Abstract
Distributions of transverse momentum and the related angular variable of Drell–Yan lepton pairs are measured in 20.3 fb of proton–proton collisions at  TeV with the ATLAS detector at the LHC. Measurements in electron-pair and muon-pair final states are corrected for detector effects and combined. Compared to previous measurements in proton–proton collisions at  TeV, these new measurements benefit from a larger data sample and improved control of systematic uncertainties. Measurements are performed in bins of lepton-pair mass above, around and below the Z-boson mass peak. The data are compared to predictions from perturbative and resummed QCD calculations. For values of the predictions from the Monte Carlo generator ResBos are generally consistent with the data within the theoretical uncertainties. However, at larger values of this is not the case. Monte Carlo generators based on the parton-shower approach are unable to describe the data over the full range of while the fixed-order prediction of Dynnlo falls below the data at high values of . ResBos and the parton-shower Monte Carlo generators provide a much better description of the evolution of the and distributions as a function of lepton-pair mass and rapidity than the basic shape of the data.
Introduction
In high-energy hadronΓÇôhadron collisions the vector bosons W and are produced via quarkΓÇôantiquark annihilation, and may be observed with very small backgrounds in their leptonic decay modes. The vector bosons may have non-zero momentum transverse to the beam direction due to the emission of quarks and gluons from the initial-state partons as well as to the intrinsic transverse momentum of the initial-state partons in the proton. Phenomenologically, the spectrum at low can be described using soft-gluon resummation [1] together with a non-perturbative contribution from the parton intrinsic transverse momentum. At high the spectrum may be described by fixed-order perturbative QCD predictions [2–4]. Parton-shower models [5, 6] may be used to compensate for missing higher-order corrections in the fixed-order QCD predictions.
Measurements of thus test several aspects of QCD. The correct modelling of is also important in many physics analyses at the LHC for which the production of W and/or Z bosons constitutes a background. Moreover, it is a crucial ingredient for a precise measurement of the W-boson mass, at both the LHC and the Tevatron. Measurements of the dependence of on the boson rapidity1 are sensitive to the gluon distribution function of the proton [7]. High-precision measurements at large values of could be sensitive to electroweak (EW) corrections [8].
DrellΓÇôYan events with final states including or (ΓÇÿDrellΓÇôYan lepton pairsΓÇÖ) allow the transverse momentum of bosons to be measured with greater precision than is possible in the case of W bosons, because of the unobserved neutrino produced in W leptonic decays. Measurements of for lepton-pair masses, , around the Z-boson mass peak have been made by the CDF Collaboration [9] and the D0 Collaboration [10–12] at the Tevatron, and the ATLAS Collaboration [13, 14], the CMS Collaboration [15, 16] and the LHCb Collaboration [17–19] at the LHC. Measurements of require a precise understanding of the transverse momentum calibration and resolution of the final-state leptons. Associated systematic uncertainties affect the resolution in and limit the ultimate precision of the measurements, particularly in the low- domain. To minimise the impact of these uncertainties, the observable was introduced [20] as an alternative probe of . It is defined as
1 |
where is the azimuthal angle in radians between the two leptons. The angle is a measure of the scattering angle of the leptons with respect to the proton beam direction in the rest frame of the dilepton system and is defined by , where and are the pseudorapidities of the negatively and positively charged lepton, respectively [20]. Therefore, depends exclusively on the directions of the two leptons, which are more precisely measured than their momenta. Measurements of for around the Z-boson mass peak were first made by the D0 Collaboration [21] at the Tevatron and subsequently by the ATLAS Collaboration [22] for and the LHCb Collaboration for [17, 18] and  [19] at the LHC. First measurements of for ranges of above and below the Z-boson mass peak were recently presented by the D0 Collaboration [23].
Measurements are presented here of and for Drell–Yan lepton-pair events using the complete data set of the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 20.3 . The data are corrected for detector effects. The measurements are presented for and final states, in bins of , above and below, as well as at the Z-boson mass peak, and in bins of the -boson rapidity . In addition, integrated fiducial cross sections are provided for six regions of .
The ATLAS experiment is briefly described in Sect. 2. A general overview of the measurement methods is given in Sect. 3, which has specific sections on the event simulation, event reconstruction, event selection, background estimation, corrections for detector effects, and the evaluation of the systematic uncertainties. The combination of the measurements in the and final states is described in Sect. 4. The corrected differential cross sections are compared to various theoretical predictions in Sect. 5. A short summary and conclusion are given in Sect. 6. The values of the normalised differential cross sections and are given in tables in the Appendix for each region of and considered.
The ATLAS detector
The ATLAS detector [24] at the LHC covers nearly the entire solid angle around the collision point. It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer (MS) incorporating three large superconducting toroid magnets. The ID is immersed in a 2 T axial magnetic field and provides charged-particle tracking in the range . A high-granularity silicon pixel detector typically provides three measurements per track, and is followed by a silicon microstrip tracker, which usually provides four three-dimensional measurement points per track. These silicon detectors are complemented by a transition radiation tracker, which enables radially extended track reconstruction up to . The transition radiation tracker also provides electron identification information based on the fraction of hits (typically 30 in total) above a higher energy-deposit threshold corresponding to transition radiation.
The calorimeter system covers the pseudorapidity range . Within the region , electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr) electromagnetic calorimeters, with an additional thin LAr presampler covering , to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel structures within , and two copper/LAr hadronic endcap calorimeters. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules optimised for electromagnetic and hadronic measurements, respectively.
The MS comprises separate trigger and precision tracking chambers measuring the deflection of muons in a magnetic field generated by superconducting air-core toroids. The precision chamber system covers the region with three layers of monitored drift tubes, complemented by cathode-strip chambers in the forward region, where the background is highest. The muon trigger system covers the range with resistive-plate chambers in the barrel, and thin-gap chambers in the endcap regions.
A three-level trigger system is used to select interesting events [25]. The Level-1 trigger is implemented in hardware and uses a subset of detector information to reduce the event rate to a design value of at most 75 kHz. This is followed by two software-based trigger levels which together reduce the event rate to about 400 Hz.
Analysis methods
This section describes the particle-level measurements presented in this paper (Sect. 3.1), the simulation of signal and background Monte Carlo (MC) samples (Sect. 3.2), the event reconstruction and selection criteria (Sect. 3.3), the estimation of backgrounds (Sect. 3.4), corrections to the distributions of and for detector effects and final-state radiation (Sect. 3.5), and the estimation of systematic uncertainties (Sect. 3.6).
Description of the particle-level measurements
DrellΓÇôYan signal MC simulation is used to correct the background-subtracted data for detector resolution and inefficiency. Three different ΓÇÿparticle-levelΓÇÖ definitions are employed, which differ in their treatment of final-state photon radiation (FSR). The Born and bare levels are defined from the lepton kinematics before and after FSR, respectively. The dressed level is defined by combining the bare four-momentum of each lepton with that of photons radiated within a cone defined by (See footnote 1) around the lepton. The muon-pair data are corrected to the bare, dressed, and Born levels. The electron-pair data are corrected to the dressed and Born levels. The two lepton-pair channels are combined at the Born level. The bare and dressed particle-level definitions reduce the dependence on the MC FSR model used to correct the data, which results (particularly for events with below the Z-boson mass peak) in a lower systematic uncertainty. Corrections to a common particle-level definition (Born level) for the combination of the two channels allow comparisons to calculations that do not account for the effects of FSR, albeit at the cost of an increased systematic uncertainty on the corrected data.
The data are corrected to the particle level within fiducial regions in lepton and , and in lepton-pair and that correspond closely to the selection criteria applied to the data. The fiducial regions common to the measurements of and are described first. The two leptons are required to have and . Measurements of the normalised differential cross sections and , and of the absolute differential cross section , are made in three regions within for . In the mass region , measurements are made in six equally sized regions of . The distributions of and are individually normalised in each region of . Measurements of in the regions of above and below the Z-boson mass peak, and , are made in three equally-sized regions of . For , measurements of are made in three additional mass regions below .
A synopsis of the and measurements, and of the fiducial-region definitions used is given in Table 1.
Table 1.
Particle-level definitions (treatment of final-state photon radiation) | |
Electron pairs | Dressed; Born |
Muon pairs | Bare; dressed; Born |
Combined | Born |
Fiducial region | |
Leptons | and |
Lepton pairs | |
Mass and rapidity regions | |
; ; ( measurements only) | |
; ; ; ; ; ; | |
; ; ( measurements only) | |
Very-low mass regions | |
, , measurements only |
Event simulation
MC simulation is used to estimate backgrounds and to correct the data for detector resolution and inefficiencies, as well as for the effects of FSR.
Three generators are used to produce samples of DrellΓÇôYan lepton-pair signal events. The first is Powheg [26, 27] which uses the CT10 set of parton distribution functions (PDFs) [28] and is interfaced to Pythia 8.170 [6, 29] with the AU2 set of tuned parameters (tune) [30] to simulate the parton shower, hadronisation and underlying event, and to Photos [31] to simulate FSR. This is referred to as Powheg+Pythia in the text. The second is Powheg interfaced to Herwig 6.520.2 [5] for the parton shower and hadronisation, Jimmy [32] for the underlying event, and Photos for FSR (referred to as Powheg+Herwig). The Sherpa 1.4.1 [33] generator is also used, which has its own implementation of the parton shower, hadronisation, underlying event and FSR, and which again uses the CT10 PDF set. Differences between the results obtained using these three generators are used to estimate systematic uncertainties related to the choice of generator.
Background events from the process are produced using Alpgen [34] interfaced to Herwig to simulate the parton shower and Jimmy to simulate the underlying event. Single W-boson decays to electrons, muons and leptons are produced with Sherpa, and the diboson processes WW, WZ and ZZ are produced with Herwig. The process is simulated with MC@NLO [35] interfaced to Jimmy, as is the single-top process in the s-channel and Wt-channel. The t-channel is generated with AcerMC [36] interfaced to Pythia. Exclusive production is generated using the Herwig++ 2.6.3 generator [37]. Photon-induced single-dissociative dilepton production, is simulated using Lpair 4.0 [38] with the Brasse [39] and SuriΓÇôYennie [40] structure functions for proton dissociation. For double-dissociative reactions, Pythia 8.175 [29] is used with the MRST2004QED [41] PDFs.
The effect of multiple interactions per bunch crossing (pile-up) is simulated by overlaying MC-generated minimum bias events [42]. The simulated event samples are reweighted to describe the distribution of the number of pile-up events in the data. The Geant4 [43] program is used to simulate the passage of particles through the ATLAS detector. Differences in reconstruction, trigger, identification and isolation efficiencies between MC simulation and data are evaluated using a tag-and-probe method [44, 45] and are corrected for by reweighting the MC simulated events. Corrections are also applied to MC events for the description of the lepton energy and momentum scales and resolution, which are determined from fits to the observed -boson line shapes in data and MC simulation [45, 46]. The MC simulation is also reweighted to better describe the distribution of the longitudinal position of the primary pp collision vertex [47] in data.
Three additional samples of Drell–Yan lepton-pair signal events are produced without detector simulation, for the purpose of comparison with the corrected data in Sect. 5. The MC generators used are ResBos, Dynnlo, and Powheg+Pythia (AZNLO tune).
ResBos [48] simulates vector-boson production and decay, but does not include a description of the hadronic activity in the event nor of FSR. Initial-state QCD corrections to Z-boson production are simulated at approximately next-to-next-to-leading-order (NNLO) accuracy using approximate NNLO (i.e. ) Wilson coefficient functions [49].2 The contributions from and from interference are simulated at next-to-leading-order (NLO) accuracy (i.e. ). ResBos uses a resummed treatment of soft-gluon emissions at next-to-next-to-leading-logarithm (NNLL) accuracy. It uses the GNW parameterisation [49, 50] of non-perturbative effects at small , as optimised using the D0 measurements in Ref. [21]. The CT14 NNLO PDF sets [51] are used and the corresponding 90 % confidence-level PDF uncertainties are evaluated and rescaled to 68 % confidence level. The choices3 of central values and range of systematic uncertainty variations for QCD scales and the non-perturbative parameter are made following Ref. [49]. These differ from the choices made for the ATLAS and papers [14, 22].
Dynnlo1.3 [4] simulates initial-state QCD corrections to NNLO accuracy. The CT10 NNLO PDF sets are used. The Dynnlo calculation is performed in the electroweak parameter scheme [52]. Additional NLO electroweak virtual corrections4 are provided by the authors of Ref. [53]. Dynnlo does not account for the effects of multiple soft-gluon emission and therefore is not able to make accurate predictions at low and .
An additional Powheg+Pythia sample is produced which uses the AZNLO tune [14]. This tune includes the ATLAS and results in a mass region around the peak. The sample uses Pythia version 8.175 and the CTEQ6L1 PDF set [54] for the parton shower, while CT10 is used for the Powheg calculation.
Event reconstruction and selection
The measurements are performed using protonΓÇôproton collision data recorded at . The data were collected between April and December 2012 and correspond to an integrated luminosity of . Selected events are required to be in a data-taking period in which there were stable beams and the detector was fully operational.
For measurements of , candidate electron-pair events were obtained using a dielectron trigger, whilst for measurements of , a combination of a single-electron trigger (to select events with the leading reconstructed electron and the sub-leading electron ) and a dielectron trigger (to select all other events) was used. The motivation for using a slightly different trigger selection for measurements of the observable is to obtain a higher efficiency for electron pairs with , which is relevant to maintain a high acceptance for . Electron candidates are reconstructed from clusters of energy in the electromagnetic calorimeter matched to ID tracks [55]. They are required to have and , but excluding the transition regions between the barrel and the endcap electromagnetic calorimeters, . The electron candidates must satisfy a set of ‘medium’ selection criteria [55] that have been reoptimised for the larger number of proton–proton collisions per beam crossing observed in the 2012 data. Events are required to contain exactly two electron candidates. Except for the region around the Z-boson mass peak, the electron candidates are required to be isolated, satisfying  < 0.2, where is the scalar sum of the of tracks with around the electron track divided by the of the electron. For measurements of , this requirement is not applied when the two electrons are separated by . For measurements of the two electron candidates must satisfy .
Candidate muon-pair events are retained for further analysis using a combination of a single-muon trigger (for  GeV) and a dimuon trigger (for  GeV). Muon candidates are reconstructed by combining tracks reconstructed in both the inner detector and the MS [45]. They are required to have and . In order to suppress backgrounds, track-quality requirements are imposed for muon identification, and longitudinal and transverse impact-parameter requirements ensure that the muon candidates originate from a common primary proton–proton interaction vertex. The muon candidates are also required to be isolated, satisfying  < 0.1, where is the scalar sum of the of tracks within a cone of size around the muon divided by the of the muon. Events are required to contain exactly two muon candidates of opposite charge satisfying the above criteria.
Precise knowledge of the lepton directions is particularly important for the measurements. These are determined for electron candidates by the track direction in the ID, and for muon candidates from a combination of the track direction in the ID and in the MS.
Tables 2 and 3 show the number of events satisfying the above selection criteria in the electron-pair and muon-pair channels, respectively, for six regions of . Also given is the estimated contribution to the data from the various background sources considered (described in Sect. 3.4).
Table 2.
[GeV] | Data | Total Bkg | Multi-jet | , single top | WW / WZ / ZZ | |||
---|---|---|---|---|---|---|---|---|
12–20 | 17 729 | 2 220 470 | 1 370 460 | 509 27 | 7 1 | 215 44 | 81 7 | 41 16 |
20–30 | 13 322 | 1 860 210 | 600 200 | 873 46 | 33 3 | 144 36 | 158 11 | 54 21 |
30–46 | 14 798 | 3 290 260 | 570 230 | 1 920 100 | 228 23 | 192 48 | 314 25 | 75 30 |
46–66 | 201 613 | 25 600 3 900 | 6 200 3 400 | 3 990 210 | 9 360 940 | 670 170 | 1 060 88 | 4 300 1 700 |
66–116 | 6 671 873 | 59 400 9 500 | 23 500 9 200 | 13 040 680 | 3 560 360 | 3 860 930 | 10 450 320 | 5 000 2 000 |
116–150 | 77 919 | 8 280 170 | 910 170 | 4 590 240 | 82 8 | 530 130 | 1 097 90 | 1 070 430 |
Table 3.
[GeV] | Data | Total Bkg | Multi-jet | , single top | WW / WZ / ZZ | |||
---|---|---|---|---|---|---|---|---|
12–20 | 25 297 | 1 220 180 | 440 170 | 605 32 | 1 0 | 9 2 | 107 10 | 64 26 |
20–30 | 19 485 | 2 100 250 | 590 240 | 1 156 61 | 20 2 | 8 2 | 241 19 | 84 33 |
30–46 | 20 731 | 3 980 330 | 730 290 | 2 540 130 | 156 16 | 12 3 | 429 36 | 114 45 |
46–66 | 318 117 | 30 900 4 100 | 7 400 3 000 | 5 370 280 | 9 940 990 | 174 35 | 1 460 120 | 6 600 2 600 |
66–116 | 9 084 639 | 46 500 4 200 | 7 400 3 000 | 13 730 720 | 4 150 420 | 870 170 | 13 640 420 | 6 700 2 700 |
116–150 | 100 697 | 9 960 520 | 1 270 520 | 5 790 300 | 58 6 | 153 38 | 1 310 110 | 1 380 550 |
Figure 1 shows the distributions of and for electron-pair events passing the selection requirements described above. Figure 2 shows the equivalent distributions for the dimuon channel. The MC signal sample is simulated using Powheg+Pythia. The predictions from the model are in qualitative agreement with the data.
Estimation of backgrounds
The number and properties of the background events arising from multi-jet processes are estimated using a data-driven technique. A background-dominated sample is selected using a modified version of the signal-selection criteria. In the electron-pair channel, both electrons are required to satisfy the ΓÇÿlooseΓÇÖ identification criteria [55], but not the ΓÇÿmediumΓÇÖ criteria, and are also required to have the same charge. For the muon-pair channel, two samples of lepton pairs are used: the light-flavour background is estimated by requiring a pair of muons with the same charge, whilst the heavy-flavour background is estimated by requiring one electron and one muon with opposite charge. The electron is required to be identified as ΓÇÿlooseΓÇÖ and the electron isolation cut is inverted. It is assumed that in all other variables the shape of the distribution of the multi-jet events is the same in both the signal- and background-dominated samples.
The normalisation of the multi-jet background is determined by performing a minimisation in a variable that discriminates between the signal and multi-jet background. The contribution from all sources other than the multi-jet background is taken from MC simulation. Two independent fits are performed, using lepton isolation and as discriminating variables. The signal event-selection criteria are applied, except that the selection criteria on the isolation variables are removed for the fit that uses lepton isolation. In the muon-pair final state, the fit using isolation is performed using the values of . In the electron-pair final state, the isolation variable is defined as the scalar sum of the of energy deposits in the calorimeter within a cone of size around the electron cluster divided by the of the electron. The sum excludes cells assigned to the electron cluster and can be negative due to cell noise and negative signal contribution from pile-up in neighbouring bunches [56]. The fit is performed using the quantity , where is the smaller of the values of the two electrons in an event. Example results of fits to the isolation variables for the electron- and muon-pair channels are shown in Fig. 3 for the region around the -boson mass peak. The difference in the results of the fits to isolation and is taken as the systematic uncertainty on the normalisation of the multi-jet background. As a cross-check the procedure is repeated in bins of and gives results consistent with the fit performed inclusively in .
The backgrounds from all sources other than multi-jet processes are estimated using the MC samples detailed in Sect. 3.2. These estimates are cross-checked by comparing MC simulation to data in control regions, selected using criteria that increase the fraction of background. The and backgrounds are enhanced by requiring exactly one electron and one muon candidate per event according to the criteria described in Sect. 3.3. The MC simulation is found to be consistent with the data within the assigned uncertainties on the cross sections (see Sect. 3.6). In addition, a subset of these events is studied in which two jets with are identified, which significantly enhances the contribution from the background. Again, the MC simulation is consistent with the data within the assigned uncertainties.
Around the -boson mass peak and at low values of and , the background is dominated by multi-jet and processes which together amount to less than 1 % of the selected electron-pair or muon-pair event sample. At high and , and diboson processes dominate and constitute a few percent of the selected data. In the regions of below the Z-boson mass peak, continues to be a dominant background at larger values of and (forming up to 20 % of the selected data), whilst at lower values of and the dominant contribution is from processes with other contributions from and multi-jet processes (totalling between 10 and 20 % of the selected data). The fraction of background in the regions below is enhanced by the requirement that be greater than . In the region of above the Z-boson mass peak, the background forms more than 30 % of the selected data at higher values of and . The total background is smaller at low values (approximately 10 % of the selected data) with the dominant contribution again coming from processes.
Corrections for detector effects and FSR
After the estimated total background is subtracted from the data, DrellΓÇôYan signal MC simulation is used to correct to the particle level, accounting for detector resolution and inefficiencies and the effects of FSR.
Since the experimental resolution in is smaller than the chosen bin widths, the fractions of accepted events that fall within the same bin in at the particle level and reconstructed detector level in the MC simulation are high, having typical values of around 90 %. Therefore, simple bin-by-bin corrections of the distributions are sufficient. A single iteration is performed by reweighting the signal MC events at particle level to the corrected data and rederiving the correction factors. The correction factors are estimated using an average over all available signal MC samples (as described in Sect. 3.2).
The detector resolution has a larger effect in the measurement of . An iterative Bayesian unfolding method [57–59] with seven iterations is used to correct the distribution to particle level. The response matrix, which connects the distribution at reconstruction and particle levels is estimated using the Powheg+Pythia signal MC sample.
Systematic uncertainties
In this section the principal sources of uncertainty on the measurements are discussed, as well as the degree to which these uncertainties are correlated (between bins in or , or between the electron-pair and muon-pair channels) when combining the electron-pair and muon-pair results and in quoting the final results. Figure 4 provides a summary of the uncertainties arising from data statistics, mis-modelling of the detector, background processes, and of the MC signal samples used to correct the data. These are given for both the electron (dressed level) and muon (bare level) channels as a function of and for events with and .
The statistical uncertainties on the data, and on the MC samples used to correct the data, are considered as uncorrelated between bins and between channels. In most kinematic regions the statistical uncertainty on the data is larger than the total systematic uncertainty in both and (for the normalised measurements) and is always a large contribution to the total uncertainty.
Most sources of systematic uncertainty from the modelling of the detector and beam conditions are treated as fully correlated between bins. These comprise possible mis-modelling of the lepton energy (electron) and momentum (muon) scales and their resolution as well as mis-modelling of the lepton reconstruction, identification, trigger and isolation efficiencies [44–46]. Some of the detector uncertainties have a statistical component, which for the and integrated cross-section measurements is non-negligible and is propagated to the final measurements using a toy MC method. The above uncertainties are treated as uncorrelated between the two channels and are generally a small fraction of the total systematic uncertainty in the individual channels and on the combined result. The exceptions are the energy and momentum scale uncertainties, which become significant for the measurements at high values of . Also considered are uncertainties due to mis-modelling of the pile-up distribution and of the distribution of the longitudinal position of the primary vertex, which are estimated by varying the associated MC scaling factor and are treated as correlated between channels. The pile-up uncertainty is a small, but non-negligible contribution to the total systematic uncertainty in most kinematic regions and the vertex uncertainty is generally even smaller. An uncertainty is estimated for the possible mis-modelling of the lepton angular resolution. This uncertainty is relevant only for the measurements of and its size is found to be of an order similar to that of the pile-up uncertainty.
Important contributions to the total systematic uncertainty on both and arise from the modelling of the background processes. The uncertainty arising from varying the normalisation of each MC background within its theoretical cross-section uncertainty is treated as correlated between channels. This source makes a small contribution to the total systematic uncertainty in the region around the -boson mass peak (where the total background is small), but becomes more significant in regions away from the peak. The dominant uncertainty on the multi-jet background arises from the difference in normalisation obtained from template fits performed in the distribution of the isolation variable or in . This is treated as fully correlated between bins and is generally a small contribution to the total uncertainty, becoming more important for the regions below the peak. The statistical uncertainty on the multi-jet background is considered as uncorrelated between bins and channels, and is small.
Several sources of systematic uncertainty are considered, arising from mis-modelling of the underlying physics distributions by the DrellΓÇôYan signal MC generator.
The effect of any mis-modelling of the underlying and distributions is evaluated as follows. For a second iteration of the bin-by-bin correction procedure (see Sect. 3.5) is made and any difference with respect to the first iteration is treated as a systematic uncertainty. This is found to be negligible in all kinematic regions, due to the very small bin-to-bin migration in . For the MC simulation is reweighted at particle level to the unfolded data and the unfolding is repeated. Any change is treated as a systematic uncertainty, which is always found to be a small fraction of the total uncertainty.
The systematic uncertainty due to the choice of signal MC generator used to correct the data is evaluated as follows. For an uncertainty envelope is chosen that encompasses the difference in the bin-by-bin correction factors obtained using any individual signal MC sample compared to the central values. (As described in Sect. 3.5, the central values are obtained from an average over all available signal MC samples.) For the uncertainty is quoted as the difference in the results obtained when unfolding the data with Sherpa, as compared to Powheg+Pythia, which is used for the central values. This source results in a significant contribution to the systematic uncertainty in both and for the region around the -boson mass peak. The systematic uncertainty on the Born-level measurements below the -boson mass peak receives a significant contribution due to the differences in FSR modelling between Photos and Sherpa.
Potential uncertainties on the final and distributions could arise from the modelling of the PDFs in the MC generators used to correct data to particle level. These are estimated using the CT10 error sets [28] using the LHAPDF interface [60], and are found to be negligible. A correction is applied to the Powheg+Pythia sample, which implements a running coupling for the photon exchange and a running width in the -boson propagator. This correction is found to have a negligible effect on the final results.
Powheg+Pythia provides a poor description of the data for the samples with very low mass, and . The prediction from Powheg+Pythia is reweighted to that from Sherpa in order to evaluate an uncertainty due to this effect, which is found to be a small fraction of the total systematic uncertainty.
The Bayesian unfolding procedure used to correct the distributions for the effects of detector resolution and FSR has associated uncertainties. A statistical component is estimated using the bootstrap method [61] and the difference in the unfolded result between using six and seven iterations is treated as a systematic uncertainty, which is assumed fully correlated between bins of and found to be a small fraction of the total systematic uncertainty.
The uncertainty on the integrated luminosity is 2.8 %, which is determined following the methodology described in Ref. [62]. This has a negligible impact on the uncertainty in the normalised differential distributions and .
The total systematic uncertainties are generally smaller than the statistical uncertainties on the data. In the total systematic uncertainties at the Z-boson mass peak are at the level of around 1‰ at low , rising to around 0.5 % for high . In the total systematic uncertainties at the Z-boson mass peak are at the level of around 0.5 % at low , rising to around 10 % for high .
The full results for and are presented in the Appendix in bins of , for which the size of the data statistical uncertainties relative to the systematic uncertainties are larger still.
Results
Combination procedure
The differential and integrated cross-section measurements in the electron-pair and muon-pair channels are combined at Born level using the HERA averager tool, which performs a minimisation in which correlations between bins and between the two channels are taken into account [63]. The combinations for the and measurements are performed separately in each region of and .
Differential cross-section measurements
Figure 5 shows the combined Born-level distributions of , in three regions from to for . The central panel of each plots in Fig. 5 shows the ratios of the values from the individual channels to the combined values and the lower panel of each plot shows the difference between the electron-pair and muon-pair values divided by the uncertainty on that difference (pull). The per degree of freedom is given. The level of agreement between the electron-pair and muon-pair distributions is good. Figure 6 shows the equivalent set of plots for the distributions of for the six regions of from to . Again the level of agreement between the two channels is good.
The values of and are given in tables in the Appendix for each region of and considered. The electron-pair results are given at the dressed and Born levels, and the muon-pair results at the bare, dressed and Born levels. The Born-level combined results are also given. The associated statistical and systematic uncertainties (both uncorrelated and correlated between bins in or ) are provided in percentage form.
Integrated cross-section measurements
In addition to detailed differential studies in and , integrated fiducial cross sections are provided for six regions in from 12 to . The fiducial phase space is the same as for the measurements defined in Table 1. The Born-level fiducial cross sections are provided in Table 4 for the electron-pair and muon-pair channels separately, as well as for their combination. Uncertainties arising from data statistics, mis-modelling of the detector, background processes and of the MC signal samples used to correct the data are provided as a percentage of the cross section. The individual uncertainty sources after the combination are not necessarily orthogonal and also do not include uncertainties uncorrelated between bins of . Therefore their quadratic sum may not give the total systematic uncertainty.
Table 4.
[GeV] | 12ΓÇô20 | 20ΓÇô30 | 30ΓÇô46 | 46ΓÇô66 | 66ΓÇô116 | 116ΓÇô150 |
---|---|---|---|---|---|---|
[pb] | 1.42 | 1.04 | 1.01 | 15.16 | 537.64 | 5.72 |
Statistical uncertainty [%] | 0.91 | 1.05 | 1.13 | 0.28 | 0.04 | 0.41 |
Detector uncertainty [%] | 2.28 | 2.12 | 1.79 | 3.47 | 0.83 | 0.87 |
Background uncertainty [%] | 3.16 | 1.97 | 2.36 | 2.77 | 0.14 | 0.83 |
Model uncertainty [%] | 5.11 | 4.38 | 3.59 | 1.59 | 0.16 | 0.74 |
Total systematic uncertainty [%] | 6.43 | 5.25 | 4.66 | 4.72 | 0.86 | 1.41 |
[pb] | 1.45 | 1.04 | 0.97 | 14.97 | 535.25 | 5.48 |
Statistical uncertainty [%] | 0.69 | 0.82 | 0.91 | 0.21 | 0.03 | 0.37 |
Detector uncertainty [%] | 1.07 | 1.08 | 1.01 | 1.10 | 0.71 | 0.84 |
Background uncertainty [%] | 0.75 | 2.19 | 2.00 | 1.48 | 0.04 | 0.97 |
Model uncertainty [%] | 2.59 | 1.81 | 2.36 | 0.75 | 0.31 | 0.31 |
Total systematic uncertainty [%] | 2.90 | 3.04 | 3.25 | 2.00 | 0.78 | 1.32 |
[pb] | 1.45 | 1.03 | 0.97 | 14.96 | 537.10 | 5.59 |
Statistical uncertainty [%] | 0.63 | 0.75 | 0.83 | 0.17 | 0.03 | 0.31 |
Detector uncertainty [%] | 0.84 | 0.99 | 0.87 | 1.05 | 0.40 | 0.56 |
Background uncertainty [%] | 0.18 | 0.85 | 1.42 | 1.28 | 0.06 | 0.77 |
Model uncertainty [%] | 1.84 | 2.24 | 2.27 | 0.89 | 0.19 | 0.50 |
Total systematic uncertainty [%] | 2.06 | 2.44 | 2.38 | 1.82 | 0.45 | 1.03 |
These results are displayed in Fig. 7. In the channel combination the per degree of freedom is 8/6, showing that the electron-pair and muon-pair measurements are consistent. A total uncertainty of 0.6 %, not including the uncertainty of 2.8 % on the integrated luminosity, is reached in the region of the -boson mass peak. The fact that in some individual bins the combined cross section does not lie at the naive weighted average of the individual channel values is due to the effect of systematic uncertainties that are correlated among bins, but uncorrelated between channels (see, for example, Refs. [64, 65]).
Comparison to QCD predictions
Overview
The combined Born-level measurements of and presented in Sect. 4 are compared in this section to a series of theoretical predictions.
A first general comparison is provided by Fig. 8. This shows the ratio of the predictions of ResBos for the Z-boson mass peak and for  < 2.4 to the combined Born-level data for and . In order to allow the features of these two distributions to be compared easily, the scales on the abscissae in Fig. 8 are aligned according to the approximate relationship [20]5 . The general features of the two distributions in Fig. 8 are similar. At low values of and , in which non-perturbative effects and soft-gluon resummation are most important, the predictions from ResBos are consistent with the data within the assigned theoretical uncertainties. However, at high values of and , which are more sensitive to the emission of hard partons, the predictions from ResBos are not consistent with the data within theoretical uncertainties. Figure 8 illustrates the particular power of to probe the region of low . Finer binning is possible in than in whilst maintaining smaller systematic uncertainties from experimental resolution.
The measurements are compared in detail to predictions from ResBos in Sect. 5.2. In Sect. 5.3 the normalised measurements are compared to the predictions from a number of MC generators that use the parton-shower approach. The fixed-order predictions from Dynnlo1.3 [4] are compared to the absolute differential cross sections in Sect. 5.4.
Comparison to resummed calculations
The predictions of from ResBos are compared to the Born-level measurements in Figs. 9, 10, 11, 12 and 13. As described above, provides particularly precise measurements in the region sensitive to the effects of soft-gluon resummation and non-perturbative effects and therefore is the observable used to test the predictions from ResBos. Figure 9 shows the ratio of as predicted by ResBos to the combined Born-level data for the six regions at the -boson mass peak. Figure 10 shows the same comparison for the three regions in the two regions adjacent to the Z-boson mass peak. Also shown in these figures are the statistical and total uncertainties on the data, as well as the uncertainty in the ResBos calculation arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter , and PDFs.
For values of for the region around the -boson mass peak the predictions from ResBos are generally consistent with the (much more precise) data within the assigned theoretical uncertainties. However, at larger values of this is not the case. For the region of above the Z-boson mass peak the predictions from ResBos are consistent with the data within uncertainties for all values of . For the region of from 46 to the predictions from ResBos lie below the data for . In this context it may be noted that a known deficiency of the ResBos prediction is the lack of NNLO QCD corrections for the contributions from and from interference. Similar deviations from the data in the mass region below the Z peak were observed in the D0 measurement in Ref. [23].
The theoretical uncertainties are highly correlated between different kinematic regions and therefore, as pointed out in Ref. [23], the ratio of in different kinematic regions enables a more precise comparison of the predictions with data. For example, the question of whether or not the non-perturbative contribution to varies with parton momentum fraction, x, or four-momentum transfer, , may be investigated by examining how the shape of evolves with and at low .
Figure 11 shows the ratio of the distribution of in each region of to the distribution in the central region (), for events in the region around the -boson mass peak. The distributions are shown for data (with associated statistical and total uncertainties) as well as for ResBos. It can be seen that the uncertainties on the ResBos predictions, arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter , and PDFs, are of a comparable size to the uncertainties on the corrected data. The predictions from ResBos are consistent with the data within the assigned uncertainties. Figure 12 shows equivalent comparisons for the regions from to and from to . It can be seen that the predictions from ResBos are again consistent with the data within the assigned uncertainties. Therefore it can be concluded that ResBos describes the evolution with of the shape of the measurements well, and rather better than it describes the basic shape of the data (Figs. 9, 10).
Figure 13 shows the ratio of in the region from to to that in the region from to , for the three divisions of . The ratio is shown for data (with associated statistical and total uncertainties) as well as for ResBos. It can again be seen that the uncertainties on the ResBos predictions, arising from varying (See footnote 2) the QCD scales, the non-perturbative parameter , and PDFs, and shown as a yellow band, are of a comparable size to the uncertainties on the corrected data. For values of the predictions from ResBos are consistent with the data within the assigned theoretical uncertainties showing that ResBos is able to describe the evolution of the distribution with . However, at larger values of this is not thecase.
Comparison to parton-shower approaches
Figures 14, 15 and 16 show the comparison of the distributions to the predictions of MC generators using the parton-shower approach: Powheg+Pythia (with both the AU2 [30] and AZNLO [14] tunes), Powheg+Herwig (only shown for the region around the peak) and Sherpa. Figure 14 shows the ratio of as predicted by the MC generators, to the combined Born-level data in each of the six regions for . Figure 15 shows the ratio for each of the six regions at the -boson mass peak. Between values of approximately and for the MC generators describe the shape of the data to within 10 %. However, outside this range, and in the regions with very low , the agreement worsens. For values of for the region around the Z-boson mass peak the best description is provided by Powheg+Pythia (AZNLO), which was tuned to exactly this kinematic region in the data [14]. However, at high values of around the Z-boson mass peak and in other regions this MC tune does not describe the data well and also does not outperform the Powheg+Pythia AU2 tune. The differences between Sherpa and the data are generally of a similar magnitude, but of opposite sign, to those seen for Powheg+Pythia.
Figure 16 shows the ratio of the distribution of in each region of to the distribution in the central region (), for events in the region around the -boson mass peak. The distributions are shown for data (with associated statistical and total uncertainties) as well as for predictions from three parton-shower MC generators. The MC generators describe the data reasonably well over the entire range of and generally much better than they describe the distributions (Figs. 14, 15) – although there are discrepancies of up to 5 % with respect to data for .
For comparison with Fig. 14, Fig. 17 shows the ratio of as predicted by the MC generators, to the combined Born-level data in each of the three regions from to for . The differences between MC predictions and data seen in Fig. 17 are consistent with those seen in Fig. 14.
Fixed-order QCD and electroweak corrections
Figure 18 shows the ratio of as predicted by the fixed-order perturbative QCD predictions of Dynnlo to Born-level data for six regions of from to . The prediction is shown both with and without NLO EW corrections [53]. The data are shown with their associated statistical and total uncertainties. The predictions are not expected to describe the shape of the data for lower values of , where it is known that the effects of soft-gluon emissions become important. At the shape of the distribution is described within uncertainties by Dynnlo. However, the prediction is consistently low by about 15 % compared to the data across all ranges, which is not covered by the evaluated scale and PDF uncertainties, although a recent calculation suggests the size of order corrections to be +(5–10) % for [66]. The observed behaviour of Dynnlo is consistent with the results at near the Z peak [14]. The application of NLO EW corrections predicts an approximately 5 % increase of the cross section below the Z-peak region due to effects of exchange, while a suppression of up to 20 % at highest is predicted due to large Sudakov logarithms [53]. The change in the prediction induced by the addition of the EW corrections is significantly smaller than both the uncertainty on the NNLO QCD prediction and the difference between the prediction and data. Therefore, no conclusions can be drawn on whether or not their addition leads to an improvement in agreement between data and theory.
Conclusion
Measurements are presented of the and distributions of Drell–Yan lepton-pair events using 20.3  of pp collision data collected with the ATLAS detector. The results presented here expand upon those presented previously by ATLAS at , by providing measurements in regions of above and below, as well as on, the -boson mass peak, and also in finer divisions of than were presented at . Measurements for both the electron- and muon-pair channels are provided corresponding to a variety of particle-level definitions that differ in the size of the correction for final-state photon radiation. The results from the two channels at the Born level are combined and compared to a variety of theoretical predictions. In addition, measurements of the integrated cross section in six bins of are given.
The predictions from ResBos, which include the effects of soft-gluon resummation, are compared to the normalised distributions . These predictions are consistent with the data within the assigned theoretical uncertainties within certain kinematic regions, especially at low values of : for ; for ; and over the full range of for . However, outside these kinematic ranges, i.e., for larger values of , the predictions show significant deviations from the data. The evolution of with and (for which the theoretical uncertainties on the predictions largely cancel) is generally well described by ResBos.
Predictions from MC generators with parton showers are compared to the normalised distributions in a similar manner. Between values of approximately and for the MC generators describe the basic shape of the data to within 10 %. However outside this range, and in the very-low regions of the agreement worsens. The MC generators do though provide a reasonable description of the evolution of the distributions with for the region around the -boson mass peak. Fixed-order predictions from Dynnlo are compared to the absolute differential cross-section distributions. The predictions describe the shape of the data within uncertainties for but only describe the absolute values to within 15 %, which is not covered by the evaluated scale and PDF uncertainties. The data and QCD predictions are not precise enough to be sensitive to the inclusion of EW corrections.
Acknowledgments
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.
Appendix
In the Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 31 in this appendix the values of and are given for each region of and considered. The electron-pair results are given at the dressed and Born levels, and the muon-pair results at the bare, dressed and Born levels. The Born-level combined results are also given. The associated statistical and systematic uncertainties (both uncorrelated and correlated between bins in or ) are provided in percentage form.
