± 0.8 ± 1.4 4.306e−02 ± 1.2 ± 0.6 ± 1.0
8.0–10.0 3.850e−02 ± 2.1 ± 1.0 ± 1.4 3.849e−02 ± 2.1 ± 1.0 ± 1.5 3.792e−02 ± 1.9 ± 0.8 ± 1.6 3.804e−02 ± 1.9 ± 0.8 ± 1.6 3.818e−02 ± 1.9 ± 0.8 ± 1.6 3.838e−02 ± 1.4 ± 0.6 ± 1.1
10.0–13.0 3.035e−02 ± 1.9 ± 0.9 ± 1.2 3.029e−02 ± 1.9 ± 0.9 ± 1.3 3.097e−02 ± 1.7 ± 0.8 ± 1.0 3.081e−02 ± 1.7 ± 0.8 ± 1.0 3.067e−02 ± 1.7 ± 0.8 ± 1.5 3.049e−02 ± 1.3 ± 0.6 ± 1.1
13.0–16.0 2.439e−02 ± 2.2 ± 0.9 ± 1.4 2.430e−02 ± 2.2 ± 0.9 ± 1.4 2.572e−02 ± 1.8 ± 0.8 ± 1.1 2.552e−02 ± 1.8 ± 0.8 ± 1.1 2.537e−02 ± 1.8 ± 0.8 ± 1.1 2.479e−02 ± 1.4 ± 0.6 ± 0.9
16.0–20.0 1.889e−02 ± 2.0 ± 0.9 ± 1.4 1.873e−02 ± 2.0 ± 0.9 ± 1.4 1.974e−02 ± 1.8 ± 0.8 ± 1.0 1.956e−02 ± 1.8 ± 0.8 ± 1.0 1.941e−02 ± 1.8 ± 0.8 ± 1.0 1.912e−02 ± 1.3 ± 0.6 ± 0.9
20.0–25.0 1.479e−02 ± 1.9 ± 0.9 ± 1.3 1.468e−02 ± 1.9 ± 0.9 ± 1.3 1.477e−02 ± 1.7 ± 0.8 ± 1.1 1.463e−02 ± 1.7 ± 0.8 ± 1.1 1.447e−02 ± 1.7 ± 0.8 ± 1.1 1.453e−02 ± 1.3 ± 0.6 ± 0.9
25.0–30.0 1.076e−02 ± 2.3 ± 1.0 ± 1.5 1.067e−02 ± 2.3 ± 1.0 ± 1.7 1.096e−02 ± 2.0 ± 0.9 ± 1.2 1.084e−02 ± 2.0 ± 0.9 ± 1.2 1.074e−02 ± 2.0 ± 0.9 ± 1.3 1.074e−02 ± 1.5 ± 0.7 ± 1.1
30.0–37.0 7.884e−03 ± 2.3 ± 1.2 ± 1.6 7.767e−03 ± 2.3 ± 1.2 ± 1.7 8.028e−03 ± 1.9 ± 0.6 ± 1.1 7.948e−03 ± 1.9 ± 0.6 ± 1.1 7.892e−03 ± 1.9 ± 0.6 ± 1.2 7.864e−03 ± 1.5 ± 0.6 ± 1.1
37.0–45.0 5.685e−03 ± 2.3 ± 1.2 ± 1.5 5.620e−03 ± 2.3 ± 1.2 ± 1.5 5.688e−03 ± 2.1 ± 0.8 ± 1.5 5.628e−03 ± 2.1 ± 0.8 ± 1.5 5.560e−03 ± 2.1 ± 0.8 ± 1.5 5.611e−03 ± 1.6 ± 0.7 ± 1.2
