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Quantification of mixing in vesicle suspensions using numerical
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We study mixing in Stokesian vesicle suspensions in two dimensions on a cylindrical Couette apparatus
using numerical simulations. The vesicle flow simulation is done using a boundary integral method,
and the advection-diffusion equation for the mixing of the solute is solved using a pseudo-spectral
scheme. We study the effect of the area fraction, the viscosity contrast between the inside (the vesicles)
and the outside (the bulk) fluid, the initial condition of the solute, and the mixing metric. We compare
mixing in the suspension with mixing in the Couette apparatus without vesicles. On the one hand,
the presence of vesicles in most cases slightly suppresses mixing. This is because the solute can be
only diffused across the vesicle interface and not advected. On the other hand, there exist spatial
distributions of the solute for which the unperturbed Couette flow completely fails to mix whereas the
presence of vesicles enables mixing. We derive a simple condition that relates the velocity and solute
and can be used to characterize the cases in which the presence of vesicles promotes mixing. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4975154]

I. INTRODUCTION

Vesicles are closed phospholipid membranes suspended
in a viscous solution. They are found in biological systems
and play an important role in intracellular and intercellular
transport. Artificial vesicles are used in a variety of drug-
delivery systems and in the study of biomembrane mechanics.
Vesicle-inspired mechanical models can be used to approxi-
mate red blood cell mechanics and non-local hydrodynamic
interactions. Most vesicle suspension flows take place in van-
ishing Reynolds number regime. Although there has been a
lot of work in characterizing the dynamics of vesicles, there
has been very little work in characterizing mixing in vesicle
flows.

A. Contributions

To the best of our knowledge, this is one of the first papers
studying the effects of vesicle suspensions on mixing. We con-
sider a simple setup: a two-dimensional cylindrical Couette
apparatus in the zero Reynolds number regime. The size of the
vesicles is comparable to the size of the apparatus, so we study
systems for which it is not clear how to use an upscaled model
since there is no separation of scales (see Figure 1, for an exam-
ple). We only consider no-slip boundary conditions where the
inner cylinder rotates at a fixed rate and the outer cylinder is
stationary. We study the system numerically with an integro-
differential equation formulation for the fluid dynamics and
a pseudo-spectral scheme for a passive advection-diffusion
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equation. We compare the mixing in the absence and the
presence of vesicles. There is no unique way to define mixing
but our results are based mostly on negative Sobolev norms of
the concentration. We study the effects of the Peclet number,
the area fraction, and the viscosity contrast between the fluids
inside and outside of the vesicles. We also study several dif-
ferent initial conditions for the passively transported quantity
(“the solute”). The membranes of the vesicles in our model
are assumed to be impermeable for the background fluid (“the
solvent”) and permeable for the solute. Since, in the model,
Lagrangian trajectories do not cross the vesicle membrane,
this has the effect of reducing advective mixing. Overall, we
find that for the same average Peclet number, the presence of
vesicles slightly reduces mixing. Interestingly, however, this is
not always the case. There exist certain rather special initial
conditions for the passively transported quantity that this is
not the case. For these conditions in the absence of vesicles
there is no advective mixing while the presence of vesicles
increases mixing. One such initial condition is the “LAYER”
initial condition in Figure 2(b).

B. Limitations

The main limitation is that we only consider a specific
two-dimensional flow. So, generalizations to other type of
flows are not immediate. Also, we consider several metrics
for mixing, but other metrics can be considered. Although we
use a constant diffusion coefficient for the solute in the pas-
sive advection-diffusion model, the diffusion coefficient can
depend on whether the diffusion is considered in the fluid bulk,
the fluid enclosed by the vesicle, or the vesicle membrane. We
also assume that the vesicle membrane is impermeable to the
suspending fluid. Additionally, we investigate the effects of
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FIG. 1. Here we show an example of a simulation of mixing in a suspension of vesicles. The suspension has a 40% area fraction of vesicles and no viscosity
contrast. The initial condition for the solute is one inside the vesicles and zero outside the vesicles. This advection-dominated transport problem has Pe = 1e+ 4.
In this simulation, we use 256 and 1024 discretization points in the radial and the azimuthal directions, respectively. In the simulation of the vesicle suspension,
we discretize a vesicle with N = 96 points and a wall with Nwall = 256 points. The time horizon (Th = 150) corresponds to 24 revolutions of the inner cylinder in
the Couette apparatus. We take a total of 3750 time steps in our mixing simulation. All numerical simulations were performed using an in-house MATLAB code.

only the area fraction, the viscosity contrast, and the Peclet
number on mixing.

C. Related work

Mixing has been studied extensively as it is important
in many scientific and industrial settings. Classical works in
mixing3,24 consider large scale systems such as combustion

in engines and pollution in seas. Mixing is of fundamental
importance to many biological systems. The survival of many
microorganisms requires the transport of substances such as
nutrients, but these substances have slow rates of diffusion.
The enhancement of mixing by mechanical stirring mech-
anisms such as micro-swimmers has been investigated both
experimentally19,22 and numerically.27,48 We are interested in
mixing in microfluidic settings in which the flow complexity

FIG. 2. The geometry used in this work
is a cylindrical Couette apparatus. It con-
sists of two concentric cylinders, where
the inner cylinder is rotating and the
outer cylinder is stationary. We also
show the vesicle suspension. First we
perform a vesicle-flow numerical simu-
lation to compute the velocity field of
the suspension. This step is indepen-
dent of the advection-diffusion equation
since the transported quantity is passive.
Once the velocity field is computed, we
solve the transport problem for a number
of different initial conditions depicted
in (b). Red corresponds to high con-
centration (maximum value is 1) and
blue corresponds to low concentration
(minimum value is 0).
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is driven by moving boundaries or suspensions of deformable
particles.

Mixing in flows with moving and deformable bound-
aries has been studied.6,17,35 However, none of these works
discuss mixing of vesicle suspensions. Of course, there are
many studies on the rheology of vesicle flows such as tank-
treading and tumbling motions.15,20,23,31,34 Vesicles also model
red blood cells and are used to study microcirculation.37

Therefore, mixing in vesicles can be related to mixing in cap-
illaries and arterioles. Regarding the numerical method for
vesicles, we use our in-house algorithms for vesicle simula-
tions,39–41,49 and we refer the reader to Refs. 39 and 40 for
a review of the related work on the two-dimensional vesicle
simulations.