Table 5.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0–0.004 | 6.778 ± 2.4 ± 0.9 ± 5.9 | 7.256 ± 2.4 ± 1.0 ± 6.0 | 6.688 ± 2.0 ± 0.8 ± 5.0 | 6.687 ± 2.0 ± 0.8 ± 5.0 | 7.157 ± 2.0 ± 0.8 ± 5.2 | 7.248 ± 1.5 ± 0.6 ± 5.3 |
0.004–0.008 | 6.662 ± 2.3 ± 0.9 ± 2.3 | 7.051 ± 2.3 ± 0.9 ± 2.6 | 7.079 ± 2.0 ± 0.8 ± 1.9 | 7.046 ± 2.0 ± 0.8 ± 1.9 | 7.469 ± 2.0 ± 0.8 ± 2.4 | 7.258 ± 1.5 ± 0.6 ± 2.3 |
0.008–0.012 | 6.781 ± 2.3 ± 0.9 ± 1.5 | 7.179 ± 2.3 ± 0.9 ± 1.9 | 6.747 ± 2.1 ± 0.8 ± 1.4 | 6.704 ± 2.1 ± 0.8 ± 1.4 | 7.169 ± 2.1 ± 0.8 ± 2.0 | 7.141 ± 1.5 ± 0.6 ± 1.7 |
0.012–0.016 | 6.561 ± 2.3 ± 0.9 ± 1.1 | 6.926 ± 2.3 ± 0.9 ± 1.6 | 6.680 ± 2.0 ± 0.8 ± 1.1 | 6.660 ± 2.1 ± 0.8 ± 1.1 | 7.085 ± 2.0 ± 0.8 ± 1.8 | 6.981 ± 1.5 ± 0.6 ± 1.5 |
0.016–0.020 | 6.540 ± 2.3 ± 0.9 ± 1.0 | 6.927 ± 2.3 ± 1.0 ± 1.5 | 6.542 ± 2.0 ± 0.8 ± 0.9 | 6.484 ± 2.0 ± 0.8 ± 0.9 | 6.884 ± 2.0 ± 0.8 ± 1.6 | 6.861 ± 1.5 ± 0.6 ± 1.4 |
0.020–0.024 | 6.327 ± 2.3 ± 0.9 ± 1.1 | 6.714 ± 2.3 ± 0.9 ± 1.6 | 6.437 ± 2.1 ± 0.9 ± 0.9 | 6.415 ± 2.1 ± 0.9 ± 0.9 | 6.755 ± 2.1 ± 0.9 ± 1.7 | 6.693 ± 1.6 ± 0.6 ± 1.4 |
0.024–0.029 | 6.102 ± 2.1 ± 0.8 ± 0.9 | 6.408 ± 2.1 ± 0.9 ± 1.4 | 6.072 ± 1.9 ± 0.8 ± 0.9 | 6.075 ± 1.9 ± 0.8 ± 0.9 | 6.472 ± 1.9 ± 0.8 ± 1.5 | 6.398 ± 1.4 ± 0.6 ± 1.2 |
0.029–0.034 | 5.682 ± 2.2 ± 0.8 ± 0.8 | 5.957 ± 2.2 ± 0.9 ± 1.4 | 5.877 ± 2.0 ± 0.8 ± 0.8 | 5.904 ± 2.0 ± 0.8 ± 0.8 | 6.214 ± 2.0 ± 0.8 ± 1.4 | 6.062 ± 1.5 ± 0.6 ± 1.2 |
0.034–0.039 | 5.868 ± 2.2 ± 0.8 ± 0.9 | 6.185 ± 2.2 ± 0.9 ± 1.4 | 5.468 ± 2.1 ± 0.8 ± 0.8 | 5.482 ± 2.1 ± 0.8 ± 0.8 | 5.798 ± 2.1 ± 0.8 ± 1.4 | 5.919 ± 1.5 ± 0.6 ± 1.2 |
0.039–0.045 | 5.263 ± 2.1 ± 0.8 ± 0.5 | 5.485 ± 2.1 ± 0.9 ± 1.3 | 5.428 ± 1.9 ± 0.8 ± 0.8 | 5.449 ± 1.9 ± 0.8 ± 0.8 | 5.669 ± 1.9 ± 0.8 ± 1.4 | 5.544 ± 1.4 ± 0.6 ± 1.1 |
0.045–0.051 | 5.032 ± 2.1 ± 0.8 ± 0.6 | 5.274 ± 2.1 ± 0.9 ± 1.3 | 5.182 ± 1.9 ± 0.8 ± 0.9 | 5.210 ± 1.9 ± 0.8 ± 0.9 | 5.505 ± 1.9 ± 0.8 ± 1.5 | 5.351 ± 1.4 ± 0.6 ± 1.1 |
0.051–0.057 | 4.796 ± 2.2 ± 0.8 ± 0.6 | 4.964 ± 2.2 ± 0.8 ± 1.3 | 4.862 ± 2.0 ± 0.8 ± 0.8 | 4.897 ± 2.0 ± 0.8 ± 0.8 | 5.111 ± 2.0 ± 0.8 ± 1.4 | 5.003 ± 1.5 ± 0.6 ± 1.1 |
0.057–0.064 | 4.443 ± 2.1 ± 0.8 ± 0.7 | 4.603 ± 2.1 ± 0.8 ± 1.3 | 4.430 ± 1.9 ± 0.8 ± 0.5 | 4.443 ± 1.9 ± 0.8 ± 0.5 | 4.663 ± 1.9 ± 0.8 ± 1.5 | 4.597 ± 1.4 ± 0.6 ± 1.2 |
0.064–0.072 | 4.113 ± 2.0 ± 0.8 ± 0.6 | 4.271 ± 2.0 ± 0.8 ± 1.3 | 4.052 ± 1.9 ± 0.8 ± 0.4 | 4.082 ± 1.9 ± 0.8 ± 0.4 | 4.256 ± 1.9 ± 0.8 ± 1.4 | 4.245 ± 1.4 ± 0.6 ± 1.2 |
0.072–0.081 | 3.766 ± 2.0 ± 0.7 ± 0.7 | 3.876 ± 2.0 ± 0.8 ± 1.3 | 3.759 ± 1.8 ± 0.7 ± 0.5 | 3.787 ± 1.8 ± 0.7 ± 0.5 | 3.912 ± 1.8 ± 0.7 ± 1.5 | 3.866 ± 1.3 ± 0.5 ± 1.2 |
0.081–0.091 | 3.400 ± 2.0 ± 1.2 ± 1.0 | 3.495 ± 2.0 ± 1.2 ± 1.5 | 3.517 ± 1.8 ± 0.7 ± 0.5 | 3.521 ± 1.8 ± 0.7 ± 0.5 | 3.665 ± 1.8 ± 0.7 ± 1.5 | 3.580 ± 1.3 ± 0.7 ± 1.2 |
0.091–0.102 | 3.231 ± 2.0 ± 0.7 ± 0.8 | 3.318 ± 2.0 ± 0.8 ± 1.4 | 3.107 ± 1.8 ± 0.7 ± 0.5 | 3.130 ± 1.8 ± 0.7 ± 0.5 | 3.224 ± 1.8 ± 0.7 ± 1.5 | 3.240 ± 1.3 ± 0.5 ± 1.2 |
0.102–0.114 | 2.833 ± 2.0 ± 0.7 ± 0.8 | 2.848 ± 2.0 ± 0.8 ± 1.4 | 2.814 ± 1.8 ± 0.7 ± 0.5 | 2.822 ± 1.8 ± 0.7 ± 0.5 | 2.882 ± 1.8 ± 0.7 ± 1.5 | 2.844 ± 1.3 ± 0.5 ± 1.2 |
0.114–0.128 | 2.555 ± 2.0 ± 0.7 ± 0.7 | 2.596 ± 2.0 ± 0.8 ± 1.3 | 2.477 ± 1.8 ± 0.7 ± 0.7 | 2.487 ± 1.8 ± 0.7 ± 0.7 | 2.518 ± 1.8 ± 0.7 ± 0.9 | 2.535 ± 1.3 ± 0.5 ± 0.9 |
0.128–0.145 | 2.206 ± 1.9 ± 0.7 ± 0.7 | 2.204 ± 1.9 ± 0.7 ± 1.4 | 2.175 ± 1.7 ± 0.7 ± 0.5 | 2.170 ± 1.7 ± 0.7 ± 0.5 | 2.160 ± 1.7 ± 0.7 ± 0.8 | 2.173 ± 1.3 ± 0.5 ± 0.9 |
0.145–0.165 | 1.830 ± 1.9 ± 0.7 ± 0.7 | 1.799 ± 1.9 ± 0.8 ± 1.4 | 1.846 ± 1.7 ± 0.7 ± 0.6 | 1.850 ± 1.7 ± 0.7 ± 0.6 | 1.836 ± 1.7 ± 0.7 ± 0.8 | 1.811 ± 1.3 ± 0.5 ± 0.9 |
0.165–0.189 | 1.545 ± 1.9 ± 0.7 ± 0.8 | 1.519 ± 1.9 ± 0.8 ± 1.4 | 1.535 ± 1.7 ± 0.7 ± 0.5 | 1.538 ± 1.7 ± 0.7 ± 0.5 | 1.497 ± 1.7 ± 0.7 ± 0.8 | 1.497 ± 1.3 ± 0.5 ± 1.0 |
0.189–0.219 | 1.235 ± 1.9 ± 1.1 ± 1.0 | 1.185 ± 1.9 ± 1.2 ± 1.5 | 1.292 ± 1.7 ± 0.7 ± 0.6 | 1.292 ± 1.7 ± 0.7 ± 0.6 | 1.240 ± 1.7 ± 0.7 ± 0.8 | 1.214 ± 1.3 ± 0.6 ± 0.9 |
0.219–0.258 | 1.008 ± 1.8 ± 0.7 ± 0.9 | 0.949 ± 1.8 ± 0.7 ± 1.5 | 1.003 ± 1.7 ± 0.7 ± 0.6 | 1.001 ± 1.7 ± 0.7 ± 0.6 | 0.944 ± 1.7 ± 0.7 ± 0.9 | 0.943 ± 1.2 ± 0.5 ± 1.0 |
0.258–0.312 | 0.767 ± 1.8 ± 0.7 ± 0.9 | 0.707 ± 1.8 ± 0.8 ± 2.2 | 0.772 ± 1.6 ± 0.7 ± 0.7 | 0.771 ± 1.6 ± 0.7 ± 0.7 | 0.702 ± 1.6 ± 0.7 ± 1.9 | 0.697 ± 1.2 ± 0.5 ± 1.7 |
0.312–0.391 | 0.545 ± 1.8 ± 0.8 ± 0.9 | 0.488 ± 1.8 ± 0.9 ± 2.2 | 0.530 ± 1.6 ± 0.7 ± 0.6 | 0.531 ± 1.6 ± 0.7 ± 0.6 | 0.472 ± 1.6 ± 0.7 ± 1.8 | 0.477 ± 1.2 ± 0.5 ± 1.7 |
0.391–0.524 | 0.337 ± 1.8 ± 0.7 ± 1.0 | 0.299 ± 1.8 ± 0.7 ± 2.2 | 0.336 ± 1.6 ± 0.6 ± 1.1 | 0.335 ± 1.6 ± 0.6 ± 1.1 | 0.293 ± 1.6 ± 0.6 ± 2.0 | 0.295 ± 1.2 ± 0.5 ± 1.7 |
0.524–0.695 | 0.201 ± 2.0 ± 0.8 ± 1.8 | 0.183 ± 2.0 ± 0.8 ± 2.7 | 0.194 ± 1.8 ± 0.8 ± 1.9 | 0.193 ± 1.8 ± 0.8 ± 1.9 | 0.170 ± 1.8 ± 0.8 ± 2.5 | 0.176 ± 1.4 ± 0.6 ± 1.9 |
0.695–0.918 | 0.105 ± 2.5 ± 1.0 ± 1.5 | 0.0978 ± 2.5 ± 1.0 ± 2.5 | 0.113 ± 2.2 ± 1.0 ± 2.1 | 0.112 ± 2.2 ± 1.0 ± 2.1 | 0.102 ± 2.2 ± 1.0 ± 2.7 | 0.101 ± 1.6 ± 0.7 ± 2.0 |
0.918–1.153 | 0.0647 ± 3.2 ± 1.3 ± 1.9 | 0.0623 ± 3.2 ± 1.4 ± 2.7 | 0.0613 ± 3.0 ± 1.3 ± 2.9 | 0.0609 ± 3.0 ± 1.3 ± 2.9 | 0.0569 ± 3.0 ± 1.3 ± 3.4 | 0.0598 ± 2.2 ± 0.9 ± 2.3 |
1.153–1.496 | 0.0342 ± 3.9 ± 2.7 ± 2.9 | 0.0330 ± 3.9 ± 2.8 ± 3.6 | 0.0333 ± 3.2 ± 1.7 ± 4.2 | 0.0328 ± 3.2 ± 1.7 ± 4.2 | 0.0315 ± 3.2 ± 1.7 ± 4.8 | 0.0330 ± 2.5 ± 1.5 ± 3.2 |
1.496–1.947 | 0.0184 ± 4.7 ± 2.2 ± 3.0 | 0.0181 ± 4.7 ± 2.2 ± 3.6 | 0.0169 ± 4.1 ± 2.1 ± 3.3 | 0.0167 ± 4.1 ± 2.1 ± 3.3 | 0.0160 ± 4.1 ± 2.1 ± 4.0 | 0.0170 ± 3.1 ± 1.5 ± 3.2 |
1.947–2.522 | 0.00907 ± 6.1 ± 3.0 ± 3.7 | 0.00885 ± 6.1 ± 3.1 ± 4.3 | 0.00989 ± 4.7 ± 2.2 ± 2.9 | 0.00975 ± 4.7 ± 2.2 ± 2.9 | 0.00950 ± 4.7 ± 2.2 ± 3.6 | 0.00939 ± 3.7 ± 1.8 ± 3.2 |
2.522–3.277 | 0.00454 ± 7.5 ± 4.6 ± 3.1 | 0.00445 ± 7.5 ± 4.7 ± 3.8 | 0.00447 ± 6.1 ± 2.7 ± 4.2 | 0.00441 ± 6.1 ± 2.7 ± 4.2 | 0.00430 ± 6.1 ± 2.7 ± 4.8 | 0.00446 ± 4.7 ± 2.4 ± 3.4 |
3.277–5.000 | 0.00252 ± 6.3 ± 2.8 ± 4.0 | 0.00252 ± 6.3 ± 2.8 ± 4.6 | 0.00220 ± 5.7 ± 2.6 ± 3.8 | 0.00219 ± 5.7 ± 2.6 ± 3.8 | 0.00214 ± 5.7 ± 2.6 ± 4.4 | 0.00232 ± 4.2 ± 1.9 ± 3.3 |
5.000–10.000 | 0.000525 ± 8.6 ± 3.9 ± 3.4 | 0.000510 ± 8.6 ± 3.9 ± 4.0 | 0.000585 ± 6.4 ± 2.9 ± 4.0 | 0.000577 ± 6.4 ± 2.9 ± 4.0 | 0.000545 ± 6.4 ± 2.9 ± 4.6 | 0.000542 ± 5.1 ± 2.3 ± 3.3 |
Table 6.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 7.182 ± 2.7 ± 1.1 ± 5.3 | 7.754 ± 2.7 ± 1.1 ± 5.3 | 6.713 ± 1.9 ± 0.8 ± 4.7 | 6.704 ± 1.9 ± 0.8 ± 4.7 | 7.109 ± 1.9 ± 0.8 ± 5.0 | 7.311 ± 1.5 ± 0.6 ± 4.9 |
0.004–0.008 | 7.048 ± 2.6 ± 1.1 ± 2.5 | 7.465 ± 2.6 ± 1.1 ± 2.7 | 6.917 ± 1.9 ± 0.8 ± 1.9 | 6.884 ± 1.9 ± 0.8 ± 1.9 | 7.255 ± 1.9 ± 0.8 ± 2.5 | 7.349 ± 1.5 ± 0.6 ± 2.3 |
0.008–0.012 | 6.842 ± 2.6 ± 1.1 ± 1.7 | 7.254 ± 2.6 ± 1.1 ± 2.0 | 6.898 ± 1.9 ± 0.8 ± 1.3 | 6.851 ± 1.9 ± 0.8 ± 1.3 | 7.247 ± 1.9 ± 0.8 ± 2.0 | 7.270 ± 1.5 ± 0.6 ± 1.7 |
0.012–0.016 | 6.408 ± 2.7 ± 1.1 ± 1.1 | 6.812 ± 2.7 ± 1.2 ± 1.6 | 6.758 ± 1.9 ± 0.8 ± 1.0 | 6.757 ± 1.9 ± 0.8 ± 1.0 | 7.249 ± 1.9 ± 0.8 ± 1.9 | 7.123 ± 1.6 ± 0.6 ± 1.5 |
0.016–0.020 | 6.302 ± 2.7 ± 1.1 ± 1.4 | 6.619 ± 2.7 ± 1.1 ± 1.8 | 6.625 ± 2.0 ± 0.8 ± 1.1 | 6.630 ± 2.0 ± 0.8 ± 1.1 | 7.000 ± 2.0 ± 0.8 ± 1.9 | 6.872 ± 1.6 ± 0.7 ± 1.4 |
0.020–0.024 | 6.328 ± 2.7 ± 1.1 ± 1.1 | 6.654 ± 2.7 ± 1.1 ± 1.6 | 6.326 ± 2.0 ± 0.8 ± 0.9 | 6.334 ± 2.0 ± 0.8 ± 0.9 | 6.722 ± 2.0 ± 0.8 ± 1.8 | 6.725 ± 1.6 ± 0.7 ± 1.4 |
0.024–0.029 | 6.279 ± 2.4 ± 0.9 ± 0.9 | 6.570 ± 2.4 ± 1.0 ± 1.4 | 6.161 ± 1.8 ± 0.7 ± 0.8 | 6.141 ± 1.8 ± 0.7 ± 0.8 | 6.497 ± 1.8 ± 0.7 ± 1.7 | 6.535 ± 1.4 ± 0.6 ± 1.3 |
0.029–0.034 | 6.047 ± 2.4 ± 1.0 ± 0.8 | 6.369 ± 2.4 ± 1.0 ± 1.4 | 5.931 ± 1.9 ± 0.8 ± 0.7 | 5.944 ± 1.9 ± 0.8 ± 0.7 | 6.311 ± 1.9 ± 0.8 ± 1.6 | 6.344 ± 1.5 ± 0.6 ± 1.2 |
0.034–0.039 | 5.803 ± 2.6 ± 1.1 ± 1.1 | 6.074 ± 2.6 ± 1.1 ± 1.5 | 5.684 ± 1.9 ± 0.8 ± 0.7 | 5.664 ± 1.9 ± 0.8 ± 0.7 | 6.004 ± 1.9 ± 0.8 ± 1.6 | 6.049 ± 1.5 ± 0.6 ± 1.2 |
0.039–0.045 | 5.295 ± 2.4 ± 0.9 ± 0.6 | 5.522 ± 2.4 ± 1.0 ± 1.3 | 5.417 ± 1.8 ± 0.7 ± 0.7 | 5.413 ± 1.8 ± 0.7 ± 0.7 | 5.695 ± 1.8 ± 0.7 ± 1.6 | 5.648 ± 1.4 ± 0.6 ± 1.2 |
0.045–0.051 | 5.149 ± 2.4 ± 1.0 ± 0.9 | 5.351 ± 2.4 ± 1.0 ± 1.5 | 5.158 ± 1.8 ± 0.7 ± 1.0 | 5.189 ± 1.8 ± 0.7 ± 1.0 | 5.398 ± 1.8 ± 0.7 ± 1.8 | 5.373 ± 1.5 ± 0.6 ± 1.2 |
0.051–0.057 | 4.906 ± 2.5 ± 1.0 ± 0.7 | 5.112 ± 2.5 ± 1.0 ± 1.3 | 5.115 ± 1.8 ± 0.7 ± 0.8 | 5.139 ± 1.8 ± 0.7 ± 0.8 | 5.394 ± 1.8 ± 0.7 ± 1.7 | 5.308 ± 1.5 ± 0.6 ± 1.2 |
0.057–0.064 | 4.396 ± 2.4 ± 0.9 ± 0.7 | 4.555 ± 2.4 ± 1.0 ± 1.3 | 4.535 ± 1.8 ± 0.7 ± 0.8 | 4.569 ± 1.8 ± 0.7 ± 0.8 | 4.775 ± 1.8 ± 0.7 ± 1.4 | 4.698 ± 1.4 ± 0.6 ± 1.1 |
0.064–0.072 | 4.289 ± 2.3 ± 0.9 ± 1.0 | 4.427 ± 2.3 ± 1.0 ± 1.5 | 4.180 ± 1.7 ± 0.7 ± 0.7 | 4.198 ± 1.7 ± 0.7 ± 0.7 | 4.360 ± 1.7 ± 0.7 ± 1.4 | 4.383 ± 1.4 ± 0.6 ± 1.1 |
0.072–0.081 | 3.884 ± 2.3 ± 0.9 ± 0.8 | 3.993 ± 2.3 ± 0.9 ± 1.4 | 4.079 ± 1.6 ± 0.7 ± 0.7 | 4.110 ± 1.6 ± 0.7 ± 0.7 | 4.273 ± 1.6 ± 0.7 ± 1.3 | 4.182 ± 1.3 ± 0.5 ± 1.1 |
0.081–0.091 | 3.645 ± 2.2 ± 0.9 ± 0.8 | 3.749 ± 2.2 ± 0.9 ± 1.4 | 3.465 ± 1.7 ± 0.7 ± 0.4 | 3.486 ± 1.7 ± 0.7 ± 0.4 | 3.611 ± 1.7 ± 0.7 ± 1.2 | 3.688 ± 1.3 ± 0.5 ± 1.0 |
0.091–0.102 | 3.172 ± 2.3 ± 0.9 ± 0.7 | 3.241 ± 2.3 ± 1.0 ± 1.3 | 3.153 ± 1.7 ± 0.7 ± 0.5 | 3.165 ± 1.7 ± 0.7 ± 0.5 | 3.232 ± 1.7 ± 0.7 ± 1.2 | 3.256 ± 1.3 ± 0.6 ± 1.0 |
0.102–0.114 | 2.869 ± 2.3 ± 0.9 ± 0.7 | 2.927 ± 2.3 ± 1.0 ± 1.4 | 2.795 ± 1.7 ± 0.7 ± 0.5 | 2.802 ± 1.7 ± 0.7 ± 0.5 | 2.850 ± 1.7 ± 0.7 ± 1.2 | 2.893 ± 1.4 ± 0.6 ± 1.0 |
0.114–0.128 | 2.520 ± 2.3 ± 1.0 ± 0.8 | 2.540 ± 2.3 ± 1.0 ± 1.4 | 2.538 ± 1.6 ± 0.7 ± 0.5 | 2.550 ± 1.6 ± 0.7 ± 0.5 | 2.585 ± 1.6 ± 0.7 ± 0.6 | 2.585 ± 1.3 ± 0.6 ± 0.7 |
0.128–0.145 | 2.092 ± 2.2 ± 0.9 ± 0.8 | 2.091 ± 2.2 ± 1.0 ± 1.4 | 2.158 ± 1.6 ± 0.6 ± 0.6 | 2.154 ± 1.6 ± 0.6 ± 0.6 | 2.151 ± 1.6 ± 0.6 ± 0.7 | 2.137 ± 1.3 ± 0.5 ± 0.8 |
0.145–0.165 | 1.806 ± 2.3 ± 0.9 ± 0.8 | 1.768 ± 2.3 ± 0.9 ± 1.4 | 1.891 ± 1.6 ± 0.6 ± 0.6 | 1.889 ± 1.6 ± 0.6 ± 0.6 | 1.868 ± 1.6 ± 0.6 ± 0.7 | 1.841 ± 1.3 ± 0.5 ± 0.8 |
0.165–0.189 | 1.462 ± 2.3 ± 0.9 ± 0.7 | 1.419 ± 2.3 ± 1.0 ± 1.4 | 1.497 ± 1.6 ± 0.7 ± 0.5 | 1.496 ± 1.6 ± 0.7 ± 0.5 | 1.458 ± 1.6 ± 0.7 ± 0.6 | 1.453 ± 1.3 ± 0.5 ± 0.7 |
0.189–0.219 | 1.216 ± 2.2 ± 1.1 ± 0.7 | 1.162 ± 2.2 ± 1.1 ± 1.4 | 1.268 ± 1.6 ± 0.6 ± 0.6 | 1.268 ± 1.6 ± 0.6 ± 0.6 | 1.209 ± 1.6 ± 0.6 ± 0.7 | 1.199 ± 1.3 ± 0.6 ± 0.7 |
0.219–0.258 | 0.989 ± 2.2 ± 0.8 ± 0.8 | 0.937 ± 2.2 ± 0.9 ± 1.4 | 0.982 ± 1.6 ± 0.6 ± 0.6 | 0.991 ± 1.6 ± 0.6 ± 0.6 | 0.928 ± 1.6 ± 0.6 ± 0.7 | 0.937 ± 1.3 ± 0.5 ± 0.8 |
0.258–0.312 | 0.738 ± 2.1 ± 0.9 ± 0.9 | 0.669 ± 2.1 ± 1.0 ± 2.2 | 0.755 ± 1.5 ± 0.6 ± 0.5 | 0.756 ± 1.5 ± 0.6 ± 0.5 | 0.686 ± 1.5 ± 0.6 ± 2.2 | 0.693 ± 1.2 ± 0.5 ± 1.7 |
0.312–0.391 | 0.554 ± 2.0 ± 0.9 ± 1.2 | 0.499 ± 2.0 ± 1.0 ± 2.4 | 0.526 ± 1.5 ± 0.6 ± 1.2 | 0.524 ± 1.5 ± 0.6 ± 1.2 | 0.465 ± 1.5 ± 0.6 ± 2.4 | 0.490 ± 1.2 ± 0.5 ± 1.8 |
0.391–0.524 | 0.325 ± 2.1 ± 0.8 ± 1.3 | 0.288 ± 2.1 ± 0.9 ± 2.4 | 0.331 ± 1.5 ± 0.7 ± 1.6 | 0.329 ± 1.5 ± 0.7 ± 1.6 | 0.291 ± 1.5 ± 0.7 ± 2.6 | 0.300 ± 1.2 ± 0.6 ± 1.9 |
0.524–0.695 | 0.197 ± 2.4 ± 1.3 ± 1.9 | 0.179 ± 2.4 ± 1.3 ± 2.8 | 0.187 ± 1.7 ± 0.7 ± 2.2 | 0.186 ± 1.7 ± 0.7 ± 2.2 | 0.163 ± 1.7 ± 0.7 ± 3.1 | 0.176 ± 1.4 ± 0.6 ± 2.1 |
0.695–0.918 | 0.102 ± 2.9 ± 1.8 ± 1.9 | 0.0961 ± 2.9 ± 1.8 ± 2.8 | 0.101 ± 2.1 ± 0.9 ± 2.5 | 0.0998 ± 2.1 ± 0.9 ± 2.5 | 0.0921 ± 2.1 ± 0.9 ± 3.3 | 0.0978 ± 1.7 ± 0.8 ± 2.2 |
0.918–1.153 | 0.0605 ± 3.8 ± 1.8 ± 2.3 | 0.0584 ± 3.8 ± 1.9 ± 3.1 | 0.0594 ± 2.6 ± 1.1 ± 3.4 | 0.0588 ± 2.6 ± 1.1 ± 3.4 | 0.0547 ± 2.6 ± 1.1 ± 4.0 | 0.0594 ± 2.1 ± 1.0 ± 2.5 |
1.153–1.496 | 0.0352 ± 4.2 ± 3.4 ± 2.6 | 0.0345 ± 4.2 ± 3.4 ± 3.4 | 0.0315 ± 3.1 ± 1.6 ± 2.7 | 0.0310 ± 3.1 ± 1.6 ± 2.7 | 0.0300 ± 3.1 ± 1.6 ± 3.2 | 0.0327 ± 2.5 ± 1.5 ± 2.4 |
1.496–1.947 | 0.0174 ± 5.2 ± 3.3 ± 3.7 | 0.0171 ± 5.2 ± 3.4 ± 4.3 | 0.0177 ± 3.8 ± 1.8 ± 2.2 | 0.0175 ± 3.8 ± 1.8 ± 2.2 | 0.0167 ± 3.8 ± 1.8 ± 2.8 | 0.0175 ± 3.0 ± 1.6 ± 2.4 |
1.947–2.522 | 0.00950 ± 6.2 ± 3.6 ± 3.9 | 0.00936 ± 6.2 ± 3.7 ± 4.5 | 0.00938 ± 4.4 ± 2.0 ± 2.4 | 0.00923 ± 4.4 ± 2.0 ± 2.4 | 0.00905 ± 4.4 ± 2.0 ± 2.9 | 0.00953 ± 3.5 ± 1.8 ± 2.4 |
2.522–3.277 | 0.00567 ± 6.3 ± 3.9 ± 11 | 0.00574 ± 6.3 ± 3.9 ± 11 | 0.00493 ± 5.4 ± 3.3 ± 2.0 | 0.00494 ± 5.4 ± 3.3 ± 2.0 | 0.00480 ± 5.4 ± 3.3 ± 2.6 | 0.00519 ± 4.1 ± 2.5 ± 3.3 |
3.277–5.000 | 0.00208 ± 7.3 ± 4.5 ± 4.1 | 0.00204 ± 7.3 ± 4.5 ± 4.6 | 0.00206 ± 5.5 ± 3.4 ± 3.6 | 0.00204 ± 5.5 ± 3.4 ± 3.6 | 0.00200 ± 5.5 ± 3.4 ± 3.9 | 0.00211 ± 4.3 ± 2.7 ± 2.7 |
5.000–10.000 | 0.000603 ± 7.9 ± 4.4 ± 3.3 | 0.000599 ± 7.9 ± 4.4 ± 3.9 | 0.000536 ± 6.4 ± 3.8 ± 3.4 | 0.000529 ± 6.4 ± 3.8 ± 3.4 | 0.000521 ± 6.4 ± 3.8 ± 3.8 | 0.000577 ± 4.9 ± 2.9 ± 2.7 |
Table 7.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 6.724 ± 3.7 ± 1.7 ± 4.0 | 7.096 ± 3.7 ± 1.7 ± 4.2 | 6.844 ± 2.6 ± 1.1 ± 3.2 | 6.783 ± 2.6 ± 1.1 ± 3.2 | 7.249 ± 2.6 ± 1.1 ± 3.3 | 7.260 ± 2.1 ± 0.9 ± 3.5 |
0.004–0.008 | 6.620 ± 3.7 ± 1.8 ± 1.9 | 6.958 ± 3.7 ± 1.8 ± 2.2 | 6.899 ± 2.4 ± 1.0 ± 1.5 | 6.752 ± 2.4 ± 1.0 ± 1.5 | 7.155 ± 2.4 ± 1.0 ± 1.7 | 7.129 ± 2.0 ± 0.9 ± 1.7 |
0.008–0.012 | 6.546 ± 3.6 ± 1.8 ± 1.2 | 6.826 ± 3.6 ± 1.8 ± 1.7 | 7.009 ± 2.5 ± 1.0 ± 1.2 | 6.942 ± 2.5 ± 1.0 ± 1.2 | 7.338 ± 2.5 ± 1.0 ± 1.4 | 7.174 ± 2.1 ± 0.9 ± 1.3 |
0.012–0.016 | 6.493 ± 3.6 ± 1.4 ± 1.6 | 6.877 ± 3.6 ± 1.5 ± 1.9 | 7.341 ± 2.5 ± 1.1 ± 0.9 | 7.206 ± 2.5 ± 1.1 ± 0.9 | 7.625 ± 2.5 ± 1.1 ± 1.2 | 7.389 ± 2.0 ± 0.9 ± 1.2 |
0.016–0.020 | 6.632 ± 3.6 ± 1.5 ± 2.0 | 6.939 ± 3.6 ± 1.5 ± 2.3 | 6.958 ± 2.5 ± 1.0 ± 0.9 | 6.958 ± 2.5 ± 1.0 ± 0.9 | 7.457 ± 2.5 ± 1.0 ± 1.3 | 7.249 ± 2.1 ± 0.9 ± 1.2 |
0.020–0.024 | 6.727 ± 3.6 ± 1.5 ± 0.9 | 7.004 ± 3.6 ± 1.5 ± 1.5 | 6.505 ± 2.7 ± 1.1 ± 0.7 | 6.504 ± 2.7 ± 1.1 ± 0.7 | 6.724 ± 2.7 ± 1.1 ± 1.1 | 6.803 ± 2.1 ± 0.9 ± 1.0 |
0.024–0.029 | 6.531 ± 3.3 ± 1.3 ± 1.1 | 6.896 ± 3.3 ± 1.4 ± 1.6 | 6.452 ± 2.4 ± 1.0 ± 0.7 | 6.378 ± 2.4 ± 1.0 ± 0.7 | 6.721 ± 2.4 ± 1.0 ± 1.1 | 6.747 ± 1.9 ± 0.8 ± 1.0 |
0.029–0.034 | 6.023 ± 3.4 ± 1.4 ± 1.0 | 6.297 ± 3.4 ± 1.4 ± 1.5 | 5.969 ± 2.5 ± 1.0 ± 0.7 | 5.980 ± 2.5 ± 1.0 ± 0.7 | 6.272 ± 2.5 ± 1.0 ± 1.1 | 6.261 ± 2.0 ± 0.8 ± 1.0 |
0.034–0.039 | 6.204 ± 3.3 ± 1.4 ± 0.9 | 6.499 ± 3.3 ± 1.4 ± 1.5 | 5.529 ± 2.6 ± 1.1 ± 0.6 | 5.509 ± 2.6 ± 1.1 ± 0.6 | 5.840 ± 2.6 ± 1.1 ± 1.0 | 6.050 ± 2.0 ± 0.8 ± 1.0 |
0.039–0.045 | 5.461 ± 3.2 ± 1.8 ± 0.9 | 5.675 ± 3.2 ± 1.8 ± 1.4 | 5.619 ± 2.3 ± 0.9 ± 0.7 | 5.625 ± 2.3 ± 0.9 ± 0.7 | 5.999 ± 2.3 ± 0.9 ± 1.1 | 5.895 ± 1.9 ± 0.9 ± 1.0 |
0.045–0.051 | 5.384 ± 3.3 ± 1.8 ± 1.1 | 5.592 ± 3.3 ± 1.8 ± 1.5 | 5.153 ± 2.4 ± 1.0 ± 0.8 | 5.170 ± 2.4 ± 1.0 ± 0.8 | 5.355 ± 2.4 ± 1.0 ± 1.2 | 5.418 ± 1.9 ± 0.9 ± 1.0 |
0.051–0.057 | 5.016 ± 3.4 ± 1.4 ± 1.3 | 5.256 ± 3.4 ± 1.5 ± 1.7 | 4.916 ± 2.4 ± 1.0 ± 0.6 | 4.891 ± 2.4 ± 1.0 ± 0.6 | 5.109 ± 2.4 ± 1.0 ± 1.0 | 5.161 ± 2.0 ± 0.8 ± 1.0 |
0.057–0.064 | 4.760 ± 3.2 ± 1.4 ± 0.8 | 4.923 ± 3.2 ± 1.4 ± 1.4 | 4.848 ± 2.3 ± 0.9 ± 0.4 | 4.878 ± 2.3 ± 0.9 ± 0.4 | 5.037 ± 2.3 ± 0.9 ± 0.8 | 4.995 ± 1.9 ± 0.8 ± 0.8 |
0.064–0.072 | 4.364 ± 3.2 ± 2.0 ± 1.0 | 4.489 ± 3.2 ± 2.0 ± 1.5 | 4.181 ± 2.2 ± 0.9 ± 0.4 | 4.203 ± 2.2 ± 0.9 ± 0.4 | 4.359 ± 2.2 ± 0.9 ± 0.8 | 4.383 ± 1.8 ± 0.9 ± 0.8 |
0.072–0.081 | 3.733 ± 3.2 ± 2.0 ± 0.9 | 3.810 ± 3.2 ± 2.1 ± 1.5 | 3.849 ± 2.2 ± 0.9 ± 0.5 | 3.856 ± 2.2 ± 0.9 ± 0.5 | 3.958 ± 2.2 ± 0.9 ± 0.8 | 3.911 ± 1.8 ± 0.9 ± 0.8 |
0.081–0.091 | 3.600 ± 3.1 ± 1.2 ± 0.6 | 3.679 ± 3.1 ± 1.2 ± 1.3 | 3.482 ± 2.2 ± 0.9 ± 0.4 | 3.505 ± 2.2 ± 0.9 ± 0.4 | 3.594 ± 2.2 ± 0.9 ± 0.8 | 3.620 ± 1.8 ± 0.7 ± 0.8 |
0.091–0.102 | 3.201 ± 3.1 ± 1.4 ± 0.9 | 3.247 ± 3.1 ± 1.5 ± 1.5 | 3.279 ± 2.3 ± 0.9 ± 0.5 | 3.283 ± 2.3 ± 0.9 ± 0.5 | 3.344 ± 2.3 ± 0.9 ± 0.8 | 3.307 ± 1.8 ± 0.8 ± 0.9 |
0.102–0.114 | 2.927 ± 3.1 ± 1.4 ± 1.3 | 2.942 ± 3.1 ± 1.5 ± 1.7 | 2.898 ± 2.2 ± 0.9 ± 0.3 | 2.901 ± 2.2 ± 0.9 ± 0.3 | 2.921 ± 2.2 ± 0.9 ± 0.7 | 2.932 ± 1.8 ± 0.8 ± 0.8 |
0.114–0.128 | 2.599 ± 3.0 ± 1.9 ± 0.9 | 2.618 ± 3.0 ± 2.0 ± 1.5 | 2.526 ± 2.2 ± 0.9 ± 0.5 | 2.528 ± 2.2 ± 0.9 ± 0.5 | 2.560 ± 2.2 ± 0.9 ± 0.8 | 2.577 ± 1.8 ± 0.9 ± 0.8 |
0.128–0.145 | 1.987 ± 3.1 ± 2.0 ± 1.1 | 1.954 ± 3.1 ± 2.0 ± 1.6 | 2.236 ± 2.1 ± 0.8 ± 0.4 | 2.241 ± 2.1 ± 0.8 ± 0.4 | 2.234 ± 2.1 ± 0.8 ± 0.8 | 2.160 ± 1.7 ± 0.8 ± 0.8 |
0.145–0.165 | 1.840 ± 3.1 ± 1.3 ± 1.3 | 1.829 ± 3.1 ± 1.3 ± 1.7 | 1.862 ± 2.2 ± 0.9 ± 0.4 | 1.860 ± 2.2 ± 0.9 ± 0.4 | 1.824 ± 2.2 ± 0.9 ± 0.8 | 1.825 ± 1.8 ± 0.7 ± 0.9 |
0.165–0.189 | 1.544 ± 3.0 ± 1.7 ± 1.1 | 1.500 ± 3.0 ± 1.8 ± 1.6 | 1.594 ± 2.1 ± 0.9 ± 0.5 | 1.610 ± 2.1 ± 0.9 ± 0.5 | 1.546 ± 2.1 ± 0.9 ± 0.8 | 1.533 ± 1.7 ± 0.8 ± 0.9 |
0.189–0.219 | 1.302 ± 3.0 ± 2.0 ± 1.0 | 1.253 ± 3.0 ± 2.1 ± 1.6 | 1.232 ± 2.2 ± 0.9 ± 0.5 | 1.233 ± 2.2 ± 0.9 ± 0.5 | 1.179 ± 2.2 ± 0.9 ± 0.8 | 1.205 ± 1.8 ± 0.9 ± 0.8 |
0.219–0.258 | 1.000 ± 2.9 ± 1.6 ± 0.9 | 0.939 ± 2.9 ± 1.6 ± 1.6 | 0.977 ± 2.2 ± 0.9 ± 0.6 | 0.985 ± 2.2 ± 0.9 ± 0.6 | 0.925 ± 2.2 ± 0.9 ± 0.9 | 0.929 ± 1.7 ± 0.8 ± 0.9 |
0.258–0.312 | 0.728 ± 2.9 ± 1.6 ± 1.5 | 0.669 ± 2.9 ± 1.6 ± 2.4 | 0.749 ± 2.0 ± 0.8 ± 0.6 | 0.747 ± 2.0 ± 0.8 ± 0.6 | 0.690 ± 2.0 ± 0.8 ± 1.9 | 0.685 ± 1.6 ± 0.7 ± 1.7 |
0.312–0.391 | 0.538 ± 2.8 ± 1.3 ± 1.1 | 0.488 ± 2.8 ± 1.4 ± 2.3 | 0.530 ± 2.0 ± 0.8 ± 1.1 | 0.534 ± 2.0 ± 0.8 ± 1.1 | 0.473 ± 2.0 ± 0.8 ± 2.1 | 0.481 ± 1.6 ± 0.7 ± 1.8 |
0.391–0.524 | 0.347 ± 2.7 ± 1.0 ± 1.4 | 0.315 ± 2.7 ± 1.1 ± 2.4 | 0.326 ± 2.0 ± 0.8 ± 1.2 | 0.327 ± 2.0 ± 0.8 ± 1.2 | 0.290 ± 2.0 ± 0.8 ± 2.1 | 0.299 ± 1.6 ± 0.7 ± 1.8 |
0.524–0.695 | 0.191 ± 3.3 ± 3.0 ± 1.7 | 0.176 ± 3.3 ± 3.0 ± 2.6 | 0.181 ± 2.3 ± 0.9 ± 2.0 | 0.182 ± 2.3 ± 0.9 ± 2.0 | 0.163 ± 2.3 ± 0.9 ± 2.7 | 0.168 ± 1.9 ± 1.0 ± 2.1 |
0.695–0.918 | 0.103 ± 3.9 ± 2.7 ± 1.7 | 0.0993 ± 3.9 ± 2.7 ± 2.6 | 0.102 ± 2.7 ± 1.2 ± 2.2 | 0.102 ± 2.7 ± 1.2 ± 2.2 | 0.0953 ± 2.7 ± 1.2 ± 2.8 | 0.0978 ± 2.2 ± 1.1 ± 2.2 |
0.918–1.153 | 0.0543 ± 5.2 ± 4.2 ± 3.4 | 0.0529 ± 5.2 ± 4.2 ± 3.9 | 0.0543 ± 3.6 ± 1.5 ± 1.0 | 0.0539 ± 3.6 ± 1.5 ± 1.0 | 0.0519 ± 3.6 ± 1.5 ± 2.0 | 0.0526 ± 3.0 ± 1.5 ± 1.9 |
1.153–1.496 | 0.0285 ± 6.0 ± 3.9 ± 3.8 | 0.0282 ± 6.0 ± 4.0 ± 4.4 | 0.0300 ± 4.2 ± 2.2 ± 1.4 | 0.0295 ± 4.2 ± 2.2 ± 1.4 | 0.0285 ± 4.2 ± 2.2 ± 1.6 | 0.0285 ± 3.4 ± 2.0 ± 1.7 |
1.496–1.947 | 0.0152 ± 6.9 ± 3.6 ± 3.5 | 0.0152 ± 6.9 ± 3.6 ± 4.1 | 0.0150 ± 5.7 ± 2.8 ± 1.8 | 0.0152 ± 5.7 ± 2.8 ± 1.8 | 0.0153 ± 5.7 ± 2.8 ± 2.0 | 0.0154 ± 4.4 ± 2.2 ± 2.0 |
1.947–2.522 | 0.00628 ± 9.3 ± 4.2 ± 3.9 | 0.00634 ± 9.3 ± 4.3 ± 4.4 | 0.00625 ± 7.0 ± 3.3 ± 1.9 | 0.00634 ± 7.0 ± 3.3 ± 1.9 | 0.00619 ± 7.0 ± 3.3 ± 2.0 | 0.00631 ± 5.6 ± 2.6 ± 2.1 |
2.522–3.277 | 0.00274 ± 13 ± 4.4 ± 4.7 | 0.00272 ± 13 ± 4.5 ± 5.2 | 0.00292 ± 8.8 ± 3.8 ± 1.9 | 0.00294 ± 8.8 ± 3.8 ± 1.9 | 0.00293 ± 8.8 ± 3.8 ± 2.0 | 0.00284 ± 7.2 ± 2.9 ± 2.2 |
3.277–5.000 | 0.00115 ± 12 ± 4.3 ± 5.4 | 0.00118 ± 12 ± 4.4 ± 5.9 | 0.00102 ± 9.8 ± 4.3 ± 1.8 | 0.00106 ± 9.8 ± 4.3 ± 1.8 | 0.00104 ± 9.8 ± 4.3 ± 2.0 | 0.00109 ± 7.6 ± 3.1 ± 2.4 |
5.000–10.000 | 0.000213 ± 17 ± 5.6 ± 5.1 | 0.000209 ± 17 ± 5.7 ± 5.4 | 0.000309 ± 10 ± 4.5 ± 2.2 | 0.000321 ± 10 ± 4.5 ± 2.2 | 0.000354 ± 10 ± 4.5 ± 2.3 | 0.000295 ± 9.0 ± 3.5 ± 2.3 |
Table 8.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 9.252 ± 0.4 ± 0.1 ± 0.2 | 9.331 ± 0.4 ± 0.1 ± 0.2 | 9.359 ± 0.4 ± 0.1 ± 0.1 | 9.359 ± 0.4 ± 0.1 ± 0.1 | 9.437 ± 0.4 ± 0.1 ± 0.2 | 9.386 ± 0.3 ± 0.1 ± 0.2 |
0.004–0.008 | 9.264 ± 0.4 ± 0.1 ± 0.1 | 9.353 ± 0.4 ± 0.1 ± 0.2 | 9.279 ± 0.4 ± 0.1 ± 0.1 | 9.270 ± 0.4 ± 0.1 ± 0.1 | 9.347 ± 0.4 ± 0.1 ± 0.1 | 9.346 ± 0.3 ± 0.1 ± 0.1 |
0.008–0.012 | 9.001 ± 0.4 ± 0.1 ± 0.1 | 9.067 ± 0.4 ± 0.1 ± 0.1 | 9.079 ± 0.4 ± 0.1 ± 0.1 | 9.074 ± 0.4 ± 0.1 ± 0.1 | 9.161 ± 0.4 ± 0.1 ± 0.1 | 9.115 ± 0.3 ± 0.1 ± 0.1 |
0.012–0.016 | 8.810 ± 0.4 ± 0.1 ± 0.1 | 8.881 ± 0.4 ± 0.1 ± 0.1 | 8.878 ± 0.4 ± 0.1 ± 0.1 | 8.875 ± 0.4 ± 0.1 ± 0.1 | 8.933 ± 0.4 ± 0.1 ± 0.1 | 8.908 ± 0.3 ± 0.1 ± 0.1 |
0.016–0.020 | 8.627 ± 0.4 ± 0.1 ± 0.1 | 8.697 ± 0.4 ± 0.1 ± 0.1 | 8.479 ± 0.4 ± 0.1 ± 0.1 | 8.474 ± 0.4 ± 0.1 ± 0.1 | 8.534 ± 0.4 ± 0.1 ± 0.1 | 8.607 ± 0.3 ± 0.1 ± 0.1 |
0.020–0.024 | 8.112 ± 0.4 ± 0.1 ± 0.1 | 8.162 ± 0.4 ± 0.1 ± 0.1 | 8.163 ± 0.4 ± 0.1 ± 0.1 | 8.164 ± 0.4 ± 0.1 ± 0.1 | 8.223 ± 0.4 ± 0.1 ± 0.1 | 8.196 ± 0.3 ± 0.1 ± 0.1 |
0.024–0.029 | 7.778 ± 0.4 ± 0.1 ± 0.1 | 7.817 ± 0.4 ± 0.1 ± 0.1 | 7.823 ± 0.4 ± 0.1 ± 0.0 | 7.822 ± 0.4 ± 0.1 ± 0.0 | 7.864 ± 0.4 ± 0.1 ± 0.1 | 7.840 ± 0.3 ± 0.1 ± 0.1 |
0.029–0.034 | 7.344 ± 0.4 ± 0.1 ± 0.1 | 7.384 ± 0.4 ± 0.1 ± 0.1 | 7.401 ± 0.4 ± 0.1 ± 0.0 | 7.395 ± 0.4 ± 0.1 ± 0.0 | 7.431 ± 0.4 ± 0.1 ± 0.1 | 7.407 ± 0.3 ± 0.1 ± 0.1 |
0.034–0.039 | 6.884 ± 0.4 ± 0.1 ± 0.1 | 6.909 ± 0.4 ± 0.1 ± 0.1 | 6.861 ± 0.4 ± 0.1 ± 0.0 | 6.863 ± 0.4 ± 0.1 ± 0.0 | 6.898 ± 0.4 ± 0.1 ± 0.1 | 6.903 ± 0.3 ± 0.1 ± 0.1 |
0.039–0.045 | 6.367 ± 0.4 ± 0.1 ± 0.1 | 6.375 ± 0.4 ± 0.1 ± 0.1 | 6.392 ± 0.4 ± 0.1 ± 0.0 | 6.392 ± 0.4 ± 0.1 ± 0.0 | 6.416 ± 0.4 ± 0.1 ± 0.1 | 6.396 ± 0.3 ± 0.1 ± 0.1 |
0.045–0.051 | 5.865 ± 0.4 ± 0.1 ± 0.1 | 5.873 ± 0.4 ± 0.1 ± 0.1 | 5.877 ± 0.4 ± 0.1 ± 0.0 | 5.872 ± 0.4 ± 0.1 ± 0.0 | 5.878 ± 0.4 ± 0.1 ± 0.1 | 5.875 ± 0.3 ± 0.1 ± 0.1 |
0.051–0.057 | 5.438 ± 0.4 ± 0.1 ± 0.1 | 5.441 ± 0.4 ± 0.1 ± 0.1 | 5.430 ± 0.4 ± 0.1 ± 0.0 | 5.434 ± 0.4 ± 0.1 ± 0.0 | 5.436 ± 0.4 ± 0.1 ± 0.1 | 5.438 ± 0.3 ± 0.1 ± 0.1 |
0.057–0.064 | 4.954 ± 0.4 ± 0.1 ± 0.1 | 4.952 ± 0.4 ± 0.1 ± 0.1 | 4.970 ± 0.4 ± 0.1 ± 0.1 | 4.966 ± 0.4 ± 0.1 ± 0.1 | 4.962 ± 0.4 ± 0.1 ± 0.2 | 4.957 ± 0.3 ± 0.1 ± 0.1 |
0.064–0.072 | 4.522 ± 0.4 ± 0.1 ± 0.1 | 4.514 ± 0.4 ± 0.1 ± 0.1 | 4.514 ± 0.4 ± 0.1 ± 0.1 | 4.514 ± 0.4 ± 0.1 ± 0.1 | 4.503 ± 0.4 ± 0.1 ± 0.2 | 4.507 ± 0.3 ± 0.1 ± 0.1 |
0.072–0.081 | 4.021 ± 0.4 ± 0.1 ± 0.1 | 4.011 ± 0.4 ± 0.1 ± 0.1 | 3.984 ± 0.4 ± 0.1 ± 0.1 | 3.983 ± 0.4 ± 0.1 ± 0.1 | 3.970 ± 0.4 ± 0.1 ± 0.2 | 3.988 ± 0.3 ± 0.1 ± 0.1 |
0.081–0.091 | 3.572 ± 0.4 ± 0.1 ± 0.1 | 3.558 ± 0.4 ± 0.1 ± 0.1 | 3.576 ± 0.4 ± 0.1 ± 0.1 | 3.576 ± 0.4 ± 0.1  ± 0.1 | 3.567 ± 0.4 ± 0.1 ± 0.2 | 3.561 ± 0.3 ± 0.1 ± 0.1 |
0.091–0.102 | 3.145 ± 0.4 ± 0.1 ± 0.1 | 3.132 ± 0.4 ± 0.1 ± 0.1 | 3.165 ± 0.4 ± 0.1 ± 0.1 | 3.165 ± 0.4 ± 0.1 ± 0.1 | 3.145 ± 0.4 ± 0.1 ± 0.2 | 3.138 ± 0.3 ± 0.1 ± 0.1 |
0.102–0.114 | 2.764 ± 0.4 ± 0.1 ± 0.1 | 2.752 ± 0.4 ± 0.1 ± 0.1 | 2.774 ± 0.4 ± 0.1 ± 0.1 | 2.773 ± 0.4 ± 0.1 ± 0.1 | 2.763 ± 0.4 ± 0.1 ± 0.2 | 2.757 ± 0.3 ± 0.1 ± 0.1 |
0.114–0.128 | 2.394 ± 0.4 ± 0.1 ± 0.1 | 2.382 ± 0.4 ± 0.1 ± 0.1 | 2.379 ± 0.4 ± 0.1 ± 0.1 | 2.378 ± 0.4 ± 0.1 ± 0.1 | 2.363 ± 0.4 ± 0.1 ± 0.1 | 2.371 ± 0.3 ± 0.1 ± 0.1 |
0.128–0.145 | 2.023 ± 0.4 ± 0.1 ± 0.1 | 2.009 ± 0.4 ± 0.1 ± 0.1 | 2.037 ± 0.4 ± 0.1 ± 0.1 | 2.038 ± 0.4 ± 0.1 ± 0.1 | 2.026 ± 0.4 ± 0.1 ± 0.1 | 2.017 ± 0.3 ± 0.1 ± 0.1 |
0.145–0.165 | 1.697 ± 0.4 ± 0.1 ± 0.1 | 1.686 ± 0.4 ± 0.1 ± 0.1 | 1.698 ± 0.4 ± 0.1 ± 0.1 | 1.698 ± 0.4 ± 0.1 ± 0.1 | 1.688 ± 0.4 ± 0.1 ± 0.1 | 1.687 ± 0.3 ± 0.1 ± 0.1 |
0.165–0.189 | 1.396 ± 0.4 ± 0.1 ± 0.1 | 1.388 ± 0.4 ± 0.1 ± 0.1 | 1.391 ± 0.4 ± 0.1 ± 0.1 | 1.391 ± 0.4 ± 0.1 ± 0.1 | 1.382 ± 0.4 ± 0.1 ± 0.2 | 1.384 ± 0.3 ± 0.1 ± 0.1 |
0.189–0.219 | 1.111 ± 0.4 ± 0.1 ± 0.1 | 1.104 ± 0.4 ± 0.1 ± 0.1 | 1.105 ± 0.4 ± 0.1 ± 0.1 | 1.106 ± 0.4 ± 0.1 ± 0.1 | 1.098 ± 0.4 ± 0.1 ± 0.2 | 1.101 ± 0.3 ± 0.1 ± 0.1 |
0.219–0.258 | 0.851 ± 0.4 ± 0.1 ± 0.1 | 0.846 ± 0.4 ± 0.1 ± 0.1 | 0.856 ± 0.4 ± 0.1 ± 0.1 | 0.857 ± 0.4 ± 0.1 ± 0.1 | 0.852 ± 0.4 ± 0.1 ± 0.2 | 0.849 ± 0.3 ± 0.1 ± 0.1 |
0.258–0.312 | 0.618 ± 0.4 ± 0.1 ± 0.2 | 0.615 ± 0.4 ± 0.1 ± 0.3 | 0.616 ± 0.4 ± 0.1 ± 0.1 | 0.616 ± 0.4 ± 0.1 ± 0.1 | 0.613 ± 0.4 ± 0.1 ± 0.2 | 0.614 ± 0.3 ± 0.1 ± 0.2 |
0.312–0.391 | 0.411 ± 0.4 ± 0.1 ± 0.3 | 0.410 ± 0.4 ± 0.1 ± 0.3 | 0.412 ± 0.4 ± 0.1 ± 0.2 | 0.412 ± 0.4 ± 0.1 ± 0.2 | 0.410 ± 0.4 ± 0.1 ± 0.2 | 0.410 ± 0.3 ± 0.1 ± 0.2 |
0.391–0.524 | 0.241 ± 0.4 ± 0.1 ± 0.3 | 0.240 ± 0.4 ± 0.1 ± 0.3 | 0.239 ± 0.4 ± 0.1 ± 0.2 | 0.239 ± 0.4 ± 0.1 ± 0.2 | 0.239 ± 0.4 ± 0.1 ± 0.2 | 0.239 ± 0.3 ± 0.1 ± 0.2 |
0.524–0.695 | 0.126 ± 0.5 ± 0.2 ± 0.3 | 0.126 ± 0.5 ± 0.2 ± 0.3 | 0.124 ± 0.5 ± 0.1 ± 0.2 | 0.124 ± 0.5 ± 0.1 ± 0.2 | 0.124 ± 0.5 ± 0.1 ± 0.3 | 0.125 ± 0.4 ± 0.1 ± 0.2 |
0.695–0.918 | 0.0635 ± 0.7 ± 0.2 ± 0.3 | 0.0633 ± 0.7 ± 0.2 ± 0.3 | 0.0631 ± 0.6 ± 0.2 ± 0.3 | 0.0631 ± 0.6 ± 0.2 ± 0.3 | 0.0629 ± 0.6 ± 0.2 ± 0.3 | 0.0631 ± 0.5 ± 0.1 ± 0.3 |
0.918–1.153 | 0.0335 ± 0.9 ± 0.3 ± 0.3 | 0.0334 ± 0.9 ± 0.3 ± 0.3 | 0.0328 ± 0.8 ± 0.2 ± 0.4 | 0.0329 ± 0.8 ± 0.2 ± 0.4 | 0.0328 ± 0.8 ± 0.2 ± 0.4 | 0.0331 ± 0.6 ± 0.2 ± 0.3 |
1.153–1.496 | 0.0178 ± 1.0 ± 0.2 ± 0.4 | 0.0177 ± 1.0 ± 0.2 ± 0.4 | 0.0173 ± 1.0 ± 0.2 ± 0.4 | 0.0173 ± 1.0 ± 0.2 ± 0.4 | 0.0173 ± 1.0 ± 0.2 ± 0.5 | 0.0175 ± 0.7 ± 0.2 ± 0.4 |
1.496–1.947 | 0.00883 ± 1.2 ± 0.3 ± 0.4 | 0.00880 ± 1.2 ± 0.3 ± 0.4 | 0.00875 ± 1.2 ± 0.3 ± 0.4 | 0.00878 ± 1.2 ± 0.3 ± 0.4 | 0.00877 ± 1.2 ± 0.3 ± 0.5 | 0.00879 ± 0.9 ± 0.2 ± 0.4 |
1.947–2.522 | 0.00451 ± 1.6 ± 0.4 ± 0.6 | 0.00449 ± 1.6 ± 0.4 ± 0.6 | 0.00444 ± 1.4 ± 0.4 ± 0.5 | 0.00445 ± 1.4 ± 0.4 ± 0.5 | 0.00443 ± 1.4 ± 0.4 ± 0.6 | 0.00446 ± 1.1 ± 0.3 ± 0.4 |
2.522–3.277 | 0.00239 ± 1.9 ± 0.4 ± 0.6 | 0.00238 ± 1.9 ± 0.4 ± 0.6 | 0.00227 ± 1.7 ± 0.5 ± 0.6 | 0.00228 ± 1.7 ± 0.5 ± 0.6 | 0.00227 ± 1.7 ± 0.5 ± 0.6 | 0.00232 ± 1.3 ± 0.3 ± 0.4 |
3.277–5.000 | 0.00103 ± 1.9 ± 0.4 ± 0.7 | 0.00103 ± 1.9 ± 0.4 ± 0.7 | 0.00102 ± 1.7 ± 0.4 ± 0.6 | 0.00102 ± 1.7 ± 0.4 ± 0.6 | 0.00102 ± 1.7 ± 0.4 ± 0.6 | 0.00102 ± 1.3 ± 0.3 ± 0.5 |
5.000–10.000 | 0.000306 ± 2.1 ± 0.5 ± 0.7 | 0.000306 ± 2.1 ± 0.5 ± 0.7 | 0.000300 ± 1.9 ± 0.5 ± 0.6 | 0.000301 ± 1.9 ± 0.5 ± 0.6 | 0.000301 ± 1.9 ± 0.5 ± 0.7 | 0.000303 ± 1.4 ± 0.3 ± 0.5 |
Table 9.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 9.405 ± 0.4 ± 0.1 ± 0.2 | 9.503 ± 0.4 ± 0.1 ± 0.2 | 9.386 ± 0.4 ± 0.1 ± 0.1 | 9.383 ± 0.4 ± 0.1 ± 0.1 | 9.452 ± 0.4 ± 0.1 ± 0.2 | 9.465 ± 0.3 ± 0.1 ± 0.2 |
0.004–0.008 | 9.230 ± 0.4 ± 0.1 ± 0.1 | 9.300 ± 0.4 ± 0.1 ± 0.1 | 9.290 ± 0.4 ± 0.1 ± 0.1 | 9.289 ± 0.4 ± 0.1 ± 0.1 | 9.372 ± 0.4 ± 0.1 ± 0.1 | 9.332 ± 0.3 ± 0.1 ± 0.1 |
0.008–0.012 | 9.055 ± 0.4 ± 0.1 ± 0.1 | 9.140 ± 0.4 ± 0.1 ± 0.1 | 9.100 ± 0.4 ± 0.1 ± 0.0 | 9.102 ± 0.4 ± 0.1 ± 0.0 | 9.173 ± 0.4 ± 0.1 ± 0.1 | 9.148 ± 0.3 ± 0.1 ± 0.1 |
0.012–0.016 | 8.813 ± 0.4 ± 0.1 ± 0.1 | 8.877 ± 0.4 ± 0.1 ± 0.1 | 8.888 ± 0.4 ± 0.1 ± 0.0 | 8.890 ± 0.4 ± 0.1 ± 0.0 | 8.960 ± 0.4 ± 0.1 ± 0.1 | 8.917 ± 0.3 ± 0.1 ± 0.1 |
0.016–0.020 | 8.530 ± 0.4 ± 0.1 ± 0.1 | 8.592 ± 0.4 ± 0.1 ± 0.1 | 8.595 ± 0.4 ± 0.1 ± 0.0 | 8.590 ± 0.4 ± 0.1 ± 0.0 | 8.659 ± 0.4 ± 0.1 ± 0.1 | 8.621 ± 0.3 ± 0.1 ± 0.1 |
0.020–0.024 | 8.163 ± 0.5 ± 0.1 ± 0.1 | 8.209 ± 0.5 ± 0.1 ± 0.1 | 8.210 ± 0.4 ± 0.1 ± 0.0 | 8.207 ± 0.4 ± 0.1 ± 0.0 | 8.257 ± 0.4 ± 0.1 ± 0.1 | 8.228 ± 0.3 ± 0.1 ± 0.1 |
0.024–0.029 | 7.849 ± 0.4 ± 0.1 ± 0.1 | 7.898 ± 0.4 ± 0.1 ± 0.1 | 7.813 ± 0.4 ± 0.1 ± 0.1 | 7.809 ± 0.4 ± 0.1 ± 0.1 | 7.853 ± 0.4 ± 0.1 ± 0.2 | 7.863 ± 0.3 ± 0.1 ± 0.1 |
0.029–0.034 | 7.382 ± 0.4 ± 0.1 ± 0.1 | 7.411 ± 0.4 ± 0.1 ± 0.1 | 7.393 ± 0.4 ± 0.1 ± 0.1 | 7.388 ± 0.4 ± 0.1 ± 0.1 | 7.427 ± 0.4 ± 0.1 ± 0.2 | 7.412 ± 0.3 ± 0.1 ± 0.1 |
0.034–0.039 | 6.874 ± 0.4 ± 0.1 ± 0.1 | 6.895 ± 0.4 ± 0.1 ± 0.1 | 6.909 ± 0.4 ± 0.1 ± 0.1 | 6.907 ± 0.4 ± 0.1 ± 0.1 | 6.933 ± 0.4 ± 0.1 ± 0.2 | 6.910 ± 0.3 ± 0.1 ± 0.1 |
0.039–0.045 | 6.410 ± 0.4 ± 0.1 ± 0.1 | 6.425 ± 0.4 ± 0.1 ± 0.1 | 6.425 ± 0.4 ± 0.1 ± 0.1 | 6.417 ± 0.4 ± 0.1 ± 0.1 | 6.443 ± 0.4 ± 0.1 ± 0.2 | 6.428 ± 0.3 ± 0.1 ± 0.1 |
0.045–0.051 | 5.850 ± 0.4 ± 0.1 ± 0.1 | 5.856 ± 0.4 ± 0.1 ± 0.1 | 5.903 ± 0.4 ± 0.1 ± 0.1 | 5.906 ± 0.4 ± 0.1 ± 0.1 | 5.913 ± 0.4 ± 0.1 ± 0.2 | 5.882 ± 0.3 ± 0.1 ± 0.1 |
0.051–0.057 | 5.427 ± 0.5 ± 0.1 ± 0.1 | 5.429 ± 0.5 ± 0.1 ± 0.1 | 5.477 ± 0.4 ± 0.1 ± 0.1 | 5.475 ± 0.4 ± 0.1 ± 0.1 | 5.477 ± 0.4 ± 0.1 ± 0.2 | 5.450 ± 0.3 ± 0.1 ± 0.1 |
0.057–0.064 | 4.933 ± 0.4 ± 0.1 ± 0.1 | 4.930 ± 0.4 ± 0.1 ± 0.1 | 4.979 ± 0.4 ± 0.1 ± 0.1 | 4.977 ± 0.4 ± 0.1 ± 0.1 | 4.972 ± 0.4 ± 0.1 ± 0.2 | 4.949 ± 0.3 ± 0.1 ± 0.1 |
0.064–0.072 | 4.503 ± 0.4 ± 0.1 ± 0.1 | 4.499 ± 0.4 ± 0.1 ± 0.1 | 4.490 ± 0.4 ± 0.1 ± 0.1 | 4.492 ± 0.4 ± 0.1 ± 0.1 | 4.484 ± 0.4 ± 0.1 ± 0.2 | 4.485 ± 0.3 ± 0.1 ± 0.1 |
0.072–0.081 | 4.020 ± 0.4 ± 0.1 ± 0.1 | 4.011 ± 0.4 ± 0.1 ± 0.1 | 4.037 ± 0.4 ± 0.1 ± 0.1 | 4.035 ± 0.4 ± 0.1 ± 0.1 | 4.027 ± 0.4 ± 0.1 ± 0.2 | 4.016 ± 0.3 ± 0.1 ± 0.1 |
0.081–0.091 | 3.585 ± 0.4 ± 0.1 ± 0.1 | 3.573 ± 0.4 ± 0.1 ± 0.1 | 3.586 ± 0.4 ± 0.1 ± 0.1 | 3.587 ± 0.4 ± 0.1 ± 0.1 | 3.579 ± 0.4 ± 0.1 ± 0.2 | 3.574 ± 0.3 ± 0.1 ± 0.1 |
0.091–0.102 | 3.146 ± 0.4 ± 0.1 ± 0.1 | 3.132 ± 0.4 ± 0.1 ± 0.1 | 3.146 ± 0.4 ± 0.1 ± 0.1 | 3.144 ± 0.4 ± 0.1 ± 0.1 | 3.132 ± 0.4 ± 0.1 ± 0.2 | 3.130 ± 0.3 ± 0.1 ± 0.1 |
0.102–0.114 | 2.786 ± 0.4 ± 0.1 ± 0.1 | 2.772 ± 0.4 ± 0.1 ± 0.1 | 2.753 ± 0.4 ± 0.1 ± 0.1 | 2.752 ± 0.4 ± 0.1 ± 0.1 | 2.737 ± 0.4 ± 0.1 ± 0.2 | 2.750 ± 0.3 ± 0.1 ± 0.1 |
0.114–0.128 | 2.380 ± 0.4 ± 0.1 ± 0.1 | 2.365 ± 0.4 ± 0.1 ± 0.1 | 2.370 ± 0.4 ± 0.1 ± 0.1 | 2.369 ± 0.4 ± 0.1 ± 0.1 | 2.358 ± 0.4 ± 0.1 ± 0.1 | 2.361 ± 0.3 ± 0.1 ± 0.1 |
0.128–0.145 | 2.034 ± 0.4 ± 0.1 ± 0.1 | 2.022 ± 0.4 ± 0.1 ± 0.1 | 2.034 ± 0.4 ± 0.1 ± 0.1 | 2.034 ± 0.4 ± 0.1 ± 0.1 | 2.021 ± 0.4 ± 0.1 ± 0.1 | 2.021 ± 0.3 ± 0.1 ± 0.1 |
0.145–0.165 | 1.694 ± 0.4 ± 0.1 ± 0.1 | 1.683 ± 0.4 ± 0.1 ± 0.1 | 1.695 ± 0.4 ± 0.1 ± 0.1 | 1.695 ± 0.4 ± 0.1 ± 0.1 | 1.684 ± 0.4 ± 0.1 ± 0.1 | 1.683 ± 0.3 ± 0.1 ± 0.1 |
0.165–0.189 | 1.396 ± 0.4 ± 0.1 ± 0.1 | 1.388 ± 0.4 ± 0.1 ± 0.1 | 1.381 ± 0.4 ± 0.1 ± 0.1 | 1.381 ± 0.4 ± 0.1 ± 0.1 | 1.373 ± 0.4 ± 0.1 ± 0.1 | 1.379 ± 0.3 ± 0.1 ± 0.1 |
0.189–0.219 | 1.115 ± 0.4 ± 0.1 ± 0.1 | 1.108 ± 0.4 ± 0.1 ± 0.1 | 1.109 ± 0.4 ± 0.1 ± 0.1 | 1.110 ± 0.4 ± 0.1 ± 0.1 | 1.102 ± 0.4 ± 0.1 ± 0.1 | 1.105 ± 0.3 ± 0.1 ± 0.1 |
0.219–0.258 | 0.853 ± 0.4 ± 0.1 ± 0.2 | 0.849 ± 0.4 ± 0.1 ± 0.2 | 0.848 ± 0.4 ± 0.1 ± 0.1 | 0.848 ± 0.4 ± 0.1 ± 0.1 | 0.843 ± 0.4 ± 0.1 ± 0.1 | 0.845 ± 0.3 ± 0.1 ± 0.1 |
0.258–0.312 | 0.616 ± 0.4 ± 0.1 ± 0.2 | 0.613 ± 0.4 ± 0.1 ± 0.2 | 0.612 ± 0.4 ± 0.1 ± 0.1 | 0.612 ± 0.4 ± 0.1 ± 0.1 | 0.609 ± 0.4 ± 0.1 ± 0.2 | 0.610 ± 0.3 ± 0.1 ± 0.2 |
0.312–0.391 | 0.410 ± 0.4 ± 0.1 ± 0.3 | 0.408 ± 0.4 ± 0.1 ± 0.3 | 0.410 ± 0.4 ± 0.1 ± 0.2 | 0.410 ± 0.4 ± 0.1 ± 0.2 | 0.409 ± 0.4 ± 0.1 ± 0.2 | 0.408 ± 0.3 ± 0.1 ± 0.2 |
0.391–0.524 | 0.240 ± 0.5 ± 0.1 ± 0.3 | 0.240 ± 0.5 ± 0.1 ± 0.3 | 0.236 ± 0.4 ± 0.1 ± 0.2 | 0.236 ± 0.4 ± 0.1 ± 0.2 | 0.235 ± 0.4 ± 0.1 ± 0.2 | 0.237 ± 0.3 ± 0.1 ± 0.2 |
0.524–0.695 | 0.124 ± 0.6 ± 0.2 ± 0.3 | 0.124 ± 0.6 ± 0.2 ± 0.3 | 0.124 ± 0.5 ± 0.1 ± 0.2 | 0.124 ± 0.5 ± 0.1 ± 0.2 | 0.124 ± 0.5 ± 0.1 ± 0.2 | 0.124 ± 0.4 ± 0.1 ± 0.2 |
0.695–0.918 | 0.0629 ± 0.7 ± 0.2 ± 0.3 | 0.0627 ± 0.7 ± 0.2 ± 0.3 | 0.0623 ± 0.6 ± 0.1 ± 0.3 | 0.0623 ± 0.6 ± 0.1 ± 0.3 | 0.0621 ± 0.6 ± 0.1 ± 0.3 | 0.0623 ± 0.5 ± 0.1 ± 0.2 |
0.918–1.153 | 0.0330 ± 0.9 ± 0.3 ± 0.3 | 0.0329 ± 0.9 ± 0.3 ± 0.3 | 0.0331 ± 0.8 ± 0.2 ± 0.3 | 0.0332 ± 0.8 ± 0.2 ± 0.3 | 0.0331 ± 0.8 ± 0.2 ± 0.3 | 0.0330 ± 0.6 ± 0.2 ± 0.2 |
1.153–1.496 | 0.0175 ± 1.0 ± 0.3 ± 0.5 | 0.0174 ± 1.0 ± 0.3 ± 0.5 | 0.0174 ± 1.0 ± 0.2 ± 0.3 | 0.0174 ± 1.0 ± 0.2 ± 0.3 | 0.0173 ± 1.0 ± 0.2 ± 0.5 | 0.0173 ± 0.7 ± 0.2 ± 0.4 |
1.496–1.947 | 0.00850 ± 1.3 ± 0.3 ± 0.5 | 0.00847 ± 1.3 ± 0.3 ± 0.5 | 0.00861 ± 1.2 ± 0.2 ± 0.4 | 0.00862 ± 1.2 ± 0.2 ± 0.4 | 0.00862 ± 1.2 ± 0.2 ± 0.5 | 0.00853 ± 0.9 ± 0.2 ± 0.4 |
1.947–2.522 | 0.00440 ± 1.6 ± 0.4 ± 0.6 | 0.00439 ± 1.6 ± 0.4 ± 0.6 | 0.00438 ± 1.5 ± 0.4 ± 0.3 | 0.00439 ± 1.5 ± 0.4 ± 0.3 | 0.00437 ± 1.5 ± 0.4 ± 0.5 | 0.00437 ± 1.1 ± 0.3 ± 0.4 |
2.522–3.277 | 0.00229 ± 2.0 ± 0.4 ± 0.6 | 0.00229 ± 2.0 ± 0.5 ± 0.6 | 0.00224 ± 1.8 ± 0.5 ± 0.4 | 0.00224 ± 1.8 ± 0.5 ± 0.4 | 0.00223 ± 1.8 ± 0.5 ± 0.6 | 0.00225 ± 1.3 ± 0.3 ± 0.4 |
3.277–5.000 | 0.000994 ± 2.0 ± 0.6 ± 0.8 | 0.000993 ± 2.0 ± 0.6 ± 0.8 | 0.00101 ± 1.8 ± 0.4 ± 0.3 | 0.00101 ± 1.8 ± 0.4 ± 0.3 | 0.00102 ± 1.8 ± 0.4 ± 0.5 | 0.00100 ± 1.3 ± 0.4 ± 0.4 |
5.000–10.000 | 0.000309 ± 2.1 ± 0.5 ± 0.8 | 0.000308 ± 2.1 ± 0.5 ± 0.8 | 0.000297 ± 1.9 ± 0.5 ± 0.4 | 0.000297 ± 1.9 ± 0.5 ± 0.4 | 0.000297 ± 1.9 ± 0.5 ± 0.6 | 0.000301 ± 1.4 ± 0.4 ± 0.5 |
Table 10.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 9.387 ± 0.4 ± 0.1 ± 0.2 | 9.476 ± 0.4 ± 0.1 ± 0.2 | 9.394 ± 0.4 ± 0.1 ± 0.1 | 9.388 ± 0.4 ± 0.1 ± 0.1 | 9.455 ± 0.4 ± 0.1 ± 0.2 | 9.458 ± 0.3 ± 0.1 ± 0.2 |
0.004–0.008 | 9.268 ± 0.4 ± 0.1 ± 0.1 | 9.352 ± 0.4 ± 0.1 ± 0.1 | 9.374 ± 0.4 ± 0.1 ± 0.0 | 9.371 ± 0.4 ± 0.1 ± 0.0 | 9.462 ± 0.4 ± 0.1 ± 0.2 | 9.412 ± 0.3 ± 0.1 ± 0.1 |
0.008–0.012 | 9.252 ± 0.4 ± 0.1 ± 0.1 | 9.330 ± 0.4 ± 0.1 ± 0.1 | 9.160 ± 0.4 ± 0.1 ± 0.0 | 9.155 ± 0.4 ± 0.1 ± 0.0 | 9.231 ± 0.4 ± 0.1 ± 0.2 | 9.265 ± 0.3 ± 0.1 ± 0.1 |
0.012–0.016 | 8.913 ± 0.5 ± 0.2 ± 0.1 | 8.989 ± 0.5 ± 0.2 ± 0.1 | 8.907 ± 0.4 ± 0.1 ± 0.0 | 8.900 ± 0.4 ± 0.1 ± 0.0 | 8.968 ± 0.4 ± 0.1 ± 0.2 | 8.973 ± 0.3 ± 0.1 ± 0.1 |
0.016–0.020 | 8.699 ± 0.5 ± 0.2 ± 0.1 | 8.772 ± 0.5 ± 0.2 ± 0.1 | 8.619 ± 0.4 ± 0.1 ± 0.0 | 8.613 ± 0.4 ± 0.1 ± 0.0 | 8.681 ± 0.4 ± 0.1 ± 0.2 | 8.712 ± 0.3 ± 0.1 ± 0.1 |
0.020–0.024 | 8.264 ± 0.5 ± 0.1 ± 0.1 | 8.312 ± 0.5 ± 0.1 ± 0.1 | 8.352 ± 0.4 ± 0.1 ± 0.0 | 8.348 ± 0.4 ± 0.1 ± 0.0 | 8.394 ± 0.4 ± 0.1 ± 0.2 | 8.356 ± 0.3 ± 0.1 ± 0.1 |
0.024–0.029 | 7.876 ± 0.4 ± 0.1 ± 0.1 | 7.920 ± 0.4 ± 0.1 ± 0.1 | 7.869 ± 0.4 ± 0.1 ± 0.1 | 7.868 ± 0.4 ± 0.1 ± 0.1 | 7.926 ± 0.4 ± 0.1 ± 0.1 | 7.918 ± 0.3 ± 0.1 ± 0.1 |
0.029–0.034 | 7.364 ± 0.4 ± 0.2 ± 0.1 | 7.396 ± 0.4 ± 0.2 ± 0.1 | 7.443 ± 0.4 ± 0.1 ± 0.1 | 7.437 ± 0.4 ± 0.1 ± 0.1 | 7.473 ± 0.4 ± 0.1 ± 0.1 | 7.439 ± 0.3 ± 0.1 ± 0.1 |
0.034–0.039 | 6.923 ± 0.5 ± 0.2 ± 0.1 | 6.950 ± 0.5 ± 0.2 ± 0.1 | 6.915 ± 0.4 ± 0.1 ± 0.0 | 6.906 ± 0.4 ± 0.1 ± 0.0 | 6.934 ± 0.4 ± 0.1 ± 0.1 | 6.937 ± 0.3 ± 0.1 ± 0.1 |
0.039–0.045 | 6.430 ± 0.4 ± 0.1 ± 0.1 | 6.450 ± 0.4 ± 0.1 ± 0.1 | 6.484 ± 0.4 ± 0.1 ± 0.1 | 6.483 ± 0.4 ± 0.1 ± 0.1 | 6.499 ± 0.4 ± 0.1 ± 0.1 | 6.475 ± 0.3 ± 0.1 ± 0.1 |
0.045–0.051 | 5.921 ± 0.5 ± 0.1 ± 0.1 | 5.923 ± 0.5 ± 0.2 ± 0.1 | 5.884 ± 0.4 ± 0.1 ± 0.1 | 5.884 ± 0.4 ± 0.1 ± 0.1 | 5.898 ± 0.4 ± 0.1 ± 0.1 | 5.905 ± 0.3 ± 0.1 ± 0.1 |
0.051–0.057 | 5.410 ± 0.5 ± 0.1 ± 0.1 | 5.410 ± 0.5 ± 0.1 ± 0.1 | 5.469 ± 0.4 ± 0.1 ± 0.1 | 5.470 ± 0.4 ± 0.1 ± 0.1 | 5.466 ± 0.4 ± 0.1 ± 0.1 | 5.441 ± 0.3 ± 0.1 ± 0.1 |
0.057–0.064 | 5.012 ± 0.5 ± 0.1 ± 0.1 | 5.008 ± 0.5 ± 0.1 ± 0.1 | 5.019 ± 0.4 ± 0.1 ± 0.1 | 5.016 ± 0.4 ± 0.1 ± 0.1 | 5.023 ± 0.4 ± 0.1 ± 0.1 | 5.015 ± 0.3 ± 0.1 ± 0.1 |
0.064–0.072 | 4.492 ± 0.5 ± 0.1 ± 0.1 | 4.483 ± 0.5 ± 0.1 ± 0.1 | 4.506 ± 0.4 ± 0.1 ± 0.1 | 4.506 ± 0.4 ± 0.1 ± 0.1 | 4.498 ± 0.4 ± 0.1 ± 0.1 | 4.491 ± 0.3 ± 0.1 ± 0.1 |
0.072–0.081 | 4.019 ± 0.5 ± 0.1 ± 0.1 | 4.009 ± 0.5 ± 0.1 ± 0.1 | 4.038 ± 0.4 ± 0.1 ± 0.1 | 4.037 ± 0.4 ± 0.1 ± 0.1 | 4.024 ± 0.4 ± 0.1 ± 0.1 | 4.016 ± 0.3 ± 0.1 ± 0.1 |
0.081–0.091 | 3.589 ± 0.5 ± 0.1 ± 0.1 | 3.576 ± 0.5 ± 0.1 ± 0.1 | 3.566 ± 0.4 ± 0.1 ± 0.1 | 3.564 ± 0.4 ± 0.1 ± 0.1 | 3.550 ± 0.4 ± 0.1 ± 0.1 | 3.559 ± 0.3 ± 0.1 ± 0.1 |
0.091–0.102 | 3.141 ± 0.5 ± 0.1 ± 0.1 | 3.128 ± 0.5 ± 0.1 ± 0.1 | 3.147 ± 0.4 ± 0.1 ± 0.1 | 3.149 ± 0.4 ± 0.1 ± 0.1 | 3.138 ± 0.4 ± 0.1 ± 0.1 | 3.133 ± 0.3 ± 0.1 ± 0.1 |
0.102–0.114 | 2.755 ± 0.5 ± 0.1 ± 0.1 | 2.740 ± 0.5 ± 0.1 ± 0.1 | 2.746 ± 0.4 ± 0.1 ± 0.1 | 2.745 ± 0.4 ± 0.1 ± 0.1 | 2.732 ± 0.4 ± 0.1 ± 0.1 | 2.734 ± 0.3 ± 0.1 ± 0.1 |
0.114–0.128 | 2.394 ± 0.5 ± 0.1 ± 0.1 | 2.380 ± 0.5 ± 0.1 ± 0.1 | 2.388 ± 0.4 ± 0.1 ± 0.1 | 2.388 ± 0.4 ± 0.1 ± 0.1 | 2.374 ± 0.4 ± 0.1 ± 0.1 | 2.375 ± 0.3 ± 0.1 ± 0.1 |
0.128–0.145 | 2.029 ± 0.5 ± 0.1 ± 0.1 | 2.017 ± 0.5 ± 0.1 ± 0.1 | 2.025 ± 0.4 ± 0.1 ± 0.1 | 2.025 ± 0.4 ± 0.1 ± 0.1 | 2.015 ± 0.4 ± 0.1 ± 0.1 | 2.015 ± 0.3 ± 0.1 ± 0.1 |
0.145–0.165 | 1.695 ± 0.5 ± 0.1 ± 0.1 | 1.684 ± 0.5 ± 0.1 ± 0.1 | 1.678 ± 0.4 ± 0.1 ± 0.1 | 1.679 ± 0.4 ± 0.1 ± 0.1 | 1.667 ± 0.4 ± 0.1 ± 0.1 | 1.673 ± 0.3 ± 0.1 ± 0.1 |
0.165–0.189 | 1.378 ± 0.5 ± 0.1 ± 0.1 | 1.368 ± 0.5 ± 0.1 ± 0.1 | 1.394 ± 0.4 ± 0.1 ± 0.1 | 1.394 ± 0.4 ± 0.1 ± 0.1 | 1.385 ± 0.4 ± 0.1 ± 0.1 | 1.378 ± 0.3 ± 0.1 ± 0.1 |
0.189–0.219 | 1.106 ± 0.5 ± 0.1 ± 0.1 | 1.100 ± 0.5 ± 0.1 ± 0.1 | 1.109 ± 0.4 ± 0.1 ± 0.1 | 1.110 ± 0.4 ± 0.1 ± 0.1 | 1.105 ± 0.4 ± 0.1 ± 0.2 | 1.102 ± 0.3 ± 0.1 ± 0.1 |
0.219–0.258 | 0.845 ± 0.5 ± 0.1 ± 0.1 | 0.840 ± 0.5 ± 0.1 ± 0.1 | 0.843 ± 0.4 ± 0.1 ± 0.1 | 0.843 ± 0.4 ± 0.1 ± 0.1 | 0.838 ± 0.4 ± 0.1 ± 0.1 | 0.839 ± 0.3 ± 0.1 ± 0.1 |
0.258–0.312 | 0.614 ± 0.5 ± 0.1 ± 0.2 | 0.611 ± 0.5 ± 0.1 ± 0.2 | 0.609 ± 0.4 ± 0.1 ± 0.1 | 0.609 ± 0.4 ± 0.1 ± 0.1 | 0.606 ± 0.4 ± 0.1 ± 0.2 | 0.608 ± 0.3 ± 0.1 ± 0.2 |
0.312–0.391 | 0.409 ± 0.5 ± 0.1 ± 0.3 | 0.407 ± 0.5 ± 0.1 ± 0.3 | 0.408 ± 0.4 ± 0.1 ± 0.2 | 0.408 ± 0.4 ± 0.1 ± 0.2 | 0.406 ± 0.4 ± 0.1 ± 0.2 | 0.406 ± 0.3 ± 0.1 ± 0.2 |
0.391–0.524 | 0.238 ± 0.5 ± 0.1 ± 0.3 | 0.237 ± 0.5 ± 0.1 ± 0.3 | 0.236 ± 0.4 ± 0.1 ± 0.2 | 0.236 ± 0.4 ± 0.1 ± 0.2 | 0.235 ± 0.4 ± 0.1 ± 0.2 | 0.236 ± 0.3 ± 0.1 ± 0.2 |
0.524–0.695 | 0.122 ± 0.6 ± 0.3 ± 0.3 | 0.122 ± 0.6 ± 0.3 ± 0.3 | 0.121 ± 0.5 ± 0.1 ± 0.2 | 0.121 ± 0.5 ± 0.1 ± 0.2 | 0.121 ± 0.5 ± 0.1 ± 0.3 | 0.121 ± 0.4 ± 0.1 ± 0.2 |
0.695–0.918 | 0.0624 ± 0.7 ± 0.3 ± 0.3 | 0.0622 ± 0.7 ± 0.3 ± 0.3 | 0.0616 ± 0.6 ± 0.1 ± 0.2 | 0.0617 ± 0.6 ± 0.1 ± 0.2 | 0.0615 ± 0.6 ± 0.1 ± 0.3 | 0.0618 ± 0.5 ± 0.2 ± 0.2 |
0.918–1.153 | 0.0321 ± 1.0 ± 0.3 ± 0.3 | 0.0320 ± 1.0 ± 0.3 ± 0.3 | 0.0323 ± 0.8 ± 0.2 ± 0.2 | 0.0323 ± 0.8 ± 0.2 ± 0.2 | 0.0322 ± 0.8 ± 0.2 ± 0.3 | 0.0321 ± 0.6 ± 0.2 ± 0.2 |
1.153–1.496 | 0.0165 ± 1.1 ± 0.3 ± 0.4 | 0.0165 ± 1.1 ± 0.3 ± 0.4 | 0.0166 ± 1.0 ± 0.2 ± 0.2 | 0.0167 ± 1.0 ± 0.2 ± 0.2 | 0.0166 ± 1.0 ± 0.2 ± 0.3 | 0.0165 ± 0.7 ± 0.2 ± 0.3 |
1.496–1.947 | 0.00801 ± 1.4 ± 0.4 ± 0.4 | 0.00797 ± 1.4 ± 0.4 ± 0.4 | 0.00835 ± 1.2 ± 0.3 ± 0.3 | 0.00838 ± 1.2 ± 0.3 ± 0.3 | 0.00833 ± 1.2 ± 0.3 ± 0.3 | 0.00817 ± 0.9 ± 0.2 ± 0.3 |
1.947–2.522 | 0.00412 ± 1.7 ± 0.4 ± 0.4 | 0.00410 ± 1.7 ± 0.4 ± 0.4 | 0.00406 ± 1.6 ± 0.3 ± 0.4 | 0.00407 ± 1.6 ± 0.3 ± 0.4 | 0.00405 ± 1.6 ± 0.3 ± 0.4 | 0.00407 ± 1.2 ± 0.3 ± 0.3 |
2.522–3.277 | 0.00210 ± 2.1 ± 0.5 ± 0.5 | 0.00209 ± 2.1 ± 0.5 ± 0.5 | 0.00207 ± 1.9 ± 0.4 ± 0.3 | 0.00208 ± 1.9 ± 0.4 ± 0.3 | 0.00207 ± 1.9 ± 0.4 ± 0.4 | 0.00207 ± 1.4 ± 0.3 ± 0.3 |
3.277–5.000 | 0.000942 ± 2.1 ± 0.5 ± 0.8 | 0.000940 ± 2.1 ± 0.6 ± 0.8 | 0.000909 ± 1.8 ± 0.4 ± 0.4 | 0.000909 ± 1.9 ± 0.4 ± 0.4 | 0.000909 ± 1.9 ± 0.4 ± 0.4 | 0.000922 ± 1.4 ± 0.3 ± 0.4 |
5.000–10.000 | 0.000282 ± 2.3 ± 0.5 ± 0.6 | 0.000282 ± 2.3 ± 0.5 ± 0.6 | 0.000274 ± 2.0 ± 0.5 ± 0.4 | 0.000275 ± 2.0 ± 0.5 ± 0.4 | 0.000273 ± 2.0 ± 0.5 ± 0.5 | 0.000276 ± 1.5 ± 0.3 ± 0.4 |
Table 11.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 9.382 ± 0.5 ± 0.1 ± 0.2 | 9.470 ± 0.5 ± 0.2 ± 0.2 | 9.358 ± 0.4 ± 0.1 ± 0.1 | 9.352 ± 0.4 ± 0.1 ± 0.1 | 9.433 ± 0.4 ± 0.1 ± 0.2 | 9.443 ± 0.3 ± 0.1 ± 0.2 |
0.004–0.008 | 9.317 ± 0.5 ± 0.2 ± 0.2 | 9.402 ± 0.5 ± 0.2 ± 0.2 | 9.289 ± 0.4 ± 0.1 ± 0.1 | 9.281 ± 0.4 ± 0.1 ± 0.1 | 9.363 ± 0.4 ± 0.1 ± 0.2 | 9.374 ± 0.3 ± 0.1 ± 0.1 |
0.008–0.012 | 9.095 ± 0.5 ± 0.2 ± 0.2 | 9.169 ± 0.5 ± 0.2 ± 0.2 | 9.101 ± 0.4 ± 0.1 ± 0.0 | 9.093 ± 0.4 ± 0.1 ± 0.0 | 9.167 ± 0.4 ± 0.1 ± 0.2 | 9.165 ± 0.3 ± 0.1 ± 0.1 |
0.012–0.016 | 8.874 ± 0.5 ± 0.1 ± 0.2 | 8.945 ± 0.5 ± 0.2 ± 0.2 | 8.918 ± 0.4 ± 0.1 ± 0.0 | 8.905 ± 0.4 ± 0.1 ± 0.0 | 8.999 ± 0.4 ± 0.1 ± 0.2 | 8.975 ± 0.3 ± 0.1 ± 0.1 |
0.016–0.020 | 8.552 ± 0.5 ± 0.2 ± 0.2 | 8.617 ± 0.5 ± 0.2 ± 0.2 | 8.632 ± 0.4 ± 0.1 ± 0.0 | 8.629 ± 0.4 ± 0.1 ± 0.0 | 8.682 ± 0.4 ± 0.1 ± 0.2 | 8.655 ± 0.3 ± 0.1 ± 0.1 |
0.020–0.024 | 8.242 ± 0.5 ± 0.2 ± 0.2 | 8.299 ± 0.5 ± 0.2 ± 0.2 | 8.265 ± 0.4 ± 0.1 ± 0.0 | 8.264 ± 0.4 ± 0.1 ± 0.0 | 8.332 ± 0.4 ± 0.1 ± 0.2 | 8.317 ± 0.3 ± 0.1 ± 0.1 |
0.024–0.029 | 7.803 ± 0.5 ± 0.2 ± 0.2 | 7.841 ± 0.5 ± 0.2 ± 0.2 | 7.805 ± 0.4 ± 0.1 ± 0.0 | 7.792 ± 0.4 ± 0.1 ± 0.0 | 7.835 ± 0.4 ± 0.1 ± 0.2 | 7.833 ± 0.3 ± 0.1 ± 0.2 |
0.029–0.034 | 7.312 ± 0.5 ± 0.1 ± 0.2 | 7.340 ± 0.5 ± 0.2 ± 0.2 | 7.371 ± 0.4 ± 0.1 ± 0.0 | 7.363 ± 0.4 ± 0.1 ± 0.0 | 7.395 ± 0.4 ± 0.1 ± 0.2 | 7.371 ± 0.3 ± 0.1 ± 0.2 |
0.034–0.039 | 6.920 ± 0.5 ± 0.2 ± 0.2 | 6.938 ± 0.5 ± 0.2 ± 0.2 | 6.907 ± 0.4 ± 0.1 ± 0.0 | 6.914 ± 0.4 ± 0.1 ± 0.0 | 6.944 ± 0.4 ± 0.1 ± 0.2 | 6.939 ± 0.3 ± 0.1 ± 0.2 |
0.039–0.045 | 6.397 ± 0.5 ± 0.1 ± 0.2 | 6.413 ± 0.5 ± 0.1 ± 0.2 | 6.401 ± 0.4 ± 0.1 ± 0.0 | 6.404 ± 0.4 ± 0.1 ± 0.0 | 6.427 ± 0.4 ± 0.1 ± 0.2 | 6.420 ± 0.3 ± 0.1 ± 0.2 |
0.045–0.051 | 5.877 ± 0.5 ± 0.2 ± 0.1 | 5.886 ± 0.5 ± 0.2 ± 0.1 | 5.914 ± 0.4 ± 0.1 ± 0.0 | 5.908 ± 0.4 ± 0.1 ± 0.0 | 5.910 ± 0.4 ± 0.1 ± 0.2 | 5.898 ± 0.3 ± 0.1 ± 0.2 |
0.051–0.057 | 5.366 ± 0.5 ± 0.2 ± 0.1 | 5.364 ± 0.5 ± 0.2 ± 0.1 | 5.417 ± 0.4 ± 0.1 ± 0.0 | 5.415 ± 0.4 ± 0.1 ± 0.0 | 5.416 ± 0.4 ± 0.1 ± 0.2 | 5.394 ± 0.3 ± 0.1 ± 0.2 |
0.057–0.064 | 4.985 ± 0.5 ± 0.1 ± 0.1 | 4.985 ± 0.5 ± 0.2 ± 0.1 | 4.981 ± 0.4 ± 0.1 ± 0.1 | 4.979 ± 0.4 ± 0.1 ± 0.1 | 4.982 ± 0.4 ± 0.1 ± 0.2 | 4.980 ± 0.3 ± 0.1 ± 0.2 |
0.064–0.072 | 4.526 ± 0.5 ± 0.1 ± 0.1 | 4.519 ± 0.5 ± 0.1 ± 0.1 | 4.524 ± 0.4 ± 0.1 ± 0.1 | 4.521 ± 0.4 ± 0.1 ± 0.1 | 4.503 ± 0.4 ± 0.1 ± 0.2 | 4.506 ± 0.3 ± 0.1 ± 0.2 |
0.072–0.081 | 4.049 ± 0.5 ± 0.2 ± 0.1 | 4.037 ± 0.5 ± 0.2 ± 0.1 | 4.071 ± 0.4 ± 0.1 ± 0.1 | 4.071 ± 0.4 ± 0.1 ± 0.1 | 4.059 ± 0.4 ± 0.1 ± 0.2 | 4.049 ± 0.3 ± 0.1 ± 0.1 |
0.081–0.091 | 3.593 ± 0.5 ± 0.2 ± 0.1 | 3.576 ± 0.5 ± 0.2 ± 0.1 | 3.590 ± 0.4 ± 0.1 ± 0.1 | 3.587 ± 0.4 ± 0.1 ± 0.1 | 3.571 ± 0.4 ± 0.1 ± 0.2 | 3.570 ± 0.3 ± 0.1 ± 0.1 |
0.091–0.102 | 3.196 ± 0.5 ± 0.2 ± 0.1 | 3.182 ± 0.5 ± 0.2 ± 0.1 | 3.159 ± 0.4 ± 0.1 ± 0.1 | 3.158 ± 0.4 ± 0.1 ± 0.1 | 3.142 ± 0.4 ± 0.1 ± 0.2 | 3.154 ± 0.3 ± 0.1 ± 0.1 |
0.102–0.114 | 2.756 ± 0.5 ± 0.2 ± 0.1 | 2.742 ± 0.5 ± 0.2 ± 0.1 | 2.781 ± 0.4 ± 0.1 ± 0.1 | 2.784 ± 0.4 ± 0.1 ± 0.1 | 2.769 ± 0.4 ± 0.1 ± 0.2 | 2.757 ± 0.3 ± 0.1 ± 0.1 |
0.114–0.128 | 2.403 ± 0.5 ± 0.2 ± 0.1 | 2.388 ± 0.5 ± 0.2 ± 0.1 | 2.418 ± 0.4 ± 0.1 ± 0.1 | 2.418 ± 0.4 ± 0.1 ± 0.1 | 2.403 ± 0.4 ± 0.1 ± 0.1 | 2.396 ± 0.3 ± 0.1 ± 0.1 |
0.128–0.145 | 2.065 ± 0.5 ± 0.2 ± 0.1 | 2.053 ± 0.5 ± 0.2 ± 0.1 | 2.045 ± 0.4 ± 0.1 ± 0.1 | 2.045 ± 0.4 ± 0.1 ± 0.1 | 2.032 ± 0.4 ± 0.1 ± 0.1 | 2.039 ± 0.3 ± 0.1 ± 0.1 |
0.145–0.165 | 1.715 ± 0.5 ± 0.2 ± 0.1 | 1.705 ± 0.5 ± 0.2 ± 0.1 | 1.709 ± 0.4 ± 0.1 ± 0.1 | 1.711 ± 0.4 ± 0.1 ± 0.1 | 1.700 ± 0.4 ± 0.1 ± 0.1 | 1.701 ± 0.3 ± 0.1 ± 0.1 |
0.165–0.189 | 1.404 ± 0.5 ± 0.2 ± 0.1 | 1.395 ± 0.5 ± 0.2 ± 0.1 | 1.403 ± 0.4 ± 0.1 ± 0.1 | 1.404 ± 0.4 ± 0.1 ± 0.1 | 1.394 ± 0.4 ± 0.1 ± 0.1 | 1.394 ± 0.3 ± 0.1 ± 0.1 |
0.189–0.219 | 1.117 ± 0.5 ± 0.3 ± 0.2 | 1.110 ± 0.5 ± 0.3 ± 0.2 | 1.123 ± 0.4 ± 0.1 ± 0.1 | 1.124 ± 0.4 ± 0.1 ± 0.1 | 1.118 ± 0.4 ± 0.1 ± 0.1 | 1.115 ± 0.3 ± 0.1 ± 0.1 |
0.219–0.258 | 0.851 ± 0.5 ± 0.3 ± 0.2 | 0.846 ± 0.5 ± 0.3 ± 0.2 | 0.856 ± 0.4 ± 0.1 ± 0.1 | 0.856 ± 0.4 ± 0.1 ± 0.1 | 0.852 ± 0.4 ± 0.1 ± 0.1 | 0.850 ± 0.3 ± 0.1 ± 0.1 |
0.258–0.312 | 0.621 ± 0.5 ± 0.2 ± 0.3 | 0.618 ± 0.5 ± 0.2 ± 0.3 | 0.622 ± 0.4 ± 0.1 ± 0.1 | 0.623 ± 0.4 ± 0.1 ± 0.1 | 0.620 ± 0.4 ± 0.1 ± 0.2 | 0.618 ± 0.3 ± 0.1 ± 0.2 |
0.312–0.391 | 0.415 ± 0.5 ± 0.2 ± 0.3 | 0.413 ± 0.5 ± 0.2 ± 0.4 | 0.409 ± 0.4 ± 0.1 ± 0.1 | 0.409 ± 0.4 ± 0.1 ± 0.1 | 0.408 ± 0.4 ± 0.1 ± 0.2 | 0.409 ± 0.3 ± 0.1 ± 0.2 |
0.391–0.524 | 0.238 ± 0.5 ± 0.1 ± 0.3 | 0.238 ± 0.5 ± 0.1 ± 0.3 | 0.237 ± 0.4 ± 0.1 ± 0.1 | 0.237 ± 0.4 ± 0.1 ± 0.1 | 0.237 ± 0.4 ± 0.1 ± 0.2 | 0.237 ± 0.3 ± 0.1 ± 0.2 |
0.524–0.695 | 0.124 ± 0.7 ± 0.4 ± 0.3 | 0.124 ± 0.7 ± 0.4 ± 0.3 | 0.122 ± 0.5 ± 0.2 ± 0.2 | 0.122 ± 0.5 ± 0.2 ± 0.2 | 0.122 ± 0.5 ± 0.2 ± 0.2 | 0.122 ± 0.4 ± 0.2 ± 0.2 |
0.695–0.918 | 0.0615 ± 0.8 ± 0.4 ± 0.4 | 0.0614 ± 0.8 ± 0.4 ± 0.4 | 0.0609 ± 0.7 ± 0.2 ± 0.1 | 0.0610 ± 0.7 ± 0.2 ± 0.1 | 0.0609 ± 0.7 ± 0.2 ± 0.2 | 0.0610 ± 0.5 ± 0.2 ± 0.2 |
0.918–1.153 | 0.0313 ± 1.1 ± 0.5 ± 0.4 | 0.0312 ± 1.1 ± 0.5 ± 0.4 | 0.0310 ± 0.9 ± 0.2 ± 0.2 | 0.0311 ± 0.9 ± 0.2 ± 0.2 | 0.0310 ± 0.9 ± 0.2 ± 0.2 | 0.0310 ± 0.7 ± 0.2 ± 0.2 |
1.153–1.496 | 0.0163 ± 1.3 ± 0.3 ± 0.5 | 0.0163 ± 1.3 ± 0.3 ± 0.5 | 0.0158 ± 1.1 ± 0.3 ± 0.2 | 0.0158 ± 1.1 ± 0.3 ± 0.2 | 0.0158 ± 1.1 ± 0.3 ± 0.4 | 0.0160 ± 0.8 ± 0.2 ± 0.3 |
1.496–1.947 | 0.00752 ± 1.6 ± 0.4 ± 0.5 | 0.00749 ± 1.6 ± 0.4 ± 0.5 | 0.00740 ± 1.3 ± 0.3 ± 0.3 | 0.00741 ± 1.3 ± 0.3 ± 0.3 | 0.00737 ± 1.3 ± 0.3 ± 0.5 | 0.00740 ± 1.0 ± 0.2 ± 0.3 |
1.947–2.522 | 0.00356 ± 2.0 ± 0.5 ± 0.6 | 0.00354 ± 2.0 ± 0.5 ± 0.6 | 0.00356 ± 1.7 ± 0.4 ± 0.4 | 0.00357 ± 1.7 ± 0.4 ± 0.4 | 0.00357 ± 1.7 ± 0.4 ± 0.5 | 0.00355 ± 1.3 ± 0.3 ± 0.4 |
2.522–3.277 | 0.00168 ± 2.5 ± 0.6 ± 0.6 | 0.00168 ± 2.5 ± 0.6 ± 0.6 | 0.00175 ± 2.1 ± 0.4 ± 0.6 | 0.00176 ± 2.1 ± 0.4 ± 0.6 | 0.00175 ± 2.1 ± 0.4 ± 0.7 | 0.00171 ± 1.6 ± 0.4 ± 0.4 |
3.277–5.000 | 0.000769 ± 2.4 ± 0.6 ± 0.6 | 0.000768 ± 2.4 ± 0.6 ± 0.6 | 0.000792 ± 2.1 ± 0.7 ± 0.5 | 0.000796 ± 2.1 ± 0.7 ± 0.5 | 0.000795 ± 2.1 ± 0.7 ± 0.6 | 0.000781 ± 1.6 ± 0.5 ± 0.4 |
5.000–10.000 | 0.000215 ± 2.7 ± 0.8 ± 0.7 | 0.000215 ± 2.7 ± 0.8 ± 0.7 | 0.000213 ± 2.4 ± 0.5 ± 0.4 | 0.000213 ± 2.4 ± 0.5 ± 0.4 | 0.000213 ± 2.4 ± 0.5 ± 0.6 | 0.000213 ± 1.8 ± 0.4 ± 0.4 |
Table 12.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 9.378 ± 0.6 ± 0.3 ± 0.3 | 9.472 ± 0.6 ± 0.3 ± 0.3 | 9.338 ± 0.5 ± 0.1 ± 0.1 | 9.325 ± 0.5 ± 0.1 ± 0.1 | 9.405 ± 0.5 ± 0.1 ± 0.2 | 9.418 ± 0.4 ± 0.1 ± 0.1 |
0.004–0.008 | 9.264 ± 0.6 ± 0.2 ± 0.2 | 9.368 ± 0.6 ± 0.2 ± 0.2 | 9.273 ± 0.5 ± 0.1 ± 0.0 | 9.274 ± 0.5 ± 0.1 ± 0.0 | 9.347 ± 0.5 ± 0.1 ± 0.1 | 9.345 ± 0.4 ± 0.1 ± 0.1 |
0.008–0.012 | 9.014 ± 0.6 ± 0.2 ± 0.2 | 9.077 ± 0.6 ± 0.2 ± 0.3 | 9.131 ± 0.5 ± 0.1 ± 0.0 | 9.130 ± 0.5 ± 0.1 ± 0.0 | 9.199 ± 0.5 ± 0.1 ± 0.1 | 9.153 ± 0.4 ± 0.1 ± 0.1 |
0.012–0.016 | 8.875 ± 0.7 ± 0.2 ± 0.2 | 8.951 ± 0.7 ± 0.2 ± 0.2 | 8.864 ± 0.5 ± 0.1 ± 0.0 | 8.855 ± 0.5 ± 0.1 ± 0.0 | 8.930 ± 0.5 ± 0.1 ± 0.1 | 8.928 ± 0.4 ± 0.1 ± 0.1 |
0.016–0.020 | 8.592 ± 0.7 ± 0.2 ± 0.2 | 8.657 ± 0.7 ± 0.2 ± 0.2 | 8.503 ± 0.5 ± 0.1 ± 0.0 | 8.493 ± 0.5 ± 0.1 ± 0.0 | 8.561 ± 0.5 ± 0.1 ± 0.1 | 8.588 ± 0.4 ± 0.1 ± 0.1 |
0.020–0.024 | 8.207 ± 0.7 ± 0.2 ± 0.2 | 8.259 ± 0.7 ± 0.2 ± 0.2 | 8.149 ± 0.5 ± 0.1 ± 0.1 | 8.143 ± 0.5 ± 0.1 ± 0.1 | 8.195 ± 0.5 ± 0.1 ± 0.2 | 8.211 ± 0.4 ± 0.1 ± 0.1 |
0.024–0.029 | 7.721 ± 0.6 ± 0.2 ± 0.2 | 7.755 ± 0.6 ± 0.2 ± 0.2 | 7.776 ± 0.5 ± 0.1 ± 0.0 | 7.769 ± 0.5 ± 0.1 ± 0.0 | 7.842 ± 0.5 ± 0.1 ± 0.3 | 7.804 ± 0.4 ± 0.1 ± 0.2 |
0.029–0.034 | 7.439 ± 0.6 ± 0.2 ± 0.2 | 7.484 ± 0.6 ± 0.2 ± 0.3 | 7.343 ± 0.5 ± 0.1 ± 0.0 | 7.345 ± 0.5 ± 0.1 ± 0.0 | 7.398 ± 0.5 ± 0.1 ± 0.3 | 7.416 ± 0.4 ± 0.1 ± 0.2 |
0.034–0.039 | 6.755 ± 0.7 ± 0.2 ± 0.2 | 6.765 ± 0.7 ± 0.3 ± 0.3 | 6.832 ± 0.5 ± 0.1 ± 0.1 | 6.824 ± 0.5 ± 0.1 ± 0.1 | 6.848 ± 0.5 ± 0.1 ± 0.3 | 6.813 ± 0.4 ± 0.1 ± 0.2 |
0.039–0.045 | 6.394 ± 0.6 ± 0.2 ± 0.2 | 6.414 ± 0.6 ± 0.2 ± 0.2 | 6.377 ± 0.5 ± 0.1 ± 0.0 | 6.375 ± 0.5 ± 0.1 ± 0.0 | 6.383 ± 0.5 ± 0.1 ± 0.3 | 6.383 ± 0.4 ± 0.1 ± 0.2 |
0.045–0.051 | 5.878 ± 0.7 ± 0.2 ± 0.2 | 5.881 ± 0.7 ± 0.2 ± 0.2 | 5.906 ± 0.5 ± 0.1 ± 0.1 | 5.903 ± 0.5 ± 0.1 ± 0.1 | 5.916 ± 0.5 ± 0.1 ± 0.3 | 5.895 ± 0.4 ± 0.1 ± 0.2 |
0.051–0.057 | 5.309 ± 0.7 ± 0.2 ± 0.2 | 5.302 ± 0.7 ± 0.2 ± 0.2 | 5.371 ± 0.5 ± 0.1 ± 0.0 | 5.370 ± 0.5 ± 0.1 ± 0.0 | 5.374 ± 0.5 ± 0.1 ± 0.3 | 5.344 ± 0.4 ± 0.1 ± 0.2 |
0.057–0.064 | 4.899 ± 0.7 ± 0.2 ± 0.2 | 4.896 ± 0.7 ± 0.2 ± 0.2 | 4.909 ± 0.5 ± 0.1 ± 0.1 | 4.907 ± 0.5 ± 0.1 ± 0.1 | 4.900 ± 0.5 ± 0.1 ± 0.2 | 4.893 ± 0.4 ± 0.1 ± 0.1 |
0.064–0.072 | 4.508 ± 0.6 ± 0.2 ± 0.2 | 4.503 ± 0.6 ± 0.2 ± 0.2 | 4.511 ± 0.5 ± 0.1 ± 0.1 | 4.507 ± 0.5 ± 0.1 ± 0.1 | 4.498 ± 0.5 ± 0.1 ± 0.2 | 4.495 ± 0.4 ± 0.1 ± 0.1 |
0.072–0.081 | 4.011 ± 0.6 ± 0.4 ± 0.2 | 3.996 ± 0.6 ± 0.4 ± 0.2 | 4.008 ± 0.5 ± 0.1 ± 0.1 | 4.005 ± 0.5 ± 0.1 ± 0.1 | 3.990 ± 0.5 ± 0.1 ± 0.2 | 3.988 ± 0.4 ± 0.1 ± 0.1 |
0.081–0.091 | 3.574 ± 0.7 ± 0.4 ± 0.2 | 3.561 ± 0.7 ± 0.4 ± 0.2 | 3.574 ± 0.5 ± 0.1 ± 0.1 | 3.575 ± 0.5 ± 0.1 ± 0.1 | 3.558 ± 0.5 ± 0.1 ± 0.2 | 3.556 ± 0.4 ± 0.1 ± 0.1 |
0.091–0.102 | 3.159 ± 0.7 ± 0.2 ± 0.2 | 3.142 ± 0.7 ± 0.2 ± 0.2 | 3.157 ± 0.5 ± 0.1 ± 0.1 | 3.155 ± 0.5 ± 0.1 ± 0.1 | 3.130 ± 0.5 ± 0.1 ± 0.2 | 3.131 ± 0.4 ± 0.1 ± 0.1 |
0.102–0.114 | 2.806 ± 0.7 ± 0.2 ± 0.1 | 2.793 ± 0.7 ± 0.2 ± 0.1 | 2.774 ± 0.5 ± 0.1 ± 0.1 | 2.776 ± 0.5 ± 0.1 ± 0.1 | 2.764 ± 0.5 ± 0.1 ± 0.2 | 2.772 ± 0.4 ± 0.1 ± 0.1 |
0.114–0.128 | 2.407 ± 0.7 ± 0.2 ± 0.1 | 2.392 ± 0.7 ± 0.2 ± 0.1 | 2.416 ± 0.5 ± 0.1 ± 0.1 | 2.416 ± 0.5 ± 0.1 ± 0.1 | 2.401 ± 0.5 ± 0.1 ± 0.2 | 2.396 ± 0.4 ± 0.1 ± 0.1 |
0.128–0.145 | 2.072 ± 0.7 ± 0.2 ± 0.1 | 2.058 ± 0.7 ± 0.2 ± 0.1 | 2.061 ± 0.5 ± 0.1 ± 0.1 | 2.061 ± 0.5 ± 0.1 ± 0.1 | 2.048 ± 0.5 ± 0.1 ± 0.2 | 2.050 ± 0.4 ± 0.1 ± 0.1 |
0.145–0.165 | 1.730 ± 0.7 ± 0.2 ± 0.2 | 1.716 ± 0.7 ± 0.2 ± 0.2 | 1.729 ± 0.5 ± 0.1 ± 0.1 | 1.730 ± 0.5 ± 0.1 ± 0.1 | 1.718 ± 0.5 ± 0.1 ± 0.2 | 1.717 ± 0.4 ± 0.1 ± 0.1 |
0.165–0.189 | 1.417 ± 0.7 ± 0.2 ± 0.2 | 1.408 ± 0.7 ± 0.2 ± 0.2 | 1.423 ± 0.5 ± 0.1 ± 0.1 | 1.422 ± 0.5 ± 0.1 ± 0.1 | 1.414 ± 0.5 ± 0.1 ± 0.2 | 1.411 ± 0.4 ± 0.1 ± 0.1 |
0.189–0.219 | 1.137 ± 0.7 ± 0.4 ± 0.3 | 1.130 ± 0.7 ± 0.4 ± 0.3 | 1.138 ± 0.5 ± 0.1 ± 0.1 | 1.139 ± 0.5 ± 0.1 ± 0.1 | 1.133 ± 0.5 ± 0.1 ± 0.2 | 1.131 ± 0.4 ± 0.1 ± 0.2 |
0.219–0.258 | 0.871 ± 0.7 ± 0.4 ± 0.3 | 0.866 ± 0.7 ± 0.4 ± 0.3 | 0.875 ± 0.5 ± 0.1 ± 0.1 | 0.876 ± 0.5 ± 0.1 ± 0.1 | 0.870 ± 0.5 ± 0.1 ± 0.2 | 0.869 ± 0.4 ± 0.1 ± 0.2 |
0.258–0.312 | 0.643 ± 0.7 ± 0.2 ± 0.4 | 0.641 ± 0.7 ± 0.3 ± 0.4 | 0.634 ± 0.5 ± 0.1 ± 0.1 | 0.635 ± 0.5 ± 0.1 ± 0.1 | 0.631 ± 0.5 ± 0.1 ± 0.2 | 0.634 ± 0.4 ± 0.1 ± 0.2 |
0.312–0.391 | 0.428 ± 0.7 ± 0.3 ± 0.4 | 0.426 ± 0.7 ± 0.3 ± 0.4 | 0.427 ± 0.5 ± 0.1 ± 0.1 | 0.427 ± 0.5 ± 0.1 ± 0.1 | 0.425 ± 0.5 ± 0.1 ± 0.2 | 0.425 ± 0.4 ± 0.1 ± 0.2 |
0.391–0.524 | 0.244 ± 0.7 ± 0.3 ± 0.5 | 0.244 ± 0.7 ± 0.3 ± 0.5 | 0.245 ± 0.5 ± 0.1 ± 0.1 | 0.246 ± 0.5 ± 0.1 ± 0.1 | 0.245 ± 0.5 ± 0.1 ± 0.2 | 0.245 ± 0.4 ± 0.1 ± 0.2 |
0.524–0.695 | 0.125 ± 0.8 ± 0.4 ± 0.6 | 0.124 ± 0.8 ± 0.4 ± 0.6 | 0.126 ± 0.6 ± 0.1 ± 0.2 | 0.127 ± 0.6 ± 0.1 ± 0.2 | 0.126 ± 0.6 ± 0.1 ± 0.2 | 0.126 ± 0.5 ± 0.2 ± 0.2 |
0.695–0.918 | 0.0621 ± 1.0 ± 0.4 ± 0.7 | 0.0620 ± 1.0 ± 0.4 ± 0.7 | 0.0613 ± 0.8 ± 0.2 ± 0.2 | 0.0615 ± 0.8 ± 0.2 ± 0.2 | 0.0615 ± 0.8 ± 0.2 ± 0.3 | 0.0616 ± 0.6 ± 0.2 ± 0.3 |
0.918–1.153 | 0.0305 ± 1.4 ± 0.5 ± 0.7 | 0.0304 ± 1.4 ± 0.5 ± 0.7 | 0.0301 ± 1.1 ± 0.2 ± 0.2 | 0.0301 ± 1.1 ± 0.2 ± 0.2 | 0.0300 ± 1.1 ± 0.2 ± 0.3 | 0.0301 ± 0.9 ± 0.2 ± 0.3 |
1.153–1.496 | 0.0148 ± 1.6 ± 0.6 ± 0.8 | 0.0148 ± 1.6 ± 0.6 ± 0.8 | 0.0149 ± 1.3 ± 0.2 ± 0.3 | 0.0150 ± 1.3 ± 0.2 ± 0.3 | 0.0149 ± 1.3 ± 0.2 ± 0.6 | 0.0149 ± 1.0 ± 0.2 ± 0.4 |
1.496–1.947 | 0.00643 ± 2.1 ± 0.6 ± 1.0 | 0.00641 ± 2.1 ± 0.6 ± 1.0 | 0.00638 ± 1.8 ± 0.3 ± 0.4 | 0.00641 ± 1.8 ± 0.3 ± 0.4 | 0.00642 ± 1.8 ± 0.3 ± 0.7 | 0.00641 ± 1.4 ± 0.3 ± 0.5 |
1.947–2.522 | 0.00274 ± 2.9 ± 0.7 ± 1.0 | 0.00272 ± 2.9 ± 0.7 ± 1.1 | 0.00299 ± 2.3 ± 0.4 ± 0.4 | 0.00299 ± 2.3 ± 0.4 ± 0.4 | 0.00297 ± 2.3 ± 0.4 ± 0.7 | 0.00287 ± 1.8 ± 0.4 ± 0.5 |
2.522–3.277 | 0.00131 ± 3.6 ± 0.7 ± 1.2 | 0.00130 ± 3.6 ± 0.8 ± 1.2 | 0.00128 ± 3.0 ± 0.6 ± 0.4 | 0.00128 ± 3.0 ± 0.6 ± 0.4 | 0.00129 ± 3.0 ± 0.6 ± 0.7 | 0.00129 ± 2.3 ± 0.5 ± 0.5 |
3.277–5.000 | 0.000510 ± 3.8 ± 1.1 ± 1.4 | 0.000509 ± 3.8 ± 1.1 ± 1.4 | 0.000519 ± 3.1 ± 0.6 ± 0.7 | 0.000524 ± 3.1 ± 0.6 ± 0.7 | 0.000525 ± 3.1 ± 0.6 ± 0.9 | 0.000517 ± 2.4 ± 0.5 ± 0.7 |
5.000–10.000 | 0.000141 ± 4.2 ± 0.9 ± 1.3 | 0.000141 ± 4.2 ± 0.9 ± 1.3 | 0.000127 ± 3.8 ± 0.6 ± 0.5 | 0.000128 ± 3.8 ± 0.6 ± 0.5 | 0.000128 ± 3.8 ± 0.6 ± 0.7 | 0.000133 ± 2.8 ± 0.5 ± 0.6 |
Table 13.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 9.324 ± 1.0 ± 0.4 ± 0.3 | 9.417 ± 1.0 ± 0.4 ± 0.3 | 9.348 ± 0.8 ± 0.1 ± 0.1 | 9.347 ± 0.8 ± 0.1 ± 0.1 | 9.417 ± 0.8 ± 0.1 ± 0.4 | 9.417 ± 0.6 ± 0.2 ± 0.2 |
0.004–0.008 | 9.101 ± 1.0 ± 0.4 ± 0.3 | 9.182 ± 1.0 ± 0.4 ± 0.3 | 9.294 ± 0.9 ± 0.2 ± 0.1 | 9.288 ± 0.9 ± 0.2 ± 0.1 | 9.372 ± 0.9 ± 0.2 ± 0.4 | 9.303 ± 0.7 ± 0.2 ± 0.2 |
0.008–0.012 | 9.083 ± 1.0 ± 0.4 ± 0.3 | 9.179 ± 1.0 ± 0.4 ± 0.3 | 8.969 ± 0.9 ± 0.2 ± 0.1 | 8.959 ± 0.9 ± 0.2 ± 0.1 | 9.023 ± 0.9 ± 0.2 ± 0.4 | 9.084 ± 0.7 ± 0.2 ± 0.2 |
0.012–0.016 | 8.825 ± 1.0 ± 0.4 ± 0.3 | 8.895 ± 1.0 ± 0.4 ± 0.3 | 9.015 ± 0.9 ± 0.2 ± 0.1 | 8.993 ± 0.9 ± 0.2 ± 0.1 | 9.050 ± 0.9 ± 0.2 ± 0.4 | 8.991 ± 0.7 ± 0.2 ± 0.2 |
0.016–0.020 | 8.401 ± 1.0 ± 0.4 ± 0.3 | 8.462 ± 1.0 ± 0.4 ± 0.3 | 8.469 ± 0.9 ± 0.2 ± 0.1 | 8.456 ± 0.9 ± 0.2 ± 0.1 | 8.540 ± 0.9 ± 0.2 ± 0.4 | 8.511 ± 0.7 ± 0.2 ± 0.2 |
0.020–0.024 | 8.047 ± 1.1 ± 0.5 ± 0.3 | 8.094 ± 1.1 ± 0.5 ± 0.3 | 8.242 ± 0.9 ± 0.2 ± 0.1 | 8.241 ± 0.9 ± 0.2 ± 0.1 | 8.305 ± 0.9 ± 0.2 ± 0.4 | 8.236 ± 0.7 ± 0.2 ± 0.2 |
0.024–0.029 | 7.986 ± 1.0 ± 0.5 ± 0.3 | 8.065 ± 1.0 ± 0.5 ± 0.4 | 7.748 ± 0.8 ± 0.2 ± 0.0 | 7.743 ± 0.8 ± 0.2 ± 0.0 | 7.799 ± 0.8 ± 0.2 ± 0.4 | 7.891 ± 0.6 ± 0.2 ± 0.2 |
0.029–0.034 | 7.168 ± 1.0 ± 0.5 ± 0.3 | 7.173 ± 1.0 ± 0.5 ± 0.3 | 7.276 ± 0.9 ± 0.1 ± 0.0 | 7.270 ± 0.9 ± 0.1 ± 0.0 | 7.310 ± 0.9 ± 0.1 ± 0.4 | 7.267 ± 0.7 ± 0.2 ± 0.2 |
0.034–0.039 | 6.833 ± 1.0 ± 0.5 ± 0.3 | 6.857 ± 1.0 ± 0.5 ± 0.3 | 6.781 ± 0.9 ± 0.2 ± 0.1 | 6.783 ± 0.9 ± 0.2 ± 0.1 | 6.828 ± 0.9 ± 0.2 ± 0.4 | 6.843 ± 0.7 ± 0.2 ± 0.2 |
0.039–0.045 | 6.468 ± 1.0 ± 0.4 ± 0.3 | 6.490 ± 1.0 ± 0.4 ± 0.3 | 6.415 ± 0.8 ± 0.1 ± 0.0 | 6.408 ± 0.8 ± 0.1 ± 0.0 | 6.441 ± 0.8 ± 0.1 ± 0.4 | 6.457 ± 0.6 ± 0.2 ± 0.2 |
0.045–0.051 | 5.717 ± 1.0 ± 0.4 ± 0.2 | 5.715 ± 1.0 ± 0.5 ± 0.3 | 5.865 ± 0.9 ± 0.2 ± 0.0 | 5.870 ± 0.9 ± 0.2 ± 0.0 | 5.854 ± 0.9 ± 0.2 ± 0.4 | 5.807 ± 0.7 ± 0.2 ± 0.2 |
0.051–0.057 | 5.413 ± 1.1 ± 0.4 ± 0.2 | 5.410 ± 1.1 ± 0.4 ± 0.2 | 5.333 ± 0.9 ± 0.2 ± 0.1 | 5.330 ± 0.9 ± 0.2 ± 0.1 | 5.336 ± 0.9 ± 0.2 ± 0.4 | 5.366 ± 0.7 ± 0.2 ± 0.2 |
0.057–0.064 | 4.935 ± 1.0 ± 0.4 ± 0.2 | 4.934 ± 1.0 ± 0.4 ± 0.2 | 4.923 ± 0.9 ± 0.2 ± 0.0 | 4.915 ± 0.9 ± 0.2 ± 0.0 | 4.906 ± 0.9 ± 0.2 ± 0.2 | 4.918 ± 0.7 ± 0.2 ± 0.1 |
0.064–0.072 | 4.502 ± 1.0 ± 0.4 ± 0.2 | 4.491 ± 1.0 ± 0.4 ± 0.2 | 4.434 ± 0.9 ± 0.2 ± 0.1 | 4.435 ± 0.9 ± 0.2 ± 0.1 | 4.427 ± 0.9 ± 0.2 ± 0.2 | 4.452 ± 0.7 ± 0.2 ± 0.1 |
0.072–0.081 | 3.994 ± 1.0 ± 0.5 ± 0.2 | 3.977 ± 1.0 ± 0.5 ± 0.2 | 3.978 ± 0.9 ± 0.1 ± 0.1 | 3.982 ± 0.9 ± 0.1 ± 0.1 | 3.968 ± 0.9 ± 0.1 ± 0.2 | 3.972 ± 0.7 ± 0.2 ± 0.2 |
0.081–0.091 | 3.517 ± 1.0 ± 0.5 ± 0.1 | 3.496 ± 1.0 ± 0.5 ± 0.2 | 3.572 ± 0.9 ± 0.1 ± 0.1 | 3.569 ± 0.9 ± 0.1 ± 0.1 | 3.563 ± 0.9 ± 0.1 ± 0.2 | 3.539 ± 0.7 ± 0.2 ± 0.1 |
0.091–0.102 | 3.161 ± 1.0 ± 0.6 ± 0.1 | 3.148 ± 1.0 ± 0.6 ± 0.2 | 3.146 ± 0.8 ± 0.2 ± 0.0 | 3.144 ± 0.8 ± 0.2 ± 0.0 | 3.122 ± 0.8 ± 0.2 ± 0.2 | 3.132 ± 0.7 ± 0.2 ± 0.1 |
0.102–0.114 | 2.793 ± 1.1 ± 0.6 ± 0.2 | 2.784 ± 1.1 ± 0.6 ± 0.2 | 2.775 ± 0.9 ± 0.1 ± 0.1 | 2.779 ± 0.9 ± 0.1 ± 0.1 | 2.762 ± 0.9 ± 0.1 ± 0.2 | 2.770 ± 0.7 ± 0.2 ± 0.1 |
0.114–0.128 | 2.404 ± 1.1 ± 0.6 ± 0.1 | 2.385 ± 1.1 ± 0.6 ± 0.1 | 2.441 ± 0.9 ± 0.1 ± 0.1 | 2.438 ± 0.9 ± 0.1 ± 0.1 | 2.420 ± 0.9 ± 0.1 ± 0.3 | 2.408 ± 0.7 ± 0.2 ± 0.2 |
0.128–0.145 | 2.036 ± 1.0 ± 0.6 ± 0.1 | 2.021 ± 1.0 ± 0.6 ± 0.1 | 2.074 ± 0.8 ± 0.2 ± 0.1 | 2.074 ± 0.8 ± 0.2 ± 0.1 | 2.053 ± 0.8 ± 0.2 ± 0.3 | 2.043 ± 0.7 ± 0.2 ± 0.2 |
0.145–0.165 | 1.743 ± 1.0 ± 0.6 ± 0.2 | 1.732 ± 1.0 ± 0.6 ± 0.2 | 1.736 ± 0.9 ± 0.1 ± 0.1 | 1.737 ± 0.9 ± 0.1 ± 0.1 | 1.730 ± 0.9 ± 0.1 ± 0.3 | 1.730 ± 0.7 ± 0.2 ± 0.2 |
0.165–0.189 | 1.447 ± 1.0 ± 0.6 ± 0.2 | 1.439 ± 1.0 ± 0.6 ± 0.2 | 1.453 ± 0.9 ± 0.1 ± 0.1 | 1.455 ± 0.9 ± 0.1 ± 0.1 | 1.449 ± 0.9 ± 0.1 ± 0.3 | 1.445 ± 0.7 ± 0.2 ± 0.2 |
0.189–0.219 | 1.175 ± 1.0 ± 0.4 ± 0.2 | 1.167 ± 1.0 ± 0.4 ± 0.2 | 1.147 ± 0.9 ± 0.1 ± 0.1 | 1.147 ± 0.9 ± 0.1 ± 0.1 | 1.139 ± 0.9 ± 0.1 ± 0.3 | 1.149 ± 0.7 ± 0.2 ± 0.2 |
0.219–0.258 | 0.894 ± 1.0 ± 0.5 ± 0.3 | 0.889 ± 1.0 ± 0.5 ± 0.3 | 0.888 ± 0.8 ± 0.2 ± 0.1 | 0.889 ± 0.8 ± 0.2 ± 0.1 | 0.883 ± 0.8 ± 0.2 ± 0.3 | 0.885 ± 0.7 ± 0.2 ± 0.2 |
0.258–0.312 | 0.656 ± 1.0 ± 0.6 ± 0.4 | 0.653 ± 1.0 ± 0.6 ± 0.4 | 0.646 ± 0.9 ± 0.1 ± 0.2 | 0.646 ± 0.9 ± 0.1 ± 0.2 | 0.643 ± 0.9 ± 0.1 ± 0.4 | 0.646 ± 0.7 ± 0.2 ± 0.3 |
0.312–0.391 | 0.438 ± 1.1 ± 0.6 ± 0.5 | 0.436 ± 1.1 ± 0.6 ± 0.5 | 0.436 ± 0.9 ± 0.1 ± 0.1 | 0.437 ± 0.9 ± 0.1 ± 0.1 | 0.435 ± 0.9 ± 0.1 ± 0.4 | 0.436 ± 0.7 ± 0.2 ± 0.3 |
0.391–0.524 | 0.255 ± 1.1 ± 0.6 ± 0.6 | 0.255 ± 1.1 ± 0.6 ± 0.6 | 0.253 ± 0.9 ± 0.1 ± 0.2 | 0.253 ± 0.9 ± 0.1 ± 0.2 | 0.253 ± 0.9 ± 0.1 ± 0.4 | 0.254 ± 0.7 ± 0.2 ± 0.3 |
0.524–0.695 | 0.131 ± 1.3 ± 0.4 ± 0.7 | 0.130 ± 1.3 ± 0.4 ± 0.7 | 0.134 ± 1.1 ± 0.2 ± 0.2 | 0.134 ± 1.1 ± 0.2 ± 0.2 | 0.134 ± 1.1 ± 0.2 ± 0.4 | 0.132 ± 0.8 ± 0.2 ± 0.3 |
0.695–0.918 | 0.0612 ± 1.7 ± 0.5 ± 0.9 | 0.0611 ± 1.7 ± 0.5 ± 0.9 | 0.0608 ± 1.4 ± 0.2 ± 0.3 | 0.0609 ± 1.4 ± 0.2 ± 0.3 | 0.0607 ± 1.4 ± 0.2 ± 0.4 | 0.0608 ± 1.1 ± 0.3 ± 0.4 |
0.918–1.153 | 0.0292 ± 2.3 ± 0.5 ± 1.1 | 0.0291 ± 2.3 ± 0.5 ± 1.1 | 0.0288 ± 2.0 ± 0.3 ± 0.3 | 0.0290 ± 2.0 ± 0.3 ± 0.3 | 0.0291 ± 2.0 ± 0.3 ± 0.4 | 0.0291 ± 1.5 ± 0.3 ± 0.4 |
1.153–1.496 | 0.0132 ± 2.8 ± 0.6 ± 1.3 | 0.0132 ± 2.8 ± 0.6 ± 1.3 | 0.0129 ± 2.4 ± 0.5 ± 0.3 | 0.0129 ± 2.4 ± 0.5 ± 0.3 | 0.0128 ± 2.4 ± 0.5 ± 1.0 | 0.0130 ± 1.8 ± 0.4 ± 0.6 |
1.496–1.947 | 0.00492 ± 4.0 ± 0.8 ± 1.6 | 0.00493 ± 4.0 ± 0.8 ± 1.6 | 0.00483 ± 3.5 ± 0.5 ± 0.4 | 0.00486 ± 3.5 ± 0.5 ± 0.4 | 0.00483 ± 3.5 ± 0.5 ± 1.0 | 0.00486 ± 2.6 ± 0.4 ± 0.7 |
1.947–2.522 | 0.00191 ± 5.7 ± 1.1 ± 2.0 | 0.00189 ± 5.7 ± 1.1 ± 1.9 | 0.00153 ± 5.4 ± 0.9 ± 0.7 | 0.00154 ± 5.4 ± 0.9 ± 0.7 | 0.00153 ± 5.4 ± 0.9 ± 1.2 | 0.00168 ± 3.9 ± 0.7 ± 0.9 |
2.522–3.277 | 0.000583 ± 8.9 ± 1.7 ± 2.3 | 0.000582 ± 8.9 ± 1.8 ± 2.3 | 0.000535 ± 8.3 ± 1.1 ± 0.7 | 0.000536 ± 8.3 ± 1.1 ± 0.7 | 0.000535 ± 8.3 ± 1.1 ± 1.2 | 0.000553 ± 6.1 ± 1.0 ± 1.0 |
3.277–5.000 | 0.000139 ± 12 ± 2.4 ± 3.1 | 0.000138 ± 12 ± 2.5 ± 3.1 | 0.000182 ± 9.3 ± 1.3 ± 1.4 | 0.000183 ± 9.3 ± 1.3 ± 1.4 | 0.000183 ± 9.3 ± 1.3 ± 1.7 | 0.000163 ± 7.4 ± 1.3 ± 1.4 |
5.000–10.000 | 0.0000247 ± 18 ± 5.4 ± 8.4 | 0.0000248 ± 18 ± 5.4 ± 8.5 | 0.0000308 ± 13 ± 2.4 ± 1.8 | 0.0000311 ± 13 ± 2.4 ± 1.8 | 0.0000314 ± 13 ± 2.4 ± 2.0 | 0.0000285 ± 11 ± 2.6 ± 3.2 |
Table 14.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 11.489 ± 2.7 ± 0.9 ± 2.9 | 11.576 ± 2.7 ± 0.9 ± 2.9 | 11.151 ± 1.8 ± 0.7 ± 3.4 | 11.135 ± 1.8 ± 0.7 ± 3.4 | 11.235 ± 1.8 ± 0.7 ± 3.5 | 11.412 ± 1.5 ± 0.6 ± 3.2 |
0.004–0.008 | 11.375 ± 2.7 ± 0.7 ± 1.3 | 11.449 ± 2.7 ± 0.8 ± 1.3 | 11.398 ± 1.7 ± 0.8 ± 1.5 | 11.361 ± 1.7 ± 0.8 ± 1.5 | 11.340 ± 1.7 ± 0.8 ± 1.6 | 11.355 ± 1.5 ± 0.6 ± 1.4 |
0.008–0.012 | 11.051 ± 2.7 ± 0.8 ± 0.9 | 11.091 ± 2.7 ± 0.8 ± 0.9 | 11.056 ± 1.8 ± 0.8 ± 1.2 | 10.980 ± 1.8 ± 0.8 ± 1.2 | 11.131 ± 1.8 ± 0.8 ± 1.4 | 11.077 ± 1.5 ± 0.6 ± 1.0 |
0.012–0.016 | 10.804 ± 2.7 ± 0.7 ± 1.2 | 10.904 ± 2.7 ± 0.8 ± 1.2 | 11.077 ± 1.8 ± 0.8 ± 0.9 | 11.006 ± 1.8 ± 0.8 ± 0.9 | 10.970 ± 1.8 ± 0.8 ± 1.2 | 10.920 ± 1.5 ± 0.6 ± 0.9 |
0.016–0.020 | 10.038 ± 2.8 ± 0.7 ± 0.8 | 10.105 ± 2.8 ± 0.8 ± 0.7 | 10.116 ± 1.9 ± 0.9 ± 0.9 | 10.039 ± 1.9 ± 0.9 ± 0.9 | 10.107 ± 1.9 ± 0.9 ± 1.2 | 10.068 ± 1.6 ± 0.6 ± 0.8 |
0.020–0.024 | 9.378 ± 2.9 ± 0.8 ± 0.7 | 9.372 ± 2.9 ± 0.8 ± 0.8 | 9.319 ± 1.9 ± 0.8 ± 1.0 | 9.293 ± 1.9 ± 0.8 ± 1.0 | 9.330 ± 1.9 ± 0.8 ± 1.2 | 9.307 ± 1.6 ± 0.6 ± 0.8 |
0.024–0.029 | 9.075 ± 2.7 ± 0.7 ± 0.6 | 9.117 ± 2.7 ± 0.8 ± 0.6 | 8.794 ± 1.8 ± 0.8 ± 0.5 | 8.773 ± 1.8 ± 0.8 ± 0.5 | 8.847 ± 1.8 ± 0.8 ± 0.7 | 8.907 ± 1.5 ± 0.6 ± 0.6 |
0.029–0.034 | 8.348 ± 2.7 ± 0.7 ± 0.6 | 8.376 ± 2.7 ± 0.8 ± 0.6 | 8.466 ± 1.8 ± 0.8 ± 0.9 | 8.532 ± 1.8 ± 0.8 ± 0.9 | 8.557 ± 1.8 ± 0.8 ± 1.0 | 8.437 ± 1.5 ± 0.6 ± 0.7 |
0.034–0.039 | 6.798 ± 3.1 ± 0.9 ± 0.7 | 6.776 ± 3.1 ± 0.9 ± 0.7 | 7.793 ± 1.9 ± 0.8 ± 0.9 | 7.781 ± 1.9 ± 0.8 ± 0.9 | 7.815 ± 1.9 ± 0.8 ± 1.0 | 7.449 ± 1.6 ± 0.6 ± 0.7 |
0.039–0.045 | 6.684 ± 2.8 ± 0.9 ± 0.7 | 6.689 ± 2.8 ± 0.9 ± 0.7 | 6.810 ± 1.9 ± 0.8 ± 1.1 | 6.826 ± 1.9 ± 0.8 ± 1.1 | 6.806 ± 1.9 ± 0.8 ± 1.1 | 6.711 ± 1.6 ± 0.6 ± 0.8 |
0.045–0.051 | 6.001 ± 2.9 ± 0.8 ± 0.7 | 5.999 ± 2.9 ± 0.9 ± 0.7 | 5.993 ± 2.0 ± 0.8 ± 1.0 | 5.965 ± 2.0 ± 0.8 ± 1.0 | 6.017 ± 2.0 ± 0.8 ± 1.1 | 5.961 ± 1.6 ± 0.6 ± 0.7 |
0.051–0.057 | 5.433 ± 3.1 ± 0.9 ± 0.9 | 5.384 ± 3.1 ± 0.9 ± 1.0 | 5.455 ± 2.1 ± 0.9 ± 1.1 | 5.439 ± 2.1 ± 0.9 ± 1.1 | 5.355 ± 2.1 ± 0.9 ± 1.2 | 5.316 ± 1.7 ± 0.7 ± 0.8 |
0.057–0.064 | 5.175 ± 2.9 ± 0.9 ± 0.7 | 5.210 ± 2.9 ± 0.9 ± 0.7 | 4.958 ± 2.0 ± 0.8 ± 0.8 | 4.949 ± 2.0 ± 0.8 ± 0.8 | 4.933 ± 2.0 ± 0.8 ± 0.8 | 4.999 ± 1.7 ± 0.6 ± 0.7 |
0.064–0.072 | 4.099 ± 3.1 ± 0.9 ± 0.7 | 4.049 ± 3.1 ± 0.9 ± 0.7 | 4.509 ± 2.0 ± 0.9 ± 0.8 | 4.528 ± 2.0 ± 0.9 ± 0.8 | 4.531 ± 2.0 ± 0.9 ± 0.9 | 4.356 ± 1.7 ± 0.7 ± 0.7 |
0.072–0.081 | 4.003 ± 3.0 ± 0.8 ± 0.7 | 4.009 ± 3.0 ± 0.8 ± 0.7 | 3.750 ± 2.0 ± 0.8 ± 0.9 | 3.744 ± 2.0 ± 0.8 ± 0.9 | 3.731 ± 2.0 ± 0.8 ± 0.9 | 3.802 ± 1.7 ± 0.6 ± 0.7 |
0.081–0.091 | 3.423 ± 3.1 ± 0.9 ± 0.9 | 3.437 ± 3.1 ± 1.0 ± 0.9 | 3.303 ± 2.1 ± 0.9 ± 0.6 | 3.302 ± 2.1 ± 0.9 ± 0.6 | 3.303 ± 2.1 ± 0.9 ± 0.7 | 3.339 ± 1.7 ± 0.7 ± 0.7 |
0.091–0.102 | 2.992 ± 3.1 ± 0.9 ± 0.9 | 2.983 ± 3.1 ± 1.0 ± 0.9 | 2.946 ± 2.1 ± 1.0 ± 0.7 | 2.958 ± 2.1 ± 1.0 ± 0.7 | 2.916 ± 2.1 ± 1.0 ± 0.8 | 2.934 ± 1.7 ± 0.7 ± 0.7 |
0.102–0.114 | 2.495 ± 3.3 ± 1.9 ± 2.8 | 2.489 ± 3.3 ± 1.9 ± 2.7 | 2.694 ± 2.1 ± 0.9 ± 0.7 | 2.697 ± 2.1 ± 0.9 ± 0.7 | 2.710 ± 2.1 ± 0.9 ± 0.8 | 2.644 ± 1.8 ± 0.8 ± 0.9 |
0.114–0.128 | 2.134 ± 3.3 ± 0.9 ± 0.7 | 2.125 ± 3.3 ± 0.9 ± 0.7 | 2.240 ± 2.1 ± 0.9 ± 0.9 | 2.246 ± 2.1 ± 0.9 ± 0.9 | 2.227 ± 2.1 ± 0.9 ± 0.9 | 2.195 ± 1.8 ± 0.7 ± 0.7 |
0.128–0.145 | 1.857 ± 3.3 ± 1.1 ± 1.1 | 1.843 ± 3.3 ± 1.1 ± 1.2 | 1.771 ± 2.2 ± 0.9 ± 0.8 | 1.785 ± 2.2 ± 0.9 ± 0.8 | 1.786 ± 2.2 ± 0.9 ± 0.9 | 1.796 ± 1.8 ± 0.7 ± 0.8 |
0.145–0.165 | 1.507 ± 3.3 ± 0.9 ± 0.8 | 1.505 ± 3.3 ± 1.0 ± 0.9 | 1.579 ± 2.2 ± 1.0 ± 0.8 | 1.582 ± 2.2 ± 1.0 ± 0.8 | 1.581 ± 2.2 ± 1.0 ± 0.8 | 1.553 ± 1.8 ± 0.7 ± 0.7 |
0.165–0.189 | 1.212 ± 3.5 ± 1.5 ± 1.5 | 1.200 ± 3.5 ± 1.5 ± 1.5 | 1.203 ± 2.3 ± 0.9 ± 0.8 | 1.211 ± 2.3 ± 0.9 ± 0.8 | 1.193 ± 2.3 ± 0.9 ± 0.8 | 1.199 ± 1.9 ± 0.8 ± 0.8 |
0.189–0.219 | 0.979 ± 3.4 ± 1.2 ± 1.2 | 0.978 ± 3.4 ± 1.2 ± 1.1 | 0.933 ± 2.3 ± 0.9 ± 1.9 | 0.933 ± 2.3 ± 0.9 ± 1.9 | 0.939 ± 2.3 ± 0.9 ± 1.9 | 0.964 ± 1.9 ± 0.7 ± 1.1 |
0.219–0.258 | 0.705 ± 3.6 ± 1.4 ± 1.2 | 0.701 ± 3.6 ± 1.4 ± 1.2 | 0.741 ± 2.2 ± 1.0 ± 2.1 | 0.740 ± 2.2 ± 1.0 ± 2.1 | 0.736 ± 2.2 ± 1.0 ± 2.1 | 0.736 ± 1.9 ± 0.8 ± 1.2 |
0.258–0.312 | 0.526 ± 3.7 ± 2.2 ± 2.0 | 0.524 ± 3.7 ± 2.2 ± 2.0 | 0.524 ± 2.3 ± 1.1 ± 1.6 | 0.524 ± 2.3 ± 1.1 ± 1.6 | 0.522 ± 2.3 ± 1.1 ± 1.8 | 0.531 ± 2.0 ± 1.0 ± 1.3 |
0.312–0.391 | 0.354 ± 3.8 ± 1.7 ± 2.3 | 0.354 ± 3.8 ± 1.7 ± 2.3 | 0.340 ± 2.4 ± 1.2 ± 2.2 | 0.341 ± 2.4 ± 1.2 ± 2.2 | 0.340 ± 2.4 ± 1.2 ± 2.4 | 0.351 ± 2.0 ± 1.0 ± 1.7 |
0.391–0.524 | 0.199 ± 4.1 ± 2.0 ± 3.3 | 0.199 ± 4.1 ± 2.0 ± 3.3 | 0.196 ± 2.6 ± 1.4 ± 3.0 | 0.197 ± 2.6 ± 1.4 ± 3.0 | 0.196 ± 2.6 ± 1.4 ± 3.1 | 0.201 ± 2.1 ± 1.2 ± 2.3 |
0.524–0.695 | 0.103 ± 5.3 ± 2.8 ± 3.8 | 0.103 ± 5.3 ± 2.8 ± 3.8 | 0.0918 ± 3.3 ± 2.7 ± 4.1 | 0.0920 ± 3.3 ± 2.7 ± 4.1 | 0.0910 ± 3.3 ± 2.7 ± 4.1 | 0.0994 ± 2.8 ± 2.0 ± 3.2 |
0.695–0.918 | 0.0540 ± 6.3 ± 2.9 ± 3.5 | 0.0538 ± 6.3 ± 2.9 ± 3.5 | 0.0527 ± 4.0 ± 2.9 ± 4.3 | 0.0529 ± 4.0 ± 2.9 ± 4.3 | 0.0528 ± 4.0 ± 2.9 ± 4.3 | 0.0558 ± 3.3 ± 2.1 ± 3.2 |
0.918–1.153 | 0.0258 ± 8.8 ± 6.1 ± 6.2 | 0.0258 ± 8.8 ± 6.1 ± 6.2 | 0.0259 ± 5.6 ± 3.3 ± 2.8 | 0.0262 ± 5.6 ± 3.3 ± 2.8 | 0.0263 ± 5.6 ± 3.3 ± 2.9 | 0.0264 ± 4.7 ± 2.9 ± 3.0 |
1.153–1.496 | 0.0180 ± 8.2 ± 3.2 ± 2.6 | 0.0181 ± 8.2 ± 3.2 ± 2.6 | 0.0135 ± 5.8 ± 3.0 ± 4.9 | 0.0137 ± 5.8 ± 3.0 ± 4.9 | 0.0141 ± 5.8 ± 3.0 ± 5.2 | 0.0161 ± 4.6 ± 2.3 ± 3.2 |
1.496–1.947 | 0.00804 ± 11 ± 4.5 ± 5.0 | 0.00804 ± 11 ± 4.5 ± 5.1 | 0.00542 ± 9.2 ± 4.8 ± 7.9 | 0.00546 ± 9.2 ± 4.8 ± 7.9 | 0.00537 ± 9.2 ± 4.8 ± 8.1 | 0.00681 ± 6.7 ± 3.5 ± 4.2 |
1.947–2.522 | 0.00285 ± 19 ± 14 ± 8.4 | 0.00281 ± 19 ± 14 ± 8.4 | 0.00312 ± 9.5 ± 4.7 ± 4.0 | 0.00320 ± 9.5 ± 4.7 ± 4.0 | 0.00319 ± 9.5 ± 4.7 ± 4.3 | 0.00328 ± 8.3 ± 4.6 ± 3.7 |
2.522–3.277 | 0.00136 ± 24 ± 12 ± 10 | 0.00134 ± 24 ± 12 ± 10.0 | 0.00260 ± 9.4 ± 5.5 ± 5.6 | 0.00262 ± 9.4 ± 5.5 ± 5.6 | 0.00259 ± 9.4 ± 5.5 ± 5.9 | 0.00246 ± 8.5 ± 5.0 ± 4.5 |
3.277–5.000 | 0.000850 ± 19 ± 9.6 ± 6.8 | 0.000843 ± 19 ± 9.6 ± 6.8 | 0.000517 ± 15 ± 8.7 ± 10 | 0.000532 ± 15 ± 8.7 ± 10 | 0.000530 ± 15 ± 8.7 ± 10 | 0.000696 ± 11 ± 6.6 ± 5.9 |
5.000–10.000 | 0.000285 ± 21 ± 9.8 ± 5.3 | 0.000280 ± 21 ± 9.8 ± 5.3 | 0.000215 ± 14 ± 7.2 ± 7.5 | 0.000218 ± 14 ± 7.2 ± 7.5 | 0.000226 ± 14 ± 7.2 ± 7.7 | 0.000260 ± 11 ± 5.8 ± 4.7 |
Table 15.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 10.972 ± 3.1 ± 1.0 ± 2.3 | 10.997 ± 3.1 ± 1.0 ± 2.3 | 12.244 ± 1.8 ± 0.8 ± 1.8 | 12.206 ± 1.8 ± 0.8 ± 1.8 | 12.288 ± 1.8 ± 0.8 ± 1.8 | 11.982 ± 1.6 ± 0.6 ± 1.9 |
0.004–0.008 | 11.989 ± 3.0 ± 0.9 ± 1.0 | 12.122 ± 3.0 ± 0.9 ± 1.0 | 11.775 ± 1.8 ± 0.8 ± 0.9 | 11.843 ± 1.8 ± 0.8 ± 0.9 | 11.904 ± 1.8 ± 0.8 ± 0.9 | 11.940 ± 1.6 ± 0.6 ± 0.8 |
0.008–0.012 | 10.628 ± 3.1 ± 0.9 ± 1.3 | 10.637 ± 3.1 ± 0.9 ± 1.3 | 10.892 ± 1.9 ± 0.8 ± 0.7 | 10.805 ± 1.9 ± 0.8 ± 0.7 | 10.871 ± 1.9 ± 0.8 ± 0.7 | 10.818 ± 1.6 ± 0.7 ± 0.7 |
0.012–0.016 | 10.718 ± 3.1 ± 1.0 ± 0.8 | 10.832 ± 3.1 ± 1.0 ± 0.8 | 11.265 ± 1.9 ± 0.8 ± 0.8 | 11.237 ± 1.9 ± 0.8 ± 0.8 | 11.211 ± 1.9 ± 0.8 ± 0.8 | 11.085 ± 1.6 ± 0.7 ± 0.7 |
0.016–0.020 | 9.871 ± 3.2 ± 0.9 ± 1.1 | 9.849 ± 3.2 ± 0.9 ± 1.1 | 9.966 ± 2.0 ± 0.9 ± 0.6 | 9.860 ± 2.0 ± 0.9 ± 0.6 | 10.009 ± 2.0 ± 0.9 ± 0.7 | 9.945 ± 1.7 ± 0.7 ± 0.6 |
0.020–0.024 | 9.754 ± 3.3 ± 1.1 ± 0.9 | 9.811 ± 3.3 ± 1.1 ± 0.9 | 9.756 ± 2.0 ± 0.9 ± 0.7 | 9.737 ± 2.0 ± 0.9 ± 0.7 | 9.765 ± 2.0 ± 0.9 ± 0.7 | 9.747 ± 1.7 ± 0.7 ± 0.6 |
0.024–0.029 | 8.577 ± 3.1 ± 1.0 ± 0.7 | 8.597 ± 3.1 ± 1.0 ± 0.7 | 8.647 ± 1.9 ± 0.8 ± 0.5 | 8.611 ± 1.9 ± 0.8 ± 0.5 | 8.609 ± 1.9 ± 0.8 ± 0.6 | 8.572 ± 1.6 ± 0.7 ± 0.5 |
0.029–0.034 | 7.516 ± 3.4 ± 1.4 ± 1.7 | 7.495 ± 3.4 ± 1.4 ± 1.7 | 8.261 ± 2.0 ± 0.9 ± 0.5 | 8.268 ± 2.0 ± 0.9 ± 0.5 | 8.305 ± 2.0 ± 0.9 ± 0.6 | 8.038 ± 1.7 ± 0.7 ± 0.6 |
0.034–0.039 | 7.643 ± 3.3 ± 1.0 ± 0.8 | 7.677 ± 3.3 ± 1.1 ± 0.8 | 7.411 ± 2.1 ± 0.9 ± 0.5 | 7.404 ± 2.1 ± 0.9 ± 0.5 | 7.432 ± 2.1 ± 0.9 ± 0.6 | 7.473 ± 1.8 ± 0.7 ± 0.5 |
0.039–0.045 | 6.365 ± 3.3 ± 1.0 ± 0.9 | 6.356 ± 3.3 ± 1.0 ± 0.9 | 6.576 ± 2.0 ± 0.9 ± 0.4 | 6.583 ± 2.0 ± 0.9 ± 0.4 | 6.552 ± 2.0 ± 0.9 ± 0.5 | 6.489 ± 1.7 ± 0.7 ± 0.5 |
0.045–0.051 | 6.080 ± 3.4 ± 1.0 ± 0.6 | 6.080 ± 3.4 ± 1.0 ± 0.6 | 5.937 ± 2.1 ± 0.9 ± 0.4 | 5.931 ± 2.1 ± 0.9 ± 0.4 | 5.947 ± 2.1 ± 0.9 ± 0.5 | 5.971 ± 1.8 ± 0.7 ± 0.5 |
0.051–0.057 | 5.577 ± 3.5 ± 1.0 ± 0.6 | 5.578 ± 3.5 ± 1.0 ± 0.6 | 5.636 ± 2.1 ± 0.9 ± 0.4 | 5.657 ± 2.1 ± 0.9 ± 0.4 | 5.652 ± 2.1 ± 0.9 ± 0.6 | 5.616 ± 1.8 ± 0.7 ± 0.5 |
0.057–0.064 | 4.794 ± 3.6 ± 1.0 ± 0.7 | 4.748 ± 3.6 ± 1.0 ± 0.7 | 4.936 ± 2.1 ± 0.9 ± 0.5 | 4.918 ± 2.1 ± 0.9 ± 0.5 | 4.927 ± 2.1 ± 0.9 ± 0.5 | 4.868 ± 1.8 ± 0.7 ± 0.5 |
0.064–0.072 | 4.645 ± 3.4 ± 1.7 ± 0.6 | 4.637 ± 3.4 ± 1.8 ± 0.6 | 4.375 ± 2.1 ± 0.9 ± 0.6 | 4.370 ± 2.1 ± 0.9 ± 0.6 | 4.333 ± 2.1 ± 0.9 ± 0.7 | 4.391 ± 1.8 ± 0.8 ± 0.6 |
0.072–0.081 | 4.082 ± 3.4 ± 1.1 ± 0.7 | 4.078 ± 3.4 ± 1.2 ± 0.7 | 3.774 ± 2.1 ± 0.9 ± 0.6 | 3.773 ± 2.1 ± 0.9 ± 0.6 | 3.727 ± 2.1 ± 0.9 ± 0.6 | 3.822 ± 1.8 ± 0.7 ± 0.6 |
0.081–0.091 | 3.474 ± 3.5 ± 1.0 ± 0.8 | 3.457 ± 3.5 ± 1.0 ± 0.8 | 3.262 ± 2.2 ± 0.9 ± 0.7 | 3.238 ± 2.2 ± 0.9 ± 0.7 | 3.269 ± 2.2 ± 0.9 ± 0.7 | 3.329 ± 1.9 ± 0.7 ± 0.6 |
0.091–0.102 | 3.205 ± 3.5 ± 1.1 ± 0.9 | 3.212 ± 3.5 ± 1.2 ± 0.9 | 3.119 ± 2.1 ± 0.9 ± 0.5 | 3.125 ± 2.1 ± 0.9 ± 0.5 | 3.116 ± 2.1 ± 0.9 ± 0.6 | 3.126 ± 1.8 ± 0.7 ± 0.5 |
0.102–0.114 | 2.435 ± 3.9 ± 1.2 ± 0.9 | 2.420 ± 3.9 ± 1.3 ± 0.9 | 2.528 ± 2.3 ± 0.9 ± 0.6 | 2.533 ± 2.3 ± 0.9 ± 0.6 | 2.509 ± 2.3 ± 0.9 ± 0.6 | 2.473 ± 2.0 ± 0.8 ± 0.5 |
0.114–0.128 | 2.051 ± 3.9 ± 1.2 ± 0.8 | 2.041 ± 3.9 ± 1.3 ± 0.8 | 2.071 ± 2.3 ± 1.1 ± 0.6 | 2.075 ± 2.3 ± 1.1 ± 0.6 | 2.066 ± 2.3 ± 1.1 ± 0.6 | 2.057 ± 2.0 ± 0.9 ± 0.5 |
0.128–0.145 | 1.828 ± 3.8 ± 1.5 ± 1.7 | 1.823 ± 3.8 ± 1.5 ± 1.8 | 1.907 ± 2.2 ± 0.9 ± 0.6 | 1.902 ± 2.2 ± 0.9 ± 0.6 | 1.905 ± 2.2 ± 0.9 ± 0.6 | 1.886 ± 1.9 ± 0.8 ± 0.6 |
0.145–0.165 | 1.608 ± 3.8 ± 1.2 ± 1.4 | 1.597 ± 3.8 ± 1.3 ± 1.4 | 1.579 ± 2.2 ± 1.1 ± 0.5 | 1.584 ± 2.2 ± 1.1 ± 0.5 | 1.580 ± 2.2 ± 1.1 ± 0.5 | 1.579 ± 1.9 ± 0.9 ± 0.5 |
0.165–0.189 | 1.211 ± 3.9 ± 1.3 ± 1.4 | 1.207 ± 3.9 ± 1.3 ± 1.5 | 1.177 ± 2.4 ± 1.0 ± 0.8 | 1.177 ± 2.4 ± 1.0 ± 0.8 | 1.173 ± 2.4 ± 1.0 ± 0.8 | 1.183 ± 2.0 ± 0.8 ± 0.7 |
0.189–0.219 | 0.940 ± 4.0 ± 1.8 ± 1.2 | 0.938 ± 4.0 ± 1.8 ± 1.3 | 0.970 ± 2.3 ± 1.3 ± 0.7 | 0.972 ± 2.3 ± 1.3 ± 0.7 | 0.968 ± 2.3 ± 1.3 ± 0.7 | 0.957 ± 2.0 ± 1.1 ± 0.6 |
0.219–0.258 | 0.774 ± 4.0 ± 1.7 ± 1.1 | 0.773 ± 4.0 ± 1.7 ± 1.0 | 0.784 ± 2.3 ± 1.3 ± 0.5 | 0.789 ± 2.3 ± 1.3 ± 0.5 | 0.786 ± 2.3 ± 1.3 ± 0.5 | 0.780 ± 2.0 ± 1.1 ± 0.5 |
0.258–0.312 | 0.547 ± 4.1 ± 1.6 ± 2.4 | 0.546 ± 4.1 ± 1.6 ± 2.4 | 0.543 ± 2.3 ± 0.9 ± 1.6 | 0.545 ± 2.3 ± 0.9 ± 1.6 | 0.542 ± 2.3 ± 0.9 ± 1.6 | 0.547 ± 2.0 ± 0.8 ± 1.2 |
0.312–0.391 | 0.355 ± 4.3 ± 1.8 ± 2.3 | 0.354 ± 4.3 ± 1.8 ± 2.3 | 0.329 ± 2.6 ± 1.1 ± 2.0 | 0.330 ± 2.6 ± 1.1 ± 2.0 | 0.330 ± 2.6 ± 1.1 ± 2.0 | 0.341 ± 2.2 ± 0.9 ± 1.5 |
0.391–0.524 | 0.212 ± 4.4 ± 2.0 ± 2.1 | 0.212 ± 4.4 ± 2.0 ± 2.1 | 0.186 ± 2.6 ± 1.1 ± 2.0 | 0.188 ± 2.6 ± 1.1 ± 2.0 | 0.188 ± 2.6 ± 1.1 ± 2.0 | 0.195 ± 2.3 ± 1.0 ± 1.7 |
0.524–0.695 | 0.101 ± 5.9 ± 2.8 ± 3.0 | 0.101 ± 5.9 ± 2.8 ± 3.0 | 0.0959 ± 3.4 ± 1.9 ± 1.8 | 0.0964 ± 3.4 ± 1.9 ± 1.8 | 0.0969 ± 3.4 ± 1.9 ± 1.8 | 0.0977 ± 2.9 ± 1.6 ± 1.8 |
0.695–0.918 | 0.0504 ± 7.3 ± 3.3 ± 3.1 | 0.0507 ± 7.3 ± 3.3 ± 3.1 | 0.0475 ± 4.3 ± 2.2 ± 2.5 | 0.0477 ± 4.3 ± 2.2 ± 2.5 | 0.0473 ± 4.3 ± 2.2 ± 2.5 | 0.0486 ± 3.7 ± 1.9 ± 2.3 |
0.918–1.153 | 0.0254 ± 9.5 ± 3.9 ± 5.0 | 0.0252 ± 9.5 ± 4.0 ± 5.0 | 0.0247 ± 5.6 ± 2.7 ± 2.2 | 0.0251 ± 5.6 ± 2.7 ± 2.2 | 0.0251 ± 5.6 ± 2.7 ± 2.2 | 0.0250 ± 4.9 ± 2.2 ± 2.2 |
1.153–1.496 | 0.0114 ± 12 ± 12 ± 25 | 0.0115 ± 12 ± 12 ± 25 | 0.0109 ± 7.1 ± 3.5 ± 2.5 | 0.0111 ± 7.1 ± 3.5 ± 2.5 | 0.0107 ± 7.1 ± 3.5 ± 2.6 | 0.0108 ± 6.3 ± 3.6 ± 3.4 |
1.496–1.947 | 0.00523 ± 15 ± 6.7 ± 5.6 | 0.00520 ± 15 ± 6.7 ± 5.6 | 0.00588 ± 7.9 ± 4.1 ± 2.4 | 0.00597 ± 7.9 ± 4.1 ± 2.4 | 0.00592 ± 7.9 ± 4.1 ± 2.5 | 0.00579 ± 7.0 ± 3.5 ± 2.5 |
1.947–2.522 | 0.00236 ± 20 ± 8.6 ± 8.2 | 0.00237 ± 20 ± 8.6 ± 8.2 | 0.00407 ± 8.9 ± 4.3 ± 4.6 | 0.00407 ± 8.9 ± 4.3 ± 4.6 | 0.00403 ± 8.9 ± 4.3 ± 4.7 | 0.00374 ± 8.0 ± 3.9 ± 3.6 |
2.522–3.277 | 0.00147 ± 22 ± 9.3 ± 10.0 | 0.00153 ± 22 ± 9.4 ± 10 | 0.00124 ± 15 ± 7.3 ± 4.2 | 0.00128 ± 15 ± 7.3 ± 4.2 | 0.00129 ± 15 ± 7.3 ± 4.2 | 0.00138 ± 12 ± 5.8 ± 4.1 |
3.277–5.000 | 0.000654 ± 22 ± 13 ± 9.8 | 0.000644 ± 22 ± 13 ± 9.9 | 0.000505 ± 15 ± 7.9 ± 6.5 | 0.000511 ± 15 ± 7.9 ± 6.5 | 0.000506 ± 15 ± 7.9 ± 6.5 | 0.000559 ± 12 ± 6.8 ± 5.0 |
5.000–10.000 | 0.000228 ± 21 ± 8.2 ± 9.0 | 0.000230 ± 21 ± 8.3 ± 8.7 | 0.000168 ± 16 ± 8.2 ± 2.4 | 0.000171 ± 16 ± 8.2 ± 2.4 | 0.000169 ± 16 ± 8.2 ± 2.5 | 0.000187 ± 13 ± 6.2 ± 3.0 |
Table 16.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 11.892 ± 5.1 ± 1.6 ± 1.5 | 12.002 ± 5.1 ± 1.7 ± 1.5 | 11.291 ± 2.9 ± 1.2 ± 1.3 | 11.291 ± 2.9 ± 1.2 ± 1.3 | 11.263 ± 2.9 ± 1.2 ± 1.4 | 11.481 ± 2.5 ± 1.0 ± 1.2 |
0.004–0.008 | 11.648 ± 5.2 ± 2.7 ± 1.8 | 11.765 ± 5.2 ± 2.8 ± 1.8 | 11.245 ± 2.9 ± 1.2 ± 0.7 | 11.207 ± 2.9 ± 1.2 ± 0.7 | 11.271 ± 2.9 ± 1.2 ± 0.9 | 11.391 ± 2.6 ± 1.1 ± 0.8 |
0.008–0.012 | 11.455 ± 5.0 ± 1.5 ± 1.0 | 11.528 ± 5.0 ± 1.6 ± 1.0 | 11.166 ± 2.9 ± 1.2 ± 0.6 | 11.164 ± 2.9 ± 1.2 ± 0.6 | 11.356 ± 2.9 ± 1.2 ± 0.8 | 11.419 ± 2.5 ± 1.0 ± 0.7 |
0.012–0.016 | 11.171 ± 5.1 ± 1.6 ± 1.0 | 11.159 ± 5.1 ± 1.7 ± 1.0 | 10.965 ± 2.9 ± 1.2 ± 0.8 | 10.902 ± 2.9 ± 1.2 ± 0.8 | 10.904 ± 2.9 ± 1.2 ± 1.0 | 10.991 ± 2.6 ± 1.0 ± 0.8 |
0.016–0.020 | 9.714 ± 5.6 ± 1.9 ± 1.2 | 9.678 ± 5.6 ± 2.0 ± 1.2 | 10.150 ± 3.1 ± 1.3 ± 0.8 | 10.200 ± 3.1 ± 1.3 ± 0.8 | 10.303 ± 3.1 ± 1.3 ± 1.0 | 10.167 ± 2.7 ± 1.1 ± 0.8 |
0.020–0.024 | 9.337 ± 5.7 ± 2.5 ± 1.9 | 9.362 ± 5.7 ± 2.5 ± 1.8 | 10.034 ± 3.1 ± 1.3 ± 0.5 | 10.084 ± 3.1 ± 1.3 ± 0.5 | 9.997 ± 3.1 ± 1.3 ± 0.7 | 9.850 ± 2.7 ± 1.1 ± 0.7 |
0.024–0.029 | 9.075 ± 5.1 ± 2.4 ± 1.7 | 9.100 ± 5.1 ± 2.4 ± 1.7 | 9.051 ± 2.9 ± 1.2 ± 0.3 | 9.019 ± 2.9 ± 1.2 ± 0.3 | 9.027 ± 2.9 ± 1.2 ± 0.4 | 9.049 ± 2.5 ± 1.1 ± 0.5 |
0.029–0.034 | 7.757 ± 5.6 ± 1.9 ± 1.1 | 7.764 ± 5.6 ± 1.9 ± 1.1 | 8.218 ± 3.1 ± 1.2 ± 0.6 | 8.239 ± 3.1 ± 1.2 ± 0.6 | 8.263 ± 3.1 ± 1.2 ± 0.7 | 8.151 ± 2.7 ± 1.1 ± 0.6 |
0.034–0.039 | 7.263 ± 5.7 ± 1.9 ± 1.6 | 7.270 ± 5.7 ± 2.0 ± 1.6 | 7.469 ± 3.2 ± 1.3 ± 0.3 | 7.356 ± 3.2 ± 1.3 ± 0.3 | 7.515 ± 3.2 ± 1.3 ± 0.5 | 7.462 ± 2.8 ± 1.1 ± 0.5 |
0.039–0.045 | 6.336 ± 5.6 ± 1.8 ± 1.3 | 6.324 ± 5.6 ± 1.8 ± 1.3 | 6.501 ± 3.2 ± 1.3 ± 0.5 | 6.463 ± 3.2 ± 1.3 ± 0.5 | 6.425 ± 3.2 ± 1.3 ± 0.6 | 6.409 ± 2.7 ± 1.1 ± 0.5 |
0.045–0.051 | 6.574 ± 5.5 ± 1.9 ± 1.4 | 6.582 ± 5.5 ± 1.9 ± 1.4 | 5.615 ± 3.3 ± 1.3 ± 0.9 | 5.675 ± 3.3 ± 1.3 ± 0.9 | 5.648 ± 3.3 ± 1.3 ± 1.0 | 5.886 ± 2.9 ± 1.1 ± 0.8 |
0.051–0.057 | 5.317 ± 6.0 ± 2.0 ± 1.3 | 5.312 ± 6.0 ± 2.0 ± 1.3 | 5.470 ± 3.3 ± 1.3 ± 0.6 | 5.445 ± 3.3 ± 1.3 ± 0.6 | 5.424 ± 3.3 ± 1.3 ± 0.6 | 5.405 ± 2.9 ± 1.1 ± 0.6 |
0.057–0.064 | 4.755 ± 6.0 ± 2.0 ± 1.5 | 4.707 ± 6.0 ± 2.1 ± 1.6 | 5.408 ± 3.2 ± 1.3 ± 0.9 | 5.424 ± 3.2 ± 1.3 ± 0.9 | 5.460 ± 3.2 ± 1.3 ± 1.0 | 5.277 ± 2.8 ± 1.1 ± 0.8 |
0.064–0.072 | 4.983 ± 5.5 ± 1.8 ± 1.6 | 5.002 ± 5.5 ± 1.8 ± 1.6 | 4.468 ± 3.4 ± 1.4 ± 0.6 | 4.460 ± 3.4 ± 1.4 ± 0.6 | 4.476 ± 3.4 ± 1.4 ± 0.7 | 4.619 ± 2.9 ± 1.1 ± 0.7 |
0.072–0.081 | 3.911 ± 5.8 ± 2.4 ± 1.6 | 3.870 ± 5.8 ± 2.4 ± 1.5 | 4.120 ± 3.2 ± 1.3 ± 0.8 | 4.103 ± 3.2 ± 1.3 ± 0.8 | 4.090 ± 3.2 ± 1.3 ± 0.9 | 4.051 ± 2.8 ± 1.1 ± 0.8 |
0.081–0.091 | 3.070 ± 6.3 ± 2.4 ± 1.5 | 3.030 ± 6.3 ± 2.5 ± 1.5 | 3.441 ± 3.4 ± 1.4 ± 0.6 | 3.426 ± 3.4 ± 1.4 ± 0.6 | 3.388 ± 3.4 ± 1.4 ± 0.7 | 3.298 ± 3.0 ± 1.2 ± 0.6 |
0.091–0.102 | 3.005 ± 6.1 ± 1.8 ± 4.8 | 3.011 ± 6.1 ± 1.9 ± 4.8 | 2.876 ± 3.5 ± 1.6 ± 0.7 | 2.874 ± 3.5 ± 1.6 ± 0.7 | 2.852 ± 3.5 ± 1.6 ± 0.8 | 2.902 ± 3.0 ± 1.3 ± 1.0 |
0.102–0.114 | 2.530 ± 6.3 ± 1.9 ± 2.2 | 2.520 ± 6.3 ± 2.0 ± 2.2 | 2.595 ± 3.6 ± 1.4 ± 0.3 | 2.590 ± 3.6 ± 1.4 ± 0.3 | 2.595 ± 3.6 ± 1.4 ± 0.5 | 2.578 ± 3.1 ± 1.2 ± 0.5 |
0.114–0.128 | 2.350 ± 6.1 ± 1.8 ± 2.2 | 2.358 ± 6.1 ± 1.9 ± 2.2 | 2.160 ± 3.6 ± 1.4 ± 0.6 | 2.157 ± 3.6 ± 1.4 ± 0.6 | 2.152 ± 3.6 ± 1.4 ± 0.7 | 2.205 ± 3.1 ± 1.2 ± 0.7 |
0.128–0.145 | 1.975 ± 5.9 ± 1.6 ± 1.2 | 1.985 ± 5.9 ± 1.7 ± 1.2 | 1.806 ± 3.6 ± 1.6 ± 0.4 | 1.814 ± 3.6 ± 1.6 ± 0.4 | 1.825 ± 3.6 ± 1.6 ± 0.5 | 1.871 ± 3.1 ± 1.2 ± 0.5 |
0.145–0.165 | 1.409 ± 6.5 ± 1.9 ± 0.8 | 1.406 ± 6.5 ± 1.9 ± 0.8 | 1.626 ± 3.5 ± 1.4 ± 0.8 | 1.634 ± 3.5 ± 1.4 ± 0.8 | 1.617 ± 3.5 ± 1.4 ± 0.8 | 1.562 ± 3.1 ± 1.2 ± 0.6 |
0.165–0.189 | 1.252 ± 6.4 ± 2.4 ± 3.5 | 1.252 ± 6.4 ± 2.5 ± 3.5 | 1.333 ± 3.4 ± 1.4 ± 0.9 | 1.343 ± 3.4 ± 1.4 ± 0.9 | 1.327 ± 3.4 ± 1.4 ± 0.9 | 1.316 ± 3.0 ± 1.2 ± 0.9 |
0.189–0.219 | 0.970 ± 6.6 ± 4.5 ± 4.3 | 0.970 ± 6.6 ± 4.6 ± 4.3 | 0.970 ± 3.7 ± 1.5 ± 1.0 | 0.963 ± 3.7 ± 1.5 ± 1.0 | 0.962 ± 3.7 ± 1.5 ± 1.0 | 0.963 ± 3.3 ± 1.5 ± 1.0 |
0.219–0.258 | 0.856 ± 6.1 ± 2.3 ± 2.3 | 0.859 ± 6.1 ± 2.3 ± 2.3 | 0.789 ± 3.6 ± 1.4 ± 0.7 | 0.788 ± 3.6 ± 1.4 ± 0.7 | 0.784 ± 3.6 ± 1.4 ± 0.8 | 0.805 ± 3.1 ± 1.2 ± 0.8 |
0.258–0.312 | 0.538 ± 6.6 ± 2.1 ± 1.1 | 0.535 ± 6.6 ± 2.2 ± 1.1 | 0.541 ± 3.7 ± 1.7 ± 1.0 | 0.543 ± 3.7 ± 1.7 ± 1.0 | 0.540 ± 3.7 ± 1.7 ± 1.2 | 0.541 ± 3.2 ± 1.4 ± 1.0 |
0.312–0.391 | 0.356 ± 6.8 ± 2.7 ± 2.5 | 0.357 ± 6.8 ± 2.7 ± 2.4 | 0.339 ± 3.9 ± 1.6 ± 1.0 | 0.342 ± 3.9 ± 1.6 ± 1.0 | 0.341 ± 3.9 ± 1.6 ± 1.2 | 0.347 ± 3.3 ± 1.4 ± 1.1 |
0.391–0.524 | 0.194 ± 7.4 ± 3.2 ± 2.4 | 0.194 ± 7.4 ± 3.2 ± 2.4 | 0.201 ± 4.0 ± 1.7 ± 1.5 | 0.199 ± 4.0 ± 1.7 ± 1.5 | 0.199 ± 4.0 ± 1.7 ± 1.7 | 0.198 ± 3.5 ± 1.5 ± 1.5 |
0.524–0.695 | 0.0787 ± 10 ± 5.9 ± 8.2 | 0.0779 ± 10 ± 6.0 ± 8.2 | 0.0865 ± 5.4 ± 2.2 ± 1.3 | 0.0878 ± 5.4 ± 2.2 ± 1.3 | 0.0873 ± 5.4 ± 2.2 ± 1.5 | 0.0861 ± 4.7 ± 2.1 ± 1.7 |
0.695–0.918 | 0.0465 ± 11 ± 4.1 ± 4.6 | 0.0464 ± 11 ± 4.1 ± 4.6 | 0.0440 ± 6.4 ± 2.6 ± 2.6 | 0.0448 ± 6.4 ± 2.6 ± 2.6 | 0.0450 ± 6.4 ± 2.6 ± 2.6 | 0.0454 ± 5.6 ± 2.2 ± 2.2 |
0.918–1.153 | 0.0228 ± 16 ± 5.2 ± 4.6 | 0.0227 ± 16 ± 5.3 ± 4.6 | 0.0230 ± 8.8 ± 3.7 ± 2.8 | 0.0238 ± 8.8 ± 3.7 ± 2.8 | 0.0235 ± 8.8 ± 3.7 ± 2.9 | 0.0233 ± 7.6 ± 3.0 ± 2.3 |
1.153–1.496 | 0.00970 ± 19 ± 6.6 ± 6.5 | 0.00955 ± 19 ± 6.7 ± 6.5 | 0.00973 ± 12 ± 5.0 ± 4.7 | 0.00960 ± 12 ± 5.0 ± 4.7 | 0.00981 ± 12 ± 5.0 ± 4.8 | 0.00994 ± 10 ± 4.0 ± 3.6 |
1.496–1.947 | 0.00496 ± 22 ± 6.7 ± 7.6 | 0.00491 ± 22 ± 6.8 ± 8.0 | 0.00262 ± 19 ± 7.6 ± 11 | 0.00272 ± 19 ± 7.6 ± 11 | 0.00277 ± 19 ± 7.6 ± 11 | 0.00343 ± 14 ± 5.6 ± 7.0 |
1.947–2.522 | 0.00155 ± 34 ± 9.4 ± 3.9 | 0.00155 ± 34 ± 9.5 ± 3.9 | 0.000971 ± 23 ± 9.6 ± 10 | 0.000988 ± 23 ± 9.6 ± 10 | 0.00101 ± 23 ± 9.6 ± 10 | 0.00119 ± 19 ± 7.5 ± 6.9 |
2.522–3.277 | 0.000678 ± 44 ± 9.9 ± 9.2 | 0.000631 ± 44 ± 11 ± 9.5 | 0.0000976 ± 116 ± 49 ± 8.2 | 0.000101 ± 116 ± 49 ± 8.2 | 0.000106 ± 116 ± 49 ± 8.2 | 0.000458 ± 38 ± 17 ± 5.4 |
3.277–5.000 | 0.0000936 ± 101 ± 83 ± 84 | 0.0000944 ± 101 ± 83 ± 84 | 0.0000533 ± 65 ± 30 ± 7.0 | 0.0000535 ± 65 ± 30 ± 7.0 | 0.0000513 ± 65 ± 30 ± 7.1 | 0.0000589 ± 55 ± 29 ± 12 |
5.000–10.000 | 0.0000540 ± 68 ± 19 ± 38 | 0.0000506 ± 68 ± 19 ± 38 | 0.0000431 ± 37 ± 17 ± 8.4 | 0.0000416 ± 37 ± 17 ± 8.4 | 0.0000387 ± 37 ± 17 ± 8.5 | 0.0000404 ± 33 ± 14 ± 8.4 |
Table 17.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 6.941 ± 1.6 ± 0.7 ± 5.3 | 7.435 ± 1.6 ± 0.8 ± 5.4 | 6.741 ± 1.3 ± 0.3 ± 4.2 | 6.724 ± 1.3 ± 0.3 ± 4.2 | 7.169 ± 1.3 ± 0.3 ± 4.4 | 7.655 ± 1.0 ± 0.3 ± 3.0 |
0.004–0.008 | 6.819 ± 1.6 ± 0.7 ± 2.3 | 7.209 ± 1.6 ± 0.7 ± 2.5 | 6.967 ± 1.2 ± 0.4 ± 1.2 | 6.909 ± 1.2 ± 0.4 ± 1.2 | 7.307 ± 1.2 ± 0.4 ± 1.8 | 7.439 ± 1.0 ± 0.3 ± 1.3 |
0.008–0.012 | 6.793 ± 1.6 ± 0.7 ± 1.5 | 7.176 ± 1.6 ± 0.7 ± 1.8 | 6.877 ± 1.2 ± 0.3 ± 0.6 | 6.827 ± 1.2 ± 0.3 ± 0.6 | 7.251 ± 1.2 ± 0.3 ± 1.5 | 7.346 ± 1.0 ± 0.3 ± 1.1 |
0.012–0.016 | 6.507 ± 1.6 ± 0.7 ± 1.0 | 6.895 ± 1.6 ± 0.7 ± 1.5 | 6.851 ± 1.2 ± 0.3 ± 0.4 | 6.814 ± 1.2 ± 0.3 ± 0.4 | 7.265 ± 1.2 ± 0.3 ± 1.4 | 7.235 ± 0.9 ± 0.3 ± 1.1 |
0.016–0.020 | 6.498 ± 1.6 ± 0.7 ± 1.2 | 6.844 ± 1.6 ± 0.7 ± 1.6 | 6.648 ± 1.2 ± 0.4 ± 0.3 | 6.627 ± 1.2 ± 0.4 ± 0.3 | 7.035 ± 1.2 ± 0.4 ± 1.4 | 7.039 ± 1.0 ± 0.3 ± 1.1 |
0.020–0.024 | 6.428 ± 1.6 ± 0.7 ± 0.8 | 6.768 ± 1.6 ± 0.7 ± 1.4 | 6.445 ± 1.3 ± 0.4 ± 0.2 | 6.440 ± 1.3 ± 0.4 ± 0.2 | 6.774 ± 1.3 ± 0.4 ± 1.4 | 6.852 ± 1.0 ± 0.4 ± 1.1 |
0.024–0.029 | 6.261 ± 1.4 ± 0.6 ± 0.8 | 6.573 ± 1.4 ± 0.6 ± 1.4 | 6.167 ± 1.2 ± 0.3 ± 0.3 | 6.145 ± 1.2 ± 0.3 ± 0.3 | 6.514 ± 1.2 ± 0.3 ± 1.3 | 6.597 ± 0.9 ± 0.3 ± 1.0 |
0.029–0.034 | 5.900 ± 1.5 ± 0.6 ± 0.7 | 6.193 ± 1.5 ± 0.6 ± 1.3 | 5.940 ± 1.2 ± 0.3 ± 0.3 | 5.959 ± 1.2 ± 0.3 ± 0.3 | 6.288 ± 1.2 ± 0.3 ± 1.3 | 6.316 ± 0.9 ± 0.3 ± 1.0 |
0.034–0.039 | 5.934 ± 1.5 ± 0.6 ± 0.8 | 6.232 ± 1.5 ± 0.7 ± 1.4 | 5.545 ± 1.2 ± 0.3 ± 0.4 | 5.539 ± 1.2 ± 0.3 ± 0.4 | 5.867 ± 1.2 ± 0.3 ± 1.3 | 6.041 ± 1.0 ± 0.3 ± 1.1 |
0.039–0.045 | 5.324 ± 1.4 ± 0.7 ± 0.5 | 5.547 ± 1.4 ± 0.7 ± 1.3 | 5.466 ± 1.1 ± 0.3 ± 0.4 | 5.475 ± 1.1 ± 0.3 ± 0.4 | 5.753 ± 1.1 ± 0.3 ± 1.3 | 5.729 ± 0.9 ± 0.3 ± 1.0 |
0.045–0.051 | 5.159 ± 1.4 ± 0.7 ± 0.6 | 5.379 ± 1.4 ± 0.8 ± 1.3 | 5.181 ± 1.1 ± 0.3 ± 0.6 | 5.208 ± 1.1 ± 0.3 ± 0.6 | 5.446 ± 1.1 ± 0.3 ± 1.4 | 5.451 ± 0.9 ± 0.3 ± 1.1 |
0.051–0.057 | 4.874 ± 1.5 ± 0.6 ± 0.6 | 5.071 ± 1.5 ± 0.6 ± 1.3 | 4.960 ± 1.1 ± 0.3 ± 0.6 | 4.977 ± 1.1 ± 0.3 ± 0.6 | 5.208 ± 1.1 ± 0.3 ± 1.4 | 5.194 ± 0.9 ± 0.3 ± 1.1 |
0.057–0.064 | 4.499 ± 1.4 ± 0.6 ± 0.6 | 4.661 ± 1.4 ± 0.6 ± 1.3 | 4.575 ± 1.1 ± 0.3 ± 0.7 | 4.600 ± 1.1 ± 0.3 ± 0.7 | 4.802 ± 1.1 ± 0.3 ± 1.4 | 4.781 ± 0.9 ± 0.3 ± 1.1 |
0.064–0.072 | 4.231 ± 1.4 ± 0.6 ± 0.6 | 4.374 ± 1.4 ± 0.7 ± 1.3 | 4.124 ± 1.1 ± 0.3 ± 0.7 | 4.148 ± 1.1 ± 0.3 ± 0.7 | 4.313 ± 1.1 ± 0.3 ± 1.4 | 4.369 ± 0.9 ± 0.3 ± 1.1 |
0.072–0.081 | 3.805 ± 1.4 ± 0.6 ± 0.6 | 3.907 ± 1.4 ± 0.6 ± 1.3 | 3.920 ± 1.1 ± 0.3 ± 0.8 | 3.945 ± 1.1 ± 0.3 ± 0.8 | 4.080 ± 1.1 ± 0.3 ± 1.4 | 4.042 ± 0.8 ± 0.3 ± 1.1 |
0.081–0.091 | 3.526 ± 1.3 ± 0.7 ± 0.7 | 3.620 ± 1.3 ± 0.7 ± 1.3 | 3.494 ± 1.0 ± 0.3 ± 0.9 | 3.509 ± 1.0 ± 0.3 ± 0.9 | 3.633 ± 1.0 ± 0.3 ± 1.5 | 3.657 ± 0.8 ± 0.3 ± 1.1 |
0.091–0.102 | 3.202 ± 1.4 ± 0.6 ± 0.6 | 3.273 ± 1.4 ± 0.6 ± 1.3 | 3.169 ± 1.0 ± 0.3 ± 0.9 | 3.184 ± 1.0 ± 0.3 ± 0.9 | 3.260 ± 1.0 ± 0.3 ± 1.5 | 3.289 ± 0.8 ± 0.3 ± 1.1 |
0.102–0.114 | 2.856 ± 1.4 ± 0.6 ± 0.8 | 2.886 ± 1.4 ± 0.6 ± 1.4 | 2.817 ± 1.1 ± 0.3 ± 1.0 | 2.824 ± 1.1 ± 0.3 ± 1.0 | 2.871 ± 1.1 ± 0.3 ± 1.5 | 2.896 ± 0.8 ± 0.3 ± 1.1 |
0.114–0.128 | 2.549 ± 1.3 ± 0.6 ± 0.6 | 2.577 ± 1.3 ± 0.6 ± 1.3 | 2.515 ± 1.0 ± 0.2 ± 1.1 | 2.524 ± 1.0 ± 0.2 ± 1.1 | 2.557 ± 1.0 ± 0.2 ± 1.2 | 2.576 ± 0.8 ± 0.2 ± 0.9 |
0.128–0.145 | 2.122 ± 1.3 ± 0.5 ± 0.6 | 2.114 ± 1.3 ± 0.6 ± 1.3 | 2.183 ± 1.0 ± 0.3 ± 1.0 | 2.180 ± 1.0 ± 0.3 ± 1.0 | 2.174 ± 1.0 ± 0.3 ± 1.2 | 2.163 ± 0.8 ± 0.3 ± 0.9 |
0.145–0.165 | 1.817 ± 1.3 ± 0.6 ± 0.8 | 1.787 ± 1.3 ± 0.6 ± 1.4 | 1.868 ± 1.0 ± 0.3 ± 1.0 | 1.868 ± 1.0 ± 0.3 ± 1.0 | 1.847 ± 1.0 ± 0.3 ± 1.2 | 1.834 ± 0.8 ± 0.3 ± 0.9 |
0.165–0.189 | 1.512 ± 1.3 ± 0.6 ± 0.8 | 1.474 ± 1.3 ± 0.6 ± 1.4 | 1.535 ± 1.0 ± 0.3 ± 1.2 | 1.539 ± 1.0 ± 0.3 ± 1.2 | 1.495 ± 1.0 ± 0.3 ± 1.3 | 1.497 ± 0.8 ± 0.3 ± 0.9 |
0.189–0.219 | 1.240 ± 1.3 ± 0.8 ± 0.8 | 1.188 ± 1.3 ± 0.8 ± 1.4 | 1.269 ± 1.0 ± 0.3 ± 1.1 | 1.269 ± 1.0 ± 0.3 ± 1.1 | 1.214 ± 1.0 ± 0.3 ± 1.3 | 1.213 ± 0.8 ± 0.3 ± 0.9 |
0.219–0.258 | 0.999 ± 1.3 ± 0.6 ± 0.8 | 0.942 ± 1.3 ± 0.6 ± 1.4 | 0.987 ± 1.0 ± 0.3 ± 1.2 | 0.991 ± 1.0 ± 0.3 ± 1.2 | 0.931 ± 1.0 ± 0.3 ± 1.3 | 0.940 ± 0.8 ± 0.3 ± 0.9 |
0.258–0.312 | 0.748 ± 1.2 ± 0.6 ± 0.8 | 0.685 ± 1.2 ± 0.7 ± 2.2 | 0.763 ± 0.9 ± 0.2 ± 1.3 | 0.762 ± 0.9 ± 0.2 ± 1.3 | 0.696 ± 0.9 ± 0.2 ± 2.4 | 0.704 ± 0.7 ± 0.3 ± 1.8 |
0.312–0.391 | 0.545 ± 1.2 ± 0.7 ± 1.0 | 0.490 ± 1.2 ± 0.7 ± 2.2 | 0.528 ± 1.0 ± 0.3 ± 1.7 | 0.529 ± 1.0 ± 0.3 ± 1.7 | 0.469 ± 1.0 ± 0.3 ± 2.6 | 0.487 ± 0.8 ± 0.3 ± 1.8 |
0.391–0.524 | 0.333 ± 1.2 ± 0.6 ± 1.1 | 0.297 ± 1.2 ± 0.6 ± 2.3 | 0.331 ± 1.0 ± 0.3 ± 2.1 | 0.330 ± 1.0 ± 0.3 ± 2.1 | 0.290 ± 1.0 ± 0.3 ± 2.9 | 0.301 ± 0.7 ± 0.3 ± 1.8 |
0.524–0.695 | 0.197 ± 1.4 ± 0.9 ± 1.6 | 0.179 ± 1.4 ± 1.0 ± 2.6 | 0.187 ± 1.1 ± 0.3 ± 2.9 | 0.187 ± 1.1 ± 0.3 ± 2.9 | 0.165 ± 1.1 ± 0.3 ± 3.5 | 0.176 ± 0.9 ± 0.3 ± 2.0 |
0.695–0.918 | 0.103 ± 1.7 ± 1.1 ± 1.5 | 0.0972 ± 1.7 ± 1.1 ± 2.5 | 0.105 ± 1.3 ± 0.4 ± 3.1 | 0.104 ± 1.3 ± 0.4 ± 3.1 | 0.0963 ± 1.3 ± 0.4 ± 3.7 | 0.100 ± 1.0 ± 0.4 ± 2.0 |
0.918–1.153 | 0.0611 ± 2.2 ± 1.3 ± 1.8 | 0.0590 ± 2.2 ± 1.3 ± 2.7 | 0.0591 ± 1.8 ± 0.5 ± 3.5 | 0.0586 ± 1.8 ± 0.5 ± 3.5 | 0.0550 ± 1.8 ± 0.5 ± 4.0 | 0.0586 ± 1.4 ± 0.6 ± 2.2 |
1.153–1.496 | 0.0333 ± 2.6 ± 2.1 ± 2.3 | 0.0324 ± 2.6 ± 2.1 ± 3.1 | 0.0320 ± 2.1 ± 1.1 ± 3.6 | 0.0315 ± 2.1 ± 1.1 ± 3.6 | 0.0303 ± 2.1 ± 1.1 ± 4.1 | 0.0322 ± 1.6 ± 1.0 ± 2.4 |
1.496–1.947 | 0.0174 ± 3.1 ± 2.0 ± 2.5 | 0.0171 ± 3.1 ± 2.0 ± 3.3 | 0.0168 ± 2.5 ± 1.1 ± 3.0 | 0.0167 ± 2.5 ± 1.1 ± 3.0 | 0.0161 ± 2.5 ± 1.1 ± 3.5 | 0.0169 ± 1.9 ± 1.0 ± 2.4 |
1.947–2.522 | 0.00863 ± 4.0 ± 2.3 ± 3.0 | 0.00850 ± 4.0 ± 2.3 ± 3.7 | 0.00885 ± 3.0 ± 1.2 ± 3.0 | 0.00875 ± 3.0 ± 1.2 ± 3.0 | 0.00855 ± 3.0 ± 1.2 ± 3.5 | 0.00880 ± 2.4 ± 1.1 ± 2.5 |
2.522–3.277 | 0.00457 ± 4.6 ± 3.0 ± 5.8 | 0.00456 ± 4.6 ± 3.0 ± 6.2 | 0.00432 ± 3.8 ± 1.6 ± 3.1 | 0.00430 ± 3.8 ± 1.6 ± 3.1 | 0.00420 ± 3.8 ± 1.6 ± 3.6 | 0.00445 ± 2.9 ± 1.5 ± 2.7 |
3.277–5.000 | 0.00207 ± 4.4 ± 2.6 ± 3.0 | 0.00206 ± 4.4 ± 2.6 ± 3.7 | 0.00187 ± 3.8 ± 1.6 ± 4.0 | 0.00187 ± 3.8 ± 1.6 ± 4.0 | 0.00183 ± 3.8 ± 1.6 ± 4.4 | 0.00198 ± 2.9 ± 1.4 ± 2.6 |
5.000–10.000 | 0.000486 ± 5.6 ± 3.0 ± 3.3 | 0.000478 ± 5.6 ± 3.0 ± 3.9 | 0.000501 ± 4.5 ± 1.7 ± 3.9 | 0.000497 ± 4.5 ± 1.7 ± 3.9 | 0.000487 ± 4.5 ± 1.7 ± 4.3 | 0.000502 ± 3.4 ± 1.5 ± 2.7 |
Table 18.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 9.362 ± 0.2 ± 0.1 ± 0.2 | 9.451 ± 0.2 ± 0.1 ± 0.2 | 9.364 ± 0.2 ± 0.0 ± 0.1 | 9.359 ± 0.2 ± 0.0 ± 0.1 | 9.433 ± 0.2 ± 0.0 ± 0.1 | 9.441 ± 0.1 ± 0.0 ± 0.1 |
0.004–0.008 | 9.267 ± 0.2 ± 0.1 ± 0.1 | 9.352 ± 0.2 ± 0.1 ± 0.1 | 9.299 ± 0.2 ± 0.0 ± 0.1 | 9.294 ± 0.2 ± 0.0 ± 0.1 | 9.376 ± 0.2 ± 0.0 ± 0.1 | 9.365 ± 0.1 ± 0.0 ± 0.1 |
0.008–0.012 | 9.094 ± 0.2 ± 0.1 ± 0.1 | 9.169 ± 0.2 ± 0.1 ± 0.1 | 9.101 ± 0.2 ± 0.0 ± 0.1 | 9.098 ± 0.2 ± 0.0 ± 0.1 | 9.173 ± 0.2 ± 0.0 ± 0.1 | 9.171 ± 0.1 ± 0.0 ± 0.1 |
0.012–0.016 | 8.855 ± 0.2 ± 0.1 ± 0.1 | 8.926 ± 0.2 ± 0.1 ± 0.1 | 8.894 ± 0.2 ± 0.0 ± 0.0 | 8.888 ± 0.2 ± 0.0 ± 0.0 | 8.959 ± 0.2 ± 0.0 ± 0.1 | 8.945 ± 0.1 ± 0.0 ± 0.1 |
0.016–0.020 | 8.601 ± 0.2 ± 0.1 ± 0.1 | 8.668 ± 0.2 ± 0.1 ± 0.1 | 8.562 ± 0.2 ± 0.0 ± 0.0 | 8.556 ± 0.2 ± 0.0 ± 0.0 | 8.620 ± 0.2 ± 0.0 ± 0.1 | 8.640 ± 0.1 ± 0.0 ± 0.1 |
0.020–0.024 | 8.188 ± 0.2 ± 0.1 ± 0.1 | 8.238 ± 0.2 ± 0.1 ± 0.1 | 8.231 ± 0.2 ± 0.0 ± 0.0 | 8.229 ± 0.2 ± 0.0 ± 0.0 | 8.284 ± 0.2 ± 0.0 ± 0.1 | 8.264 ± 0.1 ± 0.0 ± 0.1 |
0.024–0.029 | 7.825 ± 0.2 ± 0.1 ± 0.1 | 7.868 ± 0.2 ± 0.1 ± 0.1 | 7.816 ± 0.2 ± 0.0 ± 0.0 | 7.811 ± 0.2 ± 0.0 ± 0.0 | 7.861 ± 0.2 ± 0.0 ± 0.1 | 7.863 ± 0.1 ± 0.0 ± 0.1 |
0.029–0.034 | 7.356 ± 0.2 ± 0.1 ± 0.1 | 7.389 ± 0.2 ± 0.1 ± 0.1 | 7.389 ± 0.2 ± 0.0 ± 0.0 | 7.384 ± 0.2 ± 0.0 ± 0.0 | 7.422 ± 0.2 ± 0.0 ± 0.1 | 7.408 ± 0.1 ± 0.0 ± 0.1 |
0.034–0.039 | 6.883 ± 0.2 ± 0.1 ± 0.1 | 6.905 ± 0.2 ± 0.1 ± 0.1 | 6.883 ± 0.2 ± 0.0 ± 0.0 | 6.881 ± 0.2 ± 0.0 ± 0.0 | 6.911 ± 0.2 ± 0.0 ± 0.1 | 6.908 ± 0.1 ± 0.0 ± 0.1 |
0.039–0.045 | 6.403 ± 0.2 ± 0.1 ± 0.1 | 6.419 ± 0.2 ± 0.1 ± 0.1 | 6.419 ± 0.2 ± 0.0 ± 0.1 | 6.417 ± 0.2 ± 0.0 ± 0.1 | 6.438 ± 0.2 ± 0.0 ± 0.1 | 6.429 ± 0.1 ± 0.0 ± 0.1 |
0.045–0.051 | 5.871 ± 0.2 ± 0.1 ± 0.1 | 5.876 ± 0.2 ± 0.1 ± 0.1 | 5.893 ± 0.2 ± 0.0 ± 0.1 | 5.891 ± 0.2 ± 0.0 ± 0.1 | 5.899 ± 0.2 ± 0.0 ± 0.1 | 5.888 ± 0.1 ± 0.0 ± 0.1 |
0.051–0.057 | 5.404 ± 0.2 ± 0.1 ± 0.1 | 5.404 ± 0.2 ± 0.1 ± 0.1 | 5.434 ± 0.2 ± 0.0 ± 0.0 | 5.434 ± 0.2 ± 0.0 ± 0.0 | 5.435 ± 0.2 ± 0.0 ± 0.1 | 5.422 ± 0.1 ± 0.0 ± 0.1 |
0.057–0.064 | 4.960 ± 0.2 ± 0.1 ± 0.1 | 4.957 ± 0.2 ± 0.1 ± 0.1 | 4.975 ± 0.2 ± 0.0 ± 0.1 | 4.972 ± 0.2 ± 0.0 ± 0.1 | 4.971 ± 0.2 ± 0.0 ± 0.1 | 4.964 ± 0.1 ± 0.0 ± 0.1 |
0.064–0.072 | 4.509 ± 0.2 ± 0.1 ± 0.1 | 4.502 ± 0.2 ± 0.1 ± 0.1 | 4.506 ± 0.2 ± 0.0 ± 0.1 | 4.505 ± 0.2 ± 0.0 ± 0.1 | 4.494 ± 0.2 ± 0.0 ± 0.1 | 4.496 ± 0.1 ± 0.0 ± 0.1 |
0.072–0.081 | 4.022 ± 0.2 ± 0.1 ± 0.1 | 4.011 ± 0.2 ± 0.1 ± 0.1 | 4.026 ± 0.2 ± 0.0 ± 0.1 | 4.025 ± 0.2 ± 0.0 ± 0.1 | 4.013 ± 0.2 ± 0.0 ± 0.1 | 4.011 ± 0.1 ± 0.0 ± 0.1 |
0.081–0.091 | 3.580 ± 0.2 ± 0.1 ± 0.1 | 3.566 ± 0.2 ± 0.1 ± 0.1 | 3.577 ± 0.2 ± 0.0 ± 0.1 | 3.577 ± 0.2 ± 0.0 ± 0.1 | 3.565 ± 0.2 ± 0.0 ± 0.1 | 3.564 ± 0.1 ± 0.0 ± 0.1 |
0.091–0.102 | 3.155 ± 0.2 ± 0.1 ± 0.1 | 3.141 ± 0.2 ± 0.1 ± 0.1 | 3.154 ± 0.2 ± 0.0 ± 0.1 | 3.153 ± 0.2 ± 0.0 ± 0.1 | 3.137 ± 0.2 ± 0.0 ± 0.1 | 3.138 ± 0.1 ± 0.0 ± 0.1 |
0.102–0.114 | 2.771 ± 0.2 ± 0.1 ± 0.1 | 2.758 ± 0.2 ± 0.1 ± 0.1 | 2.765 ± 0.2 ± 0.0 ± 0.1 | 2.765 ± 0.2 ± 0.0 ± 0.1 | 2.752 ± 0.2 ± 0.0 ± 0.1 | 2.753 ± 0.1 ± 0.0 ± 0.1 |
0.114–0.128 | 2.394 ± 0.2 ± 0.1 ± 0.1 | 2.380 ± 0.2 ± 0.1 ± 0.1 | 2.394 ± 0.2 ± 0.0 ± 0.1 | 2.394 ± 0.2 ± 0.0 ± 0.1 | 2.380 ± 0.2 ± 0.0 ± 0.1 | 2.379 ± 0.1 ± 0.0 ± 0.1 |
0.128–0.145 | 2.039 ± 0.2 ± 0.1 ± 0.1 | 2.026 ± 0.2 ± 0.1 ± 0.1 | 2.040 ± 0.2 ± 0.0 ± 0.1 | 2.040 ± 0.2 ± 0.0 ± 0.1 | 2.028 ± 0.2 ± 0.0 ± 0.1 | 2.026 ± 0.1 ± 0.0 ± 0.1 |
0.145–0.165 | 1.704 ± 0.2 ± 0.1 ± 0.1 | 1.693 ± 0.2 ± 0.1 ± 0.1 | 1.701 ± 0.2 ± 0.0 ± 0.1 | 1.702 ± 0.2 ± 0.0 ± 0.1 | 1.691 ± 0.2 ± 0.0 ± 0.1 | 1.691 ± 0.1 ± 0.0 ± 0.1 |
0.165–0.189 | 1.398 ± 0.2 ± 0.1 ± 0.1 | 1.389 ± 0.2 ± 0.1 ± 0.1 | 1.398 ± 0.2 ± 0.0 ± 0.1 | 1.399 ± 0.2 ± 0.0 ± 0.1 | 1.390 ± 0.2 ± 0.0 ± 0.1 | 1.389 ± 0.1 ± 0.0 ± 0.1 |
0.189–0.219 | 1.117 ± 0.2 ± 0.1 ± 0.1 | 1.110 ± 0.2 ± 0.1 ± 0.1 | 1.116 ± 0.2 ± 0.0 ± 0.1 | 1.117 ± 0.2 ± 0.0 ± 0.1 | 1.110 ± 0.2 ± 0.0 ± 0.1 | 1.110 ± 0.1 ± 0.0 ± 0.1 |
0.219–0.258 | 0.854 ± 0.2 ± 0.1 ± 0.1 | 0.849 ± 0.2 ± 0.1 ± 0.1 | 0.855 ± 0.2 ± 0.0 ± 0.1 | 0.856 ± 0.2 ± 0.0 ± 0.1 | 0.851 ± 0.2 ± 0.0 ± 0.1 | 0.850 ± 0.1 ± 0.0 ± 0.1 |
0.258–0.312 | 0.621 ± 0.2 ± 0.1 ± 0.3 | 0.618 ± 0.2 ± 0.1 ± 0.3 | 0.618 ± 0.2 ± 0.0 ± 0.1 | 0.619 ± 0.2 ± 0.0 ± 0.1 | 0.615 ± 0.2 ± 0.0 ± 0.2 | 0.616 ± 0.1 ± 0.0 ± 0.2 |
0.312–0.391 | 0.414 ± 0.2 ± 0.1 ± 0.3 | 0.412 ± 0.2 ± 0.1 ± 0.3 | 0.413 ± 0.2 ± 0.0 ± 0.1 | 0.413 ± 0.2 ± 0.0 ± 0.1 | 0.411 ± 0.2 ± 0.0 ± 0.2 | 0.411 ± 0.1 ± 0.0 ± 0.2 |
0.391–0.524 | 0.241 ± 0.2 ± 0.1 ± 0.3 | 0.240 ± 0.2 ± 0.1 ± 0.3 | 0.239 ± 0.2 ± 0.0 ± 0.2 | 0.239 ± 0.2 ± 0.0 ± 0.2 | 0.238 ± 0.2 ± 0.0 ± 0.2 | 0.239 ± 0.1 ± 0.0 ± 0.2 |
0.524–0.695 | 0.124 ± 0.3 ± 0.1 ± 0.3 | 0.124 ± 0.3 ± 0.1 ± 0.3 | 0.124 ± 0.2 ± 0.1 ± 0.2 | 0.124 ± 0.2 ± 0.1 ± 0.2 | 0.124 ± 0.2 ± 0.1 ± 0.2 | 0.124 ± 0.2 ± 0.1 ± 0.2 |
0.695–0.918 | 0.0625 ± 0.3 ± 0.1 ± 0.3 | 0.0623 ± 0.3 ± 0.1 ± 0.3 | 0.0619 ± 0.3 ± 0.1 ± 0.2 | 0.0620 ± 0.3 ± 0.1 ± 0.2 | 0.0619 ± 0.3 ± 0.1 ± 0.2 | 0.0620 ± 0.2 ± 0.1 ± 0.2 |
0.918–1.153 | 0.0322 ± 0.4 ± 0.2 ± 0.4 | 0.0321 ± 0.4 ± 0.2 ± 0.4 | 0.0320 ± 0.4 ± 0.1 ± 0.2 | 0.0320 ± 0.4 ± 0.1 ± 0.2 | 0.0319 ± 0.4 ± 0.1 ± 0.3 | 0.0320 ± 0.3 ± 0.1 ± 0.2 |
1.153–1.496 | 0.0166 ± 0.5 ± 0.1 ± 0.4 | 0.0166 ± 0.5 ± 0.1 ± 0.4 | 0.0165 ± 0.5 ± 0.1 ± 0.2 | 0.0165 ± 0.5 ± 0.1 ± 0.2 | 0.0164 ± 0.5 ± 0.1 ± 0.3 | 0.0165 ± 0.3 ± 0.1 ± 0.3 |
1.496–1.947 | 0.00791 ± 0.6 ± 0.2 ± 0.5 | 0.00789 ± 0.6 ± 0.2 ± 0.5 | 0.00796 ± 0.6 ± 0.1 ± 0.3 | 0.00798 ± 0.6 ± 0.1 ± 0.3 | 0.00796 ± 0.6 ± 0.1 ± 0.3 | 0.00791 ± 0.4 ± 0.1 ± 0.3 |
1.947–2.522 | 0.00392 ± 0.8 ± 0.2 ± 0.5 | 0.00390 ± 0.8 ± 0.2 ± 0.5 | 0.00390 ± 0.7 ± 0.2 ± 0.3 | 0.00391 ± 0.7 ± 0.2 ± 0.3 | 0.00390 ± 0.7 ± 0.2 ± 0.4 | 0.00389 ± 0.5 ± 0.1 ± 0.3 |
2.522–3.277 | 0.00198 ± 1.0 ± 0.2 ± 0.6 | 0.00198 ± 1.0 ± 0.2 ± 0.6 | 0.00194 ± 0.9 ± 0.2 ± 0.3 | 0.00195 ± 0.9 ± 0.2 ± 0.3 | 0.00194 ± 0.9 ± 0.2 ± 0.4 | 0.00195 ± 0.7 ± 0.2 ± 0.3 |
3.277–5.000 | 0.000860 ± 1.0 ± 0.3 ± 0.7 | 0.000859 ± 1.0 ± 0.3 ± 0.7 | 0.000861 ± 0.9 ± 0.2 ± 0.3 | 0.000863 ± 0.9 ± 0.2 ± 0.3 | 0.000864 ± 0.9 ± 0.2 ± 0.3 | 0.000859 ± 0.7 ± 0.2 ± 0.3 |
5.000–10.000 | 0.000255 ± 1.1 ± 0.3 ± 0.7 | 0.000255 ± 1.1 ± 0.3 ± 0.7 | 0.000247 ± 1.0 ± 0.2 ± 0.3 | 0.000247 ± 1.0 ± 0.2 ± 0.3 | 0.000247 ± 1.0 ± 0.2 ± 0.4 | 0.000250 ± 0.7 ± 0.2 ± 0.4 |
Table 19.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.000–0.004 | 11.378 ± 1.9 ± 0.6 ± 2.4 | 11.447 ± 1.9 ± 0.6 ± 2.4 | 11.623 ± 1.6 ± 0.4 ± 2.1 | 11.601 ± 1.6 ± 0.4 ± 2.1 | 11.676 ± 1.6 ± 0.4 ± 2.2 | 11.634 ± 1.2 ± 0.3 ± 2.1 |
0.004–0.008 | 11.623 ± 1.8 ± 0.6 ± 1.0 | 11.722 ± 1.8 ± 0.7 ± 1.0 | 11.447 ± 1.6 ± 0.4 ± 0.6 | 11.449 ± 1.6 ± 0.4 ± 0.6 | 11.472 ± 1.6 ± 0.4 ± 0.9 | 11.593 ± 1.2 ± 0.4 ± 0.8 |
0.008–0.012 | 10.950 ± 1.9 ± 0.6 ± 0.8 | 10.983 ± 1.9 ± 0.6 ± 0.8 | 10.949 ± 1.6 ± 0.4 ± 0.3 | 10.880 ± 1.6 ± 0.4 ± 0.3 | 11.003 ± 1.6 ± 0.4 ± 0.7 | 10.994 ± 1.2 ± 0.3 ± 0.6 |
0.012–0.016 | 10.819 ± 1.9 ± 0.6 ± 0.7 | 10.908 ± 1.9 ± 0.6 ± 0.7 | 11.071 ± 1.7 ± 0.4 ± 0.2 | 11.018 ± 1.7 ± 0.4 ± 0.2 | 10.992 ± 1.7 ± 0.4 ± 0.6 | 10.948 ± 1.2 ± 0.3 ± 0.5 |
0.016–0.020 | 9.950 ± 2.0 ± 0.6 ± 0.6 | 9.968 ± 2.0 ± 0.6 ± 0.6 | 10.060 ± 1.7 ± 0.5 ± 0.3 | 9.989 ± 1.7 ± 0.5 ± 0.3 | 10.094 ± 1.7 ± 0.5 ± 0.7 | 10.022 ± 1.3 ± 0.4 ± 0.5 |
0.020–0.024 | 9.516 ± 2.0 ± 0.6 ± 0.6 | 9.538 ± 2.0 ± 0.6 ± 0.6 | 9.632 ± 1.8 ± 0.4 ± 0.3 | 9.619 ± 1.8 ± 0.4 ± 0.3 | 9.636 ± 1.8 ± 0.4 ± 0.7 | 9.585 ± 1.3 ± 0.3 ± 0.5 |
0.024–0.029 | 8.890 ± 1.9 ± 0.5 ± 0.6 | 8.922 ± 1.9 ± 0.6 ± 0.6 | 8.811 ± 1.6 ± 0.4 ± 0.3 | 8.783 ± 1.6 ± 0.4 ± 0.3 | 8.818 ± 1.6 ± 0.4 ± 0.5 | 8.863 ± 1.2 ± 0.3 ± 0.4 |
0.029–0.034 | 7.962 ± 2.0 ± 0.7 ± 0.7 | 7.970 ± 2.0 ± 0.7 ± 0.7 | 8.308 ± 1.7 ± 0.4 ± 0.4 | 8.344 ± 1.7 ± 0.4 ± 0.4 | 8.373 ± 1.7 ± 0.4 ± 0.5 | 8.201 ± 1.3 ± 0.4 ± 0.5 |
0.034–0.039 | 7.172 ± 2.1 ± 0.6 ± 0.5 | 7.175 ± 2.1 ± 0.7 ± 0.5 | 7.551 ± 1.8 ± 0.4 ± 0.4 | 7.526 ± 1.8 ± 0.4 ± 0.4 | 7.576 ± 1.8 ± 0.4 ± 0.5 | 7.393 ± 1.3 ± 0.4 ± 0.5 |
0.039–0.045 | 6.523 ± 2.0 ± 0.6 ± 0.6 | 6.520 ± 2.0 ± 0.7 ± 0.6 | 6.667 ± 1.6 ± 0.4 ± 0.5 | 6.672 ± 1.6 ± 0.4 ± 0.5 | 6.645 ± 1.6 ± 0.4 ± 0.6 | 6.587 ± 1.3 ± 0.4 ± 0.5 |
0.045–0.051 | 6.099 ± 2.1 ± 0.6 ± 0.6 | 6.099 ± 2.1 ± 0.6 ± 0.6 | 5.978 ± 1.8 ± 0.4 ± 0.5 | 5.971 ± 1.8 ± 0.4 ± 0.5 | 5.998 ± 1.8 ± 0.4 ± 0.6 | 6.034 ± 1.4 ± 0.3 ± 0.5 |
0.051–0.057 | 5.466 ± 2.2 ± 0.6 ± 0.6 | 5.442 ± 2.2 ± 0.7 ± 0.6 | 5.484 ± 1.9 ± 0.4 ± 0.5 | 5.480 ± 1.9 ± 0.4 ± 0.5 | 5.435 ± 1.9 ± 0.4 ± 0.6 | 5.435 ± 1.4 ± 0.4 ± 0.5 |
0.057–0.064 | 4.992 ± 2.1 ± 0.6 ± 0.6 | 4.984 ± 2.1 ± 0.6 ± 0.6 | 5.037 ± 1.8 ± 0.4 ± 0.6 | 5.028 ± 1.8 ± 0.4 ± 0.6 | 5.029 ± 1.8 ± 0.4 ± 0.7 | 5.014 ± 1.4 ± 0.4 ± 0.6 |
0.064–0.072 | 4.404 ± 2.1 ± 0.8 ± 0.6 | 4.379 ± 2.1 ± 0.9 ± 0.6 | 4.420 ± 1.9 ± 0.4 ± 0.6 | 4.426 ± 1.9 ± 0.4 ± 0.6 | 4.415 ± 1.9 ± 0.4 ± 0.7 | 4.400 ± 1.4 ± 0.4 ± 0.6 |
0.072–0.081 | 4.017 ± 2.1 ± 0.6 ± 0.6 | 4.013 ± 2.1 ± 0.7 ± 0.6 | 3.839 ± 1.8 ± 0.4 ± 0.6 | 3.834 ± 1.8 ± 0.4 ± 0.6 | 3.808 ± 1.8 ± 0.4 ± 0.7 | 3.892 ± 1.4 ± 0.4 ± 0.6 |
0.081–0.091 | 3.397 ± 2.2 ± 0.6 ± 0.6 | 3.392 ± 2.2 ± 0.7 ± 0.6 | 3.324 ± 1.8 ± 0.5 ± 0.8 | 3.311 ± 1.8 ± 0.5 ± 0.8 | 3.318 ± 1.8 ± 0.5 ± 0.9 | 3.356 ± 1.4 ± 0.4 ± 0.6 |
0.091–0.102 | 3.067 ± 2.2 ± 0.7 ± 1.2 | 3.066 ± 2.2 ± 0.7 ± 1.2 | 3.023 ± 1.9 ± 0.5 ± 0.6 | 3.031 ± 1.9 ± 0.5 ± 0.6 | 3.004 ± 1.9 ± 0.5 ± 0.7 | 3.019 ± 1.4 ± 0.4 ± 0.7 |
0.102–0.114 | 2.480 ± 2.3 ± 1.1 ± 1.7 | 2.470 ± 2.3 ± 1.1 ± 1.7 | 2.617 ± 1.9 ± 0.4 ± 0.6 | 2.620 ± 1.9 ± 0.4 ± 0.6 | 2.617 ± 1.9 ± 0.4 ± 0.7 | 2.568 ± 1.5 ± 0.5 ± 0.7 |
0.114–0.128 | 2.131 ± 2.3 ± 0.7 ± 0.6 | 2.124 ± 2.3 ± 0.7 ± 0.6 | 2.165 ± 1.9 ± 0.6 ± 0.9 | 2.169 ± 1.9 ± 0.6 ± 0.9 | 2.156 ± 1.9 ± 0.6 ± 1.0 | 2.147 ± 1.5 ± 0.4 ± 0.6 |
0.128–0.145 | 1.859 ± 2.3 ± 0.8 ± 0.5 | 1.852 ± 2.3 ± 0.8 ± 0.6 | 1.821 ± 2.0 ± 0.5 ± 0.7 | 1.828 ± 2.0 ± 0.5 ± 0.7 | 1.831 ± 2.0 ± 0.5 ± 0.8 | 1.840 ± 1.5 ± 0.4 ± 0.6 |
0.145–0.165 | 1.530 ± 2.3 ± 0.7 ± 0.6 | 1.524 ± 2.3 ± 0.7 ± 0.6 | 1.572 ± 2.0 ± 0.5 ± 0.7 | 1.577 ± 2.0 ± 0.5 ± 0.7 | 1.572 ± 2.0 ± 0.5 ± 0.8 | 1.552 ± 1.5 ± 0.4 ± 0.5 |
0.165–0.189 | 1.219 ± 2.4 ± 0.9 ± 0.8 | 1.213 ± 2.4 ± 0.9 ± 0.8 | 1.219 ± 2.0 ± 0.4 ± 1.1 | 1.224 ± 2.0 ± 0.4 ± 1.1 | 1.212 ± 2.0 ± 0.4 ± 1.2 | 1.215 ± 1.6 ± 0.4 ± 0.7 |
0.189–0.219 | 0.966 ± 2.4 ± 1.1 ± 1.2 | 0.965 ± 2.4 ± 1.1 ± 1.2 | 0.948 ± 2.1 ± 0.4 ± 1.7 | 0.948 ± 2.1 ± 0.4 ± 1.7 | 0.949 ± 2.1 ± 0.4 ± 1.7 | 0.961 ± 1.6 ± 0.5 ± 0.8 |
0.219–0.258 | 0.751 ± 2.5 ± 1.0 ± 0.8 | 0.749 ± 2.5 ± 1.1 ± 0.8 | 0.767 ± 2.1 ± 0.5 ± 1.8 | 0.768 ± 2.1 ± 0.5 ± 1.8 | 0.764 ± 2.1 ± 0.5 ± 1.8 | 0.764 ± 1.6 ± 0.5 ± 0.8 |
0.258–0.312 | 0.536 ± 2.5 ± 1.3 ± 1.9 | 0.534 ± 2.5 ± 1.3 ± 1.9 | 0.538 ± 2.2 ± 0.6 ± 1.8 | 0.539 ± 2.2 ± 0.6 ± 1.8 | 0.536 ± 2.2 ± 0.6 ± 1.8 | 0.538 ± 1.7 ± 0.6 ± 1.1 |
0.312–0.391 | 0.356 ± 2.6 ± 1.1 ± 1.8 | 0.355 ± 2.6 ± 1.1 ± 1.8 | 0.335 ± 2.4 ± 0.7 ± 2.3 | 0.337 ± 2.4 ± 0.7 ± 2.3 | 0.336 ± 2.4 ± 0.7 ± 2.3 | 0.346 ± 1.8 ± 0.6 ± 1.3 |
0.391–0.524 | 0.204 ± 2.8 ± 1.3 ± 2.0 | 0.203 ± 2.8 ± 1.3 ± 2.0 | 0.192 ± 2.5 ± 0.8 ± 2.8 | 0.193 ± 2.5 ± 0.8 ± 2.8 | 0.192 ± 2.5 ± 0.8 ± 2.8 | 0.198 ± 1.9 ± 0.7 ± 1.7 |
0.524–0.695 | 0.0988 ± 3.7 ± 1.9 ± 3.1 | 0.0985 ± 3.7 ± 1.9 ± 3.1 | 0.0935 ± 3.3 ± 2.0 ± 2.5 | 0.0940 ± 3.3 ± 2.0 ± 2.5 | 0.0936 ± 3.3 ± 2.0 ± 2.5 | 0.0959 ± 2.5 ± 1.4 ± 2.2 |
0.695–0.918 | 0.0515 ± 4.4 ± 2.0 ± 3.0 | 0.0515 ± 4.4 ± 2.0 ± 3.0 | 0.0493 ± 4.1 ± 2.1 ± 3.6 | 0.0496 ± 4.1 ± 2.1 ± 3.6 | 0.0494 ± 4.1 ± 2.1 ± 3.6 | 0.0511 ± 3.0 ± 1.5 ± 2.4 |
0.918–1.153 | 0.0252 ± 6.0 ± 3.5 ± 2.8 | 0.0251 ± 6.0 ± 3.5 ± 2.9 | 0.0255 ± 5.3 ± 2.2 ± 2.4 | 0.0259 ± 5.3 ± 2.2 ± 2.4 | 0.0259 ± 5.3 ± 2.2 ± 2.5 | 0.0255 ± 4.0 ± 1.9 ± 2.0 |
1.153–1.496 | 0.0144 ± 6.4 ± 4.1 ± 7.8 | 0.0145 ± 6.4 ± 4.2 ± 7.7 | 0.0122 ± 6.4 ± 1.6 ± 3.5 | 0.0123 ± 6.4 ± 1.6 ± 3.5 | 0.0124 ± 6.4 ± 1.6 ± 3.6 | 0.0136 ± 4.5 ± 1.9 ± 3.0 |
1.496–1.947 | 0.00651 ± 8.3 ± 3.3 ± 2.9 | 0.00649 ± 8.3 ± 3.4 ± 2.9 | 0.00525 ± 8.5 ± 2.3 ± 5.5 | 0.00532 ± 8.5 ± 2.3 ± 5.5 | 0.00527 ± 8.5 ± 2.3 ± 5.6 | 0.00594 ± 5.9 ± 2.0 ± 2.7 |
1.947–2.522 | 0.00250 ± 13 ± 7.9 ± 6.5 | 0.00248 ± 13 ± 7.9 ± 6.6 | 0.00313 ± 9.9 ± 2.1 ± 4.3 | 0.00318 ± 9.9 ± 2.1 ± 4.3 | 0.00317 ± 9.9 ± 2.1 ± 4.4 | 0.00299 ± 7.8 ± 3.1 ± 3.0 |
2.522–3.277 | 0.00132 ± 15 ± 6.7 ± 7.2 | 0.00133 ± 15 ± 6.7 ± 7.2 | 0.00170 ± 12 ± 4.6 ± 4.3 | 0.00174 ± 12 ± 4.6 ± 4.3 | 0.00174 ± 12 ± 4.6 ± 4.4 | 0.00162 ± 9.1 ± 3.9 ± 3.4 |
3.277–5.000 | 0.000668 ± 14 ± 7.3 ± 5.2 | 0.000662 ± 14 ± 7.3 ± 5.2 | 0.000466 ± 16 ± 5.3 ± 9.3 | 0.000476 ± 16 ± 5.3 ± 9.3 | 0.000472 ± 16 ± 5.3 ± 9.3 | 0.000587 ± 11 ± 4.4 ± 4.3 |
5.000–10.000 | 0.000229 ± 15 ± 6.2 ± 4.7 | 0.000226 ± 15 ± 6.3 ± 4.6 | 0.000177 ± 15 ± 4.4 ± 6.8 | 0.000179 ± 15 ± 4.4 ± 6.8 | 0.000181 ± 15 ± 4.4 ± 6.8 | 0.000206 ± 10 ± 3.7 ± 3.6 |
Table 20.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.622e−02 ± 0.5 ± 0.2 ± 0.8 | 2.688e−02 ± 0.5 ± 0.2 ± 0.8 | 2.586e−02 ± 0.4 ± 0.2 ± 0.9 | 2.638e−02 ± 0.4 ± 0.2 ± 0.9 | 2.704e−02 ± 0.4 ± 0.2 ± 1.0 | 2.704e−02 ± 0.3 ± 0.2 ± 0.7 |
2.0–4.0 | 5.438e−02 ± 0.3 ± 0.1 ± 0.4 | 5.544e−02 ± 0.3 ± 0.1 ± 0.4 | 5.385e−02 ± 0.3 ± 0.1 ± 0.4 | 5.472e−02 ± 0.3 ± 0.1 ± 0.4 | 5.582e−02 ± 0.3 ± 0.1 ± 0.6 | 5.569e−02 ± 0.2 ± 0.1 ± 0.3 |
4.0–6.0 | 5.513e−02 ± 0.3 ± 0.2 ± 0.4 | 5.562e−02 ± 0.3 ± 0.2 ± 0.4 | 5.502e−02 ± 0.3 ± 0.2 ± 0.5 | 5.534e−02 ± 0.3 ± 0.2 ± 0.5 | 5.584e−02 ± 0.3 ± 0.2 ± 0.6 | 5.571e−02 ± 0.2 ± 0.1 ± 0.4 |
6.0–8.0 | 4.896e−02 ± 0.4 ± 0.2 ± 0.3 | 4.897e−02 ± 0.4 ± 0.2 ± 0.3 | 4.887e−02 ± 0.3 ± 0.2 ± 0.3 | 4.879e−02 ± 0.3 ± 0.2 ± 0.3 | 4.875e−02 ± 0.3 ± 0.2 ± 0.6 | 4.883e−02 ± 0.2 ± 0.1 ± 0.3 |
8.0–10.0 | 4.127e−02 ± 0.4 ± 0.2 ± 0.4 | 4.096e−02 ± 0.4 ± 0.2 ± 0.6 | 4.139e−02 ± 0.4 ± 0.2 ± 0.4 | 4.111e−02 ± 0.4 ± 0.2 ± 0.4 | 4.082e−02 ± 0.4 ± 0.2 ± 0.7 | 4.086e−02 ± 0.3 ± 0.1 ± 0.4 |
10.0–13.0 | 3.293e−02 ± 0.3 ± 0.2 ± 0.3 | 3.256e−02 ± 0.3 ± 0.2 ± 0.3 | 3.324e−02 ± 0.3 ± 0.1 ± 0.3 | 3.287e−02 ± 0.3 ± 0.1 ± 0.3 | 3.247e−02 ± 0.3 ± 0.1 ± 0.4 | 3.251e−02 ± 0.2 ± 0.1 ± 0.2 |
13.0–16.0 | 2.532e−02 ± 0.4 ± 0.2 ± 0.3 | 2.495e−02 ± 0.4 ± 0.2 ± 0.3 | 2.587e−02 ± 0.3 ± 0.1 ± 0.3 | 2.551e−02 ± 0.3 ± 0.1 ± 0.3 | 2.513e−02 ± 0.3 ± 0.1 ± 0.4 | 2.505e−02 ± 0.3 ± 0.1 ± 0.2 |
16.0–20.0 | 1.920e−02 ± 0.4 ± 0.2 ± 0.3 | 1.891e−02 ± 0.4 ± 0.2 ± 0.3 | 1.943e−02 ± 0.3 ± 0.1 ± 0.3 | 1.920e−02 ± 0.3 ± 0.1 ± 0.3 | 1.892e−02 ± 0.3 ± 0.1 ± 0.3 | 1.892e−02 ± 0.2 ± 0.1 ± 0.2 |
20.0–25.0 | 1.377e−02 ± 0.4 ± 0.1 ± 0.2 | 1.363e−02 ± 0.4 ± 0.1 ± 0.2 | 1.391e−02 ± 0.3 ± 0.1 ± 0.3 | 1.380e−02 ± 0.3 ± 0.1 ± 0.3 | 1.366e−02 ± 0.3 ± 0.1 ± 0.3 | 1.365e−02 ± 0.2 ± 0.1 ± 0.2 |
25.0–30.0 | 9.812e−03 ± 0.4 ± 0.1 ± 0.3 | 9.758e−03 ± 0.4 ± 0.1 ± 0.3 | 9.802e−03 ± 0.4 ± 0.2 ± 0.3 | 9.772e−03 ± 0.4 ± 0.2 ± 0.3 | 9.707e−03 ± 0.4 ± 0.2 ± 0.3 | 9.728e−03 ± 0.3 ± 0.1 ± 0.2 |
30.0–37.0 | 6.865e−03 ± 0.4 ± 0.2 ± 0.3 | 6.850e−03 ± 0.4 ± 0.2 ± 0.3 | 6.843e−03 ± 0.4 ± 0.1 ± 0.3 | 6.845e−03 ± 0.4 ± 0.1 ± 0.3 | 6.835e−03 ± 0.4 ± 0.1 ± 0.3 | 6.840e−03 ± 0.3 ± 0.1 ± 0.2 |
37.0–45.0 | 4.627e−03 ± 0.5 ± 0.2 ± 0.5 | 4.634e−03 ± 0.5 ± 0.2 ± 0.5 | 4.568e−03 ± 0.4 ± 0.1 ± 0.3 | 4.580e−03 ± 0.4 ± 0.1 ± 0.3 | 4.591e−03 ± 0.4 ± 0.1 ± 0.3 | 4.609e−03 ± 0.3 ± 0.1 ± 0.2 |
45.0–55.0 | 3.029e−03 ± 0.5 ± 0.2 ± 0.7 | 3.042e−03 ± 0.5 ± 0.2 ± 0.7 | 2.998e−03 ± 0.5 ± 0.2 ± 0.4 | 3.018e−03 ± 0.5 ± 0.2 ± 0.4 | 3.033e−03 ± 0.5 ± 0.2 ± 0.4 | 3.033e−03 ± 0.3 ± 0.1 ± 0.3 |
55.0–65.0 | 1.926e−03 ± 0.6 ± 0.2 ± 0.8 | 1.939e−03 ± 0.6 ± 0.2 ± 0.8 | 1.900e−03 ± 0.6 ± 0.3 ± 0.4 | 1.917e−03 ± 0.6 ± 0.3 ± 0.4 | 1.931e−03 ± 0.6 ± 0.3 ± 0.5 | 1.932e−03 ± 0.4 ± 0.2 ± 0.4 |
65.0–75.0 | 1.275e−03 ± 0.8 ± 0.3 ± 0.9 | 1.286e−03 ± 0.8 ± 0.3 ± 0.9 | 1.266e−03 ± 0.8 ± 0.3 ± 0.5 | 1.282e−03 ± 0.8 ± 0.3 ± 0.5 | 1.291e−03 ± 0.8 ± 0.3 ± 0.6 | 1.287e−03 ± 0.5 ± 0.2 ± 0.4 |
75.0–85.0 | 8.504e−04 ± 0.9 ± 0.4 ± 0.9 | 8.597e−04 ± 0.9 ± 0.4 ± 0.9 | 8.383e−04 ± 1.0 ± 0.4 ± 0.6 | 8.486e−04 ± 1.0 ± 0.4 ± 0.6 | 8.565e−04 ± 1.0 ± 0.4 ± 0.6 | 8.569e−04 ± 0.7 ± 0.3 ± 0.5 |
85.0–105.0 | 4.956e−04 ± 0.8 ± 0.3 ± 0.8 | 4.995e−04 ± 0.8 ± 0.3 ± 0.8 | 4.774e−04 ± 0.8 ± 0.3 ± 0.5 | 4.833e−04 ± 0.8 ± 0.3 ± 0.5 | 4.868e−04 ± 0.8 ± 0.3 ± 0.5 | 4.927e−04 ± 0.6 ± 0.2 ± 0.4 |
105.0–150.0 | 1.896e−04 ± 0.9 ± 0.3 ± 0.7 | 1.904e−04 ± 0.9 ± 0.3 ± 0.7 | 1.826e−04 ± 0.9 ± 0.3 ± 0.5 | 1.852e−04 ± 0.9 ± 0.3 ± 0.5 | 1.865e−04 ± 0.9 ± 0.3 ± 0.5 | 1.884e−04 ± 0.6 ± 0.2 ± 0.4 |
150.0–200.0 | 5.379e−05 ± 1.4 ± 0.5 ± 0.9 | 5.409e−05 ± 1.4 ± 0.5 ± 0.9 | 5.278e−05 ± 1.6 ± 0.5 ± 0.7 | 5.377e−05 ± 1.6 ± 0.5 ± 0.7 | 5.402e−05 ± 1.6 ± 0.5 ± 0.7 | 5.399e−05 ± 1.1 ± 0.4 ± 0.5 |
200.0–900.0 | 2.288e−06 ± 1.8 ± 0.6 ± 1.4 | 2.296e−06 ± 1.8 ± 0.6 ± 1.5 | 2.220e−06 ± 2.1 ± 0.5 ± 0.9 | 2.277e−06 ± 2.1 ± 0.5 ± 0.9 | 2.287e−06 ± 2.1 ± 0.5 ± 1.0 | 2.284e−06 ± 1.4 ± 0.4 ± 0.8 |
Table 21.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.601e−02 ± 0.6 ± 0.3 ± 1.2 | 2.663e−02 ± 0.6 ± 0.3 ± 1.2 | 2.620e−02 ± 0.4 ± 0.2 ± 0.9 | 2.672e−02 ± 0.4 ± 0.2 ± 0.9 | 2.739e−02 ± 0.4 ± 0.2 ± 0.9 | 2.690e−02 ± 0.3 ± 0.2 ± 0.8 |
2.0–4.0 | 5.469e−02 ± 0.4 ± 0.2 ± 0.6 | 5.577e−02 ± 0.4 ± 0.2 ± 0.6 | 5.405e−02 ± 0.3 ± 0.1 ± 0.3 | 5.485e−02 ± 0.3 ± 0.1 ± 0.3 | 5.590e−02 ± 0.3 ± 0.1 ± 0.4 | 5.575e−02 ± 0.2 ± 0.1 ± 0.3 |
4.0–6.0 | 5.582e−02 ± 0.4 ± 0.1 ± 0.4 | 5.634e−02 ± 0.4 ± 0.1 ± 0.4 | 5.530e−02 ± 0.3 ± 0.1 ± 0.4 | 5.569e−02 ± 0.3 ± 0.1 ± 0.4 | 5.617e−02 ± 0.3 ± 0.1 ± 0.5 | 5.642e−02 ± 0.2 ± 0.1 ± 0.3 |
6.0–8.0 | 4.875e−02 ± 0.4 ± 0.2 ± 0.5 | 4.874e−02 ± 0.4 ± 0.2 ± 0.6 | 4.941e−02 ± 0.3 ± 0.2 ± 0.2 | 4.936e−02 ± 0.3 ± 0.2 ± 0.2 | 4.933e−02 ± 0.3 ± 0.2 ± 0.5 | 4.922e−02 ± 0.3 ± 0.1 ± 0.4 |
8.0–10.0 | 4.085e−02 ± 0.4 ± 0.2 ± 0.5 | 4.054e−02 ± 0.4 ± 0.2 ± 0.5 | 4.143e−02 ± 0.4 ± 0.2 ± 0.3 | 4.112e−02 ± 0.4 ± 0.2 ± 0.3 | 4.085e−02 ± 0.4 ± 0.2 ± 0.5 | 4.071e−02 ± 0.3 ± 0.1 ± 0.4 |
10.0–13.0 | 3.303e−02 ± 0.4 ± 0.2 ± 0.3 | 3.265e−02 ± 0.4 ± 0.2 ± 0.3 | 3.325e−02 ± 0.3 ± 0.1 ± 0.2 | 3.290e−02 ± 0.3 ± 0.1 ± 0.2 | 3.251e−02 ± 0.3 ± 0.1 ± 0.3 | 3.256e−02 ± 0.2 ± 0.1 ± 0.2 |
13.0–16.0 | 2.548e−02 ± 0.4 ± 0.2 ± 0.3 | 2.511e−02 ± 0.4 ± 0.2 ± 0.3 | 2.569e−02 ± 0.3 ± 0.1 ± 0.2 | 2.533e−02 ± 0.3 ± 0.1 ± 0.2 | 2.498e−02 ± 0.3 ± 0.1 ± 0.2 | 2.501e−02 ± 0.3 ± 0.1 ± 0.2 |
16.0–20.0 | 1.933e−02 ± 0.4 ± 0.2 ± 0.3 | 1.905e−02 ± 0.4 ± 0.2 ± 0.4 | 1.940e−02 ± 0.3 ± 0.1 ± 0.2 | 1.916e−02 ± 0.3 ± 0.1 ± 0.2 | 1.887e−02 ± 0.3 ± 0.1 ± 0.3 | 1.894e−02 ± 0.3 ± 0.1 ± 0.2 |
20.0–25.0 | 1.380e−02 ± 0.4 ± 0.2 ± 0.3 | 1.365e−02 ± 0.4 ± 0.2 ± 0.3 | 1.379e−02 ± 0.3 ± 0.1 ± 0.2 | 1.368e−02 ± 0.3 ± 0.1 ± 0.2 | 1.355e−02 ± 0.3 ± 0.1 ± 0.3 | 1.359e−02 ± 0.3 ± 0.1 ± 0.2 |
25.0–30.0 | 9.832e−03 ± 0.5 ± 0.2 ± 0.3 | 9.771e−03 ± 0.5 ± 0.2 ± 0.3 | 9.800e−03 ± 0.4 ± 0.1 ± 0.2 | 9.759e−03 ± 0.4 ± 0.1 ± 0.2 | 9.695e−03 ± 0.4 ± 0.1 ± 0.2 | 9.719e−03 ± 0.3 ± 0.1 ± 0.2 |
30.0–37.0 | 6.765e−03 ± 0.4 ± 0.2 ± 0.3 | 6.759e−03 ± 0.4 ± 0.2 ± 0.3 | 6.786e−03 ± 0.4 ± 0.1 ± 0.3 | 6.791e−03 ± 0.4 ± 0.1 ± 0.3 | 6.779e−03 ± 0.4 ± 0.1 ± 0.3 | 6.763e−03 ± 0.3 ± 0.1 ± 0.2 |
37.0–45.0 | 4.625e−03 ± 0.5 ± 0.2 ± 0.5 | 4.630e−03 ± 0.5 ± 0.2 ± 0.5 | 4.538e−03 ± 0.4 ± 0.2 ± 0.3 | 4.555e−03 ± 0.4 ± 0.2 ± 0.3 | 4.564e−03 ± 0.4 ± 0.2 ± 0.4 | 4.589e−03 ± 0.3 ± 0.1 ± 0.3 |
45.0–55.0 | 2.993e−03 ± 0.5 ± 0.2 ± 0.7 | 3.006e−03 ± 0.5 ± 0.2 ± 0.7 | 2.939e−03 ± 0.5 ± 0.2 ± 0.4 | 2.955e−03 ± 0.5 ± 0.2 ± 0.4 | 2.969e−03 ± 0.5 ± 0.2 ± 0.4 | 2.984e−03 ± 0.4 ± 0.1 ± 0.3 |
55.0–65.0 | 1.915e−03 ± 0.7 ± 0.3 ± 0.9 | 1.928e−03 ± 0.7 ± 0.3 ± 0.9 | 1.894e−03 ± 0.6 ± 0.2 ± 0.5 | 1.912e−03 ± 0.6 ± 0.2 ± 0.5 | 1.925e−03 ± 0.6 ± 0.2 ± 0.5 | 1.926e−03 ± 0.4 ± 0.2 ± 0.4 |
65.0–75.0 | 1.282e−03 ± 0.8 ± 0.4 ± 1.0 | 1.294e−03 ± 0.8 ± 0.4 ± 1.0 | 1.246e−03 ± 0.8 ± 0.3 ± 0.5 | 1.260e−03 ± 0.8 ± 0.3 ± 0.5 | 1.271e−03 ± 0.8 ± 0.3 ± 0.5 | 1.283e−03 ± 0.6 ± 0.2 ± 0.5 |
75.0–85.0 | 8.543e−04 ± 1.0 ± 0.4 ± 1.1 | 8.627e−04 ± 1.0 ± 0.4 ± 1.1 | 8.402e−04 ± 1.0 ± 0.4 ± 0.6 | 8.501e−04 ± 1.0 ± 0.4 ± 0.6 | 8.586e−04 ± 1.0 ± 0.4 ± 0.6 | 8.633e−04 ± 0.7 ± 0.3 ± 0.5 |
85.0–105.0 | 4.796e−04 ± 0.9 ± 0.3 ± 1.0 | 4.830e−04 ± 0.9 ± 0.3 ± 1.0 | 4.773e−04 ± 0.8 ± 0.3 ± 0.5 | 4.833e−04 ± 0.8 ± 0.3 ± 0.5 | 4.873e−04 ± 0.8 ± 0.3 ± 0.5 | 4.858e−04 ± 0.6 ± 0.2 ± 0.5 |
105.0–150.0 | 1.855e−04 ± 0.9 ± 0.3 ± 1.0 | 1.867e−04 ± 0.9 ± 0.3 ± 1.0 | 1.821e−04 ± 0.9 ± 0.2 ± 0.4 | 1.850e−04 ± 0.9 ± 0.2 ± 0.4 | 1.866e−04 ± 0.9 ± 0.2 ± 0.6 | 1.874e−04 ± 0.6 ± 0.2 ± 0.5 |
150.0–200.0 | 5.087e−05 ± 1.5 ± 0.5 ± 1.3 | 5.110e−05 ± 1.5 ± 0.5 ± 1.3 | 5.338e−05 ± 1.6 ± 0.5 ± 0.7 | 5.453e−05 ± 1.6 ± 0.5 ± 0.7 | 5.481e−05 ± 1.6 ± 0.5 ± 0.8 | 5.303e−05 ± 1.1 ± 0.4 ± 0.7 |
200.0–900.0 | 2.117e−06 ± 2.0 ± 0.6 ± 1.7 | 2.124e−06 ± 1.9 ± 0.6 ± 1.8 | 2.095e−06 ± 2.0 ± 0.6 ± 1.1 | 2.138e−06 ± 2.0 ± 0.6 ± 1.1 | 2.142e−06 ± 2.0 ± 0.6 ± 1.1 | 2.145e−06 ± 1.4 ± 0.4 ± 1.0 |
Table 22.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.640e−02 ± 0.6 ± 0.3 ± 1.0 | 2.708e−02 ± 0.6 ± 0.3 ± 1.0 | 2.606e−02 ± 0.5 ± 0.2 ± 0.9 | 2.662e−02 ± 0.5 ± 0.2 ± 0.9 | 2.731e−02 ± 0.5 ± 0.2 ± 0.9 | 2.711e−02 ± 0.4 ± 0.2 ± 0.6 |
2.0–4.0 | 5.532e−02 ± 0.4 ± 0.2 ± 0.6 | 5.639e−02 ± 0.4 ± 0.2 ± 0.6 | 5.406e−02 ± 0.3 ± 0.2 ± 0.3 | 5.491e−02 ± 0.3 ± 0.2 ± 0.3 | 5.597e−02 ± 0.3 ± 0.2 ± 0.4 | 5.611e−02 ± 0.2 ± 0.1 ± 0.3 |
4.0–6.0 | 5.598e−02 ± 0.4 ± 0.2 ± 0.3 | 5.653e−02 ± 0.4 ± 0.2 ± 0.3 | 5.608e−02 ± 0.3 ± 0.1 ± 0.4 | 5.645e−02 ± 0.3 ± 0.1 ± 0.4 | 5.700e−02 ± 0.3 ± 0.1 ± 0.5 | 5.691e−02 ± 0.2 ± 0.1 ± 0.3 |
6.0–8.0 | 4.889e−02 ± 0.4 ± 0.2 ± 0.4 | 4.887e−02 ± 0.4 ± 0.2 ± 0.4 | 4.919e−02 ± 0.3 ± 0.1 ± 0.4 | 4.913e−02 ± 0.3 ± 0.1 ± 0.4 | 4.913e−02 ± 0.3 ± 0.1 ± 0.5 | 4.906e−02 ± 0.3 ± 0.1 ± 0.3 |
8.0–10.0 | 4.126e−02 ± 0.5 ± 0.3 ± 0.5 | 4.095e−02 ± 0.5 ± 0.3 ± 0.6 | 4.159e−02 ± 0.4 ± 0.2 ± 0.4 | 4.132e−02 ± 0.4 ± 0.2 ± 0.4 | 4.098e−02 ± 0.4 ± 0.2 ± 0.6 | 4.096e−02 ± 0.3 ± 0.1 ± 0.4 |
10.0–13.0 | 3.288e−02 ± 0.4 ± 0.2 ± 0.4 | 3.246e−02 ± 0.4 ± 0.2 ± 0.4 | 3.324e−02 ± 0.3 ± 0.1 ± 0.3 | 3.284e−02 ± 0.3 ± 0.1 ± 0.3 | 3.242e−02 ± 0.3 ± 0.1 ± 0.5 | 3.244e−02 ± 0.3 ± 0.1 ± 0.3 |
13.0–16.0 | 2.552e−02 ± 0.5 ± 0.2 ± 0.4 | 2.515e−02 ± 0.5 ± 0.2 ± 0.4 | 2.592e−02 ± 0.4 ± 0.1 ± 0.3 | 2.556e−02 ± 0.4 ± 0.1 ± 0.3 | 2.518e−02 ± 0.4 ± 0.1 ± 0.3 | 2.519e−02 ± 0.3 ± 0.1 ± 0.2 |
16.0–20.0 | 1.917e−02 ± 0.4 ± 0.2 ± 0.3 | 1.888e−02 ± 0.4 ± 0.2 ± 0.3 | 1.942e−02 ± 0.3 ± 0.1 ± 0.2 | 1.916e−02 ± 0.3 ± 0.1 ± 0.2 | 1.887e−02 ± 0.3 ± 0.1 ± 0.2 | 1.888e−02 ± 0.3 ± 0.1 ± 0.2 |
20.0–25.0 | 1.360e−02 ± 0.4 ± 0.2 ± 0.3 | 1.346e−02 ± 0.4 ± 0.2 ± 0.3 | 1.384e−02 ± 0.3 ± 0.1 ± 0.2 | 1.373e−02 ± 0.3 ± 0.1 ± 0.2 | 1.360e−02 ± 0.3 ± 0.1 ± 0.2 | 1.355e−02 ± 0.3 ± 0.1 ± 0.2 |
25.0–30.0 | 9.826e−03 ± 0.5 ± 0.2 ± 0.3 | 9.766e−03 ± 0.5 ± 0.2 ± 0.3 | 9.730e−03 ± 0.4 ± 0.1 ± 0.2 | 9.698e−03 ± 0.4 ± 0.1 ± 0.2 | 9.646e−03 ± 0.4 ± 0.1 ± 0.3 | 9.693e−03 ± 0.3 ± 0.1 ± 0.2 |
30.0–37.0 | 6.841e−03 ± 0.5 ± 0.2 ± 0.4 | 6.830e−03 ± 0.5 ± 0.2 ± 0.4 | 6.760e−03 ± 0.4 ± 0.1 ± 0.2 | 6.757e−03 ± 0.4 ± 0.1 ± 0.2 | 6.747e−03 ± 0.4 ± 0.1 ± 0.3 | 6.777e−03 ± 0.3 ± 0.1 ± 0.2 |
37.0–45.0 | 4.559e−03 ± 0.5 ± 0.2 ± 0.6 | 4.568e−03 ± 0.5 ± 0.2 ± 0.6 | 4.510e−03 ± 0.5 ± 0.1 ± 0.3 | 4.527e−03 ± 0.5 ± 0.1 ± 0.3 | 4.532e−03 ± 0.5 ± 0.1 ± 0.3 | 4.544e−03 ± 0.3 ± 0.1 ± 0.3 |
45.0–55.0 | 2.962e−03 ± 0.6 ± 0.3 ± 0.8 | 2.975e−03 ± 0.6 ± 0.3 ± 0.8 | 2.890e−03 ± 0.5 ± 0.2 ± 0.3 | 2.909e−03 ± 0.5 ± 0.2 ± 0.3 | 2.924e−03 ± 0.5 ± 0.2 ± 0.4 | 2.940e−03 ± 0.4 ± 0.2 ± 0.3 |
55.0–65.0 | 1.903e−03 ± 0.7 ± 0.3 ± 1.0 | 1.916e−03 ± 0.7 ± 0.3 ± 1.0 | 1.873e−03 ± 0.6 ± 0.2 ± 0.4 | 1.893e−03 ± 0.6 ± 0.2 ± 0.4 | 1.907e−03 ± 0.6 ± 0.2 ± 0.5 | 1.907e−03 ± 0.5 ± 0.2 ± 0.5 |
65.0–75.0 | 1.238e−03 ± 0.9 ± 0.4 ± 1.2 | 1.249e−03 ± 0.9 ± 0.4 ± 1.2 | 1.228e−03 ± 0.8 ± 0.3 ± 0.5 | 1.242e−03 ± 0.8 ± 0.3 ± 0.5 | 1.253e−03 ± 0.8 ± 0.3 ± 0.5 | 1.249e−03 ± 0.6 ± 0.2 ± 0.5 |
75.0–85.0 | 8.166e−04 ± 1.1 ± 0.6 ± 1.2 | 8.235e−04 ± 1.1 ± 0.6 ± 1.2 | 8.238e−04 ± 1.0 ± 0.4 ± 0.5 | 8.348e−04 ± 1.0 ± 0.4 ± 0.5 | 8.421e−04 ± 1.0 ± 0.4 ± 0.5 | 8.337e−04 ± 0.7 ± 0.3 ± 0.5 |
85.0–105.0 | 4.798e−04 ± 1.0 ± 0.4 ± 1.0 | 4.844e−04 ± 1.0 ± 0.4 ± 1.0 | 4.718e−04 ± 0.8 ± 0.3 ± 0.5 | 4.786e−04 ± 0.8 ± 0.3 ± 0.5 | 4.829e−04 ± 0.8 ± 0.3 ± 0.5 | 4.832e−04 ± 0.6 ± 0.2 ± 0.4 |
105.0–150.0 | 1.807e−04 ± 1.0 ± 0.4 ± 0.9 | 1.821e−04 ± 1.0 ± 0.4 ± 0.9 | 1.802e−04 ± 0.9 ± 0.3 ± 0.5 | 1.829e−04 ± 0.9 ± 0.3 ± 0.5 | 1.840e−04 ± 0.9 ± 0.3 ± 0.5 | 1.831e−04 ± 0.6 ± 0.3 ± 0.5 |
150.0–200.0 | 5.136e−05 ± 1.7 ± 0.7 ± 1.4 | 5.166e−05 ± 1.7 ± 0.7 ± 1.4 | 5.053e−05 ± 1.6 ± 0.5 ± 1.0 | 5.152e−05 ± 1.6 ± 0.5 ± 1.0 | 5.186e−05 ± 1.6 ± 0.5 ± 1.0 | 5.182e−05 ± 1.2 ± 0.4 ± 0.7 |
200.0–900.0 | 2.031e−06 ± 2.2 ± 0.7 ± 1.6 | 2.040e−06 ± 2.2 ± 0.7 ± 1.6 | 2.025e−06 ± 2.0 ± 0.7 ± 1.3 | 2.067e−06 ± 2.0 ± 0.7 ± 1.3 | 2.078e−06 ± 2.0 ± 0.7 ± 1.3 | 2.061e−06 ± 1.5 ± 0.5 ± 0.9 |
Table 23.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.584e−02 ± 0.6 ± 0.3 ± 1.1 | 2.655e−02 ± 0.6 ± 0.3 ± 1.1 | 2.512e−02 ± 0.5 ± 0.2 ± 0.9 | 2.573e−02 ± 0.5 ± 0.2 ± 0.9 | 2.645e−02 ± 0.5 ± 0.2 ± 0.9 | 2.658e−02 ± 0.4 ± 0.2 ± 0.7 |
2.0–4.0 | 5.405e−02 ± 0.4 ± 0.2 ± 0.8 | 5.522e−02 ± 0.4 ± 0.2 ± 0.8 | 5.308e−02 ± 0.3 ± 0.2 ± 0.5 | 5.405e−02 ± 0.3 ± 0.2 ± 0.5 | 5.525e−02 ± 0.3 ± 0.2 ± 0.5 | 5.536e−02 ± 0.3 ± 0.1 ± 0.4 |
4.0–6.0 | 5.436e−02 ± 0.4 ± 0.2 ± 0.5 | 5.494e−02 ± 0.4 ± 0.2 ± 0.5 | 5.453e−02 ± 0.3 ± 0.2 ± 0.4 | 5.498e−02 ± 0.3 ± 0.2 ± 0.4 | 5.554e−02 ± 0.3 ± 0.2 ± 0.4 | 5.529e−02 ± 0.3 ± 0.2 ± 0.4 |
6.0–8.0 | 4.804e−02 ± 0.5 ± 0.3 ± 0.6 | 4.803e−02 ± 0.5 ± 0.3 ± 0.6 | 4.836e−02 ± 0.4 ± 0.2 ± 0.3 | 4.831e−02 ± 0.4 ± 0.2 ± 0.3 | 4.829e−02 ± 0.4 ± 0.2 ± 0.6 | 4.816e−02 ± 0.3 ± 0.1 ± 0.5 |
8.0–10.0 | 4.096e−02 ± 0.5 ± 0.2 ± 0.5 | 4.057e−02 ± 0.5 ± 0.2 ± 0.6 | 4.138e−02 ± 0.4 ± 0.2 ± 0.4 | 4.104e−02 ± 0.4 ± 0.2 ± 0.4 | 4.068e−02 ± 0.4 ± 0.2 ± 0.6 | 4.066e−02 ± 0.3 ± 0.2 ± 0.5 |
10.0–13.0 | 3.316e−02 ± 0.4 ± 0.2 ± 0.3 | 3.271e−02 ± 0.4 ± 0.2 ± 0.4 | 3.354e−02 ± 0.4 ± 0.1 ± 0.2 | 3.313e−02 ± 0.4 ± 0.1 ± 0.2 | 3.268e−02 ± 0.4 ± 0.1 ± 0.3 | 3.270e−02 ± 0.3 ± 0.1 ± 0.3 |
13.0–16.0 | 2.573e−02 ± 0.5 ± 0.3 ± 0.4 | 2.531e−02 ± 0.5 ± 0.3 ± 0.4 | 2.620e−02 ± 0.4 ± 0.2 ± 0.3 | 2.580e−02 ± 0.4 ± 0.2 ± 0.3 | 2.536e−02 ± 0.4 ± 0.2 ± 0.3 | 2.534e−02 ± 0.3 ± 0.1 ± 0.2 |
16.0–20.0 | 1.956e−02 ± 0.5 ± 0.2 ± 0.4 | 1.922e−02 ± 0.5 ± 0.2 ± 0.4 | 1.974e−02 ± 0.4 ± 0.2 ± 0.2 | 1.947e−02 ± 0.4 ± 0.2 ± 0.2 | 1.914e−02 ± 0.4 ± 0.2 ± 0.3 | 1.917e−02 ± 0.3 ± 0.1 ± 0.2 |
20.0–25.0 | 1.390e−02 ± 0.5 ± 0.3 ± 0.4 | 1.375e−02 ± 0.5 ± 0.3 ± 0.4 | 1.405e−02 ± 0.4 ± 0.2 ± 0.3 | 1.390e−02 ± 0.4 ± 0.2 ± 0.3 | 1.374e−02 ± 0.4 ± 0.2 ± 0.3 | 1.374e−02 ± 0.3 ± 0.1 ± 0.2 |
25.0–30.0 | 1.000e−02 ± 0.6 ± 0.3 ± 0.6 | 9.947e−03 ± 0.6 ± 0.3 ± 0.6 | 1.002e−02 ± 0.5 ± 0.2 ± 0.3 | 9.973e−03 ± 0.5 ± 0.2 ± 0.3 | 9.918e−03 ± 0.5 ± 0.2 ± 0.3 | 9.915e−03 ± 0.4 ± 0.1 ± 0.3 |
30.0–37.0 | 6.933e−03 ± 0.6 ± 0.3 ± 0.6 | 6.929e−03 ± 0.6 ± 0.3 ± 0.6 | 6.924e−03 ± 0.4 ± 0.1 ± 0.3 | 6.928e−03 ± 0.4 ± 0.1 ± 0.3 | 6.921e−03 ± 0.4 ± 0.1 ± 0.3 | 6.918e−03 ± 0.4 ± 0.1 ± 0.2 |
37.0–45.0 | 4.611e−03 ± 0.6 ± 0.3 ± 0.8 | 4.628e−03 ± 0.6 ± 0.3 ± 0.8 | 4.576e−03 ± 0.5 ± 0.2 ± 0.3 | 4.594e−03 ± 0.5 ± 0.2 ± 0.3 | 4.605e−03 ± 0.5 ± 0.2 ± 0.3 | 4.606e−03 ± 0.4 ± 0.2 ± 0.3 |
45.0–55.0 | 2.995e−03 ± 0.7 ± 0.3 ± 1.0 | 3.012e−03 ± 0.7 ± 0.3 ± 1.0 | 2.928e−03 ± 0.5 ± 0.2 ± 0.3 | 2.949e−03 ± 0.5 ± 0.2 ± 0.3 | 2.967e−03 ± 0.5 ± 0.2 ± 0.3 | 2.978e−03 ± 0.4 ± 0.2 ± 0.3 |
55.0–65.0 | 1.940e−03 ± 0.9 ± 0.4 ± 1.1 | 1.953e−03 ± 0.9 ± 0.4 ± 1.1 | 1.902e−03 ± 0.7 ± 0.3 ± 0.5 | 1.921e−03 ± 0.7 ± 0.3 ± 0.5 | 1.938e−03 ± 0.7 ± 0.3 ± 0.5 | 1.939e−03 ± 0.5 ± 0.2 ± 0.4 |
65.0–75.0 | 1.290e−03 ± 1.1 ± 0.4 ± 1.2 | 1.303e−03 ± 1.1 ± 0.4 ± 1.2 | 1.247e−03 ± 0.9 ± 0.3 ± 0.5 | 1.263e−03 ± 0.9 ± 0.3 ± 0.5 | 1.276e−03 ± 0.9 ± 0.3 ± 0.6 | 1.284e−03 ± 0.7 ± 0.3 ± 0.5 |
75.0–85.0 | 8.719e−04 ± 1.3 ± 0.5 ± 1.1 | 8.814e−04 ± 1.3 ± 0.5 ± 1.1 | 8.569e−04 ± 1.1 ± 0.4 ± 0.6 | 8.689e−04 ± 1.1 ± 0.4 ± 0.6 | 8.800e−04 ± 1.1 ± 0.4 ± 0.6 | 8.786e−04 ± 0.8 ± 0.3 ± 0.5 |
85.0–105.0 | 4.966e−04 ± 1.1 ± 0.5 ± 1.0 | 5.025e−04 ± 1.1 ± 0.5 ± 1.1 | 4.805e−04 ± 0.9 ± 0.3 ± 0.5 | 4.877e−04 ± 0.9 ± 0.3 ± 0.5 | 4.928e−04 ± 0.9 ± 0.3 ± 0.5 | 4.959e−04 ± 0.7 ± 0.3 ± 0.5 |
105.0–150.0 | 1.933e−04 ± 1.1 ± 0.4 ± 1.2 | 1.950e−04 ± 1.1 ± 0.4 ± 1.2 | 1.879e−04 ± 0.9 ± 0.3 ± 0.5 | 1.909e−04 ± 0.9 ± 0.3 ± 0.5 | 1.927e−04 ± 0.9 ± 0.3 ± 0.6 | 1.936e−04 ± 0.7 ± 0.2 ± 0.5 |
150.0–200.0 | 5.229e−05 ± 2.0 ± 0.7 ± 1.7 | 5.271e−05 ± 2.0 ± 0.7 ± 1.7 | 5.304e−05 ± 1.7 ± 0.5 ± 0.7 | 5.410e−05 ± 1.7 ± 0.5 ± 0.7 | 5.445e−05 ± 1.7 ± 0.5 ± 0.7 | 5.363e−05 ± 1.3 ± 0.4 ± 0.7 |
200.0–900.0 | 2.078e−06 ± 2.7 ± 1.0 ± 3.3 | 2.084e−06 ± 2.7 ± 1.0 ± 3.3 | 2.031e−06 ± 2.2 ± 0.6 ± 0.8 | 2.095e−06 ± 2.2 ± 0.6 ± 0.8 | 2.109e−06 ± 2.2 ± 0.6 ± 0.9 | 2.099e−06 ± 1.7 ± 0.5 ± 1.1 |
Table 24.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.536e−02 ± 0.8 ± 0.5 ± 1.5 | 2.616e−02 ± 0.8 ± 0.5 ± 1.5 | 2.466e−02 ± 0.6 ± 0.3 ± 1.2 | 2.541e−02 ± 0.6 ± 0.3 ± 1.2 | 2.618e−02 ± 0.6 ± 0.3 ± 1.2 | 2.606e−02 ± 0.5 ± 0.3 ± 0.9 |
2.0–4.0 | 5.324e−02 ± 0.5 ± 0.3 ± 1.1 | 5.454e−02 ± 0.5 ± 0.3 ± 1.2 | 5.139e−02 ± 0.4 ± 0.2 ± 0.6 | 5.254e−02 ± 0.4 ± 0.2 ± 0.6 | 5.382e−02 ± 0.4 ± 0.2 ± 0.7 | 5.394e−02 ± 0.3 ± 0.2 ± 0.6 |
4.0–6.0 | 5.345e−02 ± 0.5 ± 0.3 ± 0.6 | 5.408e−02 ± 0.5 ± 0.3 ± 0.6 | 5.307e−02 ± 0.4 ± 0.2 ± 0.3 | 5.366e−02 ± 0.4 ± 0.2 ± 0.3 | 5.433e−02 ± 0.4 ± 0.2 ± 0.5 | 5.425e−02 ± 0.3 ± 0.2 ± 0.4 |
6.0–8.0 | 4.640e−02 ± 0.6 ± 0.3 ± 0.9 | 4.646e−02 ± 0.6 ± 0.3 ± 0.9 | 4.678e−02 ± 0.4 ± 0.3 ± 0.5 | 4.674e−02 ± 0.4 ± 0.3 ± 0.5 | 4.679e−02 ± 0.4 ± 0.3 ± 0.9 | 4.667e−02 ± 0.3 ± 0.2 ± 0.6 |
8.0–10.0 | 3.960e−02 ± 0.6 ± 0.3 ± 0.8 | 3.931e−02 ± 0.6 ± 0.3 ± 0.9 | 3.978e−02 ± 0.5 ± 0.2 ± 0.4 | 3.950e−02 ± 0.5 ± 0.2 ± 0.4 | 3.922e−02 ± 0.5 ± 0.2 ± 0.5 | 3.925e−02 ± 0.4 ± 0.2 ± 0.4 |
10.0–13.0 | 3.241e−02 ± 0.6 ± 0.3 ± 0.5 | 3.194e−02 ± 0.6 ± 0.3 ± 0.5 | 3.259e−02 ± 0.4 ± 0.2 ± 0.3 | 3.216e−02 ± 0.4 ± 0.2 ± 0.3 | 3.170e−02 ± 0.4 ± 0.2 ± 0.3 | 3.180e−02 ± 0.3 ± 0.2 ± 0.2 |
13.0–16.0 | 2.554e−02 ± 0.7 ± 0.3 ± 0.6 | 2.503e−02 ± 0.7 ± 0.3 ± 0.6 | 2.580e−02 ± 0.5 ± 0.2 ± 0.4 | 2.531e−02 ± 0.5 ± 0.2 ± 0.4 | 2.480e−02 ± 0.5 ± 0.2 ± 0.4 | 2.489e−02 ± 0.4 ± 0.2 ± 0.3 |
16.0–20.0 | 1.920e−02 ± 0.6 ± 0.3 ± 0.6 | 1.882e−02 ± 0.6 ± 0.3 ± 0.6 | 2.009e−02 ± 0.5 ± 0.2 ± 0.3 | 1.968e−02 ± 0.5 ± 0.2 ± 0.3 | 1.929e−02 ± 0.5 ± 0.2 ± 0.4 | 1.914e−02 ± 0.4 ± 0.2 ± 0.3 |
20.0–25.0 | 1.431e−02 ± 0.6 ± 0.3 ± 0.5 | 1.409e−02 ± 0.6 ± 0.3 ± 0.5 | 1.436e−02 ± 0.5 ± 0.2 ± 0.4 | 1.419e−02 ± 0.5 ± 0.2 ± 0.4 | 1.398e−02 ± 0.5 ± 0.2 ± 0.5 | 1.403e−02 ± 0.4 ± 0.2 ± 0.3 |
25.0–30.0 | 1.042e−02 ± 0.8 ± 0.4 ± 0.7 | 1.033e−02 ± 0.8 ± 0.4 ± 0.7 | 1.036e−02 ± 0.6 ± 0.2 ± 0.4 | 1.029e−02 ± 0.6 ± 0.2 ± 0.4 | 1.020e−02 ± 0.6 ± 0.2 ± 0.5 | 1.025e−02 ± 0.5 ± 0.2 ± 0.4 |
30.0–37.0 | 7.322e−03 ± 0.7 ± 0.3 ± 0.8 | 7.307e−03 ± 0.7 ± 0.3 ± 0.8 | 7.463e−03 ± 0.5 ± 0.2 ± 0.4 | 7.452e−03 ± 0.5 ± 0.2 ± 0.4 | 7.429e−03 ± 0.5 ± 0.2 ± 0.4 | 7.398e−03 ± 0.4 ± 0.2 ± 0.3 |
37.0–45.0 | 4.924e−03 ± 0.8 ± 0.4 ± 1.0 | 4.937e−03 ± 0.8 ± 0.4 ± 1.0 | 4.975e−03 ± 0.6 ± 0.2 ± 0.4 | 4.998e−03 ± 0.6 ± 0.2 ± 0.4 | 5.015e−03 ± 0.6 ± 0.2 ± 0.4 | 4.994e−03 ± 0.5 ± 0.2 ± 0.4 |
45.0–55.0 | 3.207e−03 ± 0.8 ± 0.4 ± 1.4 | 3.225e−03 ± 0.8 ± 0.4 ± 1.4 | 3.196e−03 ± 0.7 ± 0.2 ± 0.4 | 3.221e−03 ± 0.7 ± 0.2 ± 0.4 | 3.241e−03 ± 0.7 ± 0.2 ± 0.4 | 3.241e−03 ± 0.5 ± 0.2 ± 0.4 |
55.0–65.0 | 2.042e−03 ± 1.0 ± 0.5 ± 1.6 | 2.062e−03 ± 1.0 ± 0.5 ± 1.6 | 2.002e−03 ± 0.9 ± 0.4 ± 0.6 | 2.022e−03 ± 0.9 ± 0.4 ± 0.6 | 2.044e−03 ± 0.9 ± 0.4 ± 0.6 | 2.052e−03 ± 0.7 ± 0.3 ± 0.6 |
65.0–75.0 | 1.333e−03 ± 1.3 ± 0.6 ± 1.8 | 1.350e−03 ± 1.3 ± 0.6 ± 1.8 | 1.311e−03 ± 1.1 ± 0.4 ± 0.6 | 1.330e−03 ± 1.1 ± 0.4 ± 0.6 | 1.344e−03 ± 1.1 ± 0.4 ± 0.6 | 1.349e−03 ± 0.8 ± 0.4 ± 0.6 |
75.0–85.0 | 9.113e−04 ± 1.5 ± 0.6 ± 2.0 | 9.246e−04 ± 1.5 ± 0.6 ± 2.0 | 8.804e−04 ± 1.4 ± 0.5 ± 0.9 | 8.952e−04 ± 1.4 ± 0.5 ± 0.9 | 9.085e−04 ± 1.4 ± 0.5 ± 0.9 | 9.165e−04 ± 1.0 ± 0.4 ± 0.8 |
85.0–105.0 | 5.245e−04 ± 1.3 ± 0.6 ± 1.3 | 5.298e−04 ± 1.3 ± 0.6 ± 1.3 | 5.142e−04 ± 1.1 ± 0.4 ± 0.7 | 5.206e−04 ± 1.1 ± 0.4 ± 0.7 | 5.271e−04 ± 1.1 ± 0.4 ± 0.8 | 5.290e−04 ± 0.8 ± 0.4 ± 0.6 |
105.0–150.0 | 2.042e−04 ± 1.3 ± 0.5 ± 1.3 | 2.064e−04 ± 1.3 ± 0.5 ± 1.3 | 1.994e−04 ± 1.1 ± 0.3 ± 0.6 | 2.030e−04 ± 1.1 ± 0.3 ± 0.6 | 2.053e−04 ± 1.1 ± 0.3 ± 0.6 | 2.056e−04 ± 0.8 ± 0.3 ± 0.5 |
150.0–200.0 | 5.886e−05 ± 2.2 ± 0.9 ± 1.9 | 5.962e−05 ± 2.2 ± 0.9 ± 1.9 | 5.851e−05 ± 1.9 ± 0.6 ± 0.8 | 5.976e−05 ± 1.9 ± 0.6 ± 0.8 | 6.050e−05 ± 1.9 ± 0.6 ± 0.9 | 6.014e−05 ± 1.5 ± 0.5 ± 0.8 |
200.0–900.0 | 2.048e−06 ± 3.2 ± 1.3 ± 3.4 | 2.078e−06 ± 3.2 ± 1.3 ± 3.5 | 1.972e−06 ± 2.8 ± 0.8 ± 1.1 | 2.036e−06 ± 2.8 ± 0.8 ± 1.1 | 2.054e−06 ± 2.8 ± 0.8 ± 1.2 | 2.060e−06 ± 2.1 ± 0.7 ± 1.3 |
Table 25.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.582e−02 ± 1.3 ± 0.6 ± 2.3 | 2.668e−02 ± 1.3 ± 0.6 ± 2.3 | 2.483e−02 ± 1.1 ± 0.5 ± 2.0 | 2.563e−02 ± 1.1 ± 0.5 ± 2.0 | 2.646e−02 ± 1.1 ± 0.5 ± 2.0 | 2.676e−02 ± 0.8 ± 0.4 ± 1.5 |
2.0–4.0 | 5.224e−02 ± 0.8 ± 0.5 ± 1.5 | 5.354e−02 ± 0.8 ± 0.5 ± 1.5 | 5.173e−02 ± 0.7 ± 0.3 ± 1.1 | 5.296e−02 ± 0.7 ± 0.3 ± 1.1 | 5.432e−02 ± 0.7 ± 0.3 ± 1.2 | 5.429e−02 ± 0.5 ± 0.3 ± 0.9 |
4.0–6.0 | 5.276e−02 ± 0.8 ± 0.5 ± 1.0 | 5.345e−02 ± 0.8 ± 0.5 ± 1.0 | 5.203e−02 ± 0.7 ± 0.4 ± 0.8 | 5.274e−02 ± 0.7 ± 0.4 ± 0.8 | 5.337e−02 ± 0.7 ± 0.4 ± 0.8 | 5.338e−02 ± 0.6 ± 0.3 ± 0.6 |
6.0–8.0 | 4.545e−02 ± 0.9 ± 0.5 ± 0.9 | 4.558e−02 ± 0.9 ± 0.5 ± 1.0 | 4.548e−02 ± 0.8 ± 0.4 ± 1.0 | 4.556e−02 ± 0.8 ± 0.4 ± 1.0 | 4.575e−02 ± 0.8 ± 0.4 ± 1.0 | 4.567e−02 ± 0.6 ± 0.3 ± 0.7 |
8.0–10.0 | 3.928e−02 ± 1.0 ± 0.5 ± 0.9 | 3.904e−02 ± 1.0 ± 0.5 ± 0.9 | 3.903e−02 ± 0.8 ± 0.4 ± 0.7 | 3.872e−02 ± 0.8 ± 0.4 ± 0.7 | 3.850e−02 ± 0.8 ± 0.4 ± 0.8 | 3.867e−02 ± 0.6 ± 0.3 ± 0.6 |
10.0–13.0 | 3.116e−02 ± 0.9 ± 0.4 ± 0.7 | 3.075e−02 ± 0.9 ± 0.4 ± 0.7 | 3.216e−02 ± 0.7 ± 0.4 ± 0.7 | 3.175e−02 ± 0.7 ± 0.4 ± 0.7 | 3.121e−02 ± 0.7 ± 0.4 ± 0.8 | 3.100e−02 ± 0.6 ± 0.3 ± 0.5 |
13.0–16.0 | 2.418e−02 ± 1.1 ± 0.6 ± 0.8 | 2.369e−02 ± 1.1 ± 0.6 ± 0.8 | 2.523e−02 ± 0.9 ± 0.4 ± 0.7 | 2.473e−02 ± 0.9 ± 0.4 ± 0.7 | 2.423e−02 ± 0.9 ± 0.4 ± 0.7 | 2.401e−02 ± 0.7 ± 0.3 ± 0.5 |
16.0–20.0 | 1.935e−02 ± 1.0 ± 0.4 ± 0.6 | 1.890e−02 ± 1.0 ± 0.4 ± 0.6 | 1.954e−02 ± 0.8 ± 0.4 ± 0.5 | 1.909e−02 ± 0.8 ± 0.4 ± 0.5 | 1.870e−02 ± 0.8 ± 0.4 ± 0.6 | 1.877e−02 ± 0.6 ± 0.3 ± 0.4 |
20.0–25.0 | 1.407e−02 ± 1.0 ± 0.6 ± 0.8 | 1.383e−02 ± 1.0 ± 0.6 ± 0.8 | 1.438e−02 ± 0.9 ± 0.3 ± 0.5 | 1.417e−02 ± 0.9 ± 0.3 ± 0.5 | 1.390e−02 ± 0.9 ± 0.3 ± 0.8 | 1.386e−02 ± 0.7 ± 0.3 ± 0.5 |
25.0–30.0 | 1.040e−02 ± 1.1 ± 0.7 ± 0.9 | 1.032e−02 ± 1.1 ± 0.7 ± 0.9 | 1.029e−02 ± 1.0 ± 0.5 ± 0.7 | 1.020e−02 ± 1.0 ± 0.5 ± 0.7 | 1.011e−02 ± 1.0 ± 0.5 ± 0.9 | 1.019e−02 ± 0.8 ± 0.4 ± 0.6 |
30.0–37.0 | 7.412e−03 ± 1.1 ± 0.7 ± 0.8 | 7.365e−03 ± 1.1 ± 0.7 ± 0.8 | 7.470e−03 ± 1.0 ± 0.3 ± 0.5 | 7.424e−03 ± 1.0 ± 0.3 ± 0.5 | 7.404e−03 ± 1.0 ± 0.3 ± 0.6 | 7.377e−03 ± 0.7 ± 0.3 ± 0.5 |
37.0–45.0 | 5.299e−03 ± 1.1 ± 0.5 ± 0.9 | 5.288e−03 ± 1.1 ± 0.5 ± 1.0 | 5.210e−03 ± 1.1 ± 0.3 ± 0.5 | 5.215e−03 ± 1.1 ± 0.3 ± 0.5 | 5.197e−03 ± 1.1 ± 0.3 ± 0.5 | 5.226e−03 ± 0.8 ± 0.3 ± 0.5 |
45.0–55.0 | 3.549e−03 ± 1.2 ± 0.7 ± 1.3 | 3.566e−03 ± 1.2 ± 0.7 ± 1.3 | 3.461e−03 ± 1.1 ± 0.4 ± 0.6 | 3.478e−03 ± 1.1 ± 0.4 ± 0.6 | 3.502e−03 ± 1.1 ± 0.4 ± 0.6 | 3.517e−03 ± 0.8 ± 0.3 ± 0.6 |
55.0–65.0 | 2.400e−03 ± 1.5 ± 0.6 ± 1.5 | 2.423e−03 ± 1.5 ± 0.6 ± 1.5 | 2.295e−03 ± 1.4 ± 0.5 ± 0.7 | 2.325e−03 ± 1.4 ± 0.5 ± 0.7 | 2.342e−03 ± 1.4 ± 0.5 ± 0.7 | 2.368e−03 ± 1.0 ± 0.4 ± 0.6 |
65.0–75.0 | 1.534e−03 ± 1.8 ± 0.9 ± 1.9 | 1.556e−03 ± 1.8 ± 0.9 ± 2.0 | 1.499e−03 ± 1.7 ± 0.7 ± 1.4 | 1.519e−03 ± 1.7 ± 0.7 ± 1.4 | 1.541e−03 ± 1.7 ± 0.7 ± 1.4 | 1.538e−03 ± 1.3 ± 0.6 ± 1.0 |
75.0–85.0 | 9.811e−04 ± 2.4 ± 0.8 ± 1.8 | 9.940e−04 ± 2.4 ± 0.8 ± 1.8 | 1.020e−03 ± 2.2 ± 1.0 ± 1.5 | 1.037e−03 ± 2.2 ± 1.0 ± 1.5 | 1.052e−03 ± 2.2 ± 1.0 ± 1.6 | 1.021e−03 ± 1.6 ± 0.6 ± 1.1 |
85.0–105.0 | 5.455e−04 ± 2.0 ± 0.6 ± 1.6 | 5.523e−04 ± 2.0 ± 0.6 ± 1.6 | 5.396e−04 ± 1.9 ± 0.7 ± 1.3 | 5.498e−04 ± 1.9 ± 0.7 ± 1.3 | 5.603e−04 ± 1.9 ± 0.7 ± 1.4 | 5.546e−04 ± 1.4 ± 0.5 ± 1.0 |
105.0–150.0 | 2.015e−04 ± 2.1 ± 0.8 ± 1.4 | 2.045e−04 ± 2.1 ± 0.8 ± 1.4 | 1.935e−04 ± 1.9 ± 0.6 ± 1.3 | 1.975e−04 ± 1.9 ± 0.6 ± 1.3 | 1.993e−04 ± 1.9 ± 0.6 ± 1.4 | 2.005e−04 ± 1.4 ± 0.5 ± 0.9 |
150.0–200.0 | 5.896e−05 ± 3.6 ± 1.6 ± 2.6 | 5.955e−05 ± 3.6 ± 1.6 ± 2.6 | 5.369e−05 ± 3.6 ± 1.2 ± 1.6 | 5.514e−05 ± 3.6 ± 1.2 ± 1.6 | 5.579e−05 ± 3.6 ± 1.2 ± 1.7 | 5.744e−05 ± 2.6 ± 1.0 ± 1.5 |
200.0–900.0 | 1.803e−06 ± 5.4 ± 1.8 ± 3.7 | 1.818e−06 ± 5.4 ± 1.8 ± 3.7 | 1.692e−06 ± 5.2 ± 1.7 ± 2.4 | 1.745e−06 ± 5.2 ± 1.7 ± 2.4 | 1.747e−06 ± 5.2 ± 1.7 ± 2.5 | 1.765e−06 ± 3.8 ± 1.2 ± 2.2 |
Table 26.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
45.0–55.0 | 2.720e−02 ± 1.9 ± 1.4 ± 2.3 | 2.719e−02 ± 1.9 ± 1.4 ± 2.3 | 2.820e−02 ± 1.3 ± 0.3 ± 0.7 | 2.815e−02 ± 1.3 ± 0.3 ± 0.7 | 2.807e−02 ± 1.3 ± 0.3 ± 1.3 | 2.792e−02 ± 1.1 ± 0.4 ± 1.1 |
55.0–65.0 | 2.137e−02 ± 2.3 ± 1.6 ± 1.6 | 2.140e−02 ± 2.3 ± 1.6 ± 1.8 | 2.166e−02 ± 1.6 ± 0.5 ± 0.5 | 2.156e−02 ± 1.6 ± 0.5 ± 0.5 | 2.158e−02 ± 1.6 ± 0.5 ± 0.7 | 2.150e−02 ± 1.3 ± 0.5 ± 0.8 |
65.0–75.0 | 1.526e−02 ± 2.6 ± 2.7 ± 2.9 | 1.526e−02 ± 2.6 ± 2.7 ± 3.0 | 1.534e−02 ± 1.9 ± 0.5 ± 0.6 | 1.532e−02 ± 1.9 ± 0.5 ± 0.6 | 1.538e−02 ± 1.9 ± 0.5 ± 1.3 | 1.534e−02 ± 1.6 ± 0.7 ± 1.2 |
75.0–85.0 | 1.014e−02 ± 3.2 ± 1.4 ± 1.9 | 1.014e−02 ± 3.2 ± 1.4 ± 2.1 | 1.038e−02 ± 2.3 ± 0.7 ± 1.1 | 1.042e−02 ± 2.3 ± 0.7 ± 1.1 | 1.044e−02 ± 2.3 ± 0.7 ± 1.1 | 1.030e−02 ± 1.9 ± 0.7 ± 1.1 |
85.0–105.0 | 6.223e−03 ± 2.5 ± 1.1 ± 2.0 | 6.239e−03 ± 2.5 ± 1.1 ± 2.1 | 5.958e−03 ± 2.1 ± 0.6 ± 1.1 | 5.974e−03 ± 2.1 ± 0.6 ± 1.1 | 5.974e−03 ± 2.1 ± 0.6 ± 1.4 | 6.042e−03 ± 1.6 ± 0.6 ± 1.3 |
105.0–150.0 | 2.116e−03 ± 2.7 ± 1.0 ± 2.2 | 2.106e−03 ± 2.7 ± 1.0 ± 2.3 | 2.007e−03 ± 2.4 ± 0.7 ± 1.4 | 2.023e−03 ± 2.4 ± 0.7 ± 1.4 | 2.027e−03 ± 2.4 ± 0.7 ± 1.4 | 2.044e−03 ± 1.8 ± 0.6 ± 1.3 |
150.0–200.0 | 5.489e−04 ± 4.7 ± 1.9 ± 3.5 | 5.472e−04 ± 4.7 ± 1.9 ± 3.7 | 4.873e−04 ± 4.6 ± 1.7 ± 2.5 | 4.940e−04 ± 4.6 ± 1.7 ± 2.5 | 4.897e−04 ± 4.6 ± 1.7 ± 2.6 | 5.105e−04 ± 3.3 ± 1.2 ± 2.3 |
200.0–900.0 | 1.888e−05 ± 9.6 ± 3.0 ± 4.6 | 1.880e−05 ± 9.6 ± 3.0 ± 4.9 | 1.467e−05 ± 7.1 ± 1.9 ± 3.4 | 1.460e−05 ± 7.1 ± 1.9 ± 3.4 | 1.448e−05 ± 7.1 ± 1.9 ± 4.3 | 1.574e−05 ± 5.7 ± 1.6 ± 3.5 |
Table 27.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
45.0–55.0 | 2.771e−02 ± 2.3 ± 0.9 ± 2.2 | 2.745e−02 ± 2.3 ± 0.9 ± 2.4 | 2.775e−02 ± 1.6 ± 0.6 ± 1.1 | 2.766e−02 ± 1.6 ± 0.6 ± 1.1 | 2.750e−02 ± 1.6 ± 0.6 ± 1.4 | 2.751e−02 ± 1.3 ± 0.5 ± 1.3 |
55.0–65.0 | 2.081e−02 ± 2.7 ± 1.4 ± 1.8 | 2.085e−02 ± 2.7 ± 1.4 ± 1.8 | 2.122e−02 ± 1.9 ± 0.7 ± 0.9 | 2.114e−02 ± 1.9 ± 0.7 ± 0.9 | 2.134e−02 ± 1.9 ± 0.7 ± 1.3 | 2.122e−02 ± 1.6 ± 0.6 ± 1.1 |
65.0–75.0 | 1.441e−02 ± 3.1 ± 1.3 ± 2.3 | 1.447e−02 ± 3.1 ± 1.3 ± 2.3 | 1.475e−02 ± 2.4 ± 1.0 ± 1.5 | 1.480e−02 ± 2.4 ± 1.0 ± 1.5 | 1.479e−02 ± 2.4 ± 1.0 ± 1.6 | 1.468e−02 ± 1.9 ± 0.8 ± 1.3 |
75.0–85.0 | 1.048e−02 ± 3.7 ± 1.7 ± 3.1 | 1.052e−02 ± 3.7 ± 1.7 ± 3.1 | 1.012e−02 ± 2.9 ± 1.3 ± 2.0 | 1.010e−02 ± 2.9 ± 1.3 ± 2.0 | 1.014e−02 ± 2.9 ± 1.3 ± 2.0 | 1.027e−02 ± 2.3 ± 1.0 ± 1.7 |
85.0–105.0 | 6.007e−03 ± 3.0 ± 1.4 ± 3.4 | 6.029e−03 ± 3.0 ± 1.4 ± 3.4 | 6.245e−03 ± 2.5 ± 1.2 ± 1.9 | 6.240e−03 ± 2.5 ± 1.2 ± 1.9 | 6.245e−03 ± 2.5 ± 1.2 ± 2.0 | 6.140e−03 ± 1.9 ± 0.9 ± 1.9 |
105.0–150.0 | 2.236e−03 ± 3.0 ± 1.4 ± 3.9 | 2.247e−03 ± 3.0 ± 1.4 ± 3.9 | 2.176e−03 ± 2.7 ± 1.0 ± 2.1 | 2.201e−03 ± 2.7 ± 1.0 ± 2.1 | 2.191e−03 ± 2.7 ± 1.0 ± 2.2 | 2.199e−03 ± 2.0 ± 0.8 ± 2.1 |
150.0–200.0 | 5.916e−04 ± 5.1 ± 2.4 ± 4.8 | 5.999e−04 ± 5.1 ± 2.4 ± 5.6 | 5.085e−04 ± 5.3 ± 2.3 ± 3.2 | 5.107e−04 ± 5.3 ± 2.3 ± 3.2 | 5.077e−04 ± 5.3 ± 2.3 ± 3.4 | 5.446e−04 ± 3.7 ± 1.6 ± 3.2 |
200.0–900.0 | 2.228e−05 ± 7.0 ± 2.8 ± 5.4 | 2.208e−05 ± 7.0 ± 2.8 ± 6.2 | 1.924e−05 ± 6.9 ± 2.7 ± 3.4 | 1.947e−05 ± 6.9 ± 2.7 ± 3.4 | 1.923e−05 ± 6.9 ± 2.7 ± 3.4 | 2.023e−05 ± 5.0 ± 1.9 ± 3.3 |
Table 28.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
45.0–55.0 | 2.853e−02 ± 2.2 ± 0.6 ± 1.7 | 2.821e−02 ± 2.2 ± 0.6 ± 2.0 | 2.974e−02 ± 1.6 ± 0.5 ± 1.1 | 2.977e−02 ± 1.6 ± 0.5 ± 1.1 | 2.953e−02 ± 1.6 ± 0.5 ± 1.3 | 2.909e−02 ± 1.3 ± 0.4 ± 1.2 |
55.0–65.0 | 2.153e−02 ± 2.6 ± 1.4 ± 1.4 | 2.165e−02 ± 2.7 ± 1.4 ± 1.6 | 2.118e−02 ± 2.0 ± 0.8 ± 1.0 | 2.119e−02 ± 2.0 ± 0.8 ± 1.0 | 2.132e−02 ± 2.0 ± 0.8 ± 1.3 | 2.146e−02 ± 1.6 ± 0.7 ± 1.1 |
65.0–75.0 | 1.517e−02 ± 3.3 ± 1.1 ± 1.6 | 1.529e−02 ± 3.3 ± 1.1 ± 1.7 | 1.412e−02 ± 2.6 ± 1.1 ± 1.3 | 1.405e−02 ± 2.6 ± 1.1 ± 1.3 | 1.410e−02 ± 2.6 ± 1.1 ± 1.3 | 1.452e−02 ± 2.1 ± 0.8 ± 1.1 |
75.0–85.0 | 9.428e−03 ± 4.2 ± 1.5 ± 2.3 | 9.462e−03 ± 4.2 ± 1.5 ± 2.3 | 1.001e−02 ± 3.2 ± 1.2 ± 1.6 | 9.895e−03 ± 3.2 ± 1.2 ± 1.6 | 9.917e−03 ± 3.2 ± 1.2 ± 2.8 | 9.763e−03 ± 2.6 ± 0.9 ± 2.0 |
85.0–105.0 | 5.793e−03 ± 3.4 ± 1.4 ± 2.5 | 5.807e−03 ± 3.4 ± 1.4 ± 2.6 | 5.772e−03 ± 2.9 ± 1.2 ± 1.8 | 5.799e−03 ± 2.9 ± 1.2 ± 1.8 | 5.808e−03 ± 2.9 ± 1.2 ± 2.0 | 5.793e−03 ± 2.2 ± 0.9 ± 1.7 |
105.0–150.0 | 2.114e−03 ± 3.3 ± 1.5 ± 3.0 | 2.118e−03 ± 3.3 ± 1.5 ± 3.0 | 2.028e−03 ± 3.0 ± 1.1 ± 2.4 | 2.042e−03 ± 3.0 ± 1.1 ± 2.4 | 2.053e−03 ± 3.0 ± 1.1 ± 2.4 | 2.076e−03 ± 2.2 ± 0.9 ± 1.9 |
150.0–200.0 | 5.464e−04 ± 5.6 ± 1.7 ± 3.6 | 5.430e−04 ± 5.6 ± 1.7 ± 4.1 | 5.930e−04 ± 5.2 ± 2.3 ± 4.3 | 5.911e−04 ± 5.2 ± 2.3 ± 4.3 | 5.853e−04 ± 5.2 ± 2.3 ± 4.6 | 5.617e−04 ± 3.8 ± 1.4 ± 3.5 |
200.0–900.0 | 2.155e−05 ± 7.7 ± 5.1 ± 6.0 | 2.182e−05 ± 7.7 ± 5.1 ± 6.1 | 1.887e−05 ± 7.7 ± 3.4 ± 7.4 | 1.923e−05 ± 7.7 ± 3.4 ± 7.4 | 1.926e−05 ± 7.7 ± 3.4 ± 7.5 | 2.037e−05 ± 5.4 ± 2.9 ± 5.0 |
Table 29.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 3.886e−02 ± 1.4 ± 0.7 ± 4.5 | 4.361e−02 ± 1.4 ± 0.7 ± 5.2 | 3.680e−02 ± 1.0 ± 0.3 ± 4.4 | 3.927e−02 ± 1.0 ± 0.3 ± 4.4 | 4.420e−02 ± 1.0 ± 0.3 ± 4.8 | 4.347e−02 ± 0.8 ± 0.3 ± 4.4 |
2.0–4.0 | 7.415e−02 ± 1.0 ± 0.5 ± 1.3 | 8.265e−02 ± 1.0 ± 0.5 ± 3.1 | 6.865e−02 ± 0.7 ± 0.3 ± 0.8 | 7.302e−02 ± 0.7 ± 0.3 ± 0.8 | 8.110e−02 ± 0.7 ± 0.3 ± 2.1 | 8.148e−02 ± 0.6 ± 0.3 ± 1.2 |
4.0–6.0 | 6.674e−02 ± 1.0 ± 0.5 ± 1.1 | 7.307e−02 ± 1.0 ± 0.5 ± 2.7 | 6.451e−02 ± 0.7 ± 0.3 ± 0.7 | 6.764e−02 ± 0.7 ± 0.3 ± 0.7 | 7.414e−02 ± 0.7 ± 0.3 ± 1.8 | 7.390e−02 ± 0.6 ± 0.2 ± 1.1 |
6.0–8.0 | 5.417e−02 ± 1.1 ± 0.5 ± 0.9 | 5.822e−02 ± 1.1 ± 0.5 ± 2.0 | 5.296e−02 ± 0.8 ± 0.3 ± 0.8 | 5.484e−02 ± 0.8 ± 0.3 ± 0.8 | 5.885e−02 ± 0.8 ± 0.3 ± 1.5 | 5.877e−02 ± 0.6 ± 0.2 ± 0.9 |
8.0–10.0 | 4.119e−02 ± 1.3 ± 0.5 ± 1.1 | 4.293e−02 ± 1.3 ± 0.5 ± 1.6 | 4.097e−02 ± 0.9 ± 0.4 ± 0.8 | 4.163e−02 ± 0.9 ± 0.4 ± 0.8 | 4.361e−02 ± 0.9 ± 0.4 ± 1.3 | 4.355e−02 ± 0.8 ± 0.3 ± 0.9 |
10.0–13.0 | 3.160e−02 ± 1.1 ± 0.4 ± 1.4 | 3.175e−02 ± 1.1 ± 0.4 ± 2.0 | 3.180e−02 ± 0.8 ± 0.3 ± 0.9 | 3.166e−02 ± 0.8 ± 0.3 ± 0.9 | 3.179e−02 ± 0.8 ± 0.3 ± 1.3 | 3.187e−02 ± 0.6 ± 0.2 ± 1.0 |
13.0–16.0 | 2.289e−02 ± 1.3 ± 0.5 ± 1.5 | 2.152e−02 ± 1.3 ± 0.5 ± 1.9 | 2.374e−02 ± 0.9 ± 0.3 ± 0.9 | 2.283e−02 ± 0.9 ± 0.3 ± 0.9 | 2.137e−02 ± 0.9 ± 0.3 ± 1.6 | 2.148e−02 ± 0.7 ± 0.3 ± 1.0 |
16.0–20.0 | 1.705e−02 ± 1.3 ± 0.5 ± 1.3 | 1.438e−02 ± 1.3 ± 0.5 ± 2.2 | 1.904e−02 ± 0.9 ± 0.3 ± 0.9 | 1.738e−02 ± 0.9 ± 0.3 ± 0.9 | 1.462e−02 ± 0.9 ± 0.3 ± 2.0 | 1.456e−02 ± 0.7 ± 0.2 ± 1.2 |
20.0–25.0 | 1.254e−02 ± 1.2 ± 0.5 ± 1.2 | 9.316e−03 ± 1.2 ± 0.5 ± 1.7 | 1.432e−02 ± 0.8 ± 0.4 ± 1.1 | 1.254e−02 ± 0.8 ± 0.4 ± 1.1 | 9.367e−03 ± 0.8 ± 0.4 ± 3.9 | 9.327e−03 ± 0.7 ± 0.3 ± 1.7 |
25.0–30.0 | 7.907e−03 ± 1.5 ± 0.7 ± 1.5 | 6.033e−03 ± 1.5 ± 0.7 ± 1.7 | 8.560e−03 ± 1.1 ± 0.5 ± 1.2 | 7.862e−03 ± 1.1 ± 0.5 ± 1.2 | 5.972e−03 ± 1.1 ± 0.5 ± 1.5 | 5.999e−03 ± 0.9 ± 0.4 ± 1.1 |
30.0–37.0 | 4.606e−03 ± 1.6 ± 0.8 ± 1.8 | 3.857e−03 ± 1.6 ± 0.8 ± 2.6 | 4.580e−03 ± 1.2 ± 0.6 ± 1.5 | 4.428e−03 ± 1.2 ± 0.6 ± 1.5 | 3.711e−03 ± 1.2 ± 0.6 ± 2.4 | 3.768e−03 ± 1.0 ± 0.5 ± 1.5 |
37.0–45.0 | 2.797e−03 ± 2.0 ± 1.0 ± 2.1 | 2.515e−03 ± 2.0 ± 1.0 ± 2.5 | 2.844e−03 ± 1.5 ± 0.7 ± 2.0 | 2.784e−03 ± 1.5 ± 0.7 ± 2.0 | 2.504e−03 ± 1.5 ± 0.7 ± 2.4 | 2.520e−03 ± 1.2 ± 0.6 ± 1.7 |
45.0–55.0 | 1.915e−03 ± 2.1 ± 1.0 ± 2.3 | 1.781e−03 ± 2.1 ± 1.0 ± 2.7 | 1.859e−03 ± 1.6 ± 0.6 ± 2.0 | 1.819e−03 ± 1.6 ± 0.6 ± 2.0 | 1.670e−03 ± 1.6 ± 0.6 ± 3.3 | 1.712e−03 ± 1.3 ± 0.5 ± 1.9 |
55.0–65.0 | 1.213e−03 ± 2.8 ± 1.2 ± 2.8 | 1.139e−03 ± 2.8 ± 1.2 ± 3.1 | 1.262e−03 ± 2.2 ± 0.8 ± 2.1 | 1.236e−03 ± 2.2 ± 0.8 ± 2.1 | 1.152e−03 ± 2.2 ± 0.8 ± 3.1 | 1.146e−03 ± 1.7 ± 0.7 ± 2.1 |
65.0–75.0 | 8.436e−04 ± 3.4 ± 1.5 ± 3.4 | 7.991e−04 ± 3.4 ± 1.5 ± 3.5 | 8.045e−04 ± 2.8 ± 1.0 ± 2.2 | 7.838e−04 ± 2.8 ± 1.0 ± 2.2 | 7.582e−04 ± 2.8 ± 1.0 ± 2.2 | 7.712e−04 ± 2.2 ± 0.8 ± 2.1 |
75.0–85.0 | 6.112e−04 ± 4.0 ± 1.8 ± 3.8 | 5.812e−04 ± 4.0 ± 1.8 ± 4.4 | 5.686e−04 ± 3.4 ± 1.3 ± 2.5 | 5.533e−04 ± 3.4 ± 1.3 ± 2.5 | 5.292e−04 ± 3.4 ± 1.3 ± 2.9 | 5.473e−04 ± 2.6 ± 1.1 ± 2.5 |
85.0–105.0 | 3.534e−04 ± 3.4 ± 0.9 ± 3.8 | 3.374e−04 ± 3.4 ± 0.9 ± 4.0 | 3.460e−04 ± 2.9 ± 1.0 ± 2.4 | 3.396e−04 ± 2.9 ± 1.0 ± 2.4 | 3.246e−04 ± 2.9 ± 1.0 ± 3.0 | 3.267e−04 ± 2.2 ± 0.7 ± 2.5 |
105.0–150.0 | 1.279e−04 ± 3.5 ± 1.3 ± 4.3 | 1.225e−04 ± 3.5 ± 1.3 ± 4.8 | 1.250e−04 ± 3.1 ± 1.0 ± 2.1 | 1.229e−04 ± 3.1 ± 1.0 ± 2.1 | 1.193e−04 ± 3.1 ± 1.0 ± 2.3 | 1.191e−04 ± 2.4 ± 0.8 ± 2.3 |
150.0–200.0 | 3.507e−05 ± 5.6 ± 1.6 ± 4.4 | 3.436e−05 ± 5.6 ± 1.6 ± 4.4 | 3.548e−05 ± 5.1 ± 1.8 ± 2.4 | 3.488e−05 ± 5.1 ± 1.8 ± 2.4 | 3.385e−05 ± 5.1 ± 1.8 ± 3.3 | 3.363e−05 ± 3.8 ± 1.2 ± 2.3 |
200.0–900.0 | 1.279e−06 ± 7.5 ± 2.3 ± 6.0 | 1.240e−06 ± 7.5 ± 2.3 ± 6.1 | 1.361e−06 ± 6.7 ± 2.6 ± 3.2 | 1.315e−06 ± 6.7 ± 2.6 ± 3.2 | 1.294e−06 ± 6.7 ± 2.6 ± 3.8 | 1.247e−06 ± 5.1 ± 1.8 ± 3.0 |
Table 30.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.608e−02 ± 0.3 ± 0.1 ± 0.9 | 2.677e−02 ± 0.3 ± 0.1 ± 0.9 | 2.568e−02 ± 0.2 ± 0.1 ± 0.9 | 2.626e−02 ± 0.2 ± 0.1 ± 0.9 | 2.696e−02 ± 0.2 ± 0.1 ± 0.9 | 2.669e−02 ± 0.2 ± 0.1 ± 0.5 |
2.0–4.0 | 5.441e−02 ± 0.2 ± 0.1 ± 0.5 | 5.553e−02 ± 0.2 ± 0.1 ± 0.6 | 5.337e−02 ± 0.1 ± 0.1 ± 0.3 | 5.428e−02 ± 0.1 ± 0.1 ± 0.3 | 5.541e−02 ± 0.2 ± 0.1 ± 0.4 | 5.545e−02 ± 0.1 ± 0.1 ± 0.2 |
4.0–6.0 | 5.505e−02 ± 0.2 ± 0.1 ± 0.3 | 5.560e−02 ± 0.2 ± 0.1 ± 0.3 | 5.483e−02 ± 0.1 ± 0.1 ± 0.4 | 5.525e−02 ± 0.1 ± 0.1 ± 0.4 | 5.579e−02 ± 0.1 ± 0.1 ± 0.5 | 5.590e−02 ± 0.1 ± 0.1 ± 0.3 |
6.0–8.0 | 4.831e−02 ± 0.2 ± 0.1 ± 0.4 | 4.831e−02 ± 0.2 ± 0.1 ± 0.5 | 4.856e−02 ± 0.2 ± 0.1 ± 0.2 | 4.851e−02 ± 0.2 ± 0.1 ± 0.2 | 4.851e−02 ± 0.2 ± 0.1 ± 0.6 | 4.847e−02 ± 0.1 ± 0.1 ± 0.3 |
8.0–10.0 | 4.084e−02 ± 0.2 ± 0.1 ± 0.4 | 4.052e−02 ± 0.2 ± 0.1 ± 0.5 | 4.115e−02 ± 0.2 ± 0.1 ± 0.2 | 4.085e−02 ± 0.2 ± 0.1 ± 0.2 | 4.055e−02 ± 0.2 ± 0.1 ± 0.6 | 4.047e−02 ± 0.1 ± 0.1 ± 0.3 |
10.0–12.0 | 3.429e−02 ± 0.2 ± 0.1 ± 0.2 | 3.389e−02 ± 0.2 ± 0.1 ± 0.3 | 3.458e−02 ± 0.2 ± 0.1 ± 0.2 | 3.420e−02 ± 0.2 ± 0.1 ± 0.2 | 3.378e−02 ± 0.2 ± 0.1 ± 0.4 | 3.384e−02 ± 0.1 ± 0.1 ± 0.2 |
12.0–14.0 | 2.881e−02 ± 0.2 ± 0.1 ± 0.3 | 2.838e−02 ± 0.2 ± 0.1 ± 0.3 | 2.919e−02 ± 0.2 ± 0.1 ± 0.2 | 2.878e−02 ± 0.2 ± 0.1 ± 0.2 | 2.835e−02 ± 0.2 ± 0.1 ± 0.3 | 2.838e−02 ± 0.2 ± 0.1 ± 0.2 |
14.0–16.0 | 2.431e−02 ± 0.3 ± 0.1 ± 0.3 | 2.393e−02 ± 0.3 ± 0.1 ± 0.3 | 2.479e−02 ± 0.2 ± 0.1 ± 0.2 | 2.443e−02 ± 0.2 ± 0.1 ± 0.2 | 2.403e−02 ± 0.2 ± 0.1 ± 0.2 | 2.404e−02 ± 0.2 ± 0.1 ± 0.1 |
16.0–18.0 | 2.076e−02 ± 0.3 ± 0.1 ± 0.2 | 2.041e−02 ± 0.3 ± 0.1 ± 0.2 | 2.109e−02 ± 0.2 ± 0.1 ± 0.2 | 2.077e−02 ± 0.2 ± 0.1 ± 0.2 | 2.042e−02 ± 0.2 ± 0.1 ± 0.2 | 2.043e−02 ± 0.2 ± 0.1 ± 0.1 |
18.0–20.0 | 1.782e−02 ± 0.3 ± 0.2 ± 0.3 | 1.755e−02 ± 0.3 ± 0.2 ± 0.3 | 1.805e−02 ± 0.3 ± 0.1 ± 0.2 | 1.781e−02 ± 0.3 ± 0.1 ± 0.2 | 1.754e−02 ± 0.3 ± 0.1 ± 0.2 | 1.756e−02 ± 0.2 ± 0.1 ± 0.2 |
20.0–22.5 | 1.510e−02 ± 0.3 ± 0.1 ± 0.3 | 1.490e−02 ± 0.3 ± 0.1 ± 0.3 | 1.520e−02 ± 0.3 ± 0.1 ± 0.3 | 1.503e−02 ± 0.3 ± 0.1 ± 0.3 | 1.485e−02 ± 0.3 ± 0.1 ± 0.3 | 1.488e−02 ± 0.2 ± 0.1 ± 0.2 |
22.5–25.0 | 1.259e−02 ± 0.3 ± 0.2 ± 0.4 | 1.247e−02 ± 0.3 ± 0.2 ± 0.4 | 1.275e−02 ± 0.3 ± 0.1 ± 0.2 | 1.266e−02 ± 0.3 ± 0.1 ± 0.2 | 1.253e−02 ± 0.3 ± 0.1 ± 0.2 | 1.251e−02 ± 0.2 ± 0.1 ± 0.2 |
25.0–27.5 | 1.072e−02 ± 0.4 ± 0.2 ± 0.4 | 1.065e−02 ± 0.4 ± 0.2 ± 0.4 | 1.074e−02 ± 0.3 ± 0.1 ± 0.3 | 1.068e−02 ± 0.3 ± 0.1 ± 0.3 | 1.061e−02 ± 0.3 ± 0.1 ± 0.3 | 1.062e−02 ± 0.2 ± 0.1 ± 0.2 |
27.5–30.0 | 9.172e−03 ± 0.4 ± 0.2 ± 0.5 | 9.124e−03 ± 0.4 ± 0.2 ± 0.5 | 9.089e−03 ± 0.3 ± 0.1 ± 0.3 | 9.064e−03 ± 0.3 ± 0.1 ± 0.3 | 9.014e−03 ± 0.3 ± 0.1 ± 0.3 | 9.062e−03 ± 0.3 ± 0.1 ± 0.2 |
30.0–33.0 | 7.677e−03 ± 0.4 ± 0.2 ± 0.4 | 7.657e−03 ± 0.4 ± 0.2 ± 0.4 | 7.721e−03 ± 0.3 ± 0.1 ± 0.3 | 7.709e−03 ± 0.3 ± 0.1 ± 0.3 | 7.687e−03 ± 0.3 ± 0.1 ± 0.3 | 7.677e−03 ± 0.2 ± 0.1 ± 0.2 |
33.0–36.0 | 6.558e−03 ± 0.4 ± 0.2 ± 0.5 | 6.552e−03 ± 0.4 ± 0.2 ± 0.5 | 6.536e−03 ± 0.3 ± 0.2 ± 0.3 | 6.541e−03 ± 0.3 ± 0.2 ± 0.3 | 6.536e−03 ± 0.3 ± 0.2 ± 0.4 | 6.534e−03 ± 0.3 ± 0.1 ± 0.2 |
36.0–39.0 | 5.537e−03 ± 0.4 ± 0.2 ± 0.6 | 5.536e−03 ± 0.4 ± 0.2 ± 0.6 | 5.476e−03 ± 0.4 ± 0.2 ± 0.3 | 5.487e−03 ± 0.4 ± 0.2 ± 0.3 | 5.491e−03 ± 0.4 ± 0.2 ± 0.3 | 5.507e−03 ± 0.3 ± 0.1 ± 0.2 |
39.0–42.0 | 4.745e−03 ± 0.5 ± 0.2 ± 0.6 | 4.754e−03 ± 0.5 ± 0.2 ± 0.6 | 4.712e−03 ± 0.4 ± 0.2 ± 0.3 | 4.728e−03 ± 0.4 ± 0.2 ± 0.3 | 4.734e−03 ± 0.4 ± 0.2 ± 0.3 | 4.738e−03 ± 0.3 ± 0.1 ± 0.2 |
42.0–45.0 | 4.085e−03 ± 0.5 ± 0.3 ± 0.7 | 4.100e−03 ± 0.5 ± 0.3 ± 0.7 | 4.066e−03 ± 0.4 ± 0.2 ± 0.3 | 4.086e−03 ± 0.4 ± 0.2 ± 0.3 | 4.098e−03 ± 0.4 ± 0.2 ± 0.3 | 4.094e−03 ± 0.3 ± 0.2 ± 0.3 |
45.0–48.0 | 3.557e−03 ± 0.6 ± 0.3 ± 0.7 | 3.570e−03 ± 0.6 ± 0.3 ± 0.7 | 3.519e−03 ± 0.5 ± 0.2 ± 0.4 | 3.541e−03 ± 0.5 ± 0.2 ± 0.4 | 3.555e−03 ± 0.5 ± 0.2 ± 0.4 | 3.558e−03 ± 0.4 ± 0.2 ± 0.3 |
48.0–51.0 | 3.060e−03 ± 0.6 ± 0.3 ± 0.7 | 3.072e−03 ± 0.6 ± 0.3 ± 0.8 | 3.009e−03 ± 0.5 ± 0.2 ± 0.4 | 3.027e−03 ± 0.5 ± 0.2 ± 0.4 | 3.041e−03 ± 0.5 ± 0.2 ± 0.5 | 3.050e−03 ± 0.4 ± 0.2 ± 0.3 |
51.0–54.0 | 2.706e−03 ± 0.6 ± 0.4 ± 0.9 | 2.720e−03 ± 0.6 ± 0.4 ± 0.9 | 2.640e−03 ± 0.6 ± 0.2 ± 0.5 | 2.660e−03 ± 0.5 ± 0.2 ± 0.5 | 2.676e−03 ± 0.5 ± 0.2 ± 0.5 | 2.690e−03 ± 0.4 ± 0.2 ± 0.4 |
54.0–57.0 | 2.358e−03 ± 0.7 ± 0.4 ± 0.9 | 2.378e−03 ± 0.7 ± 0.4 ± 0.9 | 2.302e−03 ± 0.6 ± 0.2 ± 0.4 | 2.322e−03 ± 0.6 ± 0.2 ± 0.4 | 2.339e−03 ± 0.6 ± 0.2 ± 0.4 | 2.350e−03 ± 0.5 ± 0.2 ± 0.3 |
57.0–61.0 | 2.011e−03 ± 0.6 ± 0.3 ± 0.8 | 2.025e−03 ± 0.6 ± 0.3 ± 0.8 | 2.017e−03 ± 0.5 ± 0.3 ± 0.4 | 2.036e−03 ± 0.5 ± 0.3 ± 0.4 | 2.051e−03 ± 0.5 ± 0.3 ± 0.4 | 2.038e−03 ± 0.4 ± 0.2 ± 0.3 |
61.0–65.0 | 1.702e−03 ± 0.7 ± 0.3 ± 1.0 | 1.715e−03 ± 0.7 ± 0.3 ± 1.0 | 1.665e−03 ± 0.6 ± 0.2 ± 0.4 | 1.683e−03 ± 0.6 ± 0.2 ± 0.4 | 1.698e−03 ± 0.6 ± 0.2 ± 0.4 | 1.704e−03 ± 0.5 ± 0.2 ± 0.4 |
65.0–70.0 | 1.440e−03 ± 0.6 ± 0.3 ± 1.0 | 1.454e−03 ± 0.6 ± 0.3 ± 1.0 | 1.400e−03 ± 0.6 ± 0.2 ± 0.4 | 1.417e−03 ± 0.6 ± 0.2 ± 0.4 | 1.429e−03 ± 0.6 ± 0.2 ± 0.4 | 1.438e−03 ± 0.4 ± 0.2 ± 0.4 |
70.0–75.0 | 1.138e−03 ± 0.7 ± 0.3 ± 1.2 | 1.149e−03 ± 0.7 ± 0.3 ± 1.2 | 1.131e−03 ± 0.7 ± 0.3 ± 0.5 | 1.144e−03 ± 0.7 ± 0.3 ± 0.5 | 1.156e−03 ± 0.7 ± 0.3 ± 0.6 | 1.151e−03 ± 0.5 ± 0.2 ± 0.5 |
75.0–80.0 | 9.443e−04 ± 0.8 ± 0.4 ± 1.1 | 9.550e−04 ± 0.8 ± 0.4 ± 1.1 | 9.420e−04 ± 0.7 ± 0.3 ± 0.6 | 9.545e−04 ± 0.7 ± 0.3 ± 0.6 | 9.645e−04 ± 0.7 ± 0.3 ± 0.6 | 9.582e−04 ± 0.5 ± 0.3 ± 0.5 |
80.0–85.0 | 7.761e−04 ± 0.9 ± 0.5 ± 1.2 | 7.837e−04 ± 0.9 ± 0.5 ± 1.2 | 7.617e−04 ± 0.8 ± 0.4 ± 0.7 | 7.721e−04 ± 0.8 ± 0.4 ± 0.7 | 7.808e−04 ± 0.8 ± 0.4 ± 0.7 | 7.810e−04 ± 0.6 ± 0.3 ± 0.5 |
85.0–95.0 | 5.740e−04 ± 0.6 ± 0.3 ± 0.9 | 5.794e−04 ± 0.6 ± 0.3 ± 0.9 | 5.691e−04 ± 0.6 ± 0.2 ± 0.5 | 5.771e−04 ± 0.6 ± 0.2 ± 0.5 | 5.826e−04 ± 0.6 ± 0.2 ± 0.5 | 5.811e−04 ± 0.4 ± 0.2 ± 0.4 |
95.0–105.0 | 4.122e−04 ± 0.7 ± 0.3 ± 1.0 | 4.158e−04 ± 0.7 ± 0.3 ± 1.0 | 3.992e−04 ± 0.7 ± 0.2 ± 0.5 | 4.044e−04 ± 0.7 ± 0.2 ± 0.5 | 4.082e−04 ± 0.7 ± 0.2 ± 0.5 | 4.114e−04 ± 0.5 ± 0.2 ± 0.4 |
105.0–125.0 | 2.591e−04 ± 0.6 ± 0.3 ± 0.9 | 2.612e−04 ± 0.6 ± 0.3 ± 0.9 | 2.523e−04 ± 0.6 ± 0.2 ± 0.4 | 2.562e−04 ± 0.6 ± 0.2 ± 0.4 | 2.584e−04 ± 0.6 ± 0.2 ± 0.4 | 2.593e−04 ± 0.4 ± 0.2 ± 0.4 |
125.0–150.0 | 1.337e−04 ± 0.7 ± 0.3 ± 0.9 | 1.347e−04 ± 0.7 ± 0.3 ± 0.9 | 1.316e−04 ± 0.7 ± 0.2 ± 0.4 | 1.337e−04 ± 0.7 ± 0.2 ± 0.4 | 1.347e−04 ± 0.7 ± 0.2 ± 0.4 | 1.346e−04 ± 0.5 ± 0.2 ± 0.4 |
150.0–175.0 | 6.769e−05 ± 1.0 ± 0.4 ± 1.0 | 6.816e−05 ± 1.0 ± 0.4 ± 1.0 | 6.974e−05 ± 1.0 ± 0.4 ± 0.5 | 7.115e−05 ± 1.0 ± 0.4 ± 0.5 | 7.163e−05 ± 1.0 ± 0.4 ± 0.6 | 6.980e−05 ± 0.7 ± 0.3 ± 0.5 |
175.0–200.0 | 3.840e−05 ± 1.3 ± 0.5 ± 1.3 | 3.865e−05 ± 1.3 ± 0.5 ± 1.3 | 3.668e−05 ± 1.5 ± 0.7 ± 0.8 | 3.744e−05 ± 1.5 ± 0.7 ± 0.8 | 3.769e−05 ± 1.5 ± 0.7 ± 0.8 | 3.809e−05 ± 1.0 ± 0.4 ± 0.6 |
200.0–250.0 | 1.753e−05 ± 1.3 ± 0.5 ± 1.5 | 1.766e−05 ± 1.3 ± 0.5 ± 1.6 | 1.725e−05 ± 1.4 ± 0.6 ± 0.8 | 1.762e−05 ± 1.4 ± 0.6 ± 0.8 | 1.772e−05 ± 1.4 ± 0.6 ± 0.8 | 1.769e−05 ± 0.9 ± 0.4 ± 0.7 |
250.0–300.0 | 6.578e−06 ± 2.1 ± 0.7 ± 2.2 | 6.591e−06 ± 2.1 ± 0.7 ± 2.2 | 6.569e−06 ± 2.4 ± 1.1 ± 1.4 | 6.756e−06 ± 2.4 ± 1.1 ± 1.4 | 6.793e−06 ± 2.4 ± 1.1 ± 1.5 | 6.658e−06 ± 1.6 ± 0.6 ± 1.0 |
300.0–350.0 | 2.813e−06 ± 3.3 ± 1.2 ± 2.8 | 2.814e−06 ± 3.3 ± 1.2 ± 2.8 | 2.653e−06 ± 4.2 ± 2.0 ± 3.1 | 2.735e−06 ± 4.2 ± 2.0 ± 3.1 | 2.747e−06 ± 4.2 ± 2.0 ± 3.1 | 2.789e−06 ± 2.6 ± 1.1 ± 1.6 |
350.0–400.0 | 1.194e−06 ± 4.9 ± 1.7 ± 2.2 | 1.207e−06 ± 4.9 ± 1.7 ± 2.3 | 1.172e−06 ± 6.6 ± 3.1 ± 4.8 | 1.228e−06 ± 6.6 ± 3.1 ± 4.8 | 1.227e−06 ± 6.6 ± 3.1 ± 4.9 | 1.217e−06 ± 4.0 ± 1.5 ± 2.0 |
400.0–470.0 | 5.587e−07 ± 6.2 ± 1.9 ± 4.6 | 5.537e−07 ± 6.2 ± 1.9 ± 4.8 | 5.578e−07 ± 8.0 ± 3.9 ± 4.6 | 5.711e−07 ± 8.0 ± 3.9 ± 4.6 | 5.698e−07 ± 8.0 ± 3.9 ± 4.6 | 5.565e−07 ± 4.9 ± 1.8 ± 2.6 |
470.0–550.0 | 1.882e−07 ± 9.6 ± 2.6 ± 4.1 | 1.868e−07 ± 9.6 ± 2.6 ± 4.1 | 2.055e−07 ± 12.7 ± 7.5 ± 9.0 | 2.118e−07 ± 12.7 ± 7.5 ± 9.0 | 2.113e−07 ± 12.7 ± 7.5 ± 9.1 | 1.920e−07 ± 7.7 ± 2.9 ± 3.5 |
550.0–650.0 | 6.450e−08 ± 14.1 ± 3.8 ± 6.6 | 6.470e−08 ± 14.1 ± 3.8 ± 6.6 | 8.090e−08 ± 17.4 ± 10.2 ± 16.6 | 8.540e−08 ± 17.4 ± 10.2 ± 16.6 | 8.560e−08 ± 17.4 ± 10.2 ± 16.9 | 7.065e−08 ± 11.1 ± 4.1 ± 5.8 |
650.0–900.0 | 1.500e−08 ± 17.9 ± 4.8 ± 7.8 | 1.530e−08 ± 17.9 ± 4.8 ± 8.3 | 6.800e−09 ± 42.2 ± 20.3 ± 25.7 | 7.000e−09 ± 42.2 ± 20.3 ± 25.7 | 6.900e−09 ± 42.2 ± 20.3 ± 25.7 | 1.386e−08 ± 16.0 ± 5.9 ± 7.3 |
Table 31.
Bin | ┬▒ Statistical [%] ┬▒ Uncorrelated systematic [%] ┬▒ Correlated systematic [%] | |||||
---|---|---|---|---|---|---|
Electron channel | Muon channel | Combination | ||||
Dressed | Born | Bare | Dressed | Born | Born | |
0.0–2.0 | 2.181e−02 ± 3.0 ± 1.3 ± 4.4 | 2.228e−02 ± 3.0 ± 1.3 ± 4.4 | 1.967e−02 ± 2.7 ± 1.4 ± 5.0 | 2.023e−02 ± 2.7 ± 1.4 ± 5.0 | 2.071e−02 ± 2.7 ± 1.4 ± 5.1 | 2.130e−02 ± 2.0 ± 1.0 ± 4.3 |
2.0–4.0 | 4.492e−02 ± 1.9 ± 0.9 ± 1.8 | 4.572e−02 ± 1.9 ± 0.9 ± 1.8 | 4.413e−02 ± 1.7 ± 0.8 ± 1.2 | 4.488e−02 ± 1.7 ± 0.8 ± 1.2 | 4.597e−02 ± 1.7 ± 0.8 ± 1.2 | 4.563e−02 ± 1.2 ± 0.6 ± 1.1 |
4.0–6.0 | 4.604e−02 ± 1.9 ± 0.9 ± 1.4 | 4.659e−02 ± 1.9 ± 0.9 ± 1.4 | 4.842e−02 ± 1.6 ± 0.9 ± 1.1 | 4.882e−02 ± 1.6 ± 0.9 ± 1.1 | 4.949e−02 ± 1.6 ± 0.9 ± 1.5 | 4.826e−02 ± 1.2 ± 0.6 ± 1.0 |
6.0–8.0 | 4.296e−02 ± 1.9 ± 0.9 ± 1.3 | 4.332e−02 ± 1.9 ± 0.9 ± 1.3 | 4.296e−02 ± 1.6 ± 0.8 ± 1.4 | 4.326e−02 ± 1.6 ± 0.8 ± 1.4 | 4.336e−02 ± 1.6 ± 0.8 ± 1.4 | 4.306e−02 ± 1.2 ± 0.6 ± 1.0 |
8.0–10.0 | 3.850e−02 ± 2.1 ± 1.0 ± 1.4 | 3.849e−02 ± 2.1 ± 1.0 ± 1.5 | 3.792e−02 ± 1.9 ± 0.8 ± 1.6 | 3.804e−02 ± 1.9 ± 0.8 ± 1.6 | 3.818e−02 ± 1.9 ± 0.8 ± 1.6 | 3.838e−02 ± 1.4 ± 0.6 ± 1.1 |
10.0–13.0 | 3.035e−02 ± 1.9 ± 0.9 ± 1.2 | 3.029e−02 ± 1.9 ± 0.9 ± 1.3 | 3.097e−02 ± 1.7 ± 0.8 ± 1.0 | 3.081e−02 ± 1.7 ± 0.8 ± 1.0 | 3.067e−02 ± 1.7 ± 0.8 ± 1.5 | 3.049e−02 ± 1.3 ± 0.6 ± 1.1 |
13.0–16.0 | 2.439e−02 ± 2.2 ± 0.9 ± 1.4 | 2.430e−02 ± 2.2 ± 0.9 ± 1.4 | 2.572e−02 ± 1.8 ± 0.8 ± 1.1 | 2.552e−02 ± 1.8 ± 0.8 ± 1.1 | 2.537e−02 ± 1.8 ± 0.8 ± 1.1 | 2.479e−02 ± 1.4 ± 0.6 ± 0.9 |
16.0–20.0 | 1.889e−02 ± 2.0 ± 0.9 ± 1.4 | 1.873e−02 ± 2.0 ± 0.9 ± 1.4 | 1.974e−02 ± 1.8 ± 0.8 ± 1.0 | 1.956e−02 ± 1.8 ± 0.8 ± 1.0 | 1.941e−02 ± 1.8 ± 0.8 ± 1.0 | 1.912e−02 ± 1.3 ± 0.6 ± 0.9 |
20.0–25.0 | 1.479e−02 ± 1.9 ± 0.9 ± 1.3 | 1.468e−02 ± 1.9 ± 0.9 ± 1.3 | 1.477e−02 ± 1.7 ± 0.8 ± 1.1 | 1.463e−02 ± 1.7 ± 0.8 ± 1.1 | 1.447e−02 ± 1.7 ± 0.8 ± 1.1 | 1.453e−02 ± 1.3 ± 0.6 ± 0.9 |
25.0–30.0 | 1.076e−02 ± 2.3 ± 1.0 ± 1.5 | 1.067e−02 ± 2.3 ± 1.0 ± 1.7 | 1.096e−02 ± 2.0 ± 0.9 ± 1.2 | 1.084e−02 ± 2.0 ± 0.9 ± 1.2 | 1.074e−02 ± 2.0 ± 0.9 ± 1.3 | 1.074e−02 ± 1.5 ± 0.7 ± 1.1 |
30.0–37.0 | 7.884e−03 ± 2.3 ± 1.2 ± 1.6 | 7.767e−03 ± 2.3 ± 1.2 ± 1.7 | 8.028e−03 ± 1.9 ± 0.6 ± 1.1 | 7.948e−03 ± 1.9 ± 0.6 ± 1.1 | 7.892e−03 ± 1.9 ± 0.6 ± 1.2 | 7.864e−03 ± 1.5 ± 0.6 ± 1.1 |
37.0–45.0 | 5.685e−03 ± 2.3 ± 1.2 ± 1.5 | 5.620e−03 ± 2.3 ± 1.2 ± 1.5 | 5.688e−03 ± 2.1 ± 0.8 ± 1.5 | 5.628e−03 ± 2.1 ± 0.8 ± 1.5 | 5.560e−03 ± 2.1 ± 0.8 ± 1.5 | 5.611e−03 ± 1.6 ± 0.7 ± 1.2 |
45.0–55.0 | 4.160e−03 ± 2.4 ± 1.1 ± 1.8 | 4.130e−03 ± 2.4 ± 1.1 ± 1.8 | 3.590e−03 ± 2.5 ± 1.0 ± 2.3 | 3.573e−03 ± 2.5 ± 1.0 ± 2.3 | 3.540e−03 ± 2.5 ± 1.0 ± 2.3 | 3.842e−03 ± 1.7 ± 0.7 ± 1.6 |
55.0–65.0 | 2.592e−03 ± 3.3 ± 1.2 ± 2.9 | 2.585e−03 ± 3.3 ± 1.2 ± 2.9 | 2.614e−03 ± 3.1 ± 1.2 ± 2.8 | 2.604e−03 ± 3.1 ± 1.2 ± 2.8 | 2.576e−03 ± 3.1 ± 1.2 ± 2.8 | 2.597e−03 ± 2.2 ± 0.9 ± 2.2 |
65.0–75.0 | 1.870e−03 ± 3.9 ± 1.8 ± 3.2 | 1.858e−03 ± 3.9 ± 1.8 ± 3.2 | 1.706e−03 ± 4.2 ± 1.7 ± 4.0 | 1.691e−03 ± 4.2 ± 1.7 ± 4.0 | 1.680e−03 ± 4.2 ± 1.7 ± 4.1 | 1.777e−03 ± 2.9 ± 1.2 ± 2.8 |
75.0–85.0 | 1.267e−03 ± 5.0 ± 2.4 ± 3.8 | 1.248e−03 ± 5.0 ± 2.4 ± 3.9 | 1.322e−03 ± 4.8 ± 2.1 ± 3.7 | 1.325e−03 ± 4.8 ± 2.1 ± 3.7 | 1.309e−03 ± 4.8 ± 2.1 ± 3.7 | 1.279e−03 ± 3.5 ± 1.6 ± 3.2 |
85.0–105.0 | 8.973e−04 ± 3.9 ± 1.2 ± 3.1 | 8.907e−04 ± 3.9 ± 1.2 ± 3.1 | 8.350e−04 ± 3.9 ± 1.2 ± 3.1 | 8.311e−04 ± 3.9 ± 1.2 ± 3.1 | 8.263e−04 ± 3.9 ± 1.2 ± 3.2 | 8.626e−04 ± 2.7 ± 0.9 ± 2.9 |
105.0–150.0 | 3.827e−04 ± 3.6 ± 0.9 ± 2.9 | 3.819e−04 ± 3.6 ± 0.9 ± 2.9 | 3.687e−04 ± 3.5 ± 1.1 ± 2.7 | 3.714e−04 ± 3.5 ± 1.1 ± 2.7 | 3.686e−04 ± 3.5 ± 1.1 ± 2.8 | 3.755e−04 ± 2.5 ± 0.7 ± 2.7 |
150.0–200.0 | 1.226e−04 ± 5.4 ± 2.1 ± 3.1 | 1.222e−04 ± 5.4 ± 2.1 ± 3.2 | 1.118e−04 ± 5.9 ± 2.2 ± 2.8 | 1.139e−04 ± 5.9 ± 2.2 ± 2.8 | 1.120e−04 ± 5.9 ± 2.2 ± 2.8 | 1.168e−04 ± 4.0 ± 1.5 ± 2.3 |
200.0–900.0 | 4.541e−06 ± 7.1 ± 2.0 ± 3.2 | 4.491e−06 ± 7.1 ± 2.0 ± 3.2 | 4.602e−06 ± 6.5 ± 1.7 ± 2.3 | 4.718e−06 ± 6.5 ± 1.7 ± 2.3 | 4.681e−06 ± 6.5 ± 1.7 ± 2.6 | 4.530e−06 ± 4.8 ± 1.3 ± 2.2 |
Footnotes
ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,) are used in the transverse plane, being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle as . The rapidity of a system, y, is defined in terms of its energy, E, and its longitudinal momentum, , as . Angular separations between particles or reconstructed objects are measured in space using .
We thank Dr M. Guzzi (University of Manchester, UK) for many useful discussions and for helping us to produce the predictions from ResBos to which we compare our measurements.
Following Ref. [49] the central value of the non-perturbative parameter GeV is chosen in ResBos. The central values of the QCD scale parameters of the CSS formalism used in ResBos are chosen to be and , where is the EulerΓÇôMascheroni constant. In assigning uncertainties to the predictions of ResBos the value of is varied over the range GeV. The QCD scale uncertainties for the ResBos predictions are evaluated by varying independently the scale parameters and up and down by a factor of two relative to the central values given above. The relationship is maintained throughout. The overall QCD scale uncertainty is taken as the quadrature sum of the changes in the predicted distribution resulting from the variations in and . PDF uncertainties are evaluated using the CT14 NNLO PDF error sets.
The NLO electroweak virtual corrections are provided as fractional difference of calculations performed at the order compared to . This fractional difference is then applied directly to the QCD calculation from Dynnlo following the prescription of Ref. [67]. The nominal renormalisation () and factorisation () scales are implemented to take dynamically the value of . For the evaluation of scale uncertainties the scales and are varied simultaneously by a factor of two up and down.
For small values of the following approximate relationship holds . Here  [68] is one of the two orthogonal components of , which explains the factor of in scaling from to . For events at the Z-boson mass peak we take .
References
- 1.Collins JC, Soper DE, Sterman GF. Transverse momentum distribution in DrellΓÇôYan pair and W and Z Boson production. Nucl. Phys. B. 1985;250:199. doi: 10.1016/0550-3213(85)90479-1. [DOI] [Google Scholar]
- 2.Melnikov K, Petriello F. Electroweak gauge boson production at hadron colliders through O(alpha(s)**2) Phys. Rev. D. 2006;74:114017. doi: 10.1103/PhysRevD.74.114017. [DOI] [Google Scholar]
- 3.Li Y, Petriello F. Combining QCD and electroweak corrections to dilepton production in FEWZ. Phys. Rev. D. 2012;86:094034. doi: 10.1103/PhysRevD.86.094034. [DOI] [Google Scholar]
- 4.Catani S, et al. Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 2009;103:082001. doi: 10.1103/PhysRevLett.103.082001. [DOI] [PubMed] [Google Scholar]
- 5.Corcella G, et al. HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) JHEP. 2001;0101:010. doi: 10.1088/1126-6708/2001/01/010. [DOI] [Google Scholar]
- 6.T. Sj├╢strand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006). doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175 [hep-ph]
- 7.Klasen M, Brandt M. Parton densities from LHC vector boson production at small and large transverse momenta. Phys. Rev. D. 2013;88:054002. doi: 10.1103/PhysRevD.88.054002. [DOI] [Google Scholar]
- 8.Dittmaier S, Huss A, Schwinn C. Mixed QCD-electroweak corrections to Drell-Yan processes in the resonance region: pole approximation and non-factorizable corrections. Nucl. Phys. B. 2014;885:318–372. doi: 10.1016/j.nuclphysb.2014.05.027. [DOI] [Google Scholar]
- 9.T. Affolder et al. (CDF Collaboration), The transverse momentum and total cross section of pairs in the boson region from collisions at TeV. Phys. Rev. Lett. 84, 845ΓÇô850 (2000). doi:10.1103/PhysRevLett.84.845. arXiv:hep-ex/0001021 [hep-ex] [DOI] [PubMed]
- 10.B. Abbott et al. (D0 Collaboration), Differential production cross section of bosons as a function of transverse momentum at TeV. Phys. Rev. Lett. 84, 2792ΓÇô2797 (2000). doi:10.1103/PhysRevLett.84.2792. arXiv:hep-ex/9909020 [hep-ex] [DOI] [PubMed]
- 11.V. Abazov et al. (D0 Collaboration), Measurement of the shape of the boson transverse momentum distribution in events produced at = 1.96-TeV. Phys. Rev. Lett. 100, 102002 (2008). doi:10.1103/PhysRevLett.100.102002. arXiv:0712.0803 [hep-ex] [DOI] [PubMed]
- 12.V. Abazov et al. (D0 Collaboration), Measurement of the normalized transverse momentum distribution in collisions at TeV. Phys. Lett. B 693, 522ΓÇô530 (2010). doi:10.1016/j.physletb.2010.09.012. arXiv:1006.0618 [hep-ex]
- 13.ATLAS Collaboration, Measurement of the transverse momentum distribution of bosons in protonΓÇôproton collisions at TeV with the ATLAS detector. Phys. Lett. B 705, 415ΓÇô434 (2011). doi:10.1016/j.physletb.2011.10.018. arXiv:1107.2381 [hep-ex]
- 14.ATLAS Collaboration, Measurement of the boson transverse momentum distribution in collisions at = 7 TeV with the ATLAS detector. JHEP 1409, 145 (2014). doi:10.1007/JHEP09(2014)145. arXiv:1406.3660 [hep-ex]
- 15.CMS Collaboration, Measurement of the rapidity and transverse momentum distributions of Bosons in collisions at TeV. Phys. Rev. D 85, 032002 (2012). doi:10.1103/PhysRevD.85.032002. arXiv:1110.4973 [hep-ex]
- 16.CMS Collaboration, Measurement of the boson differential cross section in transverse momentum and rapidity in protonΓÇôproton collisions at 8 TeV. Phys. Lett. B 749, 187ΓÇô209 (2015). doi:10.1016/j.physletb.2015.07.065. arXiv:1504.03511 [hep-ex]
- 17.R. Aaij et al. (LHCb Collaboration), Measurement of the cross-section for production in collisions at TeV. Phys. Lett. B 749, 187ΓÇô209 (2015). doi:10.1007/JHEP02(2013)106. arXiv:1504.03511 [hep-ex]
- 18.R. Aaij et al. (LHCb Collaboration), Measurement of the forward boson production cross-section in collisions at TeV. JHEP 1508, 039 (2015). doi:10.1007/JHEP08(2015)039. arXiv:1505.07024 [hep-ex]
- 19.R. Aaij et al. (LHCb Collaboration), Measurement of forward production at TeV. JHEP 1505, 109 (2015). doi:10.1007/JHEP05(2015)109. arXiv:1503.00963 [hep-ex]
- 20.Banfi A, et al. Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders. Eur. Phys. J. C. 2011;71:1600. doi: 10.1140/epjc/s10052-011-1600-y. [DOI] [Google Scholar]
- 21.V. Abazov et al. (D0 Collaboration), Precise study of the boson transverse momentum distribution in collisions using a novel technique. Phys. Rev. Lett. 106, 122001 (2011). doi:10.1103/PhysRevLett.106.122001. arXiv:1010.0262 [hep-ex] [DOI] [PubMed]
- 22.ATLAS Collaboration, Measurement of angular correlations in DrellΓÇôYan lepton pairs to probe boson transverse momentum at TeV with the ATLAS detector. Phys. Lett. B 720, 32ΓÇô51 (2013). doi:10.1016/j.physletb.2013.01.054. arXiv:1211.6899 [hep-ex]
- 23.V. Abazov et al. (D0 Collaboration), Measurement of the distribution of muon pairs with masses between 30 and 500 GeV in 10.4 fb of collisions. Phys. Rev. D 91, 072002 (2015). doi:10.1103/PhysRevD.91.072002. arXiv:1410.8052 [hep-ex]
- 24.ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. J. Instrum. 3, S08003 (2008). doi:10.1088/1748-0221/3/08/S08003
- 25.ATLAS Collaboration, Performance of the ATLAS trigger system in 2010. Eur. Phys. J. C 72, 1849 (2012). doi:10.1140/epjc/s10052-011-1849-1. arXiv:1110.1530 [hep-ex]
- 26.Alioli S, et al. NLO vector-boson production matched with shower in POWHEG. JHEP. 2008;0807:060. doi: 10.1088/1126-6708/2008/07/060. [DOI] [Google Scholar]
- 27.Alioli S, et al. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
- 28.Gao J, et al. CT10 next-to-next-to-leading order global analysis of QCD. Phys. Rev. D. 2014;89:033009. doi: 10.1103/PhysRevD.89.033009. [DOI] [Google Scholar]
- 29.Sj├╢strand T, Mrenna S, Skands PZ, Brief A. Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008;178:852–867. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
- 30.ATLAS Collaboration, Summary of ATLAS Pythia 8 tunes (2012). https://cds.cern.ch/record/1474107
- 31.P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in and decays. Eur. Phys. J. C 45, 97ΓÇô107 (2006). doi:10.1140/epjc/s2005-02396-4. arXiv:hep-ph/0506026 [hep-ph]
- 32.J. Butterworth, J.R. Forshaw, M. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys. C 72, 637ΓÇô646 (1996). doi:10.1007/s002880050286. arXiv:hep-ph/9601371 [hep-ph]
- 33.T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 0902, 007 (2009). doi:10.1088/1126-6708/2009/02/007. arXiv:0811.4622 [hep-ph]
- 34.Mangano ML, et al. ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP. 2003;0307:001. doi: 10.1088/1126-6708/2003/07/001. [DOI] [Google Scholar]
- 35.Frixione S, Webber BR. Matching NLO QCD computations and parton shower simulations. JHEP. 2002;0206:029. doi: 10.1088/1126-6708/2002/06/029. [DOI] [Google Scholar]
- 36.B.P. Kersevan, E. Richter-Was, The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun. 184, 919ΓÇô985 (2013). doi:10.1016/j.cpc.2012.10.032. arXiv:hep-ph/0405247 [hep-ph]
- 37.M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639–707 (2008). doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883 [hep-ph]
- 38.Vermaseren JAM. Two photon processes at very high-energies. Nucl. Phys. B. 1983;229:347. doi: 10.1016/0550-3213(83)90336-X. [DOI] [Google Scholar]
- 39.Brasse FW, et al. Parametrization of the dependence of total cross sections in the resonance region. Nucl. Phys. B. 1976;110:413. doi: 10.1016/0550-3213(76)90231-5. [DOI] [Google Scholar]
- 40.Suri A, Yennie DR. The space-time phenomenology of photon absorption and inelastic electron scattering. Ann. Phys. 1972;72:243. doi: 10.1016/0003-4916(72)90242-4. [DOI] [Google Scholar]
- 41.A.D. Martin et al., Parton distributions incorporating QED contributions. Eur. Phys. J. C 39, 155ΓÇô161 (2005). doi:10.1140/epjc/s2004-02088-7. arXiv:hep-ph/0411040 [hep-ph]
- 42.ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823ΓÇô874 (2010). doi:10.1140/epjc/s10052-010-1429-9. arXiv:1005.4568 [physics.ins-det]
- 43.Agostinelli S, et al. GEANT4: a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A. 2003;506:250–303. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
- 44.ATLAS Collaboration, Electron effciency measurements with the ATLAS detector using the 2012 LHC protonΓÇôproton collision data. ATLAS-CONF-2014-032 (2014). https://cds.cern.ch/record/1706245
- 45.ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC protonΓÇôproton collision data. Eur. Phys. J. C 74, 3130 (2014). doi:10.1140/epjc/s10052-014-3130-x. arXiv:1407.3935 [hep-ex] [DOI] [PMC free article] [PubMed]
- 46.ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). doi:10.1140/epjc/s10052-014-3071-4. arXiv:1407.5063 [hep-ex]
- 47.ATLAS Collaboration, Performance of primary vertex reconstruction in protonΓÇôproton collisions at TeV in the ATLAS experiment . ATLAS-CONF-2010-069 (2010). https://cds.cern.ch/record/1281344
- 48.C. Balazs, J.-W. Qiu, C. Yuan, Effects of QCD resummation on distributions of leptons from the decay of electroweak vector bosons. Phys. Lett. B 355, 548ΓÇô554 (1995). doi:10.1016/0370-2693(95)00726-2. arXiv:hep-ph/9505203 [hep-ph]
- 49.M. Guzzi, P.M. Nadolsky, B. Wang, Nonperturbative contributions to a resummed leptonic angular distribution in inclusive neutral vector boson production. Phys. Rev. D 90, 014030 (2014). doi:10.1103/PhysRevD.90.014030. arXiv:1309.1393 [hep-ph]
- 50.Guzzi M, Nadolsky PM. Nonperturbative contributions to a resummed leptonic angular distribution in inclusive boson production. Int. J. Mod. Phys. Conf. Ser. 2012;20:274–281. doi: 10.1142/S2010194512009324. [DOI] [Google Scholar]
- 51.S. Dulat et al., The CT14 global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016). doi:10.1103/PhysRevD.93.033006
- 52.Dittmaier S, Huber M. Radiative corrections to the neutral-current DrellΓÇôYan process in the Standard Model and its minimal supersymmetric extension. JHEP. 2010;1001:060. doi: 10.1007/JHEP01(2010)060. [DOI] [Google Scholar]
- 53.A. Denner et al., Electroweak corrections to dilepton + jet production at hadron colliders. JHEP 1106, 069 (2011). doi:10.1007/JHEP06(2011)069. arXiv:1103.0914 [hep-ph], and we thank Alexander M├╝ck for providing the NLO EW corrections for our phase space
- 54.Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;0207:012. doi: 10.1088/1126-6708/2002/07/012. [DOI] [Google Scholar]
- 55.ATLAS Collaboration, Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision data. Eur. Phys. J. C 74, 2941 (2014). doi:10.1140/epjc/s10052-014-2941-0. arXiv:1404.2240 [hep-ex] [DOI] [PMC free article] [PubMed]
- 56.ATLAS Collaboration, The ATLAS transverse-momentum trigger performance at the LHC in 2011 (2014). https://cds.cern.ch/record/1647616
- 57.D’Agostini G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. 1995;A362:487–498. doi: 10.1016/0168-9002(95)00274-X. [DOI] [Google Scholar]
- 58.G. D’Agostini, Improved iterative Bayesian unfolding (2010). arXiv:1010.0632 [physics.data-an]
- 59.T. Adye, Unfolding algorithms and tests using RooUnfold, in Proceedings of the PHYSTAT 2011 Workshop, CERN, Geneva, Switzerland, pp. 313ΓÇô318 (2011). arXiv:1105.1160 [physics.data-an]
- 60.M. Whalley, D. Bourilkov, R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC: A Workshop on the implications of HERA for LHC physics. Proceedings, Part B (2005). arXiv:hep-ph/0508110 [hep-ph]
- 61.Efron B. Bootstrap methods: another look at the jackknife. Ann. Stat. 1979;7:1–26. doi: 10.1214/aos/1176344552. [DOI] [Google Scholar]
- 62.ATLAS Collaboration, Improved luminosity determination in collisions at TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). doi:10.1140/epjc/s10052-013-2518-3. arXiv:1302.4393 [hep-ex] [DOI] [PMC free article] [PubMed]
- 63.A. Glazov, Averaging of DIS cross section data. AIP Conf. Proc. 792, 237ΓÇô240 (2005). doi:10.1063/1.2122026
- 64.G. Cowan, Statistical Data Analysis (Oxford University Press, Oxford, 1998), pp. 109ΓÇô111. ISBN:978-0198501558
- 65.Lyons L, Gibaut D, Clifford P. How to combine correlated estimates of a single physical quantity. Nucl. Instrum. Methods. 1988;A270:110. doi: 10.1016/0168-9002(88)90018-6. [DOI] [Google Scholar]
- 66.A. Gehrmann-De Ridder et al., Precise QCD predictions for the production of a boson in association with a hadronic jet (2015). arXiv:1507.02850 [hep-ph] [DOI] [PubMed]
- 67.Denner A, et al. Electroweak corrections to monojet production at the LHC. Eur. Phys. J. C. 2013;73:2297. doi: 10.1140/epjc/s10052-013-2297-x. [DOI] [Google Scholar]
- 68.Vesterinen M, Wyatt T. A novel technique for studying the boson transverse momentum distribution at hadron colliders. Nucl. Instrum. Methods Phys. Res. A. 2009;602:432. doi: 10.1016/j.nima.2009.01.203. [DOI] [Google Scholar]