45.0–55.0 4.160e−03 ± 2.4 ± 1.1 ± 1.8 4.130e−03 ± 2.4 ± 1.1 ± 1.8 3.590e−03 ± 2.5 ± 1.0 ± 2.3 3.573e−03 ± 2.5 ± 1.0 ± 2.3 3.540e−03 ± 2.5 ± 1.0 ± 2.3 3.842e−03 ± 1.7 ± 0.7 ± 1.6
55.0–65.0 2.592e−03 ± 3.3 ± 1.2 ± 2.9 2.585e−03 ± 3.3 ± 1.2 ± 2.9 2.614e−03 ± 3.1 ± 1.2 ± 2.8 2.604e−03 ± 3.1 ± 1.2 ± 2.8 2.576e−03 ± 3.1 ± 1.2 ± 2.8 2.597e−03 ± 2.2 ± 0.9 ± 2.2
65.0–75.0 1.870e−03 ± 3.9 ± 1.8 ± 3.2 1.858e−03 ± 3.9 ± 1.8 ± 3.2 1.706e−03 ± 4.2 ± 1.7 ± 4.0 1.691e−03 ± 4.2 ± 1.7 ± 4.0 1.680e−03 ± 4.2 ± 1.7 ± 4.1 1.777e−03 ± 2.9 ± 1.2 ± 2.8
75.0–85.0 1.267e−03 ± 5.0 ± 2.4 ± 3.8 1.248e−03 ± 5.0 ± 2.4 ± 3.9 1.322e−03 ± 4.8 ± 2.1 ± 3.7 1.325e−03 ± 4.8 ± 2.1 ± 3.7 1.309e−03 ± 4.8 ± 2.1 ± 3.7 1.279e−03 ± 3.5 ± 1.6 ± 3.2
85.0–105.0 8.973e−04 ± 3.9 ± 1.2 ± 3.1 8.907e−04 ± 3.9 ± 1.2 ± 3.1 8.350e−04 ± 3.9 ± 1.2 ± 3.1 8.311e−04 ± 3.9 ± 1.2 ± 3.1 8.263e−04 ± 3.9 ± 1.2 ± 3.2 8.626e−04 ± 2.7 ± 0.9 ± 2.9
105.0–150.0 3.827e−04 ± 3.6 ± 0.9 ± 2.9 3.819e−04 ± 3.6 ± 0.9 ± 2.9 3.687e−04 ± 3.5 ± 1.1 ± 2.7 3.714e−04 ± 3.5 ± 1.1 ± 2.7 3.686e−04 ± 3.5 ± 1.1 ± 2.8 3.755e−04 ± 2.5 ± 0.7 ± 2.7
150.0–200.0 1.226e−04 ± 5.4 ± 2.1 ± 3.1 1.222e−04 ± 5.4 ± 2.1 ± 3.2 1.118e−04 ± 5.9 ± 2.2 ± 2.8 1.139e−04 ± 5.9 ± 2.2 ± 2.8 1.120e−04 ± 5.9 ± 2.2 ± 2.8 1.168e−04 ± 4.0 ± 1.5 ± 2.3
200.0–900.0 4.541e−06 ± 7.1 ± 2.0 ± 3.2 4.491e−06 ± 7.1 ± 2.0 ± 3.2 4.602e−06 ± 6.5 ± 1.7 ± 2.3 4.718e−06 ± 6.5 ± 1.7 ± 2.3 4.681e−06 ± 6.5 ± 1.7 ± 2.6 4.530e−06 ± 4.8 ± 1.3 ± 2.2