Another important aspect in our work is the quantifica-
tion of mixing. Although there is extensive work on met-
rics for mixing, there is not a universal measure.14,21,26,29,36

We review some of the metrics specifically for advection.
Metrics derived from dynamical systems consider the loca-
tions of tracer particles after a single period of a periodic
flow. One example is the Poincaré section4 which exam-
ines the position of particles after multiple periods of the
flow. If the separation between neighboring particles increases
exponentially with each period, then we say that the flow
is chaotic, and the exponent, which is called the stretch-
ing rate or Lyapunov exponent, quantifies the mixing. In
particular, larger Lyapunov exponents correspond to better
mixing, and this approach is used in Ref. 32. Mixing can
also be measured statistically. One measure is the mixing
variance metric. Another measure is the Kolmogorov-Sinai
entropy that computes an integral of Lyapunov exponents
over a domain.10 Another set of metrics is based on track-
ing the interface between the solute and the solvent. When
an effective mixing takes place, this interface grows rapidly.
The exponential rate of the growth is called the interface
stretch30 and measures global stretching unlike Lyapunov
exponents.1,2

The aforementioned metrics are appropriate to measure
mixing for advection dominated flows. However, the intro-
duction of diffusion further enhances mixing. We refer the
reader to Ref. 13 for a more detailed discussion on the differ-
ent metrics for different Peclet numbers and initial conditions.
When quantifying mixing due to diffusion, metrics that are
based on the solute are more informative. For example, the
Euclidean (L2) norm and the maximum norm (L∞)5,43 can be
used. However, Lp norms do not decay in the absence of diffu-
sion, and therefore cannot quantify mixing due to advection.
Thus, there is a need for a metric that captures mixing due to
both diffusion and advection. One metric that captures mix-
ing due to diffusion and advection is the negative index H�1

Sobolev norm,28,29 which we will refer to as the “mix norm.”
Additionally,11,18 compare the H�1 norm with Lp norms. In
addition to being able to capture mixing due to advection and
diffusion, the H�1 norm depends on the initial concentration
field.

Since all the numerical methods we adopt often appear in
the literature, we only briefly describe our numerical scheme.
We use a Fourier-Chebyshev collocation7,47 method to
discretize the equation in space. We use a Strang operator

splitting time-stepping scheme,44 which we combine with a
semi-Lagrangian method for the advection.42,52

D. Methodology

We consider the advective and the diffusive mixing of a
passive scalar in a Couette apparatus (see Figure 2(a)) that has
a rotating the inner cylinder and a stationary outer cylinder.
The relevant dimensionless number of the transport problem
is the ratio of the advective transport rate and the diffusive
transport rate, or the Peclet number Pe,45

Pe = VLc/D, (1.1)

where V is the time average of the L2 norm of the velocity
field v, i.e., V = 〈‖v‖L2〉 and measures the kinetic energy, Lc

is the characteristic length scale (the diameter of the appa-
ratus), and D is the diffusivity of the transported quantity.
As an example, we discuss transport in microcirculation. The
diameters of a capillary and an arteriole are O(10 µm) and
the mean velocities of blood flow in them are O(1) mm/s
and O(10) mm/s, respectively.16,37,51 The diffusivities of oxy-
gen and an iron-oxide nanoparticle are O(10−3) mm2/s51 and
O(10−7) mm2/s,33 respectively. Therefore, the Peclet number
for the transfer of oxygen or nanoparticles ranges from 10
to 104.

Vesicle suspensions have several parameters such as the
distribution of sizes of the vesicles, the reduced volume, the
bending resistance, the “volume” fraction (in 2D the ratio
between the area occupied by the vesicles and the total area of
the apparatus; we call it area fraction throughout the paper),
and the viscosity contrast between the fluid inside the vesicle
and the bulk fluid. All these parameters could affect mixing.
Here, however, we consider only two main vesicle parameters:
the area fraction and the viscosity contrast. Of course, another
parameter is the imposed external velocity field. In our case
it is the velocity generated by the rotating inner cylinder in
the Couette apparatus, and we parameterize it by the Peclet
number. Again, taking an example from microcirculation, the
volume fraction of red blood cells in human blood is typically
around 45% and their viscosity contrast with plasma ranges
from 5 to 10.16

Our numerical simulations require two steps. First, we
simulate the vesicle motion for various values of area frac-
tion and viscosity contrast and then compute the velocity
field on a Fourier-Chebyshev grid. Second, using this veloc-
ity field, we simulate mixing in the Couette apparatus for the
initial conditions in Figure 2(b) and denote the corresponding
concentration of the solute with φ. We remark that numeri-
cal algorithms for the calculation of the velocity and φ are
very different. The suspension dynamics are computed using
a boundary integral equation method while the advection-
diffusion equation is solved using a pseudospectral method.
We also simulate mixing of the same initial concentration in
the apparatus with the same Peclet number but without any
vesicles, and we denote this concentration by φ0. Using φ0,
we define a mixing efficiency η as

η =
‖ φ0 ‖

‖ φ ‖
, (1.2)
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which compares the mixing efficiency of the Couette appara-
tus with vesicles to that without vesicles (the default Couette
flow). If η is greater than one, the vesicle flow mixes bet-
ter. When computing the Peclet number (1.1), we use the
spatio-temporal average of the velocity field to quantify the
advective transport rate. Since the velocity field v depends on
the area fraction and the viscosity contrast, it changes with the
area fraction and viscosity contrast of the suspension. Thus,
we adjust the diffusivity D to keep the Peclet number the
same in computing φ0 and φ. In this manner, we investigate
the effects of the area fraction and the viscosity contrast on
the mixing efficiency. Additionally, we look at these effects
under various Peclet numbers for the initial conditions in
Figure 2(b).

E. Organization of the paper

In Sec. II we briefly summarize the formulation for
the numerical simulation of vesicle flows. We, then, present
the temporal and the spatial discretization methods for the
advection-diffusion equation in Sec. III. After we define the
mixing metrics in Sec. IV, we show the results of the numeri-
cal experiments and discuss the effects of the area fraction, the
viscosity contrast, and the initial condition of the transported
quantity on the mixing efficiency in Sec. V.

