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Abstract

Synthetic recoding of genomes, to remove targeted sense codons, may facilitate the encoded 

cellular synthesis of unnatural polymers by orthogonal translation systems. However, our limited 

understanding of allowed synonymous codon substitutions and the absence of methods that enable 

the stepwise replacement of the E. coli genome with long synthetic DNA, and provide feedback on 

allowed and disallowed design features in synthetic genomes, have restricted progress on this goal. 

Here we endow E. coli with a system for efficient, programmable replacement of genomic DNA 

with long (~100 kb) synthetic DNA, through the in vivo excision of double stranded DNA from an 

episomal replicon by CRISPR/Cas9, coupled to lambda red mediated recombination and 

simultaneous positive and negative selection. We iterate the approach, providing a basis for 

stepwise whole-genome replacement. We attempt systematic recoding in an essential operon using 

eight synonymous recoding schemes. Each scheme systematically replaces target codons with 

defined synonyms and is compatible with codon reassignment. Our results define allowed and 

disallowed synonymous recoding schemes, and enable the identification and repair of recoding at 

idiosyncratic positions in the genome.

The design and synthesis of genomes provides a powerful approach for understanding and 

engineering biology1–6. Genome synthesis has the potential to elucidate synonymous codon 

function7, accelerate metabolic engineering8, and facilitate genetically encoded unnatural 

polymer synthesis9,10.

Methods that i) replace the genome in sections6, ii) provide feedback on precisely where a 

given design fails and on how to repair it, and that iii) can be rapidly iterated for whole 
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genome replacement, would accelerate our ability to understand and manipulate the 

information encoded in genomes.

In E. coli, the workhorse of synthetic biology, progress on replacing large sections of the 

genome has been slower than in naturally recombinogenic organisms6,11. Sequence specific 

recombinases, may be introduced into E. coli to direct recombination at defined target 

sequences, that must be introduced into the genome in advance, and these approaches cannot 

been iterated12. Lambda red mediated homologous recombination13, using linear ds DNA 

that is electroporated in to cells, can be programmed to target any region of the genome via 

short (50 bp) homology regions (HRs) at either end of a linear double stranded (ds) DNA 

(referred to herein as HR1 and HR2). However, this approach is commonly limited to 

inserting or replacing only 2-3 kb of genomic DNA, and has not been used to introduce long 

sequences into the genome.

We are interested in reprogramming the genetic code for the in vivo biosynthesis of 

unnatural polymers9. Reassigning particular codons in the genome to synonymous codons 

would enable removal of their cognate tRNAs, compression of the number of synonymous 

codons used to encode certain natural amino acids, and the reassignment of certain sense 

codons, and an expanded set of quadruplet codons14,15, to evolved orthogonal translation 

systems for unnatural polymer synthesis. However, recoding the E. coli genome requires the 

development of i) methods for efficiently replacing genomic DNA with synthetic DNA and 

ii) an understanding of the best synonymous codon substitutions, from many possible 

choices, for recoding.

Nature chooses one triplet codon from up to six potential synonyms to encode each amino 

acid at each position in the genome; this choice can define transcriptional16 or 

translational17 regulatory elements, translation speed18,19, mRNA folding7, gene 

expression, co-translational folding20,21, protein production levels7, and is likely to have 

further undiscovered roles. Synonymous codons may have distinct roles at different sites in 

the genome, and there may be epistatic interactions amongst codons within and between 

genes22–24. Our limited understanding of the factors driving codon choice suggests that the 

best synonymous codon substitutions to implement for synthetic recoding should be 

determined empirically.

Here we endow E. coli with a system that enables efficient, programmable, one step 

introduction of long synthetic DNA into the genome, as insertions or replacements, and 

iterate the approach for stepwise replacement of longer genomic regions. Using our 

approach we investigate different synonymous recoding schemes for replacing the same 

target codons with distinct sets of synonyms, in an operon rich in both target codons and 

essential genes, providing insight into allowed and disallowed schemes for genome recoding 

and synonymous codon compression.

Inserting DNA into the genome by REXER

The overall efficiency of lambda red mediated recombination protocols is the product of the 

transformation efficiency for linear double stranded (ds) DNA and the efficiency with which 
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the linear dsDNA mediates intracellular recombination. The overall efficiency decreases 

drastically with dsDNA length and we hypothesized that this results primarily from 

challenges in efficiently delivering intact dsDNA into cells. To address this challenge, we 

envisioned introducing the DNA of interest into E. coli in an episomal replicon, and excising 

the dsDNA of interest to facilitate lambda red mediated recombination. To select for the 

correct integrants we envisioned employing simultaneous positive and negative selections, to 

select for the integration of a positive selection marker from the replicon into the genome 

and the loss of a negative selection marker from the genomic locus targeted for replacement; 

such a double selection strategy substantially enhances integration at the target locus by 

lambda red mediated recombination (Extended Data Figure 1).

We created E. coli MDS42 rpsLK43R/rK (a genome minimized strain of E. coli25 in which the 

genomic copy of rpsL contains a K43R mutation conferring resistance to streptomycin, and 

the -1/+1 selection cassette encoding an rpsL-KanR fusion inserted between cra and mraZ) 

containing a bacterial artificial chromosome (BAC) in which the -2/+2 cassette (encoding 

sacB-CmR) is flanked by HR1 and HR2 sequences and Cas9 target sites (containing 

protospacer-PAM sequences) and expressing lambda red (alpha/beta/gamma)13, Cas926, 

and tracrRNA26 (Figure 1a). Addition of a plasmid, encoding spacer RNAs targeting the 

protospacers26 within the BAC target sites to these cells, and selection for the gain of 

resistance to both chloramphenicol (gain of +2) and streptomycin (loss of -1 from the 

genome, and loss of the backbone of the BAC) led to replacement of the sequence between 

HR1 and HR2 in the genome, with the sequence between HR1 and HR2 from the BAC 

(Figure 1a, Extended Data Figure 2).

Genomic replacement was strictly dependent on CRISPR/Cas9, and the lambda red 

recombination machinery (Figure 1b), and targeted to the desired genomic locus (Extended 

Data Figure 1c,d); consistent with the CRISPR/Cas9 mediated excision of the dsDNA 

between HR1 and HR2 in the BAC, and lambda red mediated integration of this sequence 

between HR1 and HR2 in the genome. We named our approach REXER 2 (replicon excision 

for enhanced genome engineering through programmed recombination; 2 indicates the 

number of CRISPR/Cas9 cuts).

To investigate the dependence of REXER 2 on the length of DNA inserted into the genome, 

we created BACs with 9 kb or 90 kb of DNA inserted between HR1 and -2/+2 (Figure 1c, 

Extended Data Figure 2). The insertions contain a luxABCDE operon27, which is sufficient 

to generate bioluminescence in E. coli. We transformed each BAC into E. coli 
MDS42 rpsLK43R/rK and implemented the REXER 2 protocol. All cells selected on 

chloramphenicol and streptomycin integrated the lux operon at the correct locus and were 

bioluminescent (Extended Data Figure 2). Moreover, while the efficiency of classical 

recombination, drops dramatically from 104 colony forming units (c.f.u.) for a 2 kb insertion 

to approximately 10 c.f.u.s for a 9 kb insertion, the efficiency of REXER 2 is constant, at 

104 c.f.u. for all insertions (Figure 1c).