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2). The rapidity of a system, y, is defined in terms of its energy, E, and its longitudinal momentum, pz, as y=(1/2)ln[(E+pz)/(E-pz)]. Angular separations between particles or reconstructed objects are measured in η-ϕ space using ΔR=(Δη)2+(Δϕ)2.

2

We thank Dr M. Guzzi (University of Manchester, UK) for many useful discussions and for helping us to produce the predictions from ResBos to which we compare our measurements.

3

Following Ref. [49] the central value of the non-perturbative parameter aZ=1.1 GeV2 is chosen in ResBos. The central values of the QCD scale parameters of the CSS formalism used in ResBos are chosen to be C1=C3=2b0 and C2=C4=1/2, where b0=e-γE,whereγE0.577 is the EulerΓÇôMascheroni constant. In assigning uncertainties to the predictions of ResBos the value of aZ is varied over the range 1.05<aZ<1.19 GeV2. The QCD scale uncertainties for the ResBos predictions are evaluated by varying independently the scale parameters C1,C2 and C3 up and down by a factor of two relative to the central values given above. The relationship C2=C4 is maintained throughout. The overall QCD scale uncertainty is taken as the quadrature sum of the changes in the predicted distribution resulting from the variations in C1,C2 and C3. PDF uncertainties are evaluated using the CT14 NNLO PDF error sets.

4

The NLO electroweak virtual corrections are provided as fractional difference of calculations performed at the order O(α3αs) compared to O(α2αs). This fractional difference is then applied directly to the O(α2αs2) QCD calculation from Dynnlo following the prescription of Ref.┬á[67]. The nominal renormalisation (μR) and factorisation (μF) scales are implemented to take dynamically the value of m2+pT2. For the evaluation of scale uncertainties the scales μR and μF are varied simultaneously by a factor of two up and down.

5

For small values of ϕη the following approximate relationship holds ϕηaT/m. Here aT┬á[68] is one of the two orthogonal components of pT, which explains the factor of 2 in scaling from ϕη to pT. For events at the Z-boson mass peak we take mmZ.