II. SIMULATION OF A VESICLE SUSPENSION

In this section, we briefly summarize the numerical
scheme for the vesicle dynamics. We refer the reader to
Refs. 38–40 for further details. The fluid domain is denoted
by Ω, the boundary of the ith vesicle by γi, and the interior of
the ith vesicle by ωi. We also write γ =

⋃
iγi and ω =

⋃
iωi.

The vesicle boundaries γi are parameterized as xi (s,t), where
s is the arc length and t is time. This notation is also described
in Figure 3.

In Stokesian fluids, the inertial forces are negligible com-
pared to the viscous forces resulting in a small Reynolds
number (Re). In the limit of Re = 0, the momentum and
continuity equations are

−µ∆v + ∇p = 0, div(v) = 0, inΩ \ γ, (2.1)

where µ is the fluid viscosity, v is the fluid velocity, and p is
the pressure. We assume that the viscosities of the exterior and
interior fluids are constant. The no-slip boundary condition on
the interface of vesicles implies that

dxi

dt
= v(xi), on γi. (2.2)

In addition, we impose a no-slip velocity boundary condition
on the inner and outer boundaries of the Couette apparatus.
Next, we assume that the surface of the vesicles is locally
inextensible. This constraint is to the divergence of the velocity
on γ vanishing,

divγi v(xi) = 0, on γi. (2.3)

Another governing equation comes from the balance of
momentum on the interface of the vesicles. It enforces the
jump in the surface traction to be equal to the net force applied
by the interface onto the fluid,

f(xi) = [[Tn]], on γi, (2.4)

where T = − pI + µ
(
∇v + ∇vT

)
is the Cauchy stress ten-

sor, n is the outward normal vector of γi, [[·]] is the jump
across the interface, and f is the net force applied by the inter-
face onto the fluid. The net force f is the nonlinear function
of xi (s,t),

f(xi) = −Kb
∂4xi

∂s4
+
∂

∂s

(
σ(xi)

∂xi

∂s

)
, on γ. (2.5)

The first term on the right hand side is the force due to bending
rigidityKb and the second term is the force due to the tensionσ
on the interface. We assume that there is no other force such as
the gravitational force on the interface. Additionally, a scaling
analysis41 shows that the bending rigidityKb sets the time scale
and the tension σ can be interpreted as a Lagrange multiplier
enforcing the local inextensibility constraint.49 Therefore, Kb

andσ do not affect mixing and are not considered here. Finally,
the position of the boundaries of M vesicles evolves as

FIG. 3. We illustrate the domain of a vesicle simulation in (a). The interior and boundary of the ith vesicle are denoted by ωi and γi , respectively. The vesicle
suspension formulation is described in Sec. II. (b) shows the polar coordinate Fourier-Chebyshev grid where we discretize the transport equation. The transport
equations are described in Sec. III.
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dxi

dt
= v∞(xi) +

M∑
j=1

vj(xi), i = 1, . . . , M, (2.6)

where v∞(xi) is the background velocity and vj (xi) is the
velocity due to the jth vesicle acting on the ith vesicle.

The complete set of nonlinear Equations (2.1)–(2.6) gov-
erns the evolution of the vesicle interfaces. We use an integral
equation method since it can naturally handle the moving
geometry, achieve high-order accuracy, and resolve the vis-
cosity contrast. The tension and traction jump in (2.5) for a
given xi (s,t) are computed spectrally with Fourier differenti-
ation. Finally, the boundary conditions (2.2) and (2.3) result
in a coupled system of equations with integral, differential,
and algebraic components that can be solved by applying a
time stepping method such as fully explicit,53 block semi-
implicit,41 semi-implicit,39 or spectral deferred correction.40

Because of the high-order derivatives in (2.5), we use a semi-
implicit method to address stiffness. Once the positions and
tensions of the vesicles are obtained, the integral equation for-
mulation allows us to compute the velocity v at any point in
the domain as a postprocessing step. Then, this velocity field
is used in our advection-diffusion solver.

III. ADVECTION-DIFFUSION EQUATION

The advection-diffusion equation governs mixing of a pas-
sive scalar. Its nondimensional form with Neumann boundary
conditions is

∂φ

∂t
+ v · ∇φ =

1
Pe
∆φ inΩ, (3.1a)

∂φ

∂r
= 0 on Γ, (3.1b)

where, φ is the concentration, v is the velocity, t is time, Ω is
the Couette geometry in Figure 2(a), and Γ is the boundary of
Ω. We now present the numerical scheme we have adopted to
solve (3.1).

A. Temporal discretization

The Strang splitting method expresses the solution opera-
tor L in (3.1a) in terms of the advection (LA) and the diffusion
(LD) operators,

∂φ

∂t
+ LAφ = 0, (3.2a)

∂φ

∂t
+ LDφ = 0, (3.2b)

where LA = v · ∇ and LD = −
1
Pe∆. Given some initial con-

centration field, the Strang splitting updates the concentration
in three steps: first it solves the advection equation (3.2a) in
[tn,t(n+1)/2], second the diffusion equation (3.2b) in [tn,tn+1],
and third the advection equation (3.2a) in [t(n+1)/2,tn+1]. This
splitting is second-order accurate, but the methods used to
solve each subproblem also determine the accuracy of the
complete scheme. In this study, we solve the advection prob-
lem (3.2a) and the diffusion problem (3.2b) with a semi-
Lagrangian method and a Crank-Nicolson method, respec-
tively. This decoupling results in an unconditionally stable
scheme.8

1. Semi-Lagrangian method for advection

The advection equation (3.2a) in Lagrangian form is

dφ
dt
=
∂φ

∂t
+ v · ∇φ = 0,

which means that φ is constant along the characteristic path
x(t) which satisfies

dx
dt
= v (x, t) . (3.3)

In the semi-Lagrangian method, first we solve (3.3) back-
ward in time to find the Lagrangian point or “departure point”
xd that arrives at a point xa that coincides with the discretiza-
tion points used for the diffusion solve (see Figure 3(b)). This
trajectory is computed with the second-order explicit midpoint
rule

xm = xa − v
(
xa, tn) ∆tA

2
, (3.4a)

xd = xa − v
(
xm, tn +

∆tA

2

)
∆tA, (3.4b)

where∆tA is the time step size for the advection problem (usu-
ally∆tD ≥ ∆tA where∆tD is the time step size for the diffusion
problem). Since we have integrated along the characteris-
tic, the concentration at xa satisfies φ

(
xa, tn+1

)
= φ (xd , tn).

In general, the departure points xd do not coincide with
the grid points, thus we interpolate the concentration at xd

using cubic interpolation with φ(xa, t). Additionally, we also
interpolate the velocity at the mid-point xm in (3.4b) using
the same method. This particular semi-Lagrangian scheme is
second-order accurate in time.12,52

2. Crank-Nicolson for diffusion

We use a Crank-Nicolson scheme to discretize the diffu-
sion equation (3.2b) in time

φn+1 − φn

∆tD
=

1
Pe
∆

(
φn+1 + φn

2

)
. (3.5)

Since (3.5) is not L-stable, high frequency components of φ
can lead to spurious numerical oscillations.9 Since we choose
discrete initial conditions (see Figure 2(b)), high frequencies
components will be present.25 Therefore, we require a method
that behaves as a numerical low-pass filter so that high frequen-
cies are suppressed. We apply the L-stable backward Euler
method initially to smooth the initial condition.50,54 Since
backward Euler is only first-order accurate, it is only applied
for t ∈ [0,∆tD] with a time step size ∆tBE =∆t2

D. Then, to
achieve second-order accuracy, Crank-Nicholson is used for
t > ∆tD.

B. Spatial discretization

Taking the advantage of symmetries in the geometry, we
use polar coordinates (r, θ) (see Figure 3(b)) and a pseudo-
spectral representation of φ. Since φ is periodic in θ, we use a
Fourier series in θ,

φ(r, θ, t) =
Nθ/2∑

k=−Nθ/2+1

φ̂k(r, t)eikθ . (3.6)
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Then, we discretize the Fourier coefficients φ̂k in r using
Chebyshev polynomials as

φ̂k(r, t) =
Nr−1∑
m=0

φ̂k,m(t) cos(mα),

where Nθ is the number of uniformly distributed collocation
points in θ ∈ [0, 2π] and N r is the number of collocation
points in r. Additionally, α = πm/(Nr − 1) ∈ [0, π] and we
define the radial coordinate as r = 1

2 (1 − cos α) (r2 − r1) + r1,
where the radii of the inner and the outer cylinders are r1

and r2, respectively. The resulting grid points are illustrated in
Figure 3(b).

After substituting (3.6) into (3.5) and applying the Lapla-
cian ∆, the resulting diagonal set of linear equations is

A−k φ̂
n+1
k (r) = A+k φ̂

n
k(r), (3.7)

where the operators Ak are

A∓k =
I
∆t
∓

1
2Pe

(
1
r
∂

∂r
+
∂2

∂r2
+

k2

r2

)
,

and I is the identity matrix. Equation (3.7) is efficiently solved
using the fast cosine transform.

We have tested our numerical scheme on different initial
conditions and velocity fields. For smooth velocity fields and
initial conditions, the method is second-order accurate in time
and spectrally accurate in space. We have also tested our solver

on velocity fields that are not continuous, such as those for
vesicle suspensions, and we achieve similar convergence rates
for smooth initial conditions.

IV. METRICS OF MIXING

To measure mixing in advection-dominated transport,
some of the early work18,29 suggests that the H�1 norm is
appropriate and discusses the disadvantages of Lp norms. In
this section, we define and compare the L1, L2, and H�1 norms
on an example problem.

The Lp norm of the concentration φ is

‖φ‖Lp =

(∫
Ω

|φ(x)|pdΩ

)1/p

.

We only use p = 1,2. The H�1 norm of a concentration field φ
is a negative Sobolev norm and is defined as

‖φ‖H−1 =

(∫
Ω

g(x)φ(x)dx
)1/2

,

where g is the solution of the boundary value problem

(I − ∆) g(x) = φ(x), x ∈ Ω,

g(x) = 0, x ∈ Γ,
(4.1)

where I is the identity operator and ∆ is the Laplacian. We
solve (4.1) using the Fourier-Chebyshev collocation scheme
described in Sec. III B. In L2 and H�1, smaller norms of φ
correspond to a more mixed concentration field.

FIG. 4. We illustrate the differences
between L1, L2, and H�1 norms when
applied as mixing metrics of a concen-
tration field. The advection velocity is a
simple cylindrical Couette flow without
vesicles. We consider two Peclet num-
bers Pe = ∞ and Pe = 5e + 3. Mixing
measures are usually normalized by their
initial values in the literature, but we
do not normalize here so that we can
demonstrate that the three norms con-
verge to the same value as t → ∞.
We measure the degree of mixing by
L1, L2, and H�1 norms for both Peclet
numbers in (b-1) and (b-2). (b–1) shows
that the L1 and L2 norms do not decay
without diffusion, even though mixing
is taking place by advection. Addition-
ally, we observe in (b–2) that as the
concentration becomes uniform over the
domain (i.e., φ(x) = φ), the L2 and the
H�1 norms approach one another and
ultimately converge to the constant L1

norm.
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Remark: By integrating (3.1a) overΩ, integrating by parts,
and applying the Neumann boundary condition (3.1b) and the
incompressibility constraint, we have

d
dt

∫
Ω

|φ(x, t)|dx = 0.

Here we have used the fact that the concentration field is posi-
tive. Since the completely mixed state corresponds to a uniform
concentration φ, we have∫

Ω

|φ(x, t)|dx = φ
∫
Ω

dx,

for all time. Therefore the L1 norm is not an appropriate norm
to measure mixing. The L2 norm measures fluctuations from
the mean φ. It has been shown that the L2 norm of the con-
centration monotonically approaches zero in the absence of
sources since18

d
dt
‖φ‖2L2 = −2D ‖∇φ‖2L2 .

Therefore, if the diffusion coefficient is non-zero, or Pe , ∞,
and the concentration field is not uniform, then the L2 norm of
the concentration field decreases with time. We demonstrate
these properties of the L1 and L2 norm in Figure 4. The initial
condition is depicted in Figure 4(a-1) and we consider a simple
Couette flow without any vesicles. The number of collocation
points is N r = 128 and Nθ = 512. The rest of the parameters

TABLE I. Physical parameters for mixing simulations.