Next we asked whether the efficiency of REXER could be improved by making two 

additional CRISPR Cas9 mediated double strand breaks in the genome between HR1 and 

HR2 (Figure 1a). The resulting REXER 4 protocol led to replacement of the sequence 
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between HR1 and HR2 in the genome, with the sequence between HR1 and HR2 from the 

BAC (Extended Data Figure 2), and destruction of all four Cas9 target sites. REXER 4 was 

strictly dependent on both the CRISPR Cas9 system and the lambda red recombination 

machinery (Figure 1b), and led to integration at the correct locus (Extended Data Figure 2). 

Like REXER 2, the efficiency of REXER 4 was length independent for insertions tested (up 

to 90kb), and REXER 4 further increases the efficiency of synthetic DNA insertion with 

respect to REXER 2 by 103-fold, while maintaining insertion at the correct locus (Figure 1c 

and Extended Data Figure 1c,d).

Replacing genome sections by REXER

Next, we demonstrated that REXER can be used to efficiently replace 100 kb of the E. coli 
genome in a single step. We targeted the region from mraZ to pyrH for replacement and 

inserted the -1/+1 selection cassette at the 5’ end of this region. We assembled a BAC, from 

DNA fragments in S. cerevisiae28, in which the 100 kb region between mraZ and pyrH is 

watermarked along its length by genes from the lux operon (Extended Data Figure 3). 

REXER 2 yielded 2 × 104 c.f.u. per reaction, of which 80% were bioluminescent, while 

REXER 4 yielded 5 × 106 c.f.u. per reaction, of which 50% were bioluminescent (Extended 

Data Figure 3). Further characterization confirmed the integration of the lux watermarks at 

the expected loci for all bioluminescent colonies (Extended Data Figure 3). These results 

demonstrate that REXER enables the replacement of genomic regions with synthetic DNA.

Iterative REXER for genome replacement

Iteratively replacing large sections of the genome with synthetic DNA via REXER will 

enable genome stepwise interchange synthesis (GENESIS) for whole genome replacement 

(Figure 2a). Towards this goal we demonstrated iterative REXER (Extended Data Figure 4). 

The genome created in a first round of REXER, that introduces -2/+2, provides a direct 

template for a second round of REXER, using a BAC that contains distinct positive and 

negative selection markers (-1/+1) (Extended Data Figure 4). This product is a template for 

third round of REXER; thus the approach can be iterated (Extended Data Figure 4).

To explicitly demonstrate the stepwise replacement of long regions of genomic DNA with 

synthetic DNA for GENESIS, we used cells in which we replaced the 100 kb genomic 

region between mraZ and pyrH by REXER (Extended Data Figure 3 & Figure 2b) for a 

second step of REXER. This second step introduced 124 kb of DNA spanning from frr to 

mhpT and the hygromycin B phosphotransferase gene (hph). We confirmed the replacement 

of 220 kb of the genome with 230 kb of synthetic DNA in two steps (Figure 2c,d). This 

compares favourably with the largest replacement in the naturally recombinogenic S. 
cerevisiae (270 kb, 11 steps)6.

Testing synonymous recoding schemes

We used REXER to define synonymous substitutions that are disallowed and poorly 

tolerated and synonymous substitutions that are allowed and can be implemented at many 

positions in the genome. To define a system for experimental investigation we identified i) 
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the codons to target for removal, ii) the codons with which the target codons might be 

replaced to define recoding rules and iii) a region of the genome in which to test recoding 

rules.

We chose target codons that i) when removed from the genome would enable the removal of 

all the tRNAs that decode them, and where ii) removal of these tRNAs would not remove all 

decoding of the remaining synonymous codons in the genome; these are the minimum 

criteria for removing a sense codon from the genome to enable its unambiguous 

reassignment (Extended Data Figure 5). We focused on removing serine, leucine and alanine 

codons that fulfill these criteria, as these are the three codon sets for which the aminoacyl-

tRNA synthetases do not recognize the anticodon of their cognate tRNAs29. This will 

facilitate reassignment of the target codon (or upto four quadruplet derivatives), following 

deletion of host tRNAs, to orthogonal synthetase/tRNA pairs in orthogonal translation14.

We defined candidate synonymous replacements for the target codons by identifying the 

closest match for the target codons, as judged by either codon adaptation index (cAi)30, 

tRNA adaptation index (tAi)31,32, or a third metric we define (translation efficiency, t.E) 

(Extended Data Table 1, Methods). These considerations led us to investigate eight recoding 

schemes (Figure 3a).

We identified the E. coli cell division operon as an ideal target to test these synonymous 

recoding schemes because it i) is rich in essential genes (12 out of 15 genes in the region are 

essential)33, ii) contains genes expressed at a range of levels34, iii) includes membrane 

proteins34 (a class of proteins for which co-translational folding is known to be affected by 

synonymous codon choice), iv) includes several proteins that interact and for which the 

ratios of proteins expressed are distinct and crucial35,36 (which will favour intergenic 

epistatic interactions amongst codons), and v) is rich in the target codons (Figure 3b, 

Extended Data Table 2). We anticipated that these features would ensure that the region 

captures important properties of the genome, and that the success and failure of synonymous 

recoding in the region, would be reflected in viability and growth.

Allowed and disallowed recoding schemes

We designed DNA sequences in which each of the recoding schemes is implemented within 

all of the fifteen genes simultaneously. Overall, the schemes investigate the consequences of 

1,468 codon changes and 2,347 nucleotide changes (Figure 3c). The DNA for each scheme 

was synthesized de novo, assembled into a BAC in S. cerevisiae and genomic recoding via 

REXER investigated (Extended Data Figure 6, 7).

Following REXER we sequenced 16 independent clones from each recoding scheme. We 

observed chimeras between the wild-type genomic DNA and the recoded DNA in several 

cases, consistent with recombination-mediated crossover between the recoded sequence and 

the starting genome, these chimeras defined a recoding landscape. We aligned the individual 

recoding landscapes to create a “compiled recoding landscape” (Extended Data Figure 6, 7) 

that reveals peaks and plateaus for synonymous substitutions that are allowed and valleys or 

troughs for synonymous substitutions that are consistently disallowed. We observe clear 
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differences in the extent to which replacement of the same target codons by different 

synonymous codons are tolerated (Figure 4a,b,c and Extended Data Figure 6, 7).

We first investigated the serine recoding schemes 1-3 (Figure 4a). For scheme 1, 0% of 

clones are completely recoded. In stark contrast, for scheme 2 and scheme 3 88% of clones 

were fully recoded. In contrast, we find that none of the leucine recoding schemes tested 

(schemes 4-6) led to complete recoding, and for scheme 4 and 5 recoding fails 

catastrophically, indicating that the synonymous substitutions have phenotypic consequences 

at many sites in the operon (Figure 4b). Finally, we find that the two alanine recoding 

schemes tested (schemes 7-8) have dramatically different outcomes (Figure 4c). Recoding 

scheme 7 leads to 75% of clones being completely recoded at all 374 positions while no 

clones are fully recoded by scheme 8. The doubling times for all fully-recoded clones were 

comparable to each other and to a control E. coli strain (Extended Data Figure 8). Overall, 

this work successfully removes up to 374 sense codons across 20 kb from an operon rich in 

essential genes in a single strain. Thus the scale of sense codon removal is much greater than 

previously reported work that investigated one gene at a time37.