References

  • 1.Collins JC, Soper DE, Sterman GF. Transverse momentum distribution in DrellΓÇôYan pair and W and Z Boson production. Nucl. Phys. B. 1985;250:199. doi: 10.1016/0550-3213(85)90479-1. [DOI] [Google Scholar]
  • 2.Melnikov K, Petriello F. Electroweak gauge boson production at hadron colliders through O(alpha(s)**2) Phys. Rev. D. 2006;74:114017. doi: 10.1103/PhysRevD.74.114017. [DOI] [Google Scholar]
  • 3.Li Y, Petriello F. Combining QCD and electroweak corrections to dilepton production in FEWZ. Phys. Rev. D. 2012;86:094034. doi: 10.1103/PhysRevD.86.094034. [DOI] [Google Scholar]
  • 4.Catani S, et al. Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 2009;103:082001. doi: 10.1103/PhysRevLett.103.082001. [DOI] [PubMed] [Google Scholar]
  • 5.Corcella G, et al. HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) JHEP. 2001;0101:010. doi: 10.1088/1126-6708/2001/01/010. [DOI] [Google Scholar]
  • 6.T. Sj├╢strand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006). doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175 [hep-ph]
  • 7.Klasen M, Brandt M. Parton densities from LHC vector boson production at small and large transverse momenta. Phys. Rev. D. 2013;88:054002. doi: 10.1103/PhysRevD.88.054002. [DOI] [Google Scholar]
  • 8.Dittmaier S, Huss A, Schwinn C. Mixed QCD-electroweak O(αsα) corrections to Drell-Yan processes in the resonance region: pole approximation and non-factorizable corrections. Nucl. Phys. B. 2014;885:318–372. doi: 10.1016/j.nuclphysb.2014.05.027. [DOI] [Google Scholar]
  • 9.T. Affolder et al. (CDF Collaboration), The transverse momentum and total cross section of e+e- pairs in the Z boson region from pp¯ collisions at s=1.8 TeV. Phys. Rev. Lett. 84, 845ΓÇô850 (2000). doi:10.1103/PhysRevLett.84.845. arXiv:hep-ex/0001021 [hep-ex] [DOI] [PubMed]
  • 10.B. Abbott et al. (D0 Collaboration), Differential production cross section of Z bosons as a function of transverse momentum at s=1.8 TeV. Phys. Rev. Lett. 84, 2792ΓÇô2797 (2000). doi:10.1103/PhysRevLett.84.2792. arXiv:hep-ex/9909020 [hep-ex] [DOI] [PubMed]
  • 11.V. Abazov et al. (D0 Collaboration), Measurement of the shape of the boson transverse momentum distribution in pp¯Z/γe+e-+X events produced at s = 1.96-TeV. Phys. Rev. Lett. 100, 102002 (2008). doi:10.1103/PhysRevLett.100.102002. arXiv:0712.0803 [hep-ex] [DOI] [PubMed]
  • 12.V. Abazov et al. (D0 Collaboration), Measurement of the normalized Z/γ->μ+μ- transverse momentum distribution in pp¯ collisions at s=1.96 TeV. Phys. Lett. B 693, 522ΓÇô530 (2010). doi:10.1016/j.physletb.2010.09.012. arXiv:1006.0618 [hep-ex]
  • 13.ATLAS Collaboration, Measurement of the transverse momentum distribution of Z/γ bosons in protonΓÇôproton collisions at s=7 TeV with the ATLAS detector. Phys. Lett. B 705, 415ΓÇô434 (2011). doi:10.1016/j.physletb.2011.10.018. arXiv:1107.2381 [hep-ex]
  • 14.ATLAS Collaboration, Measurement of the Z/γ boson transverse momentum distribution in pp collisions at s = 7 TeV with the ATLAS detector. JHEP 1409, 145 (2014). doi:10.1007/JHEP09(2014)145. arXiv:1406.3660 [hep-ex]
  • 15.CMS Collaboration, Measurement of the rapidity and transverse momentum distributions of Z Bosons in pp collisions at s=7 TeV. Phys. Rev. D 85, 032002 (2012). doi:10.1103/PhysRevD.85.032002. arXiv:1110.4973 [hep-ex]
  • 16.CMS Collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in protonΓÇôproton collisions at 8 TeV. Phys. Lett. B 749, 187ΓÇô209 (2015). doi:10.1016/j.physletb.2015.07.065. arXiv:1504.03511 [hep-ex]
  • 17.R. Aaij et al. (LHCb Collaboration), Measurement of the cross-section for Ze+e- production in pp collisions at s=7 TeV. Phys. Lett. B 749, 187ΓÇô209 (2015). doi:10.1007/JHEP02(2013)106. arXiv:1504.03511 [hep-ex]
  • 18.R. Aaij et al. (LHCb Collaboration), Measurement of the forward Z boson production cross-section in pp collisions at s=7 TeV. JHEP 1508, 039 (2015). doi:10.1007/JHEP08(2015)039. arXiv:1505.07024 [hep-ex]
  • 19.R. Aaij et al. (LHCb Collaboration), Measurement of forward Ze+e- production at s=8 TeV. JHEP 1505, 109 (2015). doi:10.1007/JHEP05(2015)109. arXiv:1503.00963 [hep-ex]
  • 20.Banfi A, et al. Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders. Eur. Phys. J. C. 2011;71:1600. doi: 10.1140/epjc/s10052-011-1600-y. [DOI] [Google Scholar]
