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Abstract

This review summarizes the state-of-the-art knowledge of the usage of poly(hydroxy alkanoate)s 

in medical and sanitary applications. Depending on the monomers incorporated into the polymers 

and copolymers, this class of polymers exhibits a broad range of (thermo-)plastic properties, 

enabling their processing by, e.g., solution casting or melt extrusion. In this review, strategies for 

the polymer analogous modification of these materials and their surfaces are highlighted and 

correlated with the potential applications of the corresponding materials and blends. While the 

commercial availability of purified PHAs is addressed in brief, special focus is put on the 

(bio-)degradability of these polymers and ways to influence the degradation mechanism and/or the 

duration of degradation.
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Introduction

In the past decades, mankind has produced more plastics than ever before, while 

simultaneously, due to the stagnation in oil production and the general demand for “greener” 

products, plastics from renewable resources have become more and more important1,2. Such 

materials often face significant challenges when compared to petrochemical plastics, 

particularly in terms of higher production costs and availability of the source materials3,4. 

Whilst competitive costs are still a very important factor for the commercial usage of 

polymers from renewable resources, advanced medical applications, such as tissue repair, 

polymer-based depots for controlled drug release or implants, have paved the way for 

biodegradable as well as biocompatible materials. Petroleum-derived products commonly 

cannot meet the requirements inherent to those applications. In the past years, polyurethanes 

and derivatives from poly(ethylene glycol) (PEG), which used to be the “golden standard” 

for polymers in medical applications, have been continuously replaced by different polymers 

and blends from natural resources due to their superior biocompatibility and 
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biodegradability. Poly(hydroxy alkanoate)s (PHAs) (Fig. 1) are one of the new materials that 

have received a lot of attention since their discovery in 1926 by Lemoigne5.

Short chain length (scl) PHAs (Table 1) with 3–5 carbon atoms per repetition unit, and 

medium chain length (mcl) with 6–14 carbon atoms per repetition unit are the two main 

representatives of the PHA congeners. These two types of PHAs differ tremendously in their 

mechanical behavior. Glass transition temperatures of scl-PHAs like PHB range around 5–

10 °C and can be drastically lowered by copolymerization with PHV or P4HB (yielding the 

copolymers P(HB-HV) and P(HB-4HB), while mcl-PHAs have their glass-transition points 

at lower temperatures6,7. While scl-PHAs are brittle and tend to have high crystallinity, mcl-
PHAs are more flexible, but exhibit a comparably low mechanical strength. Especially the 

brittle behavior of the scl-PHAs has limited its usage in industrial production.

Blends and copolymers of PHAs have evolved into a desired strategy to overcome these 

shortcomings; this new material class is still under intense investigation4. The monomers 

most commonly considered in research are listed in Table 1. Apart from the investigation of 

new blends and copolymers, the investigations of new approaches for the functionalization 

of existing saturated and unsaturated PHAs is still a very hot topic8–15. The development of 

PHAs with tailor-made material qualities for direct usage in a broad spectrum of 

applications has become easier to achieve than ever before.

Production

In nature, PHAs are synthesized by a variety of different Gram-positive and Gram-negative 
bacteria. More than 300 different microorganisms that are able to synthesize and accumulate 

PHA intracellularly are known today16. The list includes wild type bacteria, such as 

Cupriavidus necator, Azotobacter species, Pseudomonas species, and Methylobacterium 
species as well as engineered strains of, e.g., Escherichia coli and Cupriavidus necator17–

19. These types of bacteria synthesize PHA polymers or copolymers and store them in the 

form of granules in the cytoplasm. The ability for the cells to grow to high cell densities on 

the one hand, and to accumulate a high (total cell mass) percentage of PHA on the other, is 

the key criterion to look for in potential production strains. Hence, despite the fact that a 

high number of microorganisms capable of producing PHAs have been identified, only very 

few bacteria from this list are suited for industrial scale production.

Bacteria produce PHAs as storage polymers for carbon and energy under metabolism-

limited conditions if carbon and energy sources are present, but one or more growth-

essential nutrients, such as phosphate, nitrogen or oxygen are deficient. The biosynthesis of 

PHAs usually occurs with purified sugars or edible oils as feedstock, but alternative carbon 

sources, such as whey20, palm oil21, sunflower meal22, and different waste materials23–25 

have been reported as well. In addition, strategies for the production from sugar molasses are 

under thorough investigation3,26,27. The main reason for the on-going search for cheap 

substrates as feedstock originates from the challenge to produce PHAs within the same 

range of costs like polyethylene (PE) or polypropylene (PP). Alternative carbon sources, 

more efficient processing and improved production strains are fields of active research to 

overcome this challenge28.
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Cavalheiro et al. showed the possibility of PHB production by Cupriavidus necator using 

waste glycerol from the biodiesel industry29. They observed that the specific growth rate 

peaks with a glycerol feed in the range of 20–40 g L–1 due to the amounts of sodium still 

present in the feedstock are due to the precedent transesterfication processes.

Khosravi-Darani et al. reported the microbial production of PHB from C1 carbon sources 

such as methanol, methane or CO230. Although commercial PHB production from these 

carbon sources has not yet been established by many companies31, the consideration of 

using such cheap substrates would be very favorable. Mozejko recently showed that 

saponified waste palm oil can be used as an attractive renewable resource for mcl-PHA 

synthesis32. With a polymer productivity of 57.8 mg L-1 h-1 and a mass fraction of PHA in 

cell dry mass of 43 % of cell dry mass CDW after 17 h of fermentation, this method proved 

to be an efficient approach. Muhr et al. reported the usage of fractions of waste lipids from 

animal processing as a feedstock for PHA production24, showing that Pseudomonas 
citronellolis as well as Pseudomonas chlororaphis33 are prospective candidates for large-

scale production of PHA. Tanadchangsaeng et al. reported the biosynthesis of a statistical 

copolymer of P(HB-HMV) with up to 38 mol-% of PHMV34. Cupriavidus necator 
expressing the PHA synthase from Pseudomonas species was fed with structural analogs that 

served as HMV precursors.

Engineered strains

Apart from the wild type strains of microorganisms such as Cupriavidus necator, there is an 

on-going trend to engineer suitable microorganisms to produce PHA35. In recent years, a 

number of strains were engineered for PHA accumulation rates of up to 90 wt.-% of 

CDW36. Jeon et al. produced engineered recombinant Ralstonia eutropha strains in a 

manner that the bacteria produced PHAs such as statistical P(HB-HHx) copolymers in 

quantities up to 40 wt.-%19. Notably, unrelated carbon sources such as glucose, fructose and 

gluconate were used as feedstock. Mifune et al. showed that engineered strains of 

Cupriavidus necator for the production of statistical P(HB-HHx) copolymers were able to 

reach over 80 wt.-% of PHA accumulation, using soy bean oil as carbon source18. Saika and 

coworkers recently published results concerning a recombinant E. coli for the production of 

statistical P(HB-HMV) copolymers from leucine by expressing leucine metabolism-related 

enzymes derived from Clostridium difficile17. Tripathi et al. reported a β-oxidation 

weakened Pseudomonas putida KT2442, able to produce a diblock copolymer of the 

composition PHB-block-PHHx37. The utilized recombinant strain of Pseudomonas putida 
consists of pha operon and therefore is able to produce mcl-PHA.

Mixed culture approaches

Purified and single strain cultures are by definition more expensive than the mixed culture 

approach, which can also provide the ability to use cheaper substrates3. Especially the cheap 

carbon sources of this approach make it an interesting possibility for an environmentally 

sustainable PHA production system. Fradinho et al. showed that a PHA production from 

individual and mixed volatile fatty acids (acetate, propionate, butyrate, lactate, malate and 

citrate) can be achieved38. Only acetate and butyrate led to PHB formation, propionate 

induced the synthesis of statistical P(HB-HV) copolymers. It was postulated that acetate is 
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likely to act as a co-substrate for butyrate and propionate uptake, since uptake rates of both 

carbon sources were increased in the presence of acetate. Johnson et al. worked on the 

enrichment of a mixed bacterial culture with a high PHA storage capacity in order to 

compete with genetically engineered bacteria producing PHA from pure substrates like 

sugars39. These optimized processes led to high contents of PHA in the cell dry mass and 

high production rates, but expensive substrates, equipment, and high energy input were 

required. Within this study, a maximum PHB content of 89 wt.-% within 7.6 h under 

continuous feeding with acetate was achieved. Anterrieu et al. showed the integration of 

biopolymer production with process water treatment at a sugar factory40. The challenges in 

these studies were to find a way to combine nitrogen removal with PHA production.

Processing

The development of new techniques in production processing has been a highly active 

research field in recent years41–45. Based on their mechanical properties and their 

(commercial) availability (see above), scl-PHAs (homopolymers as well as copolymers) are 

focused on. Due to the melting points of PHP (77 °C) and PHB (175 °C)46, as well as PHV 

(105 °C)47, scl-PHAs and derived copolymers can be processed by injection molding, 

extrusion, extrusion bubbles into films and hollow bodies, and fibre spinning. While polymer 

degradation of scl-PHAs starts from temperatures only slightly above their melting 

temperatures, namely from approx. 180 °C, the processing parameters have to be fine-tuned 

with high precision. For a better understanding of the degradation process and potential 

bottlenecks of the PHA class, several studies were made in the last decade32,33. Recently, 

Hufenus et al. reported the fiber melt-spinning of PLA and statistical copolymers of the 

composition P(HB-HV) for the production of new materials for biomedical purposes50. 

They were able to produce fibers with suitable mechanical properties, e.g. tensile strength 

and Young’s modulus to construct a textile fabric (Fig. 2).

Prior to any processing, PHAs have to be purified in order to remove bacterial components 

present in the crude polymers – for biomedical applications, in particular, the bacterial 

endotoxins have to be removed51. Sevastianov et al. reported the importance of proper 

endotoxin removal for in-vivo applications52. Notably, PHAs are most commonly soluble in 

dichloromethane, chloroform, and dichloroethane, although other solvents like ethyl acetate 

or methyl tert-butyl ether have recently been investigated as well53,54. Koller et al. reported 

the usage of the “anti-solvent” acetone for the purification of scl-PHAs in a novel closed 

system combining components for extraction, filtration and product work-up, compared to 

already established repeated dissolution-precipitation strategies55,56. By designing a new 

apparatus and optimizing the operating temperature and pressure control, a method was 

developed that can also be applied to mcl-PHAs.

Modification

The most common homopolymer PHB, and the most common statistical copolymer P(HB-

HV), have significant shortcomings in terms of brittleness and high degree of crystallinity57. 

P4HB and copolymers containing 4HB are under investigation for their mechanical 

properties for further surgical applications58,59. The tensile strength of P4HB is close to 

ultrahigh molecular weight PE and is a very flexible material of high strength. However, 

Luef et al. Page 4

Chem Biochem Eng Q. Author manuscript; available in PMC 2017 February 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



PHB and the statistical copolymer P(HB-HV) are the only PHAs currently available in large 

scale. Post-synthetic and polymer analogous strategies were developed in order to overcome 

the shortcomings of the pristine PHAs.

Combining PHAs with other polymers in the form of a blend enables new substance classes 

with modified and tailor-made characteristics, such as brittleness, crystallinity, and 

degradation rates60,61. The scl-PHAs, due to their crystallinity, are more resistant to 

biodegradation than mcl-PHAs. By blending a different polymer, such as a mcl-PHA into 

the matrix of a scl-PHA, higher degradation rates can be achieved while having similar 

polymer properties. Martelli et al. reported the characterization of mcl-PHA-based blends, 

focusing on blends of the statistical copolymer P(HB-HV) and a mcl-PHA composed of 

PHO, poly(hydroxy decanoate), and poly(hydroxy dodecanoate)62. The addition of 5 wt.-% 

of the mcl-PHA resulted in an increased strain at break of 50 %, compared to non-modified 

statistical copolymers of P(HB-HV).

Wu and colleagues developed a simple and safe nanoparticle system by coating P(HB-HHx) 

(statistical copolymers) nanoparticles with poly(ethylene imine) for application in in-vitro 
and ex-vivo cellular manipulation. The particles were produced from Rhodamine-B-loaded 

P(HB-HHx) nanoparticles with a diameter of 154 ± 71 nm, which were subsequently coated 

with poly(ethylene imine) in order to facilitate the binding to and uptake by cells63. A 

similar strategy for the coating of nanoparticles of statistical copolymers of P(HB-HV) by 

poly(vinyl alcohol) was published by Masood et al.64 The particles contained the anti-

cancer drug Ellipticine. Boyandin et al. reported blends composed of different tropical soils 

and their influence on the biodegradation of PHA homopolymers and blends65. Various 

factors such as differences in soil and climatic conditions were found to play a crucial role in 

the degradation. The major degraders of PHA could be identified as bacteria of the genera 

Burkholderia, Bacillus, Cupriavidus, Streptomyces, Nocardiopsis and Mycobacterium, as 

well as the fungi Gongronella butleri, Penicillium species, Acremonium recifei, 
Purpureocillium lilacinus, and Trichoderma pseudokoningii.

Polymer-analogous reactions have particularly focused on adding functionality to 

unsaturated PHAs involving the highly reactive double bond of the PHA’s side-chains. 

Reports comprise the carboxylation9, hydroxylation10, introduction of amine groups11, and 

combination with other (hydrophilic) polymers like PEG12. The polymer-analogous cross-

linking of polymer chains is another strategy aiming at the increase of the mechanical 

strength of PHAs13. Rupp et al. reported the UV-induced crosslinking of a scl-PHA 

copolymer, namely films of P(HB-HV), with a bisazide capable of absorbing UV light14. 

By addition of up to 3 wt.-% of the bisazide (BA) to P(HB-HV), crosslinking degrees of 

more than 90 % could be achieved within irradiation times of less than 1 minute. This 

process was successfully employed in photolithographic processes that produced images 

with 50 µm resolution (Fig. 3).

The thermally induced crosslinking of biopolyesters (comprising PHAs) by telechelic 

poly(ethylene glycol)-bisazides was summarized in a patent15, potentially overcoming the 

long degradation rates of pristine PHAs. Recent work by Wu et al. focused on the 

characterization of PHA composites that were either chemically crosslinked with cellulose 

Luef et al. Page 5

Chem Biochem Eng Q. Author manuscript; available in PMC 2017 February 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



acetate or blended with chestnut shell fibers, the latter for enhanced biodegradation66,67. 

The compounds produced were characterized, among others, by biodegradation rates, 

adhesion of cells, hydrophilicity and mechanical properties (Fig. 4). The results confirm the 

strategy, since the mechanical properties, especially the tensile strength, of both composites 

increased. The biodegradation rate was also higher in both composites compared to pure 

PHA, maintaining biocompatibility.

Applications

Certain microorganisms with the ability to produce PHA depolymerases can promote the 

biodegradation of PHA. Under aerobic conditions, they are degraded into water and carbon 

dioxide and, under anaerobic conditions, into methane and water68. The biodegradability 

and biocompatibility of PHAs makes them the ideal candidate for a broad spectrum of 

applications. However, the rates of degradation are not always suited to the purpose, and 

depend highly on the microbial environment of the PHA product69–73. Corresponding 

applications of PHAs include improved forms of food packaging74, waste bags, or 

agricultural plastics. Sudesh and colleagues reported about the synthesis of PHA from palm 

oil and new applications thereof21. In their approach, they investigated PHA as a potential 

facial oil blotting material as well as a potential dye remover from wastewater.

Recent work from Sridewi et al. showed that (blended) PHB-TiO2 electrospun 

nanocomposite fibers and films (Fig. 5) can be used for the removal of dyes, such as 

malachite green via decolorization, degradation, and detoxification75. Materials derived 

from the fiber melt-spinning of PLA and P(HB-HV) (reported by Hufenus et al., see 

above)50, were subjected to biodegradability studies on human fibroblasts that revealed no 

toxicity of the fibers and cells proliferated well under the condition provided by these new 

materials. Additionally, the molecular weight loss caused by biodegradation of the fibers 

reduced the tensile strength up to 33 % after 4 weeks of incubation, further proving the 

promise of this new material in medical applications.

Castro-Mayorga et al. showed the stabilization of antimicrobial silver nanoparticles 

(preventing their agglomeration) by a PHA obtained from mixed bacterial culture74. The 

study demonstrated that unpurified statistical copolymers of P(HB-HV) can be used as 

capping agent that helps prevent agglomeration.

The area most considered for possible application of PHAs and PHA blends is the area of 

medical applications1,8,58,76–84. The usage as a system for drug delivery is perhaps the 

longest investigated application in this area, but still a highly active field85,86. Naveen et al. 
synthesized nanofibers mats of PHB by electrospinning and loaded them with Kanamycin 

sulphate to test against Staphylococcus aureus. The drug release of the antibiotic showed 

more than 95 % release within 8 hours84. Xiong and colleagues prepared nanoparticles of 

PHB, statistical copolymers of P(HB-HHx) and PLA and loaded them with lipid-soluble 

colorant rhodamine B isothiocyanate as a model compound87. Due to their size, 

nanoparticles can penetrate deeply into tissue material and are more efficiently taken up by 

cells. They achieved a high loading efficiency of around 75 % with the PHB homo- and 

P(HB-HHx) statistical copolymers, and a drug release over a period of at least 20 days, 
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while reference PLA nanoparticles only lasted 15 days. Chaturvedi et al. used blends of 

PHB with cellulose acetate phthalate (CAP) in different compositions for drug loading with 

5-fluorouracil, an anticancer drug, and investigated the simulated colon delivery of the said 

drug88. The pH-sensitive property of the blend caused a higher in vitro release at alkaline 

pH than at acidic pH, suggesting its potential for colon delivery.

Tissue repair has become one of the major fields when combining PHA with medical 

applications77,81,83,89. The high biocompatibility of PHB, which is not surprising when 

considering the natural occurrence of 3HB in the blood stream1, makes it an ideal candidate 

for scaffolds, which can later be used for the repair of tissue damage. Results of animal 

testing clearly showed the high biocompatibility of implants of PHB and P(HB-HV) 

statistical copolymers. Shishatskaya et al. and Volova et al. investigated the physiological 

and biochemical characteristics of Wistar rats implanted with PHA sutures. Long-term (1 

year) observations showed that the animals with PHB or P(HB-HV) threads were active and 

healthy throughout the experiment, and suggested that the implanted polymer threads did not 

affect the organism in a negative way56,90. For biodegradable implants, the high 

crystallinity is indeed a problem, rendering the attack of degrading enzymes more 

difficult91. Various blends of different PHAs, such as P(HB-HV), are therefore under 

investigation, combining the excellent biocompatibility of PHB with a lower degree of 

crystallinity provided by the incorporated PHV89.

Basnett et al. reported novel blends composed of PHO and PHB for medical applications. In 

their study, blends with various ratios of PHB and PHO in various ratios were created, and 

degradation as well as biocompatibility tests were carried out92. The degradation found in 

these blends occurred via surface erosion and not bulk degradation, which would lead to a 

more controlled degradation, while still maintaining the core structure. Combined with an 

increased biocompatibility with HMEC-1 cells, these blends showed a very promising 

perspective for the development of biodegradable materials.

Another strategy for tissue repair was reported by Ellis and colleagues who produced laser-

perforated biodegradable PHA scaffold films93. The pores of the films of statistical 

copolymers of P(HB-HV) exhibited micrometer dimensions. Hence, once the cells were 

seeded onto the film surface, they could attach and proliferate on the upper surface as well as 

through the pores and into the region of the damaged tissue. In their study, they achieved an 

increased surface amorphicity at the pore edges, which may facilitate cell adhesion and 

could promote growth and migration of cells for regenerative medicine.

Sutures of PHB and P(HB-HV), respectively, were found to exhibit the mechanical strength 

required for use in muscle-facial wounds, and, hence, they were tested on animals 

intramuscularly90. The environmental tissue reacted to the PHAs by a transient post-

traumatic inflammation, as well as in the formation of fibrous capsules with a thickness of 

up to 200 μm, which thinned upon prolonged exposure. If the sutures were implanted for 

periods of up to one year, they stimulated no suppurative inflammation or necrosis.

On the topic of nerve injury repair, a new strategy provided by Wang et al. described the 

usage of PHA as scaffolds for human bone marrow stromal cells94. A statistical terpolyester 
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of the composition P(HB-HV-HHx) was compared with poly(lactic acid) and P(HB-HHx) 

for their function in differentiating the human bone marrow stromal cells into nerve cells. It 

could be shown that the terpolyester had stronger cell adhesion, proliferation and 

differentiation than the other two polymers. Three-dimensional scaffolds of a composite 

composed of P(HB-HHx) and mesoporous bioactive glass (in different mass ratios) were 

printed with a 3D bioplotter by the group of Zhao et al., aiming at the delivery of materials 

for enhanced bone regeneration95. These highly porous, yet robust scaffolds showed good 

bioactivity, stimulated human bone marrow stromal cells adhesion and stimulated bone 

regeneration in in-vivo experiments (Fig. 6).

Conclusions and outlook

New technologies and evolution of production modes (batch, feed batch, continuous) 

methods have allowed PHAs to become a recognizable player in the field of biodegradable 

polymers. Research in biotechnology and strain engineering has enabled the production of 

PHAs from cheap substrates, in-line with existing processing facilities such as waste 

treatment and easier-to-handle microorganisms compared to the wild type production strains 

reported in the past. Continuous improvements of PHA contents within the cells and growth 

rates are reported on a regular basis.

PHAs are still far from joining the competitive level of production costs compared to 

petroleum-based polymers such as PP or PE. Hence, currently, PHAs can be only considered 

for advanced applications, in which they cannot be replaced by petroleum-based polymers. 

Correspondingly, PHAs are well-suited for any application that requires biocompatibility 

and/or biodegradability of the polymer. Notably, purity requirements are high for such 

applications, and the removal of impurities, such as endotoxins, further increases the 

production costs. For medical applications, in particular the homopolymers PHB and PHV 

as well as the statistical copolymer PHB-stat-PHV have been investigated. These so-called 

scl-PHAs can be processed by melt processes as they are thermoplasts, or by solution 

processes due to their solubility in (a limited number of) organic solvents.

In order to adapt the polymers’ properties to the specific application details and 

requirements, several techniques can be applied to PHAs, not to mention the blending with 

other (biodegradable and biocompatible) polymers, and polymer-analogous modification by, 

e.g., crosslinking as prominent examples. Using these techniques, a broad spectrum of tailor-

made mechanical and physical properties can be realized. In the area of medical 

applications, in particular tissue engineering could benefit from these recent developments 

and improvements. PHA blends as scaffolds for tissue repair are a highly active research 

area that has produced a lot of very promising results from in-vivo tests in recent years.

PHAs, quo vadis? Facing the need for advanced and/or alternative medical devices for tissue 

engineering, drug delivery, and implants in their broadest sense on the one hand, and the 

promising research results in recent years, the applicability of PHAs in those medical areas 

is more than plausible in the near future.
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Fig. 1. 
Generic structural formula of PHAs. The integer m typically has the value of 1 (with the 

exception of 4-hydroxy alkanoates such as 4-hydroxybutyrate), the integer n quantifies the 

degree of polymerization.
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Fig. 2. 
Overlay of light and fluorescence micrographs showing cell adhesion on fibers composed of 

a PLA core and a coating of statistical copolymers of P(HB-HV). Reprinted from 

reference50 with permission from John Wiley and Sons.
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Fig. 3. 
Top: Crosslinking of polymer chains with a bisazide (BA) under UV irradiation. Bottom: 

Multi-step photolithographic processes based on P(HB-HV). Reproduced in part from 

reference14 with permission of The Royal Society of Chemistry.
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Fig. 4. 
SEM images of the morphology of PHA composites after 0, 60, and 120 days of 

degradation. A-C: pristine PHA, D-F: PHA crosslinked with cellulose actetate, G-I: PHA 

grafted on acrylic acid/cellulose acetate. Biodegradation by Acetobacter pasteurianus can be 

monitored by the erosion in the films. Reprinted from reference66 with permission from 

Elsevier.
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Fig. 5. 
SEM micrographs showing the morphological features of electrospun fibers (left) and 

spincast films (right) of PHB blended with TiO2. Reprinted from reference75 with 

permission from Hindawi Publishing Corporation.
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Fig. 6. 
SEM images of composite scaffolds of P(HB-HHx) and mesoporous bioactive glass (MBG) 

at different magnifications (top and bottom). A: reference material poly(vinyl alcohol):MBG 

= 1:7; B: P(HB-HHx):MBG = 1:7; C: P(HB-HHx):MBG = 1:5; D: P(HB-HHx):MBG = 1:3. 

Reproduced in part from reference95 with permission of The Royal Society of Chemistry.
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Table 1

Representative repetition units in scl-PHAs and mcl-PHAs

scl-PHAs

mcl-PHAs
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