Our data reveal the drastic differences between precisely defined recoding schemes that are 

obscured when the choice of synonymous substitution is randomized37. For serine recoding, 

scheme 2 and 3 recoding is allowed, while scheme 1 recoding is not; even though the codons 

used for replacement in scheme 1 and scheme 2 and 3 differ by only a single base (AGT vs 

AGC), and are decoded by the same tRNA (with anticodon GCT) via wobble and Watson-

Crick decoding, respectively (Figure 3a). Similarly for alanine codons, scheme 7 recoding is 

allowed while scheme 8 fails catastrophically. These recoding schemes differ only in the 

conversion of a single base (GCT vs GCC) in the allowed and disallowed substitution for 

GCA. Again, both of the new codons are decoded by the same set of tRNAs (Figure 3a). 

cAI, tAi and tE all produce at least one successful recoding, but no single metric predicts 

which synonymous recoding will be successful. These observations underscore the 

importance of empirically determining the best systematic and well-defined synonymous 

recoding scheme for each codon.

E. coli consistently rejects a single codon mutation (TCG to AGT ) at codon 407 of ftsA in 

recoding scheme 1 (Figure 4a). Attempts to introduce the ftsA 407 TCG to AGT mutation 

(without additional recoding at other positions in the genome) failed (Extended Data Figure 

8). In contrast, we were able to quantitatively recode ftsA 407 TCG to the synonymous TCT 

codon (Extended Data Figure 8). These results demonstrate that the ftsA 407 TCG to AGT 

mutation is deleterious.

Mutation of the codon at position 407 in ftsA from AGT to AGC (the codon found at this 

position in recoding schemes 2 and 3) is sufficient to repair recoding scheme 1 (Figure 4d, 

Extended Data Figure 7, 8). This mutation dramatically alters REXER mediated recoding, 

increasing the fraction of fully recoded sequences from 0 % to 94 % and the fraction of 

recoding at codon 407 of ftsA from 0 % to 100 % (Extended Data Figure 8). We also 

successfully introduced this mutation into recoding scheme 1 by combining single stranded 

DNA recombineering with REXER (Extended Data Figure 8). The growth of E. coli was not 

affected by the successful recoding schemes (Extended Data Figure 8). These results 
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demonstrate that the major defect in recoding scheme 1 results from AGT being disallowed 

at position 407 of ftsA, though it is tolerated at many other positions. Since TCG, TCT and 

AGC are allowed at position 407 of ftsA but AGT (which shares nucleotides with allowed 

codons at each position of the triplet) is disallowed, we conclude that the problem at this 

codon lies in the entire triplet. These experiments exemplify how REXER may be used to i) 

identify idiosyncratic positions in the genome that are refractory to recoding by otherwise 

well-tolerated recoding schemes, and ii) repair the recoding scheme by the introduction of 

alternative codons at these idiosyncratic positions.

Discussion

In conclusion, we have generated an efficient approach to enable both the programmed 

insertion of large synthetic DNA sequences into the E. coli genome and the replacement of 

sections of the E. coli genome with synthetic DNA. The approach can be iterated, and will 

enable replacement of the entire E. coli genome with synthetic DNA in no more than 40 

linear steps (Figure 2a). Each step takes only a few days to implement and convergent 

syntheses may further accelerate complete genome synthesis. The strategy will enable 

radical, high-density changes to the genome not accessible through site directed mutagenesis 

approaches10,38, and enable diverse applications including recoding and metabolic 

engineering. We anticipate the approach may be extended to facilitate genome engineering 

in other organisms.

We have simultaneously recoded several genes in an essential operon using eight well-

defined synonymous recoding rules that are compatible with codon reassignment for 

unnatural polymer synthesis. Our results reveal dramatic differences in the extent to which 

different synonymous replacements for the same target codons are allowed. Our approach 

also enables both the identification and repair of idiosyncratic positions within the 'recoding 

landscape' where a precise codon substitution that is allowed at many other positions in the 

operon is disallowed. Our investigation empirically defines precisely defined schemes for 

sense codon removal and synonymous replacement for genome-wide application.

Methods

Sequences

Sequences of plasmids, BACs, and modified genomic loci are provided in Supplementary 

data 1–5.

Construction of selection cassettes, cell strains, and plasmids

Two double selection cassettes were constructed. The -1/+1 is a fusion between the negative 

selection marker rpsL (-1) encoding the essential ribosomal protein S12 and conferring 

sensitivity to streptomycin in rpsLK43R genomic background, and the positive selection 

marker KanR (+1) encoding the kanamycin resistance gene neomycin phosphotransferase II. 

The rpsL-KanR cassette was expressed as two separate proteins from a single mRNA driven 

by constitutive transcription from wildtype rpsL promoter. The -2/+2 is a fusion between the 

negative selection marker sacB (-2) conferring sensitivity to sucrose, and the positive 

selection marker CmR (+2) encoding the chloramphenicol resistance gene chloramphenicol 
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acetyl transferase. The sacB-CmR cassette was expressed as two separate proteins from a 

single mRNA driven by constitutive transcription from EM7 promoter. Both selection 

cassettes were synthesized de novo.

The minimum genome E. coli strain MDS42 was used as the starting strain25. A K43R 

mutation was introduced into the rpsL gene to create MDS42rpsLK43R to confer resistance to 

streptomycin in the absence of additional wildtype copy of rpsL, and sensitivity to 

streptomycin in the presence of any additional copy of wildtype rpsL. The -1/+1 cassette 

rpsL-KanR was inserted between 89,061 and 89,587 in the MDS42rpsLK43R genome to 

create MDS42rpsLK43R/rK.

pKW20_CDFtet_pAraRedCas9_tracrRNA was constructed by assembling multiple PCR 

fragments using Gibson Assembly. The plasmid backbone and replication origin is from 

pCDFDuet-1 plasmid (Addgene), in which the spectinomycin resistance marker is replaced 

with a tetracycline resistance marker from pBR322 plasmid (New England BioLab). The 

araC gene, the arabinose promoter (pAra), and the lambda red (alpha/beta/gamma) genes 

were PCR amplified from pRed/ET plasmid (GeneBridges). The open reading frame of Cas9 

was PCR amplified from pCas9 plasmid26 and placed downstream of the lambda red alpha. 

The tracrRNA with its endogenous promoter was PCR amplified from pCas9 plasmid26, and 

placed in the same orientation downstream of the araC gene. The 

pKW20_CDFtet_pAraRed(Δβ)Cas9_tracrRNA was derived from 

pKW20_CDFtet_pAraRedCas9_tracrRNA by inserting GTAC between the 314th and 315th 

nucleotide of lambda red beta open reading frame, which leads to translational frame 

shifting and thus inactivation of lambda red beta.

pKW21_MB1amp_Spacer0 was constructed by assembling two PCR fragments using 

Gibson Assembly Master Mix (from New England BioLab). The pMB1 replication origin 

and ampicillin resistance marker were PCR amplified from pBR322 plasmid (from New 

England BioLab). The CRISPR array with no functional spacer RNA (hence the 

nomenclature 0) between BamHI and EcoRI was PCR amplified from pCRISPR26. 

pKW21_MB1amp_Spacer0 was verified by sequencing. CRISPR arrays with two or four 

different spacer RNA sequences for directing REXER 2 or REXER 4 respectively with 

interspaced direct repeats were commercially synthesized. The arrays were cloned into 

pKW21_MB1amp_Spacer0, replacing the empty CRISPR array to create different 

pKW21_MB1amp_Spacers×2 or pKW21_MB1amp_Spacers×4 plasmids. The final 

pKW21_MB1amp_Spacers plasmids were sequence verified. A related version of 

pKW21_MB1erm_Spacers plasmids was prepared replacing the ampicillin resistance 

marker in pKW21_MB1amp_Spacers with an erythromycin resistance marker.

The BAC holding the synthetic DNA was constructed by assembling multiple fragments. 

The BAC backbone is based on pBeloBAC11 (New England BioLabs) from nucleotide 1542 

to 7041 with the addition of the double selection cassette -2/+2 and the negative selection 

marker -1, and assembled using Gibson Assembly Master Mix (New England BioLabs). An 

alternative arrangement utilises -1/+1 coupled with -2. The synthetic DNA was always 

flanked by AvrII sites, which also function as PAM and part of protospacer for CRISPR/

Cas9.
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Assembling short synthetic DNA onto BAC using Gibson Assembly

The pBAC_HR(89,061)-sC-HR(89,587)_r was constructed by assembling three PCR 

fragments using Gibson Assembly: the first fragment being the 2.2 kb long -2/+2 sacB-CmR 

cassette flanked with HR1 (89,012 - 89,061, all numbering is from the MG1655 reference 

sequence) and HR2 (89,587 – 89,636) and further flanked with two AvrII sites, the second 

fragment being the -1 rpsL gene with rrnC terminator, and the third fragment being the 

pBeloBAC11 backbone from nucleotide 1542 to 7041. The assembled pBAC_HR(89,061)-

sC-HR(89,587)_r was selected on LB agar plates with 18μg/ml chloramphenicol and 

sequence verified. The pBAC_HR(89,061)-rK-HR(89,587)_s was similarly constructed 

using -1/+1 rpsL-KanR cassette flanked with HR1(89,012 - 89,061) and HR2(89,587 – 

89,636) and further flanked with two AvrII sites, -2 sacB gene with rrnC terminator, and the 

pBeloBAC11 backbone. The pBAC_HR(89,061)-T5Lux-sC-HR(89,587)_r was constructed 

by inserting a PCR product of an artificial lux operon between the HR1 and the -2/+2 sacB-
CmR cassette in the pBAC_HR(89,061)-sC-HR(89,587)_r.

Assembling long synthetic DNA onto BAC using recombination in S. cerevisiae

Long synthetic DNA fragments (≥ 20 kb) were assembled in S. cerevisiae. The pBeloBAC11 

backbone was converted into a BAC/YAC shuttle vector by introducing a S. cerevisiae 
replication centromere CEN and URA3 selection marker (from S. cerevisiae vector pRS316, 

Addgene). The BAC/YAC shuttle vector holding long synthetic DNA was assembled from 

5-16 DNA fragments in S. cerevisiae28.

Classical recombination and simultaneous double selection recombination protocol

The sacB-CmR cassette was PCR amplified using primers containing HR1 and HR2. In 

classical recombination, 3 μg of this purified PCR product was transformed into 100 μl of 

electro-competent MDS42rpsLK43R/rK cells, which are pre-transformed with the pRed/ET 

plasmid and induced to express the λ Red components. The cells were recovered in 4 ml 

SOB media for 1 hour at 37°C and then diluted to 100 ml LB and incubated for 4 hours at 

37°C with shaking. The culture was then spun down and re-suspended in 4 ml of LB and 

spread in serial dilutions on selection plates of LB agar with 18μg/ml chloramphenicol.

In simultaneous double selection recombination (DOSER), 3 μg of the same PCR product 

was transformed into 100 μl of electro-competent MDS42rpsLK43R/rK cells following the 

same transformation and recovery protocol as above. The culture was then spun down and 

re-suspended in 4 ml LB and spread in serial dilutions on selection plates of LB agar with 18 

μg/ml chloramphenicol and 50 μg/ml streptomycin.

Multiple colonies from classical recombination and DOSER were picked for phenotyping. 

Colony-PCRs of multiple clones from classical recombination and DOSER were performed 

using primer pair flanking the genomic locus 89,061 to 89,587 with MDS42rpsLK43R/rK, 

MDS42rpsLK43R, and Milli-Q filtered water with no resuspended colony as controls. All 

PCR products were run in parallel to NEB 2-Log DNA Ladder (from New England BioLab, 

and sequence verified by Sanger sequencing.
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REXER protocol

MDS42rpsLK43R/rK cells were double transformed with 

pKW20_CDFtet_pAraRedCas9_tracrRNA and pBAC_HR(89,061)-sC-HR(89,587)_r and 

plated on LB agar plates supplemented with 2% glucose, 10 μg/ml tetracycline and 18 μg/ml 

chloramphenicol. Individual colonies were inoculated into LB media with 10 μg/ml 

tetracycline and 18 μg/ml chloramphenicol, and grown overnight at 37°C with shaking. The 

overnight culture was diluted in LB media with 10 μg/ml tetracycline and 18 μg/ml 

chloramphenicol to OD600 = 0.05 and grown at 37°C with shaking for around 3 hours until 

OD600 ≈ 0.3. Arabinose powder was added to the culture to reach a final concentration of 

0.5% and the culture was incubated for one additional hour at 37°C with shaking. The cells 

were harvested at OD600 ≈ 0.6, and made electro-competent in 1/500th of the culture 

volume.

3 μg pKW21_MB1amp_Spacers×2 or pKW21_MB1amp_Spacers×4 plasmid was 

electroporated into 100 μl of competent cells. The cells were recovered in 4 ml SOB media 

for 1 hour at 37°C and then diluted to 100 ml LB supplemented with 50 μg/ml ampicillin 

and 10 μg/ml tetracycline and incubated for 4 hours at 37°C with shaking. The culture was 

spun down and re-suspended in 4 ml LB and spread in serial dilutions on selection plates of 

LB agar with 18 μg/ml chloramphenicol and 50 μg/ml streptomycin. The plates were 

incubated at 37°C overnight, and the efficiency was calculated by counting colonies. 

Multiple colonies were picked, resuspended in Milli-Q filtered water, and arrayed on LB 

agar plates or LB agar plates supplemented with 18 μg/ml chloramphenicol, or 

supplemented with 50 μg/ml kanamycin. Colony-PCR was also performed from resuspended 

colonies using the primer pair flanking the genomic locus 89,061 to 89,587.

The resulting colonies with the -2/+2 sacB-CmR cassette replacing the -1/+1 rpsL-KanR 

cassette at the genomic locus 89,062 to 89,586 were incubated in LB without ampicillin, to 

lose the pKW21_MB1amp_Spacers×2 or pKW21_MB1amp_Spacers×4 plasmid. The 

resulting cells were double transformed with pKW20_pCDFtet_pAraRedCas9_tracrRNA 

and pBAC_HR(89,061)-rK-HR(89,587)_s. An individual colony was picked, inoculated into 

LB, and prepared into electro-competent cell as previously described. 3μg 

pKW21_MB1erm_Spacers×2 or pKW21_MB1erm_Spacers×4 plasmid was electroporated 

into the pre-induced cell. The cells were recovered in 4 ml SOB media for 1 hour at 37°C 

and then diluted to 100 ml LB supplemented with 25 μg/ml erythromycin and 5 μg/ml 

tetracycline and incubated for 4 hours at 37°C with shaking. The culture was spun down and 

re-suspended in 4 ml LB and spread in serial dilutions on selection plates of LB agar with 

3% sucrose and 25 μg/ml kanamycin. After incubating the selection plate at 37°C overnight, 

multiple colonies were picked, resuspended in Milli-Q filtered water, and arrayed on LB 

agar plates, or LB agar plates supplemented with 18 μg/ml chloramphenicol or 50 μg/ml 

kanamycin. Colony-PCR was performed from resuspended colonies using the primer pair 

flanking the genomic locus 89,061 to 89,587.

The pBAC_HR(89,061)-T5Lux-sC-HR(89,587)_r, pBAC_HR(89,061)-90kb/Lux-sC-

HR(89,587)_r, pBAC_HR(89,061)-100kb/Lux-sC-HR(192,744)_r, and 

pBAC_HR(89,061)-20kb-sC-HR(106,508)_r with matching pKW21_MB1amp_Spacers×2 

or pKW21_MB1amp_Spacers×4 plasmids were used in the other REXER experiments 
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following the same protocol. Colony PCR of the lux operon and the coupled -2/+2 sacB-
CmR cassette inserted at the genomic locus 89,061 to 89,587 using the primer pair flanking 

the genomic locus generated a 9 kb band for successful insertion and 1.5 kb for the 

MDS42rK control. Primer pairs flanking the 5’ or 3’ end of the inserted/replaced DNA were 

used, which generates a PCR band for correct insertion/replacement, and no band or band of 

the wrong size with MDS42rK control. Colony PCR using primers for the internal 

watermarks were also performed. The 20 kb recoded region (from 89,062 to 106,507) was 

PCR amplified from purified genomic DNA (QIAGEN DNeasy Blood & Tissue Kit) using 

primer pair flanking the whole region. The 20 kb PCR product was purified using Bio-Rad 

PCR Kleen Columns and fully sequenced by Sanger sequencing.

Choice of region for systematic and defined synonymous recoding

We applied a sliding window approach, in which we counted the number of target codons 

within all essential genes within a 10 kb region of the MDS42 genome. Starting from the 

first 10 kb of the genome sequence, we iteratively shifted the window by 100 nt and 

performed the codon analysis until the end of the MDS42 genome sequence. Gene 

essentiality was defined by transposon insertion densities from a genome-scale genetic 

footprinting study in E. coli33, which led to comparable results as when we used the KEIO 

collection data39.

Choice of recoding rules

We characterised all serine, leucine, and alanine codons using the codon adaptation index 

(cAi)30 and the tRNA adaptation index (tAi)31,32. In case of cAi, we used the relative 

adaptiveness of each codon i (expressed as cAiwi) as a metric. In case of tAi, we used the 

relative adaptiveness value of each codon i (expressed as tAiwi) in Table S231,32. We 

defined ideal synonymous substitutions for targeted codons by minimising the difference in 

cAiwi and tAiwi. Comparing cAiwi and tAiwi for all codons, we noticed that the two 

metrices do not correlate well (Pearson’s R2 = 0.24) and decided to propose a third metric. 

In particular, we assumed that translation efficiency increases proportionally with increasing 

isoacceptor tRNA concentration and decreases proportionally with increasing numbers of 

competing codons that are translated by the same isoacceptor tRNA. On this basis we 

defined the translation efficiency (t.E) of codon i as follows:

where codon i is translated by tRNAs j, kij denotes the interaction strength between codon i 
and tRNA j, m denotes each codon translated by tRNA j, and kmj denotes the interaction 

strength between codon m and tRNA j. The interaction strengths were defined in five 

groups: i) "cognate" for codons that are reverse complements to the respective tRNA 

anticodon as well as AUAIle-k2CAUtRNA, ii) "G-U / U-G wobble" for codons where a third 

position G or U interacts with a (modified) tRNA U or G, respectively, iii) "C/U-xo5U" for 
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codons where a third position C or U interacts with an xo5-modified uridine in the tRNA 

anticodon, iv) "C/U-inosine" where a third position C or U in the codon interacts with an 

inosine in the tRNA anticodon (an interaction shown to be 3-8-fold weaker than G-U 

wobbling40), and v) "A-inosine" for the reportedly weak interaction between the third 

position A in a codon with an inosine in the tRNA anticodon41. We obtained the tRNA 

concentrations [tRNAj] from reported measurements performed on E. coli cultures, 

expressed as a fraction of tRNA out of total tRNA in percent42. To determine the relative 

transcriptomic codon frequency q for each codon i we first calculated the codon's absolute 

transcriptomic frequency ri:

where gix is the frequency of codon i in gene x and tx is the transcript abundance of gene x 
according to empirical data (DNA array data for wild type E. coli grown at 0.5 h-1)43. 

Finally ri was transformed into qi by dividing ri by the maximal value found for r across all 

codons:

Using the three coding metrics, we constructed Extended Data Table 1 by assigning the 

closest substitutions (in pink) for synonymous recoding of TCASer and TCGSer (in grey).

Individual recoding landscapes and compiled recoding landscapes

Based on the complete sequence of the recoded region for each clone, the identity of codon 

at each of the attempted recoding position, and the d.r.1 to 5, was identified either as recoded 

with a binary value of 1 and coloured in red, or wildtype with a value of 0 and coloured in 

black. The distribution of targeted positions that are recoded and that remain wildtype across 

the refactored mraZ to ftsZ region gives an “individual recoding landscape”.

The 16 individual recoding landscape of the 16 individual clones of each of the recoding 

schemes were compiled to generate the “compiled recoding landscape” of each recoding 

scheme by counting the fraction of clones being recoded at each targeted position across the 

whole refactored mraZ to ftsZ region. When the recoding fraction at a given position is 

greater than 0 (coloured in red), it indicates that there is at least one sequenced clone being 

recoded at this position. When the recoding fraction reaches 0 (coloured in black), it 

indicates that the wildtype codon always remains and that the recoded codon may not be 

tolerated at these positions.

REXER + ssDNA recombineering protocol

A single stranded oligo of a total length of 90 nt was designed and synthesized to change the 

deleterious sequence of AGT in ftsA codon position 407 on the synthetic sequence of r.s.1 to 

a fixing sequence of AGC. The oligo sequence was designed based on the reverse strand of 

the synthetic sequence to bind the forward strand with the single nucleotide change 

positioned in the middle (position 45 from 5’ end). The last two nucleotides in the 5’ end of 
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the oligo were substituted with phosphorothioate backbone to protect the oligo from 

unspecific exonuclease degradation.

3 μg of matching pKW21_MB1amp_Spacers×2 plasmid and 0.2 nmol of the fixing oligo 

was co-electroporated into the pre-induced MDS42rpsLK43R/rK cell with 

pCDFtet_pAraRedCas9_tracrRNA and pBAC_HR(89,061)-20kb/r.s.1-sC-HR(106,508)_r. 

The normal REXER procedure was carried out without any modification. SNP-PCRs from 

re-suspended survival colonies were performed44 using the SNP-PCR primer pairs either 

specific for the ftsA codon position 407 wildtype sequence TCG or the fixed sequence 

AGC45 with KAPA 2G fast multiplex mix, and analyzed on QIAGEN QIAxcel Advanced 

using QIAxcel DNA Screening Kit with QX Alignment Marker 15 bp/5 kb and QX Size 

Marker 250 - 4000 bp. Clones with the correct genotype following REXER + ssDNA 

recombineering were verified by Sanger sequencing through the entire 20 kb region.

Growth rate measurements and analysis

Glycerol stocks of the assayed bacterial clones were used to inoculate 5 mL LB in absence 

of antibiotics for overnight incubation at 37°C with shaking. The overnight cultures were 

used to inoculate triplicates of 1 mL of LB in a deep-well pre-culture plate at a ratio of 

1:100, followed by incubation at 37°C for 6 hours with shaking. Each replicate on the pre-

culture plate was used to inoculate 200 μL of LB in a 96-well measurement plate with a 

dilution factor of 100. The measurement plate was incubated at 37 °C for 16 hours with 

shaking at 400 rpm in an M200 Pro Plate Reader (Tecan). Readings of OD600 were taken for 

each well every 10 min. Plate reader absorbance data was adjusted to correspond to 

spectrophotometer readings by collecting measurements from a dilution series of bacterial 

cultures and fitting the plate reader data y with a polynomial to the spectrophotometer values 

x: y = 2.053 x2 + 2.2 x + 0.061.