  • 21.V. Abazov et al. (D0 Collaboration), Precise study of the Z/γ boson transverse momentum distribution in pp¯ collisions using a novel technique. Phys. Rev. Lett. 106, 122001 (2011). doi:10.1103/PhysRevLett.106.122001. arXiv:1010.0262 [hep-ex] [DOI] [PubMed]
  • 22.ATLAS Collaboration, Measurement of angular correlations in DrellΓÇôYan lepton pairs to probe Z/γ boson transverse momentum at s=7 TeV with the ATLAS detector. Phys. Lett. B 720, 32ΓÇô51 (2013). doi:10.1016/j.physletb.2013.01.054. arXiv:1211.6899 [hep-ex]
  • 23.V. Abazov et al. (D0 Collaboration), Measurement of the ϕη distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb-1 of pp¯ collisions. Phys. Rev. D 91, 072002 (2015). doi:10.1103/PhysRevD.91.072002. arXiv:1410.8052 [hep-ex]
  • 24.ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. J. Instrum. 3, S08003 (2008). doi:10.1088/1748-0221/3/08/S08003
  • 25.ATLAS Collaboration, Performance of the ATLAS trigger system in 2010. Eur. Phys. J. C 72, 1849 (2012). doi:10.1140/epjc/s10052-011-1849-1. arXiv:1110.1530 [hep-ex]
  • 26.Alioli S, et al. NLO vector-boson production matched with shower in POWHEG. JHEP. 2008;0807:060. doi: 10.1088/1126-6708/2008/07/060. [DOI] [Google Scholar]
  • 27.Alioli S, et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
  • 28.Gao J, et al. CT10 next-to-next-to-leading order global analysis of QCD. Phys. Rev. D. 2014;89:033009. doi: 10.1103/PhysRevD.89.033009. [DOI] [Google Scholar]
  • 29.Sj├╢strand T, Mrenna S, Skands PZ, Brief A. Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008;178:852–867. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 30.ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes (2012). https://cds.cern.ch/record/1474107
  • 31.P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays. Eur. Phys. J. C 45, 97ΓÇô107 (2006). doi:10.1140/epjc/s2005-02396-4. arXiv:hep-ph/0506026 [hep-ph]
  • 32.J. Butterworth, J.R. Forshaw, M. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys. C 72, 637ΓÇô646 (1996). doi:10.1007/s002880050286. arXiv:hep-ph/9601371 [hep-ph]
  • 33.T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 0902, 007 (2009). doi:10.1088/1126-6708/2009/02/007. arXiv:0811.4622 [hep-ph]
  • 34.Mangano ML, et al. ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP. 2003;0307:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
  • 35.Frixione S, Webber BR. Matching NLO QCD computations and parton shower simulations. JHEP. 2002;0206:029. doi: 10.1088/1126-6708/2002/06/029. [DOI] [Google Scholar]
  • 36.B.P. Kersevan, E. Richter-Was, The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun. 184, 919ΓÇô985 (2013). doi:10.1016/j.cpc.2012.10.032. arXiv:hep-ph/0405247 [hep-ph]
  • 37.M. B├ñhr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639ΓÇô707 (2008). doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883 [hep-ph]
  • 38.Vermaseren JAM. Two photon processes at very high-energies. Nucl. Phys. B. 1983;229:347. doi: 10.1016/0550-3213(83)90336-X. [DOI] [Google Scholar]
  • 39.Brasse FW, et al. Parametrization of the q2 dependence of γVp total cross sections in the resonance region. Nucl. Phys. B. 1976;110:413. doi: 10.1016/0550-3213(76)90231-5. [DOI] [Google Scholar]
  • 40.Suri A, Yennie DR. The space-time phenomenology of photon absorption and inelastic electron scattering. Ann. Phys. 1972;72:243. doi: 10.1016/0003-4916(72)90242-4. [DOI] [Google Scholar]
  • 41.A.D. Martin et al., Parton distributions incorporating QED contributions. Eur. Phys. J. C 39, 155ΓÇô161 (2005). doi:10.1140/epjc/s2004-02088-7. arXiv:hep-ph/0411040 [hep-ph]
  • 42.ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823ΓÇô874 (2010). doi:10.1140/epjc/s10052-010-1429-9. arXiv:1005.4568 [physics.ins-det]
  • 43.Agostinelli S, et al. GEANT4: a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A. 2003;506:250–303. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 44.ATLAS Collaboration, Electron effciency measurements with the ATLAS detector using the 2012 LHC protonΓÇôproton collision data. ATLAS-CONF-2014-032 (2014). https://cds.cern.ch/record/1706245