Notation Units Value

Angular velocity of the inner cylinder ω Rad/unit time 1
Radius of inner cylinder r1 Unit length 10
Radius of outer cylinder r2 Unit length 20
Unit length µm 3

are in Table I. First, Figure 4(b-1) shows that neither the L1

norm nor the L2 is able to capture mixing due to pure advection
(i.e., Pe = ∞), while the H�1 norm decays as the concentra-
tion is mixed. Second, Figure 4(b-2) demonstrates that in the
presence of diffusion, the L1 norm is still independent of time,
but the L2 and H�1 norms decrease with mixing. Additionally,
in the presence of diffusion, since the concentration becomes
uniform, the three norms approach the same value.

In advection-dominated flows, in which the diffusivity
constant D is small, the concentration gradient can become
large enough that the L2 norm will decay.18 However, if
D is sufficiently small, this will not provide a meaningful
quantification for mixing. In contrast, the H�1 norm cap-
tures mixing due to both advection and diffusion which
results in a more accurate method for measuring mixing for
a large range of Peclet numbers. Since we are interested in
advection-dominated transport, the H�1 norm is preferable
to the L2 norm to quantify mixing and to define the mixing
efficiency (1.2). If the efficiency η > 1, then ‖ φ0 ‖>‖ φ ‖

FIG. 5. We outline the procedures to find the statistically representative window width w′ and to detect the statistical equilibrium for the vesicle suspension of
AF = 40%, in the first and second rows, respectively.
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and thus the presence of vesicles promotes mixing. Simi-
larly, if η < 1, then the presence of vesicles suppresses
mixing.

V. NUMERICAL EXPERIMENTS

In this section, we discuss the effects of the presence
of vesicles on mixing. We investigate the dependence of the
mixing efficiency on the area fraction (AF) and the viscosity
contrast (VC). The area fraction of a vesicle suspension is the
ratio of the area occupied by the vesicles to the area of the
fluid bulk. The viscosity contrast is the ratio of viscosities of
the interior and the exterior fluids. Additionally, we run tests on
the different initial conditions in Figure 2(b). Let us summarize
the experiments we perform.

• Effects of area fraction (Figures 7–9): Here we aim
to understand whether the presence of more vesicles
in a suspension promotes or suppresses mixing. For
this purpose, we simulate mixing in vesicle suspensions
with area fractions 10%, 20%, and 40%, and with the
layer initial condition and Pe = 1e + 104. We visualize
several times the snapshots of the concentration field,
the vesicle positions, and the velocity field (in fact, we
visualize its difference from the pure Couette flow). The

results indicate, for this setup, that increasing the area
fraction promotes mixing.
• Effects of Peclet number and initial condition (Fig-

ures 10 and 11): We simulate mixing in the vesicle
suspensions with three area fractions of 10%, 20%, and
40% with various Peclet numbers and initial conditions
(Figure 2(b)). In order to quantify the effect of the Peclet
number and initial condition, we plot the mixing effi-
ciency η with respect to time. The results show that
the presence of vesicles manifests its effects on mixing
at very high Peclet numbers. However, depending on
the initial condition, the vesicles promote (layer initial
condition), suppress (dye initial condition), and do not
affect (random initial condition) mixing.
• Effects of viscosity contrast (Figure 14): We consider

vesicle suspensions with area fractions 5% and 10% and
various viscosity contrasts. We perform the viscosity
contrast tests on the layer and dye initial conditions.
At higher viscosity contrasts, the vesicles undergo the
more complex tumbling dynamic when compared to
the tank-treading dynamic at lower viscosity contrasts.
The result is more complicated stirring which increases
the mixing efficiency. However, the viscosity contrast
has less of an effect on the efficiency when compared
to the area fraction.

FIG. 6. We consider the L2 norm of the perturbations ṽ (see (b-1)) to examine the statistical properties of the vesicle suspensions. The dynamics become weakly
stationary when the mean and the standard deviation of its statistical properties become time independent. Therefore, we compute the mean and the standard
deviation of ‖ ṽ‖L2 in the window (ti,ti + w′), for all i (see (b-2) and (b-3)). It is necessary that the width is statistically representative. Therefore, we look at the
energy of randomly chosen samples from ‖ṽ‖L2 of various window widths w for each area fraction in the top row.
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We consider vesicles of reduced area 0.65. The inner
boundary rotates at a constant angular velocity while the outer
boundary is fixed. The inner boundary of the simulations with
area fractions of 5% and 40% completes 32 rotations, while it
completes 21 rotations in all other simulations. In all the runs,
the vesicles are discretized with 64 points, and in all but one
run, the outer walls are discretized with 128 points. For the

simulation with 40% area fraction, the outer boundary is dis-
cretized with 256 points. Additionally, the error is controlled
with an adaptive time integration scheme.40

We list the physical parameters and values of the mix-
ing simulation in Table I. We discretize the transport equation
with N r = 256 collocation points in the radial direction and
with Nθ = 1024 collocation points in the azimuthal direction.

FIG. 7. The effects of a 10% area fraction on the velocity field and mixing (Sec. V B). Here we present the vesicle positions (left), the magnitude of the velocity
field due only to the vesicles ‖ṽ‖ (middle), and the concentration φ (right) for the area fraction of 10% and the layer initial condition. Each row corresponds to
a different time.
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Crank-Nicholson is used to solve the diffusion equation (3.5)
with the time step size ∆tD = 0.04 and a semi-Lagrangian
method is used to solve the advection equation (3.4) with the
time step size ∆tA = 0.01. Here, a unit time corresponds to
1.5 ms and a single rotation of the inner boundary requires 2π
time units.

For physically meaningful experiments, it is necessary
that the dynamic system of a vesicle suspension is statistically

stationary. To address this issue, let us discuss how we detect
the statistical stationarity in this study.

A. Statistical analysis

As we mentioned earlier, the velocity from the vesicle
simulations are used to drive the advective part of mixing.
Here we describe the procedure we use to ensure that the

FIG. 8. The effects of a 20% area fraction on the velocity field and mixing (Sec. V B). Here we present the vesicle positions (left), the magnitude of the velocity
field due only to the vesicles ‖ṽ‖ (middle), and the concentration φ (right) for the area fraction of 20% and the layer initial condition. Each row corresponds to
a different time.
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velocity is not polluted by effects of the initial position and
shape of the vesicles. In all experiments we assume that the
vesicle suspensions eventually become statistically stationary.
That is, we assume that all artifacts of the initial condition
vanish when the system reaches this statistical equilibrium,
and we use statistics of the velocity field to determine the onset
of this statistical equilibrium. We start the mixing simulation

once these statistics, which we will define shortly, become time
independent.

The presence of vesicles perturbs the velocity field of
the default Couette flow. We define the perturbation ṽ as
v= v0 + ṽ, where v is the velocity field of the vesicle sus-
pension and v0 is the velocity field in the absence of vesicles.
We monitor stationarity of the time series of ν(t) = ‖ ṽ‖L2 .

FIG. 9. The effects of a 40% area fraction on the velocity field and mixing (Sec. V B). Here we present the vesicle positions (left), the magnitude of the velocity
field due only to the vesicles ‖ṽ‖ (middle), and the concentration φ (right) for the area fraction of 40% and the layer initial condition. Each row corresponds to
a different time.
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A stationary time series has statistical properties that do not
change over time, i.e., its mean and variance over any statis-
tically representative window are unchanging. Our statistical
analysis involves, first, determining the statistically represen-
tative window size w ′ of the time series and, second, finding
the time when the statistical equilibrium is first reached.

Given a time series, the window size w ′ is chosen so that
any sample of this window size has the same mean and vari-
ance, independent of the location of the window. For example,
suppose we are monitoring ν(t) = ‖ ṽ‖L2 . Then, w ′ is chosen
with the following numerical decision scheme:

• We obtain a number of samples of a window width w
from the time series ν(t) starting at randomly chosen
times ti ∈ [0, Th−w] where Th is the time horizon. We
denote these samples with νw,i = (ν(ti), ν(ti + w)).
• We compute the Fourier transform of the oscillations

of the mean ν̃w,i = νw,i − 〈νw,i〉, where 〈·〉 denotes the
mean value 〈·〉 = 1

w ∫
ti+w

ti · dt. We then sum the Fourier
coefficients to form µw,i which represents a property
(in this case, the energy) of the particular window.
• As the window size w increases, the ensemble aver-

age µw =
1
M Σ

M
i=1µw,i converges to the mean of the

entire time series, and the standard deviation, {µw,i}
M
i=1,

decreases, where M is the number of samples. In Figure
5, we plot the mean µw and the standard deviation of
the ensemble as a function of the window size w in the
top row. The statistically representative window size W
is the one which delivers a small standard deviation and
a converged mean.

We plot the means of the samples as a function of win-
dow size w for the suspensions at AF = 10%, 20%, 40%
in the top row of Figure 6. We choose the window size
w ′ = 25 time units for the suspensions at AF = 10% and 20%,
andw ′ = 40 time units for those at AF = 5% and 40%. Although
we do not show the results for the vesicle suspensions with
VC = 5 and VC = 8, we have repeated this analysis for them.
Alternatively, a similar decision scheme is frequently used to
find a statistically representative volume element of a random
microstructure (see Ref. 46 for details). Here, the samples are
ideally independent and identically distributed. However, we
cannot choose such samples since the time series we have is too
short. The samples are supposed to be independent and iden-
tically distributed. However, we cannot choose such samples
since the time series we have is too short.

FIG. 10. The effects of the area fraction on the degree of mixing for various Peclet numbers and initial conditions (Sec. V C). The first row demonstrates that
the mixing efficiency η increases with increasing area fraction of the vesicles for the layer initial condition. The second row shows that η decreases when the
initial condition is switched to the dye.
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Once the representative window size w′ of the time series
ν(t) is chosen, we need to determine when the statistical
equilibrium is first reached. To do so, we choose samples
νw′,i of size w ′ at every discrete time ti ∈ [0, Th − w ′]
and compute their means 〈νw′,i〉 and standard deviations
σ(νw′,i). We determine the time when the statistical equi-
librium is attained by examining when the mean and stan-
dard deviation plateau. In particular, we require that |〈νw′,i+1〉

− 〈νw′,i〉|/|〈νw′,i〉| to be less than some tolerance. We sum-
marize this procedure in the bottom row of Figure 5, and
the results for the different area fractions are in the bottom
row of Figure 6. The mean (Figure 6(b-2)) and the standard
deviation (Figure 6(b-3)) converge after ti = 100 in AF =
5%, ti = 40 in AF = 10% and AF = 20%, and ti = 100 in
AF = 40%.

B. Effects of area fraction

We simulate mixing in vesicle suspensions with the area
fractions of 10%, 20%, and 40%, and with no viscosity con-
trast. We use the layer initial condition. We fix the Peclet
number to Pe = 1e+4 for all the area fractions by adjusting
the diffusivity based on the value of 〈‖ v‖L2〉. We show the
vesicle positions, the magnitude of the perturbation in the

Couette flow due to the vesicles ‖ ṽ ‖ (see Sec. V A for its
definition), and the concentration φ for the area fractions of
10% in Figure 7, 20% in Figure 8, and 40% in Figure 9. The
results show that as the area fraction increases, the maximum
value of ‖ṽ‖ increases from approximately 1.5 to 4 wherein
the maximum of the magnitude of the velocity field is 10 (see
the second columns in Figures 7 and 9). The corresponding
concentration fields observably differ as the area fraction of
the vesicles increases (see the third columns in Figures 7 and
9). In addition to the qualitative results in Figures 7–9, the
first row in Figure 10 demonstrates the corresponding mix-
ing efficiencies. We see that the presence of vesicles enhances
mixing for this particular initial condition and increasing the
area fraction increases the efficiency as high as η ≈ 1.35 when
AF = 40%.

C. Effects of Peclet number and initial condition

We simulate mixing with the Peclet numbers 1e + 4, 5e + 3,
2.5e + 3, 5e + 2, and 5e + 1, and for all four initial conditions
in Figure 2(b). We, then, demonstrate the mixing efficiency
η with respect to time in Figures 10 and 11. The results in
Figures 10 and 11 show that the mixing efficiency is close
to one for Pe=O(10), but it deviates from one as the Peclet
number increases. This is expected since the perturbations in

FIG. 11. The effects of the area fraction on the degree of mixing for various Peclet numbers and the initial conditions (Sec. V C). The first row shows the mixing
efficiency η with respect to time for the vesicle initial conditions for each area fractions and the second row is for the random initial condition. The results
illustrate that there is no clear effect of the presence mixing if the random initial condition is used.
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the velocity field become more important in the sense
of mixing as the transport becomes more advection-
dominated.

While the first row in Figure 10 shows that the presence
of vesicles enhances mixing (i.e., η > 1) for the layer initial
condition, the second row demonstrates that vesicles suppress
mixing for the dye initial condition. Additionally, as the area

fraction increases (from left to right in Figures 10 and 11),
the maximum efficiency increases for the layer initial condi-
tion and the minimum efficiency decreases for the dye initial
condition. The first row in Figure 11 illustrates that mixing is
better in the absence of vesicles for the vesicle initial condi-
tion; however, the effects of the vesicles on mixing become
less important as the area fraction increases. Furthermore, a

FIG. 12. The evolution of the concentration field φ for various initial conditions in the presence of vesicles. We present the evolution of DYE (left), VESICLE
(middle) with 40% area fraction, and RANDOM (right) initial concentrations at Pe = 1e+4. The velocity field is post-processed from the vesicle simulation with
AF = 40% and VC = 1. The evolution of the same initial concentration fields in the absence of vesicles is in Figure 13.
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Couette flow without vesicles provides the same quality of
mixing as the one with vesicles for the random initial condition
for any area fraction (see the second row in Figure 11).

We have observed that in the presence of vesicles, mixing
is promoted for the layer initial condition, while it is suppressed
for the other three initial conditions. In Figures 12 and 13, we
plot the concentration field φwith Pe = 1e+4 at a series of time

steps when the dye, vesicle, and random initial conditions are
used. The flow in Figure 12 includes vesicles with no viscosity
contrast at an area fraction of 40% while the flow in Figure 13
is the default Couette flow without vesicles. In Figures 12
and 9, we see that the vesicle dynamics lead to a complex
stirring pattern, but the vesicles create trapped regions of the
concentration. However, in Figure 13, we also see a complex

FIG. 13. The evolution of the concentration field φ for various initial concentrations in the absence of vesicles. We present the evolution of DYE (left), VESICLE
(middle) with 40% area fraction, and RANDOM (right) initial concentrations at Pe = 1e+4. The evolution of the same initial concentration fields in the presence
of vesicles is in Figure 12.
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FIG. 14. The effects of the viscosity contrast on mixing. We use the layer initial condition and the area fraction of 5%. The results show that the viscosity
contrast has less of an effect on the mixing efficiency than the area fraction. We do observe an increase in the maximum mixing efficiency η as the viscosity
contrasts increases from 1 to 8 (see (a-1) and (a-3)), and this might stem from the fact that vesicles start to tumble for VC ≥ 5 (see Ref. 20).

stirring pattern for the dye, vesicle, and random initial con-
centrations in the absence of vesicles, but without the trapped
regions. Therefore, as observed in the bottom row of Figures 10
and 11, the mixing efficiency is less than 1. However, for the
layer initial condition, in the absence of vesicles, the transport

term v · ∇φ vanishes since the gradient of the initial condi-
tion only has a radial component, while the default Couette
flow does not have a radial component. Therefore, mixing
can occur only due to diffusion. Since the Peclet number is
large, little mixing occurs due to diffusion without the vesicles,

FIG. 15. The effects of the area fraction
and the viscosity on mixing of the dye
initial concentration. Here we use the
area fractions 5% (top) and 10% (bot-
tom) and the viscosity contrasts 1 (left)
and 5 (right). Unlike the layer initial
condition, the presence of vesicles sup-
presses mixing of the dye initial concen-
tration by creating trapped regions, i.e.,
η < 1. Increase in area fraction from 5%
to 10% decreases the mixing efficiency
further. However, vesicles start to tum-
ble for VC ≥ 5, which leads to more
complex vesicle dynamics which pro-
motes mixing. Therefore, the efficiency
increases as viscosity contrast increases
from 1 to 5, which is also observed for
the layer initial condition in Figure 12.
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and the mixing efficiency turns out to be greater than 1 as
observed in the top row of Figure 10. In Sec. V E, we define
a mixing measure M that can be used to predict the mixing
efficiency of a given initial condition.

D. Effects of viscosity contrast

Vesicles manifest different dynamics under simple shear
flow: either a tank-treading rotation or a tumbling motion. An
increase in the viscosity contrast leads to a transition from
a tank-treading to a tumbling motion.20 In order to identify
the effects of the viscosity contrast on the degree of mixing,
we study mixing in vesicle suspensions with the area fraction
of 5% and the viscosity contrasts of 1, 5, and 8. We run the
simulations for the layer initial condition and demonstrate the
mixing efficiency η with respect to time in Figure 14.

Figures 14(a-1) show that an increase in the viscosity con-
trast results in additional mixing efficiency. However, for this
initial condition, the viscosity contrast has less of an effect
than the area fraction on the mixing efficiency.

To further investigate the effect of the viscosity con-
trast, we run the simulations for the dye initial condition.
We consider the area fractions of 5% and 10% and the vis-
cosity contrasts of 1 and 5. As we observed Figure 11, mix-
ing is suppressed in the presence of vesicles. The efficiency
decreases further when the area fraction increases from 5%
(Figure 15(a-1)) to 10% (Figure 15(b-1)) since more regions of
the concentration will be trapped. Similar to what is observed
for the layer initial condition, increase in viscosity contrast
from 1 to 5 promotes mixing for both area fractions, especially
around time 30.

E. Summary

In an attempt to predict the mixing efficiency based on the
initial concentration (φIC), we introduce a measure M of the
ability of mixing for the default Couette flow,

M =

∫
Ω

|∇φIC · v| dΩ

‖∇φIC‖L2 , ‖v‖L2
(5.1)

where ∇φIC = ( ∂φIC
∂r , 1

r
∂φIC
∂θ ) and v = (vr , vθ ) is the velocity

field of the default Couette flow. Equation (5.1) is a normal-
ized L1 norm of the advective term. We tabulate various initial
conditions, the corresponding M values, and the minimum
and the maximum efficiencies ηmin, ηmax in Table II. For all
the initial concentrations that we consider except LAYER, M
is initially non-zero meaning that mixing will occur due to
advection in addition to diffusion. For these initial concentra-
tions, the vesicle flow suppresses mixing by creating trapped
regions. For the LAYER initial concentration, the advective
term is initially zero and hence mixing occurs only due to diffu-
sion. The vesicle flow provides better stirring and hence better
mixing for this initial concentration than the default Couette
flow. In order to verify this observation, we consider a slightly
perturbed initial concentration in Figure 16(c), which has a
concentration gradient such that the advective term is initially
non-zero. The measure (5.1) for this initial concentration is
M = 0.97. We simulate mixing of this initial concentration
with the vesicle flow at AF = 40% and VC = 1. The mix-
ing efficiency η is shown in Figure 16(c). For t ∈ [0, 12], the
vesicle flow suppresses mixing and the minimum efficiency
is attained at around t = 6, but for t ∈ [12, Th] the vesicle

TABLE II. We report the proposed measure (5.1) for various initial concentrationsφIC together with the minimum
and maximum mixing efficiencies,ηmin andηmax, that they deliver with the vesicle flow of area fraction AF = 40%
and viscosity contrast VC = 1 at Pe = 1e + 4. Here, red is for φIC = 1 and blue is for φIC = 0. The mixing
efficiencies of two additional initial concentration fields are in Figure 16.

φIC M ηmin ηmax φIC M ηmin ηmax

0 1 1.34 0.98 0.96 1

0.52 0.63 1 1.86 0.98 1

0.69 0.64 1 2.29 0.998 1
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FIG. 16. We show the mixing efficiency η as a function of time delivered at Pe = 1e + 4 by two initial concentrations (a) and (b) that we show in Table II.
Here, the vesicle flow is the same for all initial concentrations and has an area fraction AF = 40% and viscosity contrast VC = 1. Additionally, we perturb the
initial concentration Figure 10(a-3) and present the mixing efficiency in (c). We also show frames from the mixing simulation of (c) in Figure 17. The proposed
measure (5.1) for this initial concentration is M = 0.97.

flow promotes mixing. To explain this behavior we show
frames from the mixing simulations with the vesicle flow and
the default Couette flow in Figure 17. Before t = 6, mixing
occurs due to advection in addition to diffusion in the default
Couette flow; however, after t = 6, the concentration field
approaches the LAYER initial condition whose gradient only

has a radial component while the velocity field does not have
radial component. Therefore, the advective term approaches
zero, and mixing is dominated by diffusion in the default Cou-
ette flow. Consequently, the vesicle flow has trapped regions,
which results in a poor quality of mixing. Therefore, as
long as the default Couette flow mixes the solute with both

FIG. 17. We present frames from the mixing simulation of the initial concentration shown in Figure 16(c). The frames at the first row are from the simulation
with the vesicle flow of area fraction AF = 40% and viscosity contrast VC = 1. The ones at the second row are from the simulation with the Couette flow. Here,
both simulations have the same Peclet number Pe = 1e + 4. The corresponding mixing efficiency is in Figure 16(c). In particular, the mixing efficiencies at the
instances we show here are η(t = 3) = 0.99, η(t = 6) = 0.97 and η(t = 24) = 1.08.
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advection and diffusion, it provides better mixing quality than
the vesicle flow. However, in the cases where mixing occurs
only due to diffusion in the default Couette flow (such as the
layer initial condition), the vesicle flow provides better mixing
quality than the default Couette flow since the solute is mixed
with advection in addition to diffusion and the transport is
advection dominated.

VI. CONCLUSION

Using an in-house integral equation solver and a pseudo-
spectral advection diffusion solver, we have studied mixing in
vesicle suspensions. To the best of our knowledge, this is the
first study of the effect of vesicles on mixing. Mixing measures
from the literature were investigated, and we focused on the
negative index H�1 Sobolev norm which quantifies mixing
due to both advection and diffusion. We compare mixing in
the absence and the presence of vesicles and investigate the
effects of the Peclet number, the area fraction, and the viscosity
contrast. The main outcomes are as follows:

• For the same average Peclet number, the presence of
vesicles suppresses mixing in most of the cases, and
increasing the area fraction suppresses it more. How-
ever, there are special initial conditions for the trans-
ported quantity for which there is no advective mixing
in the absence of vesicles. The presence of vesicles
provides advection in those cases and hence promotes
mixing.
• For the same average Peclet number and the same area

fraction, increasing the viscosity contrast increases the
mixing efficiency since the vesicles show more compli-
cated dynamics at higher viscosity contrast, leading to
a more complicated stirring of the solute.
• In order to estimate whether the presence of vesicles

promotes or suppresses mixing, we define a measure
M ∝‖∇φIC · v‖L1 where φIC is the initial concentration
field and v is the default Couette velocity field. We
found that when the measure M of a concentration for a
passively transported quantity approaches zero, mixing
is dominated by diffusion in the absence of vesicles.
Since the vesicle flows are more chaotic, the presence of
vesicles promotes mixing of the passively transported
quantity.

Although here we consider only a two-dimensional cylin-
drical Couette flow, similar results should hold for a planar
Couette flow and Poiseuille flow. Additionally, mixing might
present different physics in three dimensions which we will
investigate in a future study.
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NOMENCLATURE

Pe Peclet number: ratio of the advective transport rate
to the diffusive transport rate

AF Area fraction: ratio of the area occupied by vesicles
to the area of the Couette apparatus

VC Viscosity contrast: ratio of the fluid viscosity inside
a vesicle to the fluid viscosity in the bulk

N r Number of collocation points in the radial
direction r

Nθ Number of collocation points in the azimuthal
direction θ

φ0 Concentration in the absence of vesicles
φ Concentration in the presence of vesicles
η Mixing efficiency: ratio of ‖φ0 ‖ to ‖φ‖
v0 Velocity field of a Couette flow without vesicles
v Velocity field of a vesicle suspension
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