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Abstract

Purpose—To provide a review of the status of biomarkers in cystic fibrosis drug development, 

including regulatory definitions and considerations, a summary of biomarkers in current use with 

supportive data, current gaps, and future needs.

Methods—Biomarkers are considered across several areas of CF drug development, including 

cystic fibrosis transmembrane conductance regulator modulation, infection, and inflammation.

Results—Sweat chloride, nasal potential difference, and intestinal current measurements have 

been standardized and examined in the context of multicenter trials to quantify CFTR function. 

Detection and quantification of pathogenic bacteria in CF respiratory cultures (e.g.: Pseudomonas 
aeruginosa) is commonly used in early phase antimicrobial clinical trials, and to monitor safety of 

therapeutic interventions. Sputum (e.g.: neutrophil elastase, myeloperoxidase, calprotectin) and 
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blood biomarkers (e.g.: C reactive protein, calprotectin, serum amyloid A) have had variable 

success in detecting response to inflammatory treatments.

Conclusions—Biomarkers are used throughout the drug development process in CF, and many 

have been used in early phase clinical trials to provide proof of concept, detect drug bioactivity, 

and inform dosing for later-phase studies. Advances in the precision of current biomarkers, and the 

identification of new biomarkers with ‘omics-based technologies, are needed to accelerate CF drug 

development.

Introduction

Cystic fibrosis (CF) is caused by mutations in a gene coding the cystic fibrosis 

transmembrane conductance regulator (CFTR) protein, an ion channel regulating chloride, 

bicarbonate, sodium and fluid fluxes at epithelial surfaces (1). While there have been steady 

improvements in outcome, median predicted survival for a newborn with CF in the United 

States in 2014 was 41 years, and median age of death in 2014 was 28 years (Cystic Fibrosis 

Foundation 2014 Patient Registry Report) underscoring the need for better treatments. CF 

lung disease is characterized by defects in ion transport, mucociliary clearance, 

inflammation, bacterial infection, and airway remodeling that culminates in bronchiectasis 

and respiratory failure. CFTR may also cause intrinsic abnormalities in host defense cells 

including epithelia, neutrophils and macrophages.

Given its complex pathophysiology, the U.S. CF Foundation (CFF), academic investigators, 

industry partners and other sponsoring agencies have taken a multipronged approach 

targeting the different elements of CF pathophysiology. In particular, efforts aimed at 

treating Pseudomonas aeruginosa infection, thinning CF mucus and restoring airway surface 

liquid have shown clinical benefit but have not halted decline in lung function. Recently, a 

new class of agents termed CFTR modulators has had clinical impact (dramatic lung 

function improvement with ivacaftor for patients with CFTR gating mutations; modest with 

lumacaftor-ivacaftor for F508del homozygous patients) (2-5). However, other measures 

more sensitive than lung function may accelerate drug testing and biomarkers are becoming 

recognized as a critical tool for CF drug development.

A biomarker, by US Food and Drug Administration (FDA) definition, is “a characteristic 

that is objectively measured and evaluated as an indicator of normal biological processes, 

pathogenic processes, or biological responses to a therapeutic intervention” and offers great 

promise to speed drug development (6). The potential uses of biomarkers in drug 

development include enabling assessment of safety, efficacy, and patient selection for the 

purpose of enrichment. The FDA recognizes the importance of biomarkers and drafted a 

qualification process that addresses aspects of biomarker development and clinical utility 

(7); here are great challenges to meeting this rigorous qualification process for a rare disease 

such as CF (8).

To advance biomarkers in CF drug development, the CFF has convened a CF Biomarker 

Consortium consisting of investigators with particular expertise in biomarker research. This 

document focuses on biomarker validation and qualification for assessing CFTR function 

and detection, infection, and inflammation, examines relationships of existing biomarkers to 
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established clinical outcomes in CF, highlights new technologies for biomarker 

development, and summarizes areas requiring further development.

Biomarker Validation and Qualification Within The Context of Utilization

As biomarkers for CF drug development are advanced, their application or utilization will 

dictate the necessary validation and qualification process. All biomarkers to be used in the 

context of drug development should reliably and sensitively capture the biologic activity of a 

therapy. Hence, any novel assay, procedure, or test must be validated for its ability to 

accurately and reproducibly measure a biologic process. Beyond biomarker validation, 

additional qualification of a biomarker would establish a linkage with clinical outcomes 

(clinical validity); validation of such a linkage strengthens the utilization of the biomarker 

throughout later phases of clinical development and in rare cases can promote a biomarker to 

the level of a surrogate endpoint that substitutes for a clinical endpoint in pivotal registration 

trials (8, 9).

It is important to recall that the role of biomarkers throughout drug development, and 

particularly in early phase studies, is to demonstrate biological efficacy of new therapies, 

confirm mechanism of action, and inform dose selection. Biomarkers used in early phases of 

drug development do not require qualification, or even evidence of strong correlation with 

measurable clinical outcomes. In early phases they can be used to explore and inform go/no 

go decisions regarding later-phases, but notably the level of risk to the overall development 

program is ultimately dependent on confidence that promising biomarker results will predict 

clinical efficacy.

Biomarkers typically play a supportive role to confirm mechanism of action in later-phase 

studies, however in some settings it may be desirable for them to replace traditional clinical 

efficacy measures in order to streamline drug development by enabling more rapid 

assessment of efficacy with potentially fewer numbers of patients. In most cases this would 

require that the biomarker meets qualification standards as a surrogate endpoint for clinical 

efficacy (7). Surrogate endpoints serve as substitutes for accepted measures of clinical 

efficacy and can accelerate drug approval by responding over a shorter duration (e.g. 

compared to survival), or by requiring fewer study participants because of increased 

measurement precision. The process of qualifying a biomarker as a validated surrogate 

endpoint for phase 3 trials requires that the marker correlate with a meaningful clinical 

endpoint and capture the net effect of the intervention or drug on the efficacy endpoint (10). 

The latter is more difficult to achieve because it demands that late-phase studies 

simultaneously capture the biomarker and the clinical endpoint to evaluate predictive net 

effect (11). To date, no biomarker has formally gone through the qualification standards of a 

surrogate endpoint for clinical efficacy in CF. Importantly, however, there are instances in 

other rare diseases, such as Fabry's disease, for which a non-validated surrogate endpoint of 

a physiologic biomarker of disease has been used as a pivotal endpoint in a registration trial 

(12).

While more traditional drug development focuses on prognostic biomarkers that are 

correlates of disease outcome and are intervention-independent, there is also a role for 
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predictive biomarkers in drug development which offer information that is more specific to a 

particular intervention. Predictive biomarkers have been an area of focus for many years in 

oncology research (13). In a drug development program, a predictive biomarker may be an 

analyte, gene, or protein that identifies candidate study participants who are more likely to 

benefit from treatment and enable enrichment trials that are meant to optimize trial 

outcomes. As with the more general classification of biomarkers, development and 

validation of predictive biomarkers generally demands rigorous, multi-staged assessment of 

their clinical utility through retrospective and prospective controlled trials (14).

As in any rare disease setting, opportunities for flexibility in this rigorous process balanced 

against level of risk will be necessary given the limited patient population. Strategic 

utilization of biospecimens and well characterized phenotypic data in conjunction with 

rigorous study design and close collaboration with regulatory agencies are essential for 

advancing biomarkers in CF.

Cf Relevant Pulmonary Biomarkers: Current Status and Opportunities

Progressive lung disease is the primary cause of CF morbidity and mortality, and a critical 

target for therapeutic development. Several therapies have been developed to address CF 

lung pathologies, and their clinical use has been associated with improved outcomes. The 

most common primary outcome measures supporting regulatory approval of CF pulmonary 

therapies are discussed below. Physiologic outcome measures have recently been published 

(15).

Accepted Clinical Efficacy Measures in CF

Change in FEV1 has become one of the most established endpoints to demonstrate clinical 

efficacy in CF clinical trials (2, 4, 16-18). Pulmonary exacerbations (risk, frequency, time to) 

have also served as primary clinical efficacy endpoints, but typically require larger and 

longer studies to demonstrate treatment impact. Important secondary measures that have 

supported approval and clinical use of pulmonary therapies include patient reported 

outcomes (e.g.CF Quality of Life – Revised instrument), weight gain and bacterial density 

(4, 18-22). To date, no CF-specific anti-inflammatory drug has gone through regulatory 

approval and thus there has been little guidance as to what the accepted clinical efficacy 

measures will be for these agents, which have not produced the type of immediate and 

sustained FEV1 improvement observed with mucolytics, antibiotics, or CFTR modulators 

(23, 24).

Need for More Sensitive Clinical Efficacy Endpoints

Important gaps that have emerged include relevant outcome measures for patients with either 

mild or advanced lung disease, and young CF patients who typically have both mild disease 

and poorly standardized outcome measures. Multiple breath washout testing and the Lung 

Clearance Index as recently published (15) has advanced as a putative endpoint with greater 

sensitivity than FEV1 to detect biologic effect in younger patients with mild lung disease, 

and are currently included in several CF clinical trials. Imaging may serve as a correlate of 

structural lung injury (e.g. bronchiectasis). The remainder of this review will examine the 
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existing data supporting the validity and qualifications of several biomarkers of CFTR 

activity, infection and inflammation, and the investigations needed to optimize these 

biomarkers for use in CF drug development.

Cftr Activity and Ion Transport in Vivo

There are three in vivo biomarkers of ion transport which have primarily been used to 

monitor restoration of CFTR function. These include sweat-chloride concentration, nasal 

potential difference (NPD) measurement, and intestinal current measurement (ICM). Sweat-

chloride is a simple, portable, and reliable test of CFTR function that clearly discriminates 

between patients with minimal, partial and full CFTR activity (25, 26). It has been carefully 

standardized for both clinical use and for incorporation into clinical trials, and remains the 

mainstay of CF diagnosis. Different levels of CFTR function quantified by the sweat-

chloride test also correlate with important markers of disease severity, including age of 

diagnosis (pre-newborn screening), pancreatic sufficiency, isolated male infertility, 

microbiology, and lung disease severity (25-30). Profound reductions in sweat-chloride have 

been observed in all studies of ivacaftor monotherapy in CF patients with gating mutations 

(3, 5, 31-34). Intermediate effects were observed with ivacaftor in CF patients with the 

R117H mutation, and smaller effects in CF patients with two copies of the F508del CFTR 

mutation treated with ivacaftor or ivacaftor/lumicaftor (35-37). The effects of CFTR 

modulators on sweat chloride generally parallel the clinical benefits observed for these three 

populations (FEV1, risk of pulmonary exacerbations – see Table 1). While individual 

changes in sweat-chloride have not correlated directly with FEV1 improvements (38, 39), 

aggregate data have demonstrated excellent assay performance and detection of biologic 

activity. Future studies utilizing sweat-chloride will need to monitor long term relationships 

between sweat-chloride and key clinical outcomes in CF to support this biomarker as a key 

measure to accelerate drug development.

NPD is a direct measure of CFTR function in respiratory epithelium, and isolates CFTR 

activity across the nasal mucosa independent of sodium transport and the activity of other 

chloride transporters (40, 41). It is more difficult to perform than sweat- chloride, and 

requires specialized equipment and extensive training. Recent efforts have standardized NPD 

performance and analysis across the US and Europe, including SOPs and centralized 

coordination and interpretation of trial data (42-46). It has been incorporated into small 

investigator-initiated trials of CFTR and other ion transport modulators (47-50) and also into 

early phase trials of CFTR modulators that proceeded to seek regulatory approval (3, 46). In 

multi-center trials, NPD measurements had sufficient sensitivity to detect dose-dependent 

bioactivity of ivacaftor in patients with the G551D CFTR mutation, but failed to detect 

bioactivity of systemic ataluren or lower-dose lumacaftor monotherapy in phase 2 and 3 

studies performed in patients with PTC and F508del mutations, respectively (3, 44). Neither 

of these interventions had measurable clinical benefits, suggesting that the NPD assay may 

be specific for clinically relevant modulator bioactivity. Studies focused on improving NPD 

reliability and examining relationships between CFTR (or other ion transporter) restoration 

and clinical response are gaps in CFTR biomarker development and would clarify the future 

role of this assay in CF drug development.
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ICM is another assay that can isolate CFTR function, and has the advantage of a large 

dynamic range between CF and non-CF (28, 51-54). Rectal biopsies are dissected and then 

studied in Ussing chambers to monitor CFTR-dependent ion transport ex vivo. Like NPD, 

efforts have standardized ICM performance, and a universal SOP has been adopted by both 

US and European centers with centralized data interpretation for use in multicenter clinical 

trials (53, 55). Like sweat- chloride and NPD testing, ICM can clearly discriminate different 

levels of CFTR function based on CFTR genotype (nonfunctional, partial and full function) 

with clinical correlates dependent on level of CFTR activity (28, 51). Demonstrating 

reliability of ICM is difficult due to the need for repeated biopsies, and performance of the 

assay is limited to centers with expertise in specialized electrophysiologic measurements. 

For these reasons, ICM will likely remain an early phase CFTR biomarker performed in a 

limited number of standardized centers.

Biomarkers of Infection

Viral and fungal infections are critical aspects of CF lung disease, but infection with defined 

pathogenic bacteria such as Pseudomonas aeruginosa, Burkholderia cepacia complex and 

methicillin resistant Staphylococcus aureus are linked to CF morbidity and mortality 

(56-60). Thus, developing anti-microbial interventions is a key goal of CF therapeutics. 

Infection can be considered as a progression from early transient infections to chronic, often 

biofilm-dominated conditions that are poorly reflected in vitro (61, 62).

The most direct biomarkers of infection are from the lower respiratory tract 

(bronchoalveolar lavage (BAL) fluid, sputum) but other sources such as cough swabs, 

oropharyngeal swabs and nasopharyngeal (NP) samples are used in non-expectorating 

patients, albeit with unclear sensitivity and specificity for lower airway tract infection that 

limits their applicability to drug development.

Commonly used biomarkers for antimicrobial studies include bacterial density (CFU/g for 

sputum or CFU/mL for BAL fluid) and/or detection of CF pathogens as primary or 

secondary endpoints. Only drugs treating chronic Pseudomonas infection have sought 

regulatory approval, and relied on reduction in microbial density as a key supportive 

endpoint (17, 63-65). However in many trials change in FEV1 is the primary endpoint and 

this may not always overlap with reductions in Pseudomonas density (66).

Targeted PCR-based detection, which is routine for viruses, is being introduced to detect CF 

bacteria, yet these methods have not been used extensively (67, 68). Panels to detect 

frequently encountered bacteria are in development, and are often based on detection of 

bacterial enzymes or virulence factors that may enable early detection of resistance.

The CF Lung Microbiome

Evaluation of the CF lung microbiome (through unselected detection of 16S ribosomal 

bacterial RNA using deep sequencing methods) is an emerging technology. Microbiome 

studies to date have generally shown that decreased measures of microbial diversity are 

associated with more advanced disease and may change prior to exacerbations (69-71). 

Methodological differences in extraction and sequencing, poor distinction of live vs. non-
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viable bacterial DNA, and the lack of quantitation are current limitations to their clinical and 

biomarker use. Detection of bacteria using molecular methods has enhanced sensitivity and 

potentially may reduce processing times, but monitoring of disease status and drug effect via 

molecular detection and microbiome analysis remains exploratory.

Future directions include functional evaluation of the microbiome either through interactions 

between taxa and/or changes in metabolic activity correlating to clinical outcomes. To 

examine metabolic activity, DNA and RNA based metagenomics or metatranscriptomics (i.e. 

the study of the function/activity of the transcriptome -RNA-seq) have been used. Technical 

challenges include contamination with human genetic material and mapping of sequence 

data (72). Early reports indicate that DNA based (total) and RNA based (metabolically 

active) community structure show overlap for the predominant taxa, but less prevalent 

organisms may be metabolically very active (73). Further, metabolic activities in CF samples 

show less patient-to-patient variation than the total microbiome and differ from results in 

other pulmonary conditions (74), and metabolic profiles of bacteria are dynamic with 

adaptation to the lung disease (75). Although limited to small study numbers, early findings 

suggest changes in disease status based on exhaled volatile bacterial metabolites (76). 

Measuring bacterial volatile organic compounds and inflammation may allow rapid 

monitoring of lung disease progression. Methods may include ‘electronic noses’ that 

distinguish patterns of volatile organic compounds rather than specific compounds, and have 

the benefit of portability. Technical challenges, standardization, contribution of non-

respiratory vs. respiratory factors, and defining CF vs. non-CF patterns remain barriers to 

overcome prior to their use as biomarkers for antimicrobial therapies (77).

Biomarkers of Inflammation

Inflammatory biomarkers could play a critical role in the development of anti-inflammatory 

drugs, and reflect downstream improvements in CF lung disease for disease-modifying 

treatments. They could be used in early phase studies to confirm the proposed mechanism of 

action of drug candidates. Alternatively, as correlates of clinical endpoints, they could help 

select agents for further Phase 3 investigations. Results from previous CF clinical trials 

indicate that anti-inflammatory therapies may not result in immediate improvements in 

pulmonary function, but could slow the rate of lung function decline (23, 24). This requires 

many patients being studied over a prolonged period to demonstrate efficacy, highlighting 

the urgency of identifying biomarkers that can more rapidly screen candidate drugs.

Lung-derived Biomarkers of Inflammation

The most direct method to assess CF lung inflammation is via bronchoscopy with BAL. 

BAL inflammatory markers have been used as clinical endpoints in pathophysiological 

studies (e.g. Australian Respiratory Early Surveillance Team for CF) (78, 79), and in clinical 

trials of inhaled tobramycin (80) and recombinant human DNase (81). A recently published 

document from the European CF Society Clinical Trial Network concluded that the use of 

BAL in clinical research should be limited due to its invasive nature, but that it may be 

applicable to early-phase clinical trials conducted in specialized centers and in trials 

involving young children with early/mild lung disease (82).
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Due to drawbacks of bronchoscopy, the two most commonly collected biospecimens to 

measure inflammation are sputum and blood. Spontaneous sputum expectoration is 

generally limited to those with more advanced lung disease (adolescents and adults). Sputum 

induction (inhalation of hypertonic saline) improves sample acquisition in individuals who 

do not routinely expectorate sputum, and biomarker measurements are reasonably 

comparable between induced and spontaneously expectorated sputum (83-85). For studies in 

which the primary outcome is a sputum biomarker in children and/or those with preserved 

lung function, sputum induction likely should be performed throughout the trial. When 

sputum biomarkers are secondary outcomes, collecting spontaneously expectorated sputum 

(with induction as a back-up) is a reasonable approach.

The validity of sputum biomarkers as endpoints in CF clinical trials has been extensively 

reviewed (85). Neutrophil elastase (NE) is currently the most informative sputum biomarker 

to monitor CF lung disease. Sputum NE activity correlates with bronchiectasis in CF (86), 

tracks with and is predictive of future lung function decline (87, 88), relates to treatment 

response in pulmonary exacerbations, and predicts time to next exacerbation (89, 90). 

Increased BAL NE is also a predictive biomarker of impaired lung function and 

bronchiectasis in young children with CF (79). Other sputum biomarkers that are associated 

with and predictive of key clinical events in CF include calprotectin (91), myeloperoxidase 

(92), high-mobility group box 1 (HMGB-1) (93, 94), and YKL-40 (95).

A proof of concept study assessing the responsiveness of sputum biomarkers to intravenous 

antibiotic treatment during pulmonary exacerbations demonstrated that decreases in sputum 

inflammatory markers, correlated with pulmonary treatment response (89). These findings 

though were not replicated in a more recent study of exacerbation treatment (96). 

Differences in sputum NE were observed over a six month study of azithromycin compared 

with placebo (19), but more recent interventional trials using sputum inflammatory 

biomarkers have generally failed to show significant changes in NE activity and other 

sputum biomarkers (except for modest reductions in sputum IL-6 (97-99)). Also, ivacaftor, 

which has been shown to improve many clinical outcomes, did not change sputum 

inflammatory biomarkers in a G551D CF cohort (33). The lack of treatment effect in these 

studies may be due in part to the intrinsic variability, particularly between-subject variance, 

of sputum biomarkers (99). This variance makes it challenging to rely upon sputum 

biomarkers during drug evaluation over short treatment periods, and sputum biomarkers may 

only be sufficiently sensitive to demonstrate anti-inflammatory effects in longer trials (≥ six 

months). To minimize the potential effects of sputum collection and processing on 

biomarker variability, recommendations include using SOPs (sputum induction, processing), 

centralized laboratories for sputum processing and analysis (CFF National Resource 

Centers: https://www.cff.org/Our-Research/Therapeutics-Development-Network/Working-

with-the-TDN/National-Resource-Centers/), training of research personnel, and ensuring 

quality control (85).

Blood-based Biomarkers of Inflammation

Systemic inflammatory markers would be ideal since blood measurements are easily 

standardized, repeatable, and can be obtained from subjects of any age and disease severity. 
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Systemic inflammation may also link pulmonary and non-pulmonary comorbidities of CF. 

While there are less data correlating systemic inflammation with clinical outcomes in CF, 

systemic inflammatory biomarkers correlate with key clinical events including pulmonary 

exacerbations and lung function decline (100-104). Circulating biomarkers have consistently 

changed more than sputum markers of inflammation with exacerbation treatment (91, 96, 

105), suggesting that systemic inflammatory measures may be more sensitive in short term 

interventional studies focused on mitigating exacerbations. Based on results from a 

multicenter exacerbation study (106), serum C reactive protein (CRP), serum amyloid A 

(SAA) and calprotectin declined during azithromycin treatment in a CF interventional trial 

(107). These reductions correlated with improvements in lung function and weight gain, 

providing indirect evidence that the changes were associated with clinically meaningful 

outcomes. Other candidate systemic biomarkers relating clinical status to CF outcomes 

include neutrophil elastase antiprotease complexes (NEAPC) (101), various cytokines 

including interleukin-6 (many studies), IgG (100), and circulating mononuclear cell RNA 

transcripts (108).

Additional studies are required to develop sputum and systemic inflammatory biomarkers 

for CF drug development. We must determine associations between inflammatory 

biomarkers and key clinical outcomes (FEV1 decline, pulmonary exacerbations) in broader 

CF populations, which will be facilitated through biospecimen collection in longitudinal 

studies. We need to know whether short term changes in inflammatory biomarkers predict 

longer term clinical outcomes, and how airway and systemic inflammation may change with 

CFTR modulators. Additional data examining the effects of freezing and delayed sputum 

processing on analyte measurements are required, and would inform multicenter trials that 

collect sputum samples and perform centralized processing and analysis.

New Technologies and Tools

‘Omics-based Biomarker Development for New CF Therapeutics

The use of ‘omics based tools to identify and validate biomarkers relevant to CF pathologies 

have only recently begun to be applied, and elevation to regular biomarker use is not 

established. These tools allow for an unbiased analysis of complex cellular processes in a 

variety of substrates. Discovery of novel molecular biomarkers in CF has to date been 

limited, and the majority of discovered biomarkers represent acute response markers. 

Furthermore, no molecular biomarkers have been shown to reliably predict acute or chronic 

CFTR restoration. The advent of novel approaches in high throughput technologies coupled 

with advancements in analysis of “big data” may allow investigators to ask important 

questions with high sensitivity and precision.

Gene-array studies have suggested the dysregulation of numerous pathways in CF. In an 

elegant study Wright and colleagues examined gene expression in the nasal epithelia of CF 

patients with either mild or severe lung disease (109) and identified abnormalities in gene 

expression regulating lipid metabolism, ubiquination, and mitochondrial/whole-cell redox 

regulation that segregated cohorts by disease severity. More recently, Nick and colleagues 

identified a panel of RNA transcripts that were predictive of pulmonary exacerbations (108). 

All of these observations require validation prior to clinical extension.
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Mass spectrometry (MS)-based proteomics and/or metabolomics have been used for either 

non-biased or targeted/selected biomarker discovery, with lipidomics gaining much recent 

interest. MS can precisely and rapidly examine markers of disease or response to therapy 

broadly, allowing for global analyses of individual samples in a non-biased, data-driven 

approach. Metabolomic analyses of non-fasted CF patients revealed a decrease in β-

oxidation of fatty acids, which is a marker of mitochondrial dysfunction (110), and CF 

plasma lipidomic studies have detected significant decreases in anti-inflammatory lipids 

(111). In CF sputum, a metabolomic/lipidomic analysis by Yang and colleagues identified a 

number of proinflammatory lipids (oxylipins) previously not identified in the CF lung (112). 

These studies also found a significant decrease in lipoxin A4 in CF lungs, which had 

previously been identified and validated by other approaches (113). The fact that these broad 

analysis studies also accurately detected the known lipoxin A4 deficiency in CF increases 

confidence in the application of MS-based lipidomic analyses in CF.

In the case of proteomics, no broad analysis of markers of CF disease progression in serum 

has been reported. Studies have focused on CF versus non-CF comparisons, which require 

less extensive analyses to identify differences versus studies where all cohorts have CF with 

varying degrees of disease. Proteomic analysis of CF sputum discovered a relationship 

between myeloperoxidase, protein oxidation and pulmonary inflammation (114), which was 

validated in BAL (115). When the proteome of CF-patient nasal epithelia was examined, a 

significant decrease in the expression of a number of anti-inflammatory proteins was 

detected (116). Proteomic screens have discovered a previously unknown mechanism for 

antioxidant downregulation in CF, namely Nrf2 dysfunction (117, 118). Follow-up 

biochemical studies in CF primary tissues linked this dysfunction to increased inflammatory 

signaling, and demonstrated that activation of Nrf2 in CF mice produced anti-inflammatory 

benefits (119). These results highlight the potential of non-biased proteomic analyses in 

discovering novel biomarkers and previously unknown mechanisms of disease.

Although ‘omics approaches hold much promise for biomarker discovery in CF, it is 

important to note that MS-based analyses are semi-quantitative, and therefore it is essential 

that observations made in proteomic, metabolomic, and lipidomic studies are validated by 

other approaches. Furthermore, while instrumentation has improved, the techniques used to 

conduct proteomic analyses also vary and can influence results significantly. Standardization 

of methodology, data analysis and incorporation of these tools into therapeutic clinical trials 

offers the opportunity to fully realize the promise of these technologies to advance CF care 

and drug development.

Summary, Needs and Conclusions

The status of biomarkers to advance CF therapies varies considerably across the different 

pathogenic targets. Many CF biomarkers have demonstrated their ability to inform early 

drug development by assessing drug bioactivity and potentially enabling dose selection for 

trials. Sweat chloride appears to be a biomarker with great potential to guide early phase 

CFTR modulator development and enable regulatory decision making, and further studies 

examining relationships between improvements in sweat- chloride and long term outcomes 

may broaden the utilization of this biomarker. NPD and ICM can also provide supportive 
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data of bioactivity, but technical challenges limit these biomarkers to early phase trials. 

Biomarkers of infection including sputum bacterial density and pathogen detection remain 

valuable tools for early phase trials. Molecular platforms to assess the microbiome (and host 

response) also hold promise to advance biomarkers of airway infection and drug activity, and 

standardization of techniques coupled with their incorporation into studies of new therapies 

are required to understand their role in drug development. Inflammatory biomarkers in 

sputum (NE) and blood (CRP, calprotectin, SAA) correlate with clinical status and 

interventions, but gaps in our understanding of CF inflammation are a limitation to the 

development of novel CF anti-inflammatories. The revolution in ‘omic technologies over the 

past decade is beginning to identify novel biomarkers of various disease manifestations, but 

advances in data analysis and the need for candidate validation are critical before these 

technologies become mainstream players in CF drug development. We hope that this review 

serves as a valuable summary of biomarkers relevant to CF therapeutics, and guides future 

research to advance this field and to accelerate the development of new treatments for CF 

patients.
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Table 1
Impact of CFTR Modulators on Sweat-Chloride in Clinical Trials

* Ivacaftor monotherapy
Enrollment (number 

on modulator)
Change in sweat [chloride] 

(treatment effect)

Accurso (4) (G551D, >18 yrs) N = 8 -42.3 mM (p<0.01)

Ramsey (5) (G551D, >12 yrs) N = 83 -48.1 mM (p<0.001)

Davies (34) (G551D, 6-11 yrs) N = 26 -54.3 mM (p<0.001)

Davies (36) (gating, 2-5 yrs) N =19 -46.9 mM (p<0.001)

De Boeck (6) (gating, age >6 yrs) N = 39 -49.2 mM ((p<0.001)

Moss (37) (R117H, >6 yrs) N =34 -21.9 mM ((p<0.001)

Rowe (35) (G551D, >6 yrs) N = 151 -53.8 mM (p<0.001)

Flume (39) (F508del/F508del, >12 yrs) N = 112 -2.9 mM (p=0.04)

Lumacaftor monotherapy Lumacaftor/ivacaftor co-therapy Enrollment (number on 
modulator)

Change in sweat [chloride] 
(treatment effect)

Clancy (45) (lumacaftor, 200 mg every 24 hrs, F508del/F508del, >18 yrs) N = 19 -8.21 mM (p<0.01)

Boyle (38) Lumacaftor 400 mg every 12 hrs and ivacaftor 250 mg every 12 
hrs, F508del/F508del, >18 yrs) N = 11 -10.3 mM (p=0.002)

*
Studies listed by lead author, with genotype and age of enrolled subjects as noted. Patients >6 yrs of age were dosed with ivacaftor 150 my every 

12 hrs. Patients age 2-5 years were dosed with ivacaftor based on weight.

†
Dose of lumacaftor and ivacaftor as noted.
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Table 2
Microbial Biomarkers in Acute and Chronic Infection

Infection Biomarker Early infection Chronic infection

Culture: Presence or CFU/mg 
(mL)

Common biomarker for antibiotic development 
May be of interest in CFTR specific therapies

Small changes in density with most therapies. May 
show changes with antimicrobials and CFTR 
modulators.

*Molecular detection and 
diversity measures

No differences prior to onset of a primary 
pathogen, followed by decreasing diversity with 
advance in disease.

Long term decrease with advanced disease. Short term 
changes less pronounced. Internal consistency within 
a given patient.

Bacterial metabolites
Few data available and low bacterial biomass 
compared to host derived signal, thus many 
signals represent host inflammation.

Changes in bacterial phenotypes and metabolites with 
disease progression. Some could serve as markers of 
disease severity.

Measures of bacterial 
cooccurrence

Few data are currently available, but indicate 
competition and communication.

Need to develop network analyses – not yet 
informative for pathogenesis or disease severity.

*
Diversity can be measured using extensive culture conditions, but typically considered a measure in microbiome studies measuring relative 

abundance.
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