  • 45.ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC protonΓÇôproton collision data. Eur. Phys. J. C 74, 3130 (2014). doi:10.1140/epjc/s10052-014-3130-x. arXiv:1407.3935 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 46.ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). doi:10.1140/epjc/s10052-014-3071-4. arXiv:1407.5063 [hep-ex]
  • 47.ATLAS Collaboration, Performance of primary vertex reconstruction in protonΓÇôproton collisions at s=7 TeV in the ATLAS experiment . ATLAS-CONF-2010-069 (2010). https://cds.cern.ch/record/1281344
  • 48.C. Balazs, J.-W. Qiu, C. Yuan, Effects of QCD resummation on distributions of leptons from the decay of electroweak vector bosons. Phys. Lett. B 355, 548ΓÇô554 (1995). doi:10.1016/0370-2693(95)00726-2. arXiv:hep-ph/9505203 [hep-ph]
  • 49.M. Guzzi, P.M. Nadolsky, B. Wang, Nonperturbative contributions to a resummed leptonic angular distribution in inclusive neutral vector boson production. Phys. Rev. D 90, 014030 (2014). doi:10.1103/PhysRevD.90.014030. arXiv:1309.1393 [hep-ph]
  • 50.Guzzi M, Nadolsky PM. Nonperturbative contributions to a resummed leptonic angular distribution in inclusive Z/γ boson production. Int. J. Mod. Phys. Conf. Ser. 2012;20:274–281. doi: 10.1142/S2010194512009324. [DOI] [Google Scholar]
  • 51.S. Dulat et al., The CT14 global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016). doi:10.1103/PhysRevD.93.033006
  • 52.Dittmaier S, Huber M. Radiative corrections to the neutral-current DrellΓÇôYan process in the Standard Model and its minimal supersymmetric extension. JHEP. 2010;1001:060. doi: 10.1007/JHEP01(2010)060. [DOI] [Google Scholar]
  • 53.A. Denner et al., Electroweak corrections to dilepton + jet production at hadron colliders. JHEP 1106, 069 (2011). doi:10.1007/JHEP06(2011)069. arXiv:1103.0914 [hep-ph], and we thank Alexander M├╝ck for providing the NLO EW corrections for our phase space
  • 54.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;0207:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
  • 55.ATLAS Collaboration, Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data. Eur. Phys. J. C 74, 2941 (2014). doi:10.1140/epjc/s10052-014-2941-0. arXiv:1404.2240 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 56.ATLAS Collaboration, The ATLAS transverse-momentum trigger performance at the LHC in 2011 (2014). https://cds.cern.ch/record/1647616
  • 57.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. 1995;A362:487–498. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
  • 58.G. D’Agostini, Improved iterative Bayesian unfolding (2010). arXiv:1010.0632 [physics.data-an]
  • 59.T. Adye, Unfolding algorithms and tests using RooUnfold, in Proceedings of the PHYSTAT 2011 Workshop, CERN, Geneva, Switzerland, pp. 313ΓÇô318 (2011). arXiv:1105.1160 [physics.data-an]
  • 60.M. Whalley, D. Bourilkov, R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC: A Workshop on the implications of HERA for LHC physics. Proceedings, Part B (2005). arXiv:hep-ph/0508110 [hep-ph]
  • 61.Efron B. Bootstrap methods: another look at the jackknife. Ann. Stat. 1979;7:1–26. doi: 10.1214/aos/1176344552. [DOI] [Google Scholar]
  • 62.ATLAS Collaboration, Improved luminosity determination in pp collisions at s=7 TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). doi:10.1140/epjc/s10052-013-2518-3. arXiv:1302.4393 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 63.A. Glazov, Averaging of DIS cross section data. AIP Conf. Proc. 792, 237ΓÇô240 (2005). doi:10.1063/1.2122026
  • 64.G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998), pp. 109ΓÇô111. ISBN:978-0198501558
  • 65.Lyons L, Gibaut D, Clifford P. How to combine correlated estimates of a single physical quantity. Nucl. Instrum. Methods. 1988;A270:110. doi: 10.1016/0168-9002(88)90018-6. [DOI] [Google Scholar]
  • 66.A. Gehrmann-De Ridder et al., Precise QCD predictions for the production of a Z boson in association with a hadronic jet (2015). arXiv:1507.02850 [hep-ph] [DOI] [PubMed]
  • 67.Denner A, et al. Electroweak corrections to monojet production at the LHC. Eur. Phys. J. C. 2013;73:2297. doi: 10.1140/epjc/s10052-013-2297-x. [DOI] [Google Scholar]
  • 68.Vesterinen M, Wyatt T. A novel technique for studying the Z boson transverse momentum distribution at hadron colliders. Nucl. Instrum. Methods Phys. Res. A. 2009;602:432. doi: 10.1016/j.nima.2009.01.203. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES