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Abstract

The incidence of melanoma, the most aggressive and life-threatening form of skin cancer,

has significantly risen over recent decades. Therefore, it is essential to identify the mecha-

nisms that underlie melanoma tumorigenesis and metastasis and to explore novel and

effective melanoma treatment strategies. Accumulating evidence s uggests that aberrantly

expressed long noncoding RNAs (lncRNAs) have vital functions in multiple cancers. How-

ever, lncRNA functions in melanoma tumorigenesis and metastasis remain unclear. In this

study, we investigated lncRNA and messenger RNA (mRNA) expression profiles in primary

melanomas, metastatic melanomas and normal skin samples from the Gene Expression

Omnibus database. We used GSE15605 as the training set (n = 74) and GSE7553 as the vali-

dation set (n = 58). In three comparisons (primary melanoma versus normal skin, metastatic

melanoma versus normal skin, and metastatic melanoma versus primary melanoma), 178,

295 and 48 lncRNAs and 847, 1758, and 295 mRNAs were aberrantly expressed, respec-

tively. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes path-

way analyses to examine the differentially expressed mRNAs, and potential core lncRNAs

were predicted by lncRNA-mRNA co-expression networks. Based on our results, 15 lncRNAs

and 144 mRNAs were significantly associated with melanoma tumorigenesis and metastasis.

A subsequent analysis suggested a critical role for a five-lncRNA signature during melanoma

tumorigenesis and metastasis. Low expression of U47924.27 was significantly associated

with decreased survival of patients with melanoma. To the best of our knowledge, this study is

the first to explore the expression patterns of lncRNAs and mRNAs during melanoma tumori-

genesis and metastasis by re-annotating microarray data from the Gene Expression Omnibus

(GEO) microarray dataset. These findings reveal potential roles for lncRNAs during mela-

noma tumorigenesis and metastasis and provide a rich candidate reservoir for future studies.
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Introduction

The worldwide incidence of melanoma, the most aggressive form of skin cancer, has rapidly

increased in recent decades. The number of new melanoma cases in the United States is

expected to reach 76,380, with 10,130 deaths, by the end of 2016 [1]. Primary melanoma (PM)

is curable by surgery. However, if it is not detected early and surgically removed, melanoma is

highly likely to metastasize. Thus, identification of the mechanisms driving both tumorigenesis

and metastasis and the development of novel and effective melanoma treatment strategies are

urgently needed.

Long noncoding RNAs (lncRNAs), which exceed 200 nucleotides in length, are messenger

RNA (mRNA)-like transcripts that do not encode proteins [2, 3]. Unlike smaller microRNAs,

which play crucial roles in human carcinogenesis, our understanding of lncRNA biological

functions is in its infancy. The first functional lncRNA, XIST, was discovered in the early

1990s; XIST inactivates gene expression from the X-chromosome by dosage equalization [4,

5]. Multiple reports have shown that lncRNAs regulate complex and diverse functions, includ-

ing embryonic stem cell pluripotency [6], epigenetic gene regulation [7], the DNA damage

response [8], and chromatin remodeling [9]. Furthermore, lncRNAs participate in wide-rang-

ing cellular processes, including cell cycle, proliferation, apoptosis, and invasion [10].

With the emergence of next generation sequencing, large projects have identified multiple

lncRNAs that are involved in carcinogenesis and development of cancer [11, 12], including

glioblastoma [13], ovarian cancer [14], hepatocellular carcinoma [15], gastric cancer [16] and

colorectal cancer (CRC) [17]; this knowledge suggests intriguing possibilities for diagnostic

and therapeutic lncRNA applications. However, little is known about lncRNA functions in

melanoma tumorigenesis and metastasis. Multiple studies have identified several functions for

lncRNAs in melanoma. Upregulation of SPRY4-IT1 might play an important role in mela-

noma and be a useful early biomarker in humans [18, 19]. Tang et al. [20] has shown HOTAIR

overexpression in lymph node metastases compared to PMs and demonstrated an active role

in cell motility and invasion, which highlights HOTAIR as a potential target for malignant

melanoma therapy. A long intergenic non-coding RNA, CASC15, correlates with melanoma

progression and is involved in the regulation of phenotype-switching [21]. Another lncRNA,

SLNCR1, promotes melanoma invasion by binding to the androgen receptor and brain-spe-

cific homeobox protein 3a [22]. Nevertheless, the low specificities and sensitivities of lncRNAs

suggest that a single target is not likely to fully illustrate lncRNA mechanisms in melanoma.

The potential roles of lncRNAs during melanoma tumorigenesis and metastasis have not yet

been fully explored.

We began our study by analyzing previously published melanoma gene expression profiles

from the Gene Expression Omnibus (GEO) database and conducted lncRNA profiling to iden-

tify significant lncRNAs. The identified lncRNA profiles were then verified using another inde-

pendent validation set. A Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis, and lncRNA-mRNA co-expression network analysis were

then conducted. We performed survival analysis based on TCGA database. Our findings might

uncover possible lncRNA and mRNA expression profiles associated with melanoma progres-

sion and metastasis and provide novel insights into the molecular pathogenesis of melanoma.

Materials and methods

GEO gene expression data

PM and metastatic melanoma (MM) gene expression data were obtained from publicly avail-

able GEO databases (GSE15605 and GSE7553). We followed a strategy utilizing the larger
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dataset (GSE15605) as the training set and another independent dataset (GSE7553) as the vali-

dation set [23]. All of the samples in these datasets were hybridized with the HG-U133 Plus 2.0

Array (Affymetrix, Santa Clara, CA, USA); this array includes 54,675 probe sets and is widely

used in biological research.

lncRNA annotation pipeline

To evaluate lncRNA expression in the melanoma gene expression data, we applied an lncRNA

annotation pipeline based on the method constructed by Zhang et al. [24]. First, the Affymetrix

HG-U133 Plus 2.0 probe set ID was mapped to the latest version of the NetAffx Annotation

File (S1 Table, HG-U133_Plus_2 Annotations, CSV format, Release 34, 30 MB, 1/23/14). The

annotations contained the probe set ID, gene title, gene symbol, Ensembl, Refseq transcript ID

and other information. Second, for the probe sets from the Refseq database, the IDs that were

labeled “NR” were retained (NR indicated non-coding RNA). For the probe sets from the

Ensembl database, the IDs with “antisense”, “processed transcripts”, “sense-overlapping”,

“non_sense_mediated_decay”, “sense_intronic”, “lincRNA”, “non-coding”, “misc-RNA” or

“3prime-overlapping-ncrna” in the Ensembl annotations were retained. Of the probe sets

from the Refseq and Ensembl databases, those that were labeled “NR” in the Refseq database

and also annotated with the above Ensembl gene titles were retained. Third, the probe sets

were filtered by removing pseudogenes, microRNAs, rRNAs and other small RNAs, including

snRNAs, snoRNAs, and tRNAs.

Microarray data processing and differential expression analysis

All of the raw microarray CEL files were background-adjusted, normalized, and log-trans-

formed using the Robust Multichip Average in the Affy package of the R software [25]. Differ-

entially expressed lncRNAs and mRNAs that were involved in three comparisons were

identified by the limma package [26] in the R software. The Benjamini-Hochberg false discov-

ery rate was used to correct the P values [27]. The threshold was an absolute log2 fold change

(FC)>2 and p<0.05 for differentially expressed mRNAs and an absolute log2 FC>1 and

p<0.05 for differentially expressed lncRNAs (Student’s t-test). The hierarchical clustering

analysis was processed by Cluster3.0 & Treeview (Stanford University) [28].

Co-expression network construction

The lncRNA-mRNA co-expression network was constructed based on the Pearson correlation

coefficient (PCC) analysis between the lncRNA and mRNA expression levels. The PCC was cal-

culated for each lncRNA-mRNA pair using MATLAB R2012a (MathWorks, Natick, MA, USA),

and significant lncRNA-mRNA pairs with p<0.05 were selected to construct the co-expression

network using the Cytoscape 3.4.0 program. The degree was defined as the number of directly

linked neighbors. We further validated lncRNA-mRNA interactions in a database developed by

Terai et al. [29] (http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl), which included all the pre-

dicted RNA-RNA interactions using 23,898 lncRNA and 81,814 mRNA sequences obtained

from the Gencode project (http://www.gencodegenes.org/releases/19.html).

GO enrichment and KEGG pathway analysis of lncRNA-co-expressed

mRNAs

The GO and KEGG pathway analyses were conducted using DAVID (http://david.abcc.

ncifcrf.gov/). The GO terms and the KEGG pathways with p<0.05 were selected to be the

lncRNAs and mRNAs in melanoma
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enriched functions of the differentially expressed mRNAs. GO analyses covered three

domains: Biological Process, Cellular Component and Molecular Function.

Kaplan–Meier analysis

The lncRNA reads per kilobase per million mapped reads (RPKM) of 221 skin samples from

patients with cutaneous melanoma were downloaded from The Atlas of Noncoding RNAs in

Cancer [30] (TANRIC, http://ibl.mdanderson.org/tanric/_design/basic/index.html), and corre-

sponding clinical parameters and follow-up information for these patients were downloaded

from The Cancer Genome Atlas (TCGA) [31]. Kaplan–Meier analyses were performed in R

software to explore the association between the lncRNA and overall survival of patients with

melanoma. According to the median level of each lncRNA expression, we divided patients with

melanoma into low and high lncRNA expression groups; p< 0.05 was considered significant.

Results

GEO data set characteristics

The GSE15605 and GSE7553 series were obtained from GEO and used in this study. GSE15605

comprised 74 samples, including 46 PM, 12 MM, and 16 normal skin (N) samples. GSE7553

contained 87 samples, including 14 PM, 40 MM, 4 N samples, 15 basal cell carcinoma, 11 squa-

mous cell carcinoma, 2 melanoma in situ, and 1 normal human epidermal melanocytes. For

GSE7553, only 14 PM, 40 MM and 4 N samples were retrieved and analyzed. We used the larger

data set (GSE15605) as the training set to detect gene expression signatures and GSE7553 as the

validation set to confirm the results. Fig 1 depicts our experimental workflow.

lncRNA expression profiles on Affymetrix HG-U133 Plus 2.0 arrays

We collected 3,805 probe sets (matched with 3,051 lncRNAs) by re-annotation of the Affyme-

trix HG-U133 Plus 2.0 arrays based on the NetAffx annotation and the Refseq and Ensembl

databases (S2 Table). Of these, 1,470 probe sets (952 lncRNAs) were annotated as lncRNAs by

both the Refseq and the Ensembl databases; 260 probe sets (215 lncRNAs) were annotated

Fig 1. Study workflow. Abbreviations: PM, primary melanoma; MM, metastatic melanoma; N, normal skin.

doi:10.1371/journal.pone.0172498.g001
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only by the Refseq database, and 2075 probe sets (1884 lncRNAs) were annotated only by the

Ensembl database.

Differentially expressed lncRNAs between PM, MM and N

Using the absolute log2 FC>1 and p<0.05 threshold, differentially expressed lncRNAs were

identified for the following three comparisons: PM vs. N, MM vs. N, and MM vs. PM. In PM

vs. N, we identified 207 probe sets (178 lncRNAs) containing 108 upregulated probe sets (91

lncRNAs) and 99 downregulated probe sets (87 lncRNAs) (S3 Table). In MM vs. N, we identi-

fied 348 probe sets (295 lncRNAs) containing 185 upregulated probe sets (150 lncRNAs) and

163 downregulated probe sets (145 lncRNAs) (S4 Table). In MM vs. PM, we identified 51

probe sets (48 lncRNAs) containing 20 upregulated probe sets (17 lncRNAs) and 31 downre-

gulated probe sets (31 lncRNAs) (S5 Table), as shown in Table 1. A hierarchical clustering

analysis of all samples from the GSE15605 training set and the GSE7553 validation set were

processed from these differentially expressed lncRNAs. The hierarchical clustering maps for

the three comparisons revealed non-random partitioning of the samples into two major

groups in GSE15605. Using a training-validation approach, we validated our results in the

GSE7553 dataset. Similar distinctions between two sample types were observed (Fig 2).

To examine the robustness and accuracy of differentially expressed lncRNAs, we searched

for previously observed melanoma-associated lncRNAs in PubMed database. These lncRNAs

included SAMMSON [32], HOTAIR [20], SLNCR1 [22], BANCR [33], SPRY4-IT1 [18],

ANRIL [34], Llme23 [35], UCA1 [36], MALATA1 [36], GAS5 [37], H19 [38], CASC15 [21],

PTENP1 [39], and MIR31HG [40]. Llme23 was not included in our lncRNA list. Most of the

searched lncRNAs were consistent with our results, which indicated the accuracy and robust-

ness of our study (S10 Table).

Differentially expressed mRNA profiles between PM, MM and N

In PM vs. N, 1,078 probe sets (847 mRNAs) were identified as differentially expressed. Of these,

275 probe sets (211 mRNAs) were upregulated, and 803 probe sets (636 mRNAs) were downre-

gulated (S6 Table). In MM vs. N, 2,315 probe sets (1,758 mRNAs) were identified as differen-

tially expressed. Of these, 677 probe sets (517 mRNAs) were upregulated, and 1,638 probe sets

(1,243 mRNAs) were downregulated (S7 Table). In MM vs. PM, 347 probe sets (295 mRNAs)

were identified as differentially expressed. Of these, 51 probe sets (42 mRNAs) were upregu-

lated, and 296 probe sets (253 mRNAs) were downregulated (S8 Table). The number of down-

regulated mRNAs was noticeably larger than the number of upregulated mRNAs (Table 1).

lncRNA classification and distribution

The differentially expressed lncRNAs were characterized as lincRNA, antisense, misc_RNA,

processed_transcript, sense_intronic, sense_overlapping, and 3prime_overlapping_ncRNA.

Table 1. Number of differentially expressed lncRNAs and mRNAs in PM/N, MM/N, and MM/PM.

lncRNA (p<0.05 | log2 FC|>1) mRNA (p<0.05 | log2 FC|>2)

PM/N MM/N MM/PM PM/N MM/N MM/PM

Up 108(91) 185(150) 20(17) 275(211) 677(517) 51(42)

Down 99(87) 163(145) 31(31) 803(636) 1638(1243) 296(253)

Total 207(178) 348(295) 51(48) 1078(847) 2315(1758) 347(295)

Abbreviations: PM, primary melanoma; MM, metastatic melanoma; N, normal skin. Probe set number (corresponding lncRNA number)

doi:10.1371/journal.pone.0172498.t001

lncRNAs and mRNAs in melanoma
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As shown in Fig 3A–3C, lincRNA and antisense were the two most common lncRNA biotypes

in PM vs. N, MM vs. N, and MM vs. PM. Each chromosome contained different numbers of

differentially expressed lncRNAs. In PM vs. N and MM vs. N, most lncRNAs were located on

chromosome 2. Chromosome 18 had no lncRNAs in PM vs. N. In MM vs. PM, 7 lncRNAs (3

upregulated and 2 downregulated) were located on chromosome 6 (Fig 3D–3F).

GO and KEGG pathway analyses

To further explore the potential functions of these differentially expressed mRNAs, we per-

formed GO and KEGG pathway analyses. Upregulated and downregulated mRNAs were sepa-

rately analyzed in the GO analysis and included the following three domains: Biological

Process (GOBP), Cellular Component (GOCC) and Molecular Function (GOMF).

In PM vs. N, the top enriched GO terms among upregulated mRNAs included immune

response (GOBP), extracellular region (GOCC), and calcium ion binding (GOMF), whereas

oxidation-reduction process (GOBP), extracellular exosome (GOCC), and structural molecule

activity (GOMF) were the top enriched GO terms among downregulated mRNAs.

In MM vs. N, the top enriched GO terms among upregulated mRNAs included immune

response (GOBP), plasma membrane (GOCC), and transcription factor activity, sequence-spe-

cific DNA binding (GOMF), whereas oxidation-reduction process (GOBP), extracellular exo-

some (GOCC), and calcium ion binding (GOMF) were the top enriched GO terms among

downregulated mRNAs.

Fig 2. Hierarchical clustering of differentially expressed lncRNA probe sets in PM vs. N (A, D), MM vs. N (B, E), and MM vs. PM (C, F).

The analyses were initially performed with the GSE15605 training set (A, B, C) and then validated in GSE7553 (D, E, F). Each row represents one

lncRNA probe set, and each column represents one sample. High relative expression is indicated in red; low relative expression is indicated in

green. The bar colors represent the sample types as indicated: blue, normal skin; yellow, primary melanoma; red, metastatic melanoma.

Abbreviations: PM, primary melanoma; MM, metastatic melanoma; N, normal skin.

doi:10.1371/journal.pone.0172498.g002

lncRNAs and mRNAs in melanoma
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In MM vs. PM, the top enriched GO terms among upregulated mRNAs included transcrip-

tion, DNA-templated (GOBP), nucleus (GOCC), and DNA binding (GOMF), whereas epider-

mis development (GOBP), extracellular exosome (GOCC), and structural molecular activity

(GOMF) were the top enriched GO terms among downregulated mRNAs.

KEGG pathway analyses were also conducted for these three comparisons. The Metabolic

pathways was the top enriched term in PM vs. N, and Pathways in cancer was the top enriched

term in MM vs. N and MM vs. PM. The minimum ten GO terms and five pathway terms are

shown in Fig 4 (with the exception of panel 4.3B and 4.3 C, which show a minimum of 5 and 9

terms that are statistically significant (p<0.05) for this set, respectively.)

lncRNA-mRNA co-expression network analysis

We constructed an lncRNA-mRNA co-expression network to predict the potential functions of

differentially expressed lncRNAs in PM and MM. Using a PCC analysis (absolute PCC>0.80,

p<0.05), we identified 54 lncRNAs and 472 correlated mRNAs in PM vs. N to construct a clear

network with 526 network nodes and 2402 connection edges (Fig 5A). The network indicated

that multiple lncRNAs regulated numerous co-expressed mRNAs, including U47924.27, a

downregulated lncRNA that was co-expressed with 235 mRNAs, and LINC00888, an upregu-

lated lncRNA that was co-expressed with 15 mRNAs. In MM vs. N, we identified 73 lncRNAs

and 666 correlated mRNAs by applying a PCC threshold of 0.90 and a significance threshold of

0.05. The network in MM vs. N contained 739 network nodes and 3145 connection edges (Fig

5B). Within this network, 2,866 pairs were positively correlated, and 278 pairs were negatively

Fig 3. Chromosome distribution and classification of upregulated and downregulated lncRNAs in three comparisons. (A-C)

Classification of lncRNAs in PM vs. N, MM vs. N, and MM vs. PM. (D-F) Chromosome distribution of lncRNAs in PM vs. N, MM vs. N, and

MM vs. PM. The x-axis shows the number of lncRNAs. “Red” represents upregulated lncRNAs, and “Green” represents downregulated

lncRNAs. Abbreviations: PM, primary melanoma; MM, metastatic melanoma; N, normal skin.

doi:10.1371/journal.pone.0172498.g003

lncRNAs and mRNAs in melanoma
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correlated. The network in MM vs. PM contained 185 network nodes (16 lncRNAs and 169 cor-

related mRNAs) and 459 connection edges (absolute PCC>0.80, p<0.05; Fig 5C).

Venn diagram analysis

To identify significantly expressed lncRNAs and mRNAs associated with melanoma tumori-

genesis and metastasis, we constructed a Venn diagram analysis of the common and unique

lncRNAs or mRNAs in the three comparisons (PM vs. N, MM vs. N, and MM vs. PM (Fig 6)).

We identified 15 lncRNAs (16 probe sets) that overlapped in all three comparisons, including

12 downregulated lncRNAs and 3 upregulated lncRNAs (Table 2). As shown in Fig 6B, 144

mRNAs (163 probe sets) overlapped in all three comparison groups. Of these, 143 mRNAs

were downregulated, including KRTDAP, KRT5, TACSTD2, and SERPINB5, but only SPP1

was upregulated (S9 Table).

Fig 4. GO and KEGG pathway analyses of differentially expressed mRNAs. The GO analysis covers the following domains: (A)

Biological Process; (B) Cellular Component; (C) Molecular Function. (D-F) KEGG pathway analysis: 1, PM vs. N; 2, MM vs. N; 3, MM vs.

PM. p-value <0.05 is significant. The x-axis shows the number of mRNAs. Abbreviations: PM, primary melanoma; MM, metastatic

melanoma; N, normal skin.

doi:10.1371/journal.pone.0172498.g004

lncRNAs and mRNAs in melanoma
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Fig 5. Co-expression network of differentially expressed lncRNAs and mRNAs. (A) The co-expression

network was constructed with 54 differentially expressed lncRNAs and 472 associated mRNAs that were

identified from PM vs. N. (B) The co-expression network was constructed with 73 differentially expressed

lncRNAs and 666 associated mRNAs that were identified from MM vs. N. (C) The co-expression network was

constructed with 16 differentially expressed lncRNAs and 169 associated mRNAs that were identified from

MM vs. PM. The circular and v-shaped nodes are the mRNAs and lncRNAs, respectively. Upregulated genes

are labeled in red; downregulated genes are labeled in blue. A solid line represents a positive correlation, and

a dotted line represents a negative correlation. Abbreviations: PM, primary melanoma; MM, metastatic

melanoma; N, normal skin.

doi:10.1371/journal.pone.0172498.g005

lncRNAs and mRNAs in melanoma
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Based on the log2 FC, p-value, and degree of associated mRNAs, we selected five lncRNAs,

including RP11-164P12.4, TINCR, U47924.27, RP11-532F12.5 and LINC00888. We found

mRNAs associated with these five lncRNAs accounted for a large proportion of the lncRNA-

associated mRNAs (294/472, 467/666, and 152/169 in PM vs. N, MM vs. N, and MM vs. PM,

respectively). We constructed a lncRNA-mRNA co-expression network with these five lncRNAs

and associated 152 mRNAs in MM vs. PM, as shown in Fig 7. We further used a database devel-

oped by Terai et al. to analyze the target RNAs for these five lncRNAs. LINC00888 was not

Fig 6. Venn diagram. (A) The number of lncRNA probe sets in the three groups. (B) The number of mRNA probe sets in the three

groups. This figure depicts the number of common and unique probe sets in each comparison. The middle rectangle represents the

number of lncRNA/mRNA probe sets that overlapped in all three comparisons. Abbreviations: PM, primary melanoma; MM, metastatic

melanoma; N, normal skin.

doi:10.1371/journal.pone.0172498.g006

Table 2. The 16 overlapped probe sets (15 lncRNAs) in PM/N, MM/N, and MM/PM.

Probe set ID Gene symbol log2 fold change

PM/N MM/N MM/PM

Downregulated lncRNAs

228440_at RP11-164P12.4 -2.349568 -4.883247 -2.480508

229385_s_at TINCR -3.030632 -5.259506 -2.308965

1557389_at SH3PXD2A-AS1 -1.256226 -3.425267 -2.180685

242354_at RP11-532F12.5 -2.862854 -4.970551 -2.076912

231089_at LOC100505664 -2.300563 -4.111276 -1.772540

238498_at RP3-406A7.7 -1.682248 -3.335783 -1.628080

240284_x_at U47924.27 -2.660772 -4.268434 -1.504890

232300_at ADIRF-AS1 -1.176617 -2.652849 -1.458243

240361_at RP1-232P20.1 -2.164569 -3.529671 -1.387617

1558765_a_at RP3-496C20.1 -2.077647 -3.343142 -1.373071

238096_at LOC284023 -1.214494 -2.311894 -1.108923

232832_at DKFZp434J0226 -1.391715 -2.503286 -1.066864

Upregulated lncRNAs

228275_at LINC00888 1.491120 2.861177 1.369500

1553608_a_at LINC00189 1.055706 2.569488 1.494448

1566968_at SPRY4-IT1 1.586614 3.081186 1.519854

1566967_at SPRY4-IT1 1.646732 3.120109 1.522718

Abbreviations: PM, primary melanoma; MM, metastatic melanoma; N, normal skin.

doi:10.1371/journal.pone.0172498.t002

lncRNAs and mRNAs in melanoma
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included in the database. The target RNAs for four lncRNAs are sorted by rank (using either

MINENERGY or SUMENERGY). We showed the target mRNAs that overlapped in three com-

prisons (PM/N, MM/N, and MM/PM) of our study and the database developed by Terai et al.

in S1 Fig and S11–S14 Tables. The results showed that most lncRNA coexpressed mRNAs in

our study overlapped with target mRNAs in the database developed by Terai et al., which indi-

cated the lncRNA-mRNA network in our study was worthwhile and accurate.

Kaplan–Meier analysis

We validated five lncRNAs, RP11-164P12.4, TINCR, U47924.27, RP11-532F12.5 and LINC00

888, in the TCGA cohort containing 221 patients with melanoma. Four lncRNAs were anno-

tated in the TCGA, and the findings showed that low expression of U47924.27 was associated

with a shorter overall survival in patients with melanoma. However, a significant association

was not detected for the other three lncRNAs (Fig 8).

Discussion

Multiple recent studies have re-annotated microarray data to discover new lncRNA biomark-

ers and identify therapeutic lncRNA targets [24, 41, 42]. Zhang et al. investigated lncRNA

expression profiles in gliomas by re-annotating the Affymetrix HG-U133 Plus 2.0 array [24].

This method permitted an lncRNA and mRNA expression analysis that was feasible, accurate,

and inexpensive. Based on Zhang’s method, we explored lncRNA profiles in two existing mela-

noma patient cohorts from the GEO database as described [43, 44].

In our training set (GSE15605), we identified 178, 295, and 48 lncRNAs that were aberrantly

expressed in PM vs. N, MM vs. N, and MM vs. PM, respectively. The validation of these results by

another independent cohort (GSE7553) highlighted the usefulness of these lncRNA signatures.

Using Venn diagram analysis, we identified 15 aberrantly expressed lncRNAs that facili-

tated melanoma tumorigenesis and had vital functions in melanoma metastasis. Of these 15

Fig 7. Co-expression network of five lncRNAs and co-expressed mRNAs. The co-expression network

was constructed with 5 differentially expressed lncRNAs and 152 associated mRNAs that were identified from

MM vs. PM. The red and pink nodes are the lncRNAs and mRNAs, respectively. Abbreviations: PM, primary

melanoma; MM, metastatic melanoma.

doi:10.1371/journal.pone.0172498.g007
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lncRNAs, several have been reported in cancers, For example, LINC00189 participates in the

tumorigenesis of squamous cell carcinoma of urinary bladder. However, only SPRY4-IT1 and

TINCR have been reported to participate in melanoma.

Several studies have identified known lncRNAs that are abnormally expressed in melanoma

[45–47], such as SAMMSON [32], HOTAIR [20], SLNCR1 [22], BANCR [33], SPRY4-IT1 [18],

ANRIL [34], Llme23 [35], UCA1 [36], MALATA1 [36], GAS5 [37], H19 [38], CASC15 [21],

PTENP1 [39], and MIR31HG [40]. Most of these lncRNAs were also identified in our study,

showing the accuracy and robustness of our study. Since we focused on identifying lncRNAs that

are abnormally expressed during melanoma tumorigenesis and metastasis, only SPRY4-IT1 was

included in our final lncRNA signature. SPRY4-IT1 was upregulated in all three comparisons in

our study, consistent with previous reports, which showing that SPRY4-IT1 was overexpressed in

melanoma cell lines. Knockdown of SPRY4-IT1 causes defects in cell growth and decreases inva-

sion and migration, implying that SPRY4-IT1 upregulation might play a central role in melanoma

tumorigenesis and metastasis and could serve as a useful early biomarker in humans [18, 19].

Based on the log2 FC, p-value, and number of associated mRNAs, we established five candi-

date lncRNAs (TINCR, RP11-164P12.4, RP11-532F12.5, U47924.27, and LINC00888) that

might play critical roles in melanoma tumorigenesis and metastasis.

Fig 8. Survival analysis of patients with melanoma. Kaplan–Meier analyses were performed based on the median

levels of U47924.27 (A), RP11-532F12.5 (B), RP11-164P12.4 (C), TINCR (D) expression. The expression of the

lncRNAs was downloaded from TANRIC. The survival information was retrieved from TCGA.

doi:10.1371/journal.pone.0172498.g008
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Tissue differentiation-inducing non-protein coding RNA (TINCR) was previously reported

to be upregulated in esophageal squamous cell carcinoma and might facilitate its development

through an association with CLND7 and ANAX1 [48]. Zhang et al. [49] showed that downre-

gulated TINCR promoted proliferation and metastasis in CRC by acting as a potential cancer

suppressor gene. Sarkar et al. [46] suggested that a gain of ANCR and loss of TINCR might

maintain keratinocyte progenitors in their undifferentiated states, resulting in melanoma

tumorigenesis. This association should be investigated further. In our study, TINCR was sig-

nificantly downregulated in PM vs. N (log2 FC = -3.031) and downregulated further in MM vs.

N (log2 FC = -5.260). This suggests that TINCR might play a critical regulatory role in mela-

noma formation and metastasis.

No reports that address the roles of RP11-164P12.4, RP11-532F12.5, U47924.27, and

LINC00888, but we can predict their functions by analyzing their associated mRNAs. RP11-

532F12.5 was downregulated with a log2 FC of -4.971 in MM when compared with normal

skin tissues. Interestingly, an analysis of the RP11-532F12.5 genomic locus showed that RHOV

was its near coding gene (38 kb away). RP11-532F12.5 might regulate the expression of neigh-

boring protein-coding genes and influence the development and progression of melanoma.

RHOV, which is co-expressed with RP11-532F12.5 (PCC = 0.943 in MM vs. N), is an apopto-

sis-associated genes in the Rho GTPase family. As shown in the study by Mikhail et al. [50],

RHOV is overexpressed in lung cancer cell lines and human NSCLC tumors, suggesting a pos-

sible role in NSCLC progression.

RP11-164P12.4 was the top lncRNA of the downregulated group (log2 FC = -2.481) and

showed the largest degree (degree = 144) in MM vs. PM. CASZ1 is associated with the RP11-

164P12.4 mRNA (PCC = 0.924 in MM vs. PM), which has been shown to suppress neuroblas-

toma cell growth in vitro and in vivo [51].

U47924.27, which is located on chromosome 12, is a lincRNA (long intergenic non-coding

RNA) and had the second highest number of neighboring mRNAs in PM vs. N and MM vs. N

(degree = 235 and 285, respectively). IRX4 is an mRNA neighboring U47924.27 in the lncRNA-

mRNA network (PCC = 0.904 and 0.972 in PM vs. N and MM vs. N, respectively) and is a

member of the Iroquois homeobox family, which is involved in carcinogenesis [52, 53]. Nguyen

et al. showed that knockdown of IRX4 promotes prostate cancer cell growth, whereas overex-

pression of IRX4 suppresses prostate cancer cell growth [54].

LINC00888, which is located on chromosome 3, had the most co-expressed mRNAs among

the upregulated lncRNAs in the three comparisons. In MM vs. N, LINC00888 (upregulated)

co-expressed with 13 mRNAs, 11 downregulated and 2 upregulated. One example was BNC1

(basonuclin 1), a downregulated zinc-finger transcription factor with numerous known tar-

gets, and loss of BNC1 increases the metastatic potential of breast cancer [55]. LINC00888 is

negatively correlated with BNC1, which implies a potentially active role in melanoma.

In our study, 144 differentially expressed mRNAs overlapped in all three comparison

groups. Of these, the following mRNAs should be highlighted: MUCL1, DSC3, SERPINB5,

CST6, and SPP1. MUCL1 (mucin-like 1), also known as SBEM, was first identified by Miksi-

cek et al. [56]. Conley et al. [57] observed that HER2 regulated MUCL1 to promote breast can-

cer cell growth through the FAK/JNK signaling pathway. Valladares-Ayerbes et al. [58]

showed that SBEM was detectable in bone marrow micrometastases of breast cancer patients

by RT-PCR, which implied its potential utility as a bone marrow micrometastasis marker for

breast cancer. These findings revealed a correlation between MUCL1 and cancer progression.

DSC3 (Desmocollin 3), a member of the cadherin superfamily, has been associated with lymph

node metastasis in oral squamous cell carcinoma [59]. Recently, Pan et al. [60] observed that

the loss of DSC3 in prostate cancer predicted a poor prognosis; our study was consistent with

these results. DSC3 was downregulated in PM compared to N (log2 FC = -3.068) and more
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downregulated in MM compared to N (log2 FC = -7.705). Maspin (SERPINB5) was identified as

a cancer suppressor gene in 1994 by Zou et al. [61]. Numerous studies have demonstrated that

maspin loss predicts possible metastasis and poor patient prognosis for prostate [62], cervical

[63], and gastric cancers [64]. Our results showed that SERPINB5 expression was significantly

decreased in PM vs. N, MM vs. N and MM vs. PM. Moreover, multiple studies have shown that

CST6 encodes a secreted protein (Cystatin E/M) that suppresses metastasis. Jin et al. revealed that

CST6 inhibited migration, invasion, and bone metastasis in breast cancer [65]. Another study

demonstrated that CST6 overexpression decreased metastasis in prostate cancer [66]. Accord-

ingly, our results showed CST6 downregulation in all three comparison groups. Secreted phos-

phoprotein 1 (SPP1, also called osteopontin) has functions in tumorigenesis, tumor progression,

and metastasis in numerous cancers [67–69]. Liu et al. [68] showed that shRNA-mediated SPP1

suppressed the proliferation, migration, and invasion of human renal cancer ACHN cells by reg-

ulating MMP2 and MMP9. A recent study by Agrawal et al. showed that SPP1 was consistently

upregulated in high-grade, invasive, and recurrent urothelial cancer cases [70]. In our study of

146 overlapping mRNAs over three comparisons, SPP1 was the only upregulated mRNA.

To explore the functions of the differentially expressed mRNAs in melanoma, we con-

structed GO and pathway analyses. Several GO terms from the upregulated mRNAs were

related to immune and inflammatory responses, including immune response, inflammatory

response, chemotaxis and regulation of immune response. However, several GO terms from

the downregulated mRNAs were related to skin development, including epidermis develop-

ment, keratinocyte, and keratinocyte differentiation.

According to the KEGG pathway analysis, mRNAs were targeted to pathway in cancer,

metabolic pathways, melanogenesis, the p53 signaling pathway, and the PPAR signaling path-

way, and others. Pathway in cancer was the top enriched term in MM vs. N and MM vs. PM,

suggesting that our differentially expressed mRNAs are correlated with cancer. According to

the study by Dowling et al. [71], metabolic pathways differed between melanoma in situ and

invasive melanoma. Melanogenesis can be a pathogenic factor during melanoma progression.

Thus, melanogenesis inhibition is a rational MM therapy approach [72]. Numerous reports

have shown that the p53 signaling pathway controls cancer cell apoptosis and growth and is

considered a key tumor suppressor in over half of all sporadic human cancers [73–75]. Peroxi-

some proliferator-activated receptors (PPARs) are nuclear hormone receptors with three iso-

forms: PPARa, PPARc, and PPARb/d. PPAR agonists, such as the thiazolidinediones, might be

useful treatment modalities for malignant melanoma and melisma [76].

Furthermore, lncRNA data from the TCGA database were utilized to assess the correlation

between lncRNA expression and the overall survival of patients with melanoma. Low U47924.27

expression was associated with a shorter overall survival in this study, indicating that U47924.27

down-regulation might be a potential marker of a poor prognosis.

Our study had several limitations. First, Affymetrix HG-U133 Plus 2.0 arrays included some,

but not all, of the possible lncRNAs present. Second, distinct lncRNA expression patterns implied

potential relationships to melanoma, but we do not have direct experimental evidence to support

this hypothesis. We primarily focused our study on the value of bioinformatics-based analyses for

discovering novel or important lncRNAs and mRNAs expressed during melanoma tumorigene-

sis and metastasis. Finally, the N sample size in our validation dataset (GSE7553) was not large

and might have increased the bias in our analysis.

Conclusions

We are the first to report the identification of lncRNA and mRNA expression patterns in mela-

noma tumorigenesis and metastasis by re-annotating microarray data from the GEO microarray

lncRNAs and mRNAs in melanoma
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dataset. We identified 15 lncRNAs and 143 mRNAs that are associated with melanoma tumori-

genesis and metastasis. Based on the follow-up investigation revealed that a five-lncRNA signa-

ture might have a critical role in melanoma tumorigenesis and metastasis. Furthermore, based

on the TCGA database, low U47924.27 expression was associated with a shorter overall survival.

Our study might provide a candidate reservoir for future investigations of lncRNAs and mRNAs

associated with melanoma tumorigenesis and metastasis; more extensive investigations will be

performed in the future.
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