To determine doubling times, the growth curves were log2-transformed, and the first 

derivative was determined (d(log2(x))/dt). During exponential growth, the log2-derivative is 

maximal and constant. The ten time-points with the maximal log2-derivatives were 

identified, and used to calculate the average value with standard deviation for each of the 

replicate. A total of 12 replicates (three independent clones, each independently repeated 

four times) were used to calculate the doubling time for each fully recoded scheme. For each 

doubling time, the average across the n = 12 replicates was determined and the error σ was 

propagated using the following formula: 

Data availability

The datasets generated during and/or analysed during the current study are available from 

the corresponding author on reasonable request.

Wang et al. Page 13

Nature. Author manuscript; available in PMC 2017 May 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data

Extended Data Figure 1. 
Simultaneous double selection and recombination enhances integration at a target locus. a. 
Classical recombination and double selection recombination. In classical recombination, a 

linear double stranded DNA with a synthetic DNA (s. DNA) sequence and a positive 

selection marker (+, CmR) flanked by homologous region 1 (HR1) and homologous region 2 

(HR2) is transformed into the cell. Recombinants are selected by expression of the positive 

selection marker. By simultaneous double selection recombination, s. DNA containing 

double selection marker -2/+2 (sacB-CmR) is integrated in place of the double selection 

marker -1/+1 (rpsL-KanR) on the genome. Double selection for the gain of +2 and loss of -1 
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selects for simultaneous gain of s. DNA and loss of genomic sequence, and improves 

recombination at the target genomic locus. b. Colony PCR of clones from classical 

recombination and simultaneous double selection and recombination. c. All of the clones 

isolated by simultaneous double selection and recombination have s. DNA integrated at the 

target locus. The data show the mean of three independent experiments, the error bars 

represent the standard deviation (n=6). d. Both simultaneous double selection recombination 

(n = 8), and REXER 2 and REXER 4 (n = 296) result in the right combination of markers. A 

previously reported method integrating foreign DNA into B. subtilis genome only using 

negative selection gave 3% of selected clones with right combination of markers3,11. A 

previously reported method replacing S. cerevisiae chromosome III fragments with s. DNA 

only using positive selection gave 0.5% (replacement of 55 kb) to 59% (replacement of 9 kb) 

of selected clones with right combination of markers (a 13% mean of all reported value 

plotted with error bar representing the range)6. For gel source data, see Supplementary 

Figure 1.

Wang et al. Page 15

Nature. Author manuscript; available in PMC 2017 May 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Figure 2. 
REXER enables site-specific integration of large DNA fragments into the genome. a. The 

use of two distinct double selection cassettes -1/+1 (rpsL-KanR) and -2/+2 (sacB-CmR) 

allows for simultaneous selection for the loss of the negative selection marker on the genome 

and the gain of the positive selection marker from the BAC, upon integration of synthetic 

DNA. b. Efficient replacement of genomic rpsL-KanR with BAC bound sacB-CmR using 

REXER 2 and REXER 4. All colonies contained the correct combination of selection 

markers after REXER 2 or REXER 4 as analysed by phenotyping, colony PCR, and DNA 
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sequencing (not shown) (n = 22). c. Efficient insertion of 9 kb synthetic DNA. Genomic 

rpsL-KanR was replaced with a synthetic lux operon coupled to sacB-CmR using REXER 2 

and REXER 4. All colonies on the 10-fold dilution double selection plates for REXER 2 and 

the 104-fold plates for REXER 4 show bioluminescence. 11 colonies each from REXER 2 

and REXER 4 showed correct integration by phenotyping, colony PCR, and DNA 

sequencing (not shown). d. Efficient insertion of 90kb synthetic DNA. The 90 kb DNA 

consisted of the lux operon in the middle of 80 kb DNA (previously deleted from the 

MDS42 genome) and followed by sacB-CmR, carried on a BAC. For gel source data, see 

Supplementary Figure 1.
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Extended Data Figure 3. 
Replacement of 100 kb of genomic DNA via REXER. a. The synthetic DNA contain the 100 

kb wildtype DNA (open reading frames in grey) with five genes of the lux operon (blue) and 

sacB-CmR. Complete replacement leads to integration of all five lux genes (luxA, B, C, D, 
E) resulting in bioluminescent cells, while partial replacement confers loss of one or more 

lux genes hence loss of bioluminescence. b. After REXER 2, 80 % of 2x102 colonies 

examined were bioluminescent while for REXER 4 yields 50 % of 2x102 colonies examined 

were bioluminescent. c. Bioluminescent colonies from REXER 2 and REXER 4 that were 
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analysed (n = 11) had all five lux genes correctly integrated indicating complete replacement 

of the 100 kb genomic region. All clones contained the right combination of selection 

markers. d. While bioluminescent colonies contain all five lux watermarks, the non-

bioluminescent colonies are missing one or more lux genes indicating partial replacement of 

the genomic region. All clones contained the right combination of selection markers. For gel 

source data, see Supplementary Figure 1.

Extended Data Figure 4. 
Iterative REXER. a. The product of REXER shown in Extended Data Figure 2a was used as 

a template for the next round of REXER. b. The phenotypes of clones from the first round of 

REXER. c. The phenotypes of clones from the second round of REXER. For gel source 

data, see Supplementary Figure 1.
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Extended Data Figure 5. 
Synonymous codon compression strategies. a. Codon and anticodon interactions in the E. 
coli genome. 28 sense codons are highlighted in grey, along with the amber stop codon. The 

genome wide removal of these sense codons, but not other sense codons, would enable all 

their cognate tRNA to be deleted without removing the ability to decode one or more sense 

codons remaining in the genome. This is necessary but not sufficient for the reassignment of 

sense codons to unnatural monomers. Serine, leucine and alanine codon boxes are 

highlighted because the endogenous aminoacyl-tRNA synthetases for these amino acids do 
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not recognize the anticodons of their cognate tRNAs. This may facilitate the assignment of 

codons within these boxes to new amino acids through the introduction of tRNAs bearing 

cognate anticodons that do not direct mis-aminocylation by endogenous synthetases. The 

number of total codon counts for all 64 triplet codons in the MDS42 genome (GenBank 

accession no. AP012306), all known codon-anticodon interactions through both Watson-

Crick base-paring and wobbling, base modification on tRNA anticodons, tRNA genes, and 

measured in vivo tRNA relative abundance are reported. This analysis identifies 10 codons 

from the serine, leucine, and alanine groups (serine codon TCG, TCA, AGT, AGC; leucine 

codon CTG, CTA, TTG, TTA; and alanine codon GCG, GCA) satisfy both the codon-

anticodon interaction and aminoacyl-tRNA synthetases recognition criteria for codon 

reassignment. b., c. , d. Serine, leucine and alanine codon removal and tRNA deletion 

strategies compatible with codon reassignment to unnatural amino acids (u.a.a).
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Extended Data Figure 6. 
Recoding landscapes for compression of serine codons by REXER. a. The sequences for the 

systematically recoded mraZ to ftsZ region were de novo designed, synthesized and 

assembled into BAC and used for REXER. b-d. The recoding landscapes for serine recoding 

schemes r.s.1-3, and the resulting compiled recoding landscape.
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Extended Data Figure 7. 
Recoding landscapes. a-e. r.s.4-8. f. r.s.1 with ftsA codon 407 changed from AGT to AGC 

(highlighted in orange).
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Extended Data Figure 8. 
Identifying and fixing a deleterious sequence in defined and systematic synonymous 

recoding. a. Recoding codon 407 in ftsA in the wildtype genomic background. The wildtype 

codon at ftsA codon position 407 is the serine codon TCG. We sequenced 16 post-REXER 

clones for TCG to AGT and 20 post-REXER clones for TCG to TCT. b. Changing ftsA 407 

AGT to AGC in the serine r.s.1 background. We sequenced 16 AGT clones and 16 AGT to 

AGC clones. c. Changing ftsA 407 AGT to AGC in the serine r.s.1 background dramatically 

improved the fraction of fully recoded clones across the entire 20 kb region from 0% to 94% 
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(16 clones sequenced). d. The fixed serine r.s.1 with ftsA 407 AGC yielded clones with no 

measurable growth defect. The doubling times of fully recoded clones from serine r.s.1 with 

ftsA 407 AGC, from serine r.s.2, serine r.s.3, and alanine r.s.7 are measured, and show no 

measurable growth defects when compared to the wildtype MDS42 E. coli control with the 

second double selection cassette integrated at the same genomic locus. n=12 biological 

replicates ± s.d.. e. Combining single stand DNA recombineering with REXER to fix short a 

deleterious stretch within the synthetic sequence of r.s. 1. A 90 nt. single stranded oligo was 

designed to change the deleterious sequence of AGT in ftsA codon position 407 in r.s.1 to a 

tolerated sequence, AGC. The oligo sequence was designed based on the reverse strand of 

the synthetic sequence to bind the forward strand with the single nucleotide change 

positioned in the middle (45 from nt 5’ end). The oligo was co-transformed into E. coli 
during a REXER experiment which introduces r.s. 1 into the genome.. f. Fixing short 

deleterious sequence on synthetic DNA with REXER + ssDNA recombineering. 16 clones 

from REXER double selection described in (e) were randomly picked and subject to single 

nucleotide polymorphism (SNP) genotyping using primers specific for either the wildtype 

sequence in ftsA codon position 407 (TCG) or the fixed sequence (AGC). 

MDS42 rpsLK43R/rK was used as the wildtype control and a fully recoded clone from serine 

r.s.3 with verified ftsA 407 AGC as the positive control. SNP genotyping at ftsA codon 

position 407 identified one clone (clone 12, highlighted in orange) out of a total of 16 clones 

tested with fixed sequence AGC, which was then fully sequenced across the entire 20 kb 

recoding region and confirmed as fully recoded at all 83 targeted codon positions. For gel 

source data, see Supplementary Figure 1.

Extended Data Table 1

Defining recoding rules by codon adaptation index (cAi), tRNA adaptation index (tAi), and 

translation efficiency (t.E). We defined the best synonymous replacements for the target 

serine (a), leucine (b), and alanine codons (c) by identifying the closest match for the target 

codons, as judged by either codon adaptation index (cAi), tRNA adaptation index (tAi), or a 

third metric that combines codon abundance and measured tRNA concentrations to estimate 

translation efficiency (t.E) (see Methods). The table assigns the closest substitutions (in 

pink) for synonymous recoding of targeted codons (in grey) using the three coding metrics. 

Where two substitutions are comparable the one that conserves G, C content is chosen. The 

number in bold is the value of the best matching substitution in a given coding metric.

a Codon cAi tAi t.E

Metric Substitution Metric Substitution Metric Substitution

TCGSer 0.017 AGTSer 0.165 AGCSer 0.086 AGCSer

TCASer 0.077 AGTSer 0.125 AGCSer 0.049 AGTSer

TCTSer 1.000 0.110 0.034

TCCSer 0.744 0.250 0.057

AGTSer 0.085 0.055 0.044

AGCSer 0.410 0.125 0.088

b Codon cAi tAi t.E
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Metric Substitution Metric Substitution Metric Substitution

CTGLeu 1 0.540 0.098

CTALeu 0.007 0.125 0.010

CTTLeu 0.042 0.055 0.036

CTCLeu 0.037 0.125 0.069

TTGLeu 0.02 CTCLeu 0.165 CTCLeu 0.034 CTTLeu

TTALeu 0.02 CTCLeu 0.125 CTALeu 0.068 CTCLeu

c Codon cAi tAi t.E

Metric Substitution Metric Substitution Metric Substitution

GCGAla 0.424 GCTAla 0.120 GCTAla 0.020 GCTAla

GCAAla 0.586 GCTAla 0.375 GCCAla 0.040 GCCAla

GCTAla 1 0.110 0.019

GCCAla 0.122 0.250 0.027

Extended Data Table 2

Protein functions, localizations, expression levels (in parts per million), and lengths (both 

ORF length in bp and peptide length in amino acid count) of the genes in the essential cell 

division operon all simultaneously recoded in this work (a), and of individually recoded 

ribosomal and release factor 2 genes reported previously (b)37. The numbers of codons 

targeted for removal according to different recoding schemes are also reported. The 

expression level data is from www.pax-db.org.

a Number of target codons

Gene Function Localisation Protein level ppm ORF length Peptide length r.s.1 r.s.2 r.s.3 r.s.4 r.s.5 r.s.6 r.s.7 r.s.8

mraZ Transcription factor cytosol, nucleoid 11.3 459 153 4 4 4 9 9 9 4 4

rsmH Methyltransferase cytosol 122.0 942 314 8 8 8 4 4 4 13 13

ftsL Cell division membrane 1.9 366 122 2 2 2 5 5 5 4 4

ftsI Cell division membrane 9.7 1767 589 9 9 9 15 15 15 38 38

murE Cell division cytosol 121.3 1488 496 5 5 5 10 10 10 47 47

murF Cell division cytosol 67.1 1359 453 7 7 7 12 12 12 34 34

mraY Cell division membrane 13.7 1083 361 5 5 5 9 9 9 16 16

murD Cell division cytosol 67.5 1317 439 3 3 3 12 12 12 36 36

ftsW Cell division membrane 2.7 1245 415 13 13 13 19 19 19 27 27

murG Cell division membrane 21.5 1068 356 5 5 5 11 11 11 34 34

murC Cell division cytosol 83.4 1476 492 2 2 2 12 12 12 29 29

ddlB Cell wall synthesis cytosol 33.1 921 307 7 7 7 15 15 15 24 24

ftsQ Cell division membrane 5.4 831 277 3 3 3 12 12 12 15 15

ftsA Cell division membrane 113.6 1263 421 10 10 10 9 9 9 23 23

ftsZ Cell division cytosol 633.6 1152 384 0 0 0 3 3 3 30 30

Total number of target codons: 83 83 83 157 157 157 374 374

b Number of target codons

Gene Function Localisation Protein level ppm ORF length Peptide length r.s.1 r.s.2 r.s.3 r.s.4 r.s.5 r.s.6 r.s.7 r.s.8

rpmH Protein translation cytosol 4075.7 141 47 0 0 0 0 0 0 9 9
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rpmD Protein translation cytosol 3046.3 180 60 0 0 0 2 2 2 20 20

rpmC Protein translation cytosol 5980.0 192 64 0 0 0 1 1 1 12 12

rpsR Protein translation cytosol 5806.5 228 76 0 0 0 0 0 0 2 2

rpmB Protein translation cytosol 5502.1 237 79 0 0 0 1 1 1 5 5

rpsP Protein translation cytosol 6611.2 249 83 3 3 3 2 2 2 16 16

rpsQ Protein translation cytosol 2179.3 255 85 1 1 1 0 0 0 3 3

rpmA Protein translation cytosol 4380.7 258 86 0 0 0 0 0 0 3 3

rpsS Protein translation cytosol 3094.6 279 93 0 0 0 0 0 0 3 3

rplW Protein translation cytosol 2091.7 303 101 0 0 0 1 1 1 7 7

rpsN Protein translation cytosol 4612.5 306 102 2 2 2 0 0 0 9 9

rplU Protein translation cytosol 1856.1 312 104 0 0 0 4 4 4 10 10

rpsJ Protein translation cytosol 3472.7 312 104 0 0 0 1 1 1 9 9

rplX Protein translation cytosol 4456.0 315 105 1 1 1 2 2 2 5 5

rplV Protein translation cytosol 7848.2 333 111 0 0 0 1 1 1 5 5

rplS Protein translation cytosol 3859.3 348 116 0 0 0 0 0 0 4 4

rplR Protein translation cytosol 6367.3 354 118 0 0 0 0 0 0 8 8

rplT Protein translation cytosol 3291.4 357 119 0 0 0 0 0 0 9 9

rpsM Protein translation cytosol 5733.1 357 119 1 1 1 0 0 0 10 10

rplL Protein translation cytosol 14543.5 366 122 0 0 0 0 0 0 8 8

rplN Protein translation cytosol 8866.6 372 124 1 1 1 2 2 2 3 3

rpsL Protein translation cytosol 5532.8 375 125 0 0 0 1 1 1 10 10

rplQ Protein translation cytosol 4272.8 384 128 0 0 0 1 1 1 5 5

rpsK Protein translation cytosol 2900.5 390 130 1 1 1 0 0 0 5 5

rpsH Protein translation cytosol 3828.3 393 131 0 0 0 0 0 0 1 1

rpsI Protein translation cytosol 3410.8 393 131 0 0 0 2 2 2 5 5

rplP Protein translation cytosol 3778.1 411 137 0 0 0 2 2 2 9 9

rplM Protein translation cytosol 4268.0 429 143 0 0 0 0 0 0 9 9

rplO Protein translation cytosol 5111.6 435 145 1 1 1 1 1 1 3 3

rplJ Protein translation cytosol 7731.6 498 166 1 1 1 2 2 2 3 3

rpsE Protein translation cytosol 7657.3 504 168 0 0 0 1 1 1 11 11

rplF Protein translation cytosol 5012.1 534 178 0 0 0 0 0 0 5 5

rpsG Protein translation cytosol 8660.2 540 180 0 0 0 2 2 2 11 11

rplE Protein translation cytosol 3489.1 540 180 0 0 0 2 2 2 5 5

rplD Protein translation cytosol 3469.9 606 202 0 0 0 1 1 1 5 5

rpsD Protein translation cytosol 5187.4 621 207 1 1 1 3 3 3 9 9

rplC Protein translation cytosol 4460.3 630 210 0 0 0 0 0 0 6 6

rpsC Protein translation cytosol 5755.0 702 234 0 0 0 0 0 0 2 2

rpsB Protein translation cytosol 4324.5 726 242 0 0 0 0 0 0 1 1

rplB Protein translation cytosol 5658.4 822 274 1 1 1 1 1 1 16 16

prfB Protein translation cytosol 570.9 1099 366 0 0 0 0 0 0 8 8

rpsA Protein translation cytosol 2649.1 1674 558 0 0 0 0 0 0 3 3

Total number of target codons: 14 14 14 36 36 36 292 292

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Efficient, programmable insertion of very long synthetic DNA (s. DNA) into the genome of 

E. coli. a. REXER 2 and REXER 4. CRISPR protospacer sequences are blue and orange 

rectangles respectively. Triangles indicate spacer RNAs that program cleavage within colour 

matched protospacers.. REXER 4 augments REXER 2 by adding two extra protospacers 

(purple and red rectangles), and triggering cleavage with four spacer RNAs. +1 is KanR, -1 

is rpsL, +2 is CmR, -2 is sacB. b. REXER 2 and REXER 4 are dependent on the CRISPR/

Cas9 system and recombination. Controls omit either spacer RNA or lambda red beta. Data 
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show mean (n=4-6, ± s.d.). c. The efficiency of REXER 2 and REXER 4 is constant for 

insertions between 2 kb and 90 kb. C.f.u, colony forming units (c.f.u.). The data show the 

mean (n=6, 3 biological replicates performed in duplicate, ± s.d.) for 2 kb insertion, and the 

data for 9 kb and 90 kb insertions (n=4, 2 biological replicates performed in duplicate, ± 

s.d.). It was not possible to obtain a 90 kb linear dsDNA product in vitro for classical lambda 

red recombination, and our data reflect this, rather than the efficiency of recombination per 
se. It is well established that lambda red recombination efficiency falls off rapidly with 

linear dsDNA length.
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Figure 2. 
Iterating REXER for genome stepwise interchange synthesis (GENESIS). a. Iterative 

genomic replacement by REXER will enable genome replacement in less than 40 linear 

steps. b. Iterative REXER replaces 220 kb of the E. coli genome with 230 kb of synthetic 

DNA in two steps. LuxA, B, C, D, E (cyan rectangles) are necessary and sufficient for 

luminescence. hph (violet rectangle) is the hygromycin B phosphotransferase gene, 

conferring resistance to hygromycin B. c. Cells phenotype correctly through rounds of 

REXER. The parental cell line (genomewt), independent clones from the 1st round of 
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REXER (clone A and B), and independent clones from the 2nd round of REXER (clone C 

and D), Lumi (luminescence), Cm (chloramphenicol), Kan (Kanamycin), Suc (Sucrose), 

Strep (Streptomycin). d. Cells genotype correctly through rounds of REXER. For gel source 

data, see Supplementary Figure 1.
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Figure 3. 
Systematic and defined synonymous codon reassignment in an E. coli operon rich in 

essential genes. a. Identifying codons target for removal (grey) and the synonyms to which 

they are reassigned (pink) in each recoding scheme. Lines indicate codon-anticodon 

interactions. Replacements were chosen by cAi, tAi, or t.E. Application of each recoding 

scheme genome-wide would allow the targeted codons to be completely removed from the 

E. coli genome and, following deletion of the cognate tRNA genes, codon reassignment to 

orthogonal translation systems for unnatural polymer synthesis. b. Identifying a target 
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operon rich in target codons and essential genes to test recoding schemes. The top panel 

indicates the positions of essential genes. In the bottom three panels the y axis scores the 

number of the indicated target codons in essential genes at the genomic position indicated on 

the x axis. The mraZ to ftsZ region (coloured in red) was identified in the highest scoring 20 

kb region across the E. coli MDS42 genome for all targeted codons. c. Position and density 

of targeted codons in the mraZ to ftsZ region. The positions of targeted codons (the 

indicated sense codons plus TAG to TAA) are coloured in red and pink regions with red 

outlines indicate duplicated regions (d.r.s) which refactor2 overlapping open reading frames 

to enable independent recoding of the downstream open reading frames.
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Figure 4. 
Compiled recoding landscapes of targeted codons reveal allowed and disallowed 

synonymous recoding schemes, and enable the identification and repair of idiosyncratic 

positions in the genome. The fraction of recoding across sixteen independent sequences is 

indicated on the y axis of the graphs. Codons positions that are not recoded with the 

indicated scheme are in black. a., b., c. Complied recoding landscapes of targeted serine, 

leucine and alanine codons respectively. d. Identifying and fixing a deleterious sequence in 

defined and systematic synonymous recoding. The compiled recoding landscape of serine 
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r.s.1, is plotted in red, revealing the single position at which the wild type sequence is 

maintained, codon 407 in ftsA. The compiled recoding landscape of serine r.s.1 with ftsA 
407 AGT changed to AGC (as in serine r.s.2 and r.s.3) is plotted in orange. This mutation 

repairs the deleterious effect of ftsA 407 AGT without reintroducing the codons targeted for 

removal.
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