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Summary

Joint models for longitudinal and survival data are routinely used in clinical trials or other studies 

to assess a treatment effect while accounting for longitudinal measures such as patient-reported 

outcomes (PROs). In the Bayesian framework, the deviance information criterion (DIC) and the 

logarithm of the pseudo marginal likelihood (LPML) are two well-known Bayesian criteria for 

comparing joint models. However, these criteria do not provide separate assessments of each 

component of the joint model. In this paper, we develop a novel decomposition of DIC and LPML 

to assess the fit of the longitudinal and survival components of the joint model, separately. Based 

on this decomposition, we then propose new Bayesian model assessment criteria, namely, ΔDIC 

and ΔLPML, to determine the importance and contribution of the longitudinal (survival) data to 

the model fit of the survival (longitudinal) data. Moreover, we develop an efficient Monte Carlo 

method for computing the Conditional Predictive Ordinate (CPO) statistics in the joint modeling 

setting. A simulation study is conducted to examine the empirical performance of the proposed 

criteria and the proposed methodology is further applied to a case study in mesothelioma.

Keywords

CPO; DIC; LPML; Monte Carlo method; Patient-reported outcome (PRO)

Supplementary Materials
In the supplementary material, we provide the details of prior specification and posterior computation (Appendix A); the development 
of the second decomposition (Decomposition II) of DIC and LPML (Appendix B); the proofs of identities, results, and theorems 
(Appendix C); and additional tables (Appendix D) for DIC, pD, and LPML for fitting survival alone with different K, pD's and 
pD[Surv|Long]'s for five PROs under SPML and TML with different K associated with Table 2, and the decomposition of LPML for 
five PROs under SPML and TML with different K using Gaussian quadrature associated with Table 2 for the EMPHACIS data in 
Section 4.

HHS Public Access
Author manuscript
J Comput Graph Stat. Author manuscript; available in PMC 2017 February 23.

Published in final edited form as:
J Comput Graph Stat. 2017 ; 26(1): 121–133. doi:10.1080/10618600.2015.1117472.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Recently, joint modeling of longitudinal and time-to-event outcomes has become more 

popular in the analysis of patient-reported outcomes (PROs) for the purpose of evaluating 

the efficacy and tolerability of cancer treatment. In oncology applications, information from 

the patients’ perspectives can be useful in evaluating actual patients’ experiences on 

dimensions known to be important to them and also associated with treatment outcomes. 

The field of PROs has evolved and reached a common understanding about good clinical 

practices for the use of PROs (Rothman et al., 2009). In addition, the U.S. and European 

regulators have published guidance on the use of these measures to support PRO-based 

claims in pharmaceutical product labeling (European Medicines Agency, 2005; US Food and 

Drug Administration Guidance for Industry, 2009) (DeMuro et al., 2013). Siddiqui et al. 

(2014) reviewed and addressed issues regarding the “why, how, and what” of PROs as well 

as cancer survivorship because it closely relates to PROs. Building on previous joint 

modeling work in a highly symptomatic and particularly fatal cancer (Wang et al., 2012; 

Hatfield et al., 2011, 2012; and Zhang et al., 2014, 2015a), we develop new Bayesian 

methodology on how to evaluate the distinct effects of longitudinal and time-to-event 

outcomes on the fit of a joint model.

A popular approach in joint modeling of longitudinal and survival data is based on shared 

random effects, where the longitudinal component and the survival component of the joint 

model share common random effects and these random effects then induce correlation 

between the longitudinal and survival data. There are two basic formulations of the joint 

model. The first is the “trajectory model” (TM), where one substitutes the time trajectory 

function from the longitudinal component into the hazard function of the survival 

component, and in this case, the trajectory function acts like a time-varying covariate in the 

survival component. The second formulation is the shared parameter model (SPM), which 

directly includes the random effects as covariates in the survival component. One of the 

main advantages of the TM is that it leads to a straightforward interpretation of the 

association between the longitudinal measure and survival time through the direct inclusion 

of the trajectory function in the hazard. For the SPM, the characterization of the association 

is much more complex and can only be analytically determined once the random effects 

have been integrated out, as the two components of the model are independent conditional 

on these random effects. However, the TM is computationally more expensive compared to 

the SPM. In addition, the TM requires extrapolation beyond the last time at which the 

longitudinal measure is observed in the survival component. The SPM typically fits the 

survival component of the joint model better as it directly includes the random effects as 

covariates in the survival component. There is a very rich literature concerning these two 

basic approaches. The TM has been considered in Schluchter (1992), Hogan and Laird 

(1997), Law et al. (2002), Brown and Ibrahim (2003), Chen et al. (2004) Ibrahim et al. 

(2004), Brown et al. (2005), Chi and Ibrahim (2006), Chi and Ibrahim (2007), and Ibrahim 

et al. (2010) for joint modeling with biomedical applications. There has also been much 

work on using the SPM, including Pawitan and Self (1993), DeGruttola and Tu (1994), 

Lavalley and DeGruttola (1996), Henderson et al. (2000), Xu and Zeger (2001a, 2001b), and 

Song et al. (2002) for univariate or multivariate longitudinal data. An excellent review on 
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joint modeling of longitudinal and survival data is given in Tsiatis and Davidian (2004) and 

an overview of joint models for longitudinal and time-to-event data can be found in Ibrahim, 

Chen, and Sinha (2001, Chapter 7) and Rizopoulos (2012a). There are several R packages 

available in fitting joint models, including JM (Rizopoulos, 2012b), JMbayes (Rizopoulos, 

2014), and joineR (Philipson et al., 2012). There is also a Stata module stjm (Crowther, 

2012; Crowther et al., 2013), which fits shared random effects models. In addition, another 

R package, lcmm (Proust-Lima et al., 2014), fits joint models based on shared latent classes.

One important issue in the joint modeling of longitudinal and survival data concerns the 

separate contribution of the model components to the overall goodness-of-fit of the joint 

model. Zhang et al. (2014) developed a decomposition of AIC and BIC to assess the fit of 

each component of the joint model. A SAS macro, called JMFit, (Zhang et al., 2015b) 

implements a variety of popular joint models and provides several model assessment 

measures including the decomposition of AIC and BIC as well as ΔAIC and ΔBIC. Within 

the Bayesian framework, Hanson et al. (2011) proposed to use LPML to predict survival 

times conditional on the longitudinal component of the model. In this paper, we derive a 

novel decomposition of the DIC and LPML criteria into additive components that will allow 

us to assess the goodness of fit for each component of the joint model. Such a development 

is extremely important since it not only allows us to quantify the contribution of the 

longitudinal data to the fit of the survival data or the contribution of the survival data to the 

fit of the longitudinal data, but it also allows us to identify which PROs are most highly 

associated with survival outcomes, a finding with significant clinical implications. In 

addition, we also develop a new Monte Carlo (MC) method for computing the CPO statistics 

which may involve intractable high-dimensional integrals. The proposed MC approach for 

computing the CPO has a potential to lead to a gain in computing time compared to a 

numerical approximation approach, particularly in the joint modeling setting. To illustrate 

our proposed method, we only consider (i) polynomial trajectories and independent and 

identically distributed Gaussian noise for longitudinal measures and (ii) the Cox model with 

a piecewise constant baseline hazard function for survival data in our simulation study and 

real data analysis. However, the proposed method can be applied to other types of 

longitudinal trajectories and other types of survival models such as those considered in 

Hanson et al. (2011).

The rest of the paper is organized as follows. Section 2 presents the joint models and the 

likelihood and posterior. The first decomposition (Decomposition I) of DIC and LPML (i.e., 

DIC= DICLong + DICSurv|Long and LPML= LPMLLong+LPMLSurv|Long), the corresponding 

two new criteria (i.e., ΔDICSurv and ΔLPMLSurv), as well as a new Monte Carlo method for 

computing CPO are also developed in Section 2. A simulation study is conducted in Section 

3, and a comprehensive analysis of the longitudinal and survival data from a cancer clinical 

trial is carried out in Section 4. We conclude the paper with a brief discussion in Section 5. 

Prior specification and posterior computation are discussed in Appendix A of the 

supplementary material. In addition, we develop the second decomposition (Decomposition 

II) of DIC and LPML (i.e., DIC= DICSurv + DICLong|Surv and LPML= LPMLSurv + 

LPMLLong|Surv) and the corresponding ΔDICLong and ΔLPMLLong criteria to assess the fit of 

the longitudinal data using the information from the survival data in Appendix B of the 

supplementary material.
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2 Bayesian Assessment of Model Fit in the Joint Model

2.1 The Joint Models

Suppose that there are n subjects. For the ith subject, let yi(t) denote the longitudinal 

measure, which is observed at time t ∈ {ai1, ai2, . . . , aimi}, where 0 ≤ ai1 < ai2 < · · · < aimi 
and mi > 1. Note that yi(0) corresponds to the baseline value. Also let xi and zi denote two 

vectors of covariates, which may include the treatment indicator. We assume a mixed effects 

regression model for yi(t) given by

(2.1)

where g(aij) denotes a (q+1)-dimensional vector of functions of aij for j = 1, . . . , mi, θi 

denotes a (q+1)-dimensional vector of random effects, and γ denotes a vector of regression 

coefficients. In (2.1), we further assume θi ~ N(θ, Ω), where θ is a (q+1)-dimensional vector 

of overall effects, Ω is a (q+1) × (q+1) positive definite covariance matrix, εi(aij) is the 

measurement error term, which is assumed to follow a N(0, σ2) distribution and is 

independent of θi. We note that in (2.1), if q = 1, g(aij) = (1, aij)′ and (g(aij))′ θi represents a 

linear trajectory; if q = 2,  and (g(aij))′ θi leads to a quadratic 

trajectory; and if g(aij) = (1, B1(aij), . . . , Bq(aij))′, where {Bk(·), k = 1, 2, . . . , q} is a q-

dimensional basis for spline functions over a finite interval, (g(aij))′θi represents a spline 

trajectory considered in Brown et al. (2005).

Let ti and δi denote the failure time and the censoring indicator, respectively, where δi = 1 if 

ti is a failure time and 0 if ti is right-censored for the ith subject. The hazard function for 

failure time ti is assumed to have the form

(2.2)

where λ0(t) is the baseline hazard function, h(·) is a linear function of g(t) and θi with α 
being a vector of regression coefficients. Note that λ0, α, and β are the fixed effects 

parameters pertaining to the survival component of the joint model. When h(α, θi, g(t)) = 

{g(t)′θi}α, where α is a scalar, the hazard function (2.2) leads to the TM. When h does not 

depend on g(t), that is, , where α is a (q + 1)-dimensional vector, the 

hazard function specified by (2.2) defines the SPM. Under the TM, g(t)′θi acts a time-

varying covariate in the survival component while under the SPM, the random effects θi are 

included as q + 1 covariates in the survival component.

2.2 The Likelihood and Posterior

We first introduce some notation. We rewrite (2.1) as
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where yi = (yi(ai1), . . . , yi(aimi))′, , and εi = 

(εi(ai1), . . . , εi(aimi))′ ~ N(0, σ2Imi). Then, the probability density function (pdf) of yi 

conditional on θi is given by

and the pdf of θi is given by

for i = 1, . . . , n. Letting λ be a vector of parameters for the baseline hazard function λ0(t), 
we write

where λ(t|λ0, α,β,θi, g(t), zi) is defined in (2.2). We note that when δi = 1, f(ti|λ, α, β, θi, δi 

= 1, zi) reduces to the density of ti, and when δi = 0, f(ti|λ, α, β, θi,δi = 0, zi) is the survival 

function evaluated at ti.

Let φ = (θ, γ, σ2, Ω, λ, α, β). The joint distribution of (yi, ti, θi) is written as

(2.3)

and the marginal joint distribution of (yi, ti) is given by

(2.4)

for i = 1, . . . , n. Letting Dobs = {(yi, ti, θi, xi, zi), i = 1, . . . , n} denote the observed data, the 

observed-data likelihood is given by

(2.5)

Using (2.5), the joint posterior of φ takes the form

(2.6)

Zhang et al. Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where π(φ) is the joint prior, which is specified in Appendix A, and the normalizing constant 

is given by

(2.7)

We write , which is the vector of all the random effects. Then, the 

augmented posterior distribution of (φ, θR) is given by

(2.8)

where f(yi, ti, θi|φ, δi, xi, zi) is defined in (2.3). It is easy to see that ∫ π(φ, θR|Dobs)dθR = 

π(φ|Dobs). The implementation details of the Gibbs sampling algorithm to sample (φ, θR) 

from (2.8) are given in Appendix A.

2.3 Deviance Information Criterion

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) for the joint model is 

defined as

(2.9)

where Dev(φ) is the deviance function,  is the effective number of 

model parameters, and  and  are the posterior means of φ and Dev(φ), respectively, 

with respect to the posterior distribution in (2.6). To assess the overall fit of the joint model, 

we specify the deviance function as

where L(φ|Dobs) is given by (2.5). From (2.5), we see that Dev(φ) involves the computation 

of n integrals as shown in (2.4).

The integration over the random effects specified in (2.4) always poses a major challenge in 

computing the observed-data likelihood of the joint model. One possible approach is to use a 

Monte Carlo (MC) approach, but this may be computationally intensive. Adaptive Gaussian 

quadrature (AGQ) (Pinheiro and Bates, 1995) is another approach to approximate (2.4), and 

is implemented here to calculate DIC when the dimension of θi is low.

2.3.1 DIC Decomposition—To assess the contribution of the longitudinal data to the fit 

of the survival data, we develop a novel decomposition of DIC in (2.9). Specifically, we 

decompose DIC into two parts: one part for the longitudinal data and the other part for the 

Zhang et al. Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



survival data conditional on the longitudinal data. Write φ1 = (θ, γ, σ2,Ω) and φ2 = (λ, α, β). 

Let f(θi|φ1, yi, xi) be the conditional density of the random effects θi given yi, and also let 

f(yi|φ1, xi) = ∫ f(yi| γ, σ2, θi, xi)f(θi|θ, Ω)dθi, which is the marginal density of yi. Let  and 

 denote the posterior means of φ1 and φ2. Define 

, 

, 

, and 

. We are led to the 

following result.

Result 1: DIC and pD in (2.9) have the following decomposition:

(2.10)

where , and 

.

In (2.10), DICLong measures the contribution of the longitudinal data to the total DIC while 

DICSurv|Long quantifies the contribution to the total DIC due to the survival data given the 

additional information from the longitudinal data.

The marginal distribution of yi follows

and the conditional distribution of the random effects θi given the longitudinal data takes the 

form

where . These are the quantities needed to 

apply Result 1.
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2.3.2 ΔDICSurv—When we fit the survival data alone, i.e., α = 0 in (2.2), the hazard 

function reduces to  and the density for ti becomes 

 Write DSurv, obs 

= {(ti, δi, zi), i = 1,...,n} and let

where , and 

. 

We now propose the following model assessment criterion:

(2.11)

In (2.11), ΔDICSurv measures the gain of the fit in the survival component due to the 

longitudinal data with a penalty for the additional parameters in the survival component of 

the joint model. A model with a large value of ΔDICSurv is more preferred. When 

, then ΔDICSurv < 0. 

That is, when the penalty for the additional parameters in the survival component outweighs 

the gain of the fit in the survival component, ΔDICSurv can be negative.

2.4 Conditional Predictive Ordinate

2.4.1 CPO Computation—Let 

denote the observed data with the ith subject deleted. The Conditional Predictive Ordinate 

(CPO) (e.g., Geisser and Eddy, 1979; Gelfand et al., 1992; and Gelfand and Dey, 1994) for 

the ith subject is defined as

(2.12)

where

(2.13)
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and  is the normalizing constant, i.e., 

. Following Chen et al. (2000), we obtain 

the first CPO identity.

CPO Identity I: CPOi in (2.12) can be rewritten as

(2.14)

The proof of this identity directly follows from Chapter 10 of Chen et al. (2000). CPO 

Identity I leads to the development of a popular Monte Carlo estimate of CPO using Gibbs 

samples from the posterior distribution given Dobs instead of . Letting {φb, b = 1, . . . , 

B} denote a Gibbs sample of φ from π(φ|Dobs) and using (2.14), a Monte Carlo estimate of 

 is given by

(2.15)

The numerical approximation of  in (2.15) involves the integral over the random 

effects and can be calculated using AGQ to approximate (2.4). However, this method would 

likely be computationally intensive when the dimension of the random effects is high. To 

circumvent this numerical integration issue in (2.15), we develop a second CPO identity and 

then propose a new efficient MC method which directly uses the Gibbs samples generated 

from the augmented posterior distribution π(φ, θR|Dobs) in (2.8) to calculate .

CPO Identity II: Let wi(θi) be a normalized weight function such that ∫ wi(θi)dθi = 1. 

Then, CPOi in (2.12) can be expressed as

(2.16)

Now, let  denote a Gibbs sample of (φ, θR) from π(φ, θR|Dobs). 

Using the CPO Identity II in (2.16), a Monte Carlo estimate of  is given by
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Under certain ergodic conditions,  is unbiased and consistent for any normalized 

weight function wi. However, the Monte Carlo error of  depends on the choice of wi. 

The following theorem characterizes the optimal choice of wi in minimizing the variance of 

the Monte Carlo estimator  when  is a sample from π(φ, 
θR|Dobs).

Theorem 1: Let

Then, for any normalized weight function wi, we have

where the variance is taken with respect to the posterior distribution π(φ, θR|Dobs).

Remark 1: The result established in Theorem 1 provides the best choice of wi. However, 

this optimal weight function is expensive to compute. Since the optimal weight function 

wi,opt is analogous to the optimal weight function in the importance-weighted marginal 

density estimation (IWMDE) of the marginal posterior density proposed by Chen (1994), we 

may follow the guidelines discussed in Geweke (1989) and Chen (1994) to construct a good 

weight function wi which is similar to wi,opt. One possible choice of wi is a multivariate 

normal density, which is constructed via the Laplace approximation to the joint density f(yi, 
ti, θi|φ, δi, xi, zi) in (2.3). Another possible choice of wi is wi,cond(θi) = f(θi|φ1, yi, xi), which 

is the conditional density of the random effects θi given yi. Note that when yi and ti are 

independent, wi,cond(θi) = wi,opt. Therefore, wi,cond(θi) may be a reasonable choice for 

computing the CPOi.

2.4.2 CPO Decomposition—In this subsection, we first establish the third CPO identity 

which will lead to the decomposition of CPO.

CPO Identity III: The CPO in (2.12) can also be expressed as

(2.17)

which is true for all φ.

Since plugging in any numerical value for φ in (2.17) results in the CPO, we have
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(2.18)

where φ* is a fixed value of φ, which may be chosen as the posterior mean. We note that 

(2.18) is similar to the identity of Chib (1995). Let  and  denote the posterior means of 

φ1 and φ2. From (2.4) and (C.1), we have

where . We also observe 

that

(2.19)

Using (2.18) and the facts of the joint densities stated above, we propose the CPO 

decomposition:

(2.20)

where

(2.21)

and

(2.22)

Remark 2: Let DLong,obs = {(yi, xi), i = 1, . . . , n} denote the observed longitudinal data and 

DSurv,obs = {(ti, δi, zi), i = 1, . . . , n} denote the survival data, respectively. Also let 

 and 

 denote the observed longitudinal and 

survival data with the ith subject deleted, respectively. Assume that DLong,obs and DSurv,obs 

are independent and π(φ1, φ2) = π(φ1)π(φ2). Under these assumptions, we have
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(2.23)

(2.24)

and

where

and f0(tj|φ2, δj, zj) is defined in Section 2.3.2 with φ2 = (λ α = 0, β). Therefore, CPOi,Long 

and CPOi,Surv|Long reduce to the usual CPOs for the longitudinal data and the survival data 

separately, and the CPO decomposition (2.20) holds under the usual definition of CPO.

Next, we develop useful in the following theorem for , CPOi,Long, and 

CPOi,Surv|Long, which facilitate the computation and further understanding of these 

quantities.

Theorem 2: For CPOi, CPOi,Long, and CPOi,Surv|Long, we have the following identities:

(2.25)

and

(2.26)
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Remark 3: The identity in (2.26) is quite attractive as it has a similar form as the usual 

CPOi in (2.14). We also see from (2.26) that CPOi,Surv|Long is free of . In addition, 

CPOi,Surv|Long can be directly calculated from (2.26). Thus, if only CPOi,Surv|Long is of 

interest, it is not necessary to compute the overall CPOi. However, it does not appear 

possible that CPOi,Long can be computed directly without knowing CPOi and CPOi,Surv|Long.

Remark 4: To avoid the calculation of , we use the same idea as in 

(2.16) and obtain

where the optimal choice of wi(θi) is . Similarly,

where the optimal choice of wi(θi) is .

2.4.3 LPML and LPML Decomposition—The logarithm of the Pseudo marginal 

likelihood (LPML) (Ibrahim et al., 2001) is defined as

We note that there is a relationship between the DIC and the LPML in large samples (see 

Draper and Krnjajić (2005, Section 4)). Using the decomposition of CPO in (2.20), we are 

led to the following result.

Result 2: LPML can be decomposed as

where ,  and 
CPOi,Long and CPOi,Surv|Long are given by (2.21) and (2.22), respectively.

2.4.4 ΔLPMLSurv—Define , where CPOi,Surv0 is 

given by (2.24). We propose the model assessment criterion
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ΔLPMLSurv quantifies the gain of the fit in the survival component due to the longitudinal 

data with a penalty for the additional parameters in the survival component of the joint 

model. A model with a large value of ΔLPMLSurv is more preferred. From Remark 3, it is 

easy to see that if our interest is on ΔLPMLSurv only, we do not need to compute the overall 

LPML for the joint model. Similar to ΔDICSurv, it is not guaranteed that ΔLPMLSurv is non-

negative.

3 A Simulation Study

We conduct a simulation study to evaluate the empirical performance of ΔDICSurv and 

ΔLPMLSurv in selecting the true model or identifying the true longitudinal data. We generate 

longitudinal and survival data under the SPM with the simple exponential baseline. 

Specifically, we first simulate θi = (θ0i, θ1i)′ N(θ, Ω), where θ = (θ0, θ1)′ = (0.1, 0.5)′ and 

. We then simulate the longitudinal data from a 

N(μi(aij), σ2) distribution with a linear trajectory μi(aij) = θ0i + aij θ1i + xiγ. For the survival 

data, we set zi = xi and generate t* from an exponential regression model, i.e., 

, where U ~ U(0, 1), and draw the censoring 

times Ci from an exponential distribution with mean 10. Then, we compute 

and δi = 1 if  and 0 otherwise. The treatment indicator xi is generated from a 

Bernoulli(0.5) distribution. For each subject, 6 or 7 time points (aij, j = 1, . . . , 6 or 7) for the 

longitudinal measures are chosen to be (0 + ζi1, 21 + ζi2, 42 + ζi3, 63 + ζi4, 84 + ζi5, 105 + 

ζi6)/30.4375 if ζi7 > 0 and (0 + ζi1, 21 + ζi2, 42 + ζi3, 63 + ζi4, 84 + ζi5, 105 + ζi6, 126 + 

ζi7)/30.4375 if ζi7 ≤ 0, where ζij ~ U(−3, 3) for j = 1, . . . , 7, and 30.4375 = 365.25/12. The 

design values of the parameters are given as Ω00 = 0.7, Ω10 = Ω01 = −0.1, Ω11 = 0.06, δ2 = 

0.3, θ0 = 0.1, θ1 = 0.5, γ = −0.2, α1 = 0.3, α2 = 1.6, β= −0.4, and λ = 0.08. 500 datasets are 

simulated independently with n = 400 subjects in each simulated dataset. The resulting 

censoring percentage is about 40%.

Let DT denote the dataset generated from the true SPM model. One additional set of 

longitudinal data is generated by adding noise to the true longitudinal measures. More 

specifically, it is simulated from a N(μℓi(aij), δ2) distribution with linear trajectories μℓi(aij) = 

(θ0i + τℓ0i) + aij(θ1i + τℓ1i) + xiγ, where (τℓ0i, τℓ1i)′ ~ N(0, 0.22I2), and the values of the other 

parameters remain the same as before. By combining this longitudinal dataset with the same 

survival data in DT, we obtain the additional dataset and denote it as DW.

We consider the following scenarios to fit different joint models to the datasets DT and DW:

i. TRUE: Fit the true joint model to DT . In the true joint model, (2.1) becomes

(3.1)

and (2.2) becomes
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(3.2)

ii. Long: Fit the joint model with (3.1) and (3.2) to DW. In this case, DW is fit by 

the joint model with misspecified longitudinal submodel.

iii. SurvI: Fit the joint model with (3.1) and misspecified survival submodel to DT. 

In this joint model, (3.2) reduces to λexp{θ0i α1 + zi β}.

iv. SurvII: Fit the joint model with (3.1) and misspecified survival submodel to DT. 

In this joint model, (3.2) reduces to λexp{θ1i α2 + zi β}.

v. TM: Fit the joint model with (3.1) and misspecified survival submodel to DT. In 

this joint model, (3.2) becomes λexp{(θ0i + θ1it)α + zi β}.

vi. Long&Surv: Fit the joint model with misspecified longitudinal and survival 

submodels to DT. In this joint model, (3.1) becomes yi(aij) = θ0i + xiγ + εi(aij), 

and (3.2) reduces to γexp{θ0i α1 + zi β}.

In all the six scenarios, the exponential regression model, namely, λexp{zi β}, fits the true 

survival data DT in computing DICSurv, 0 and LPMLSurv, 0. Thus, the values of DICSurv, 0 

and LPMLSurv, 0 are the same for all of the six scenarios. Since ΔDICSurv = DICSurv, 0 − 

DICSurv|Long and ΔLPMLSurv = LPMLSurv|Long − LPMLSurv, 0, ΔDICSurv and ΔLPMLSurv 

can be used to assess the fit of the survival component of the joint model for all of the six 

scenarios. We also note that in scenario (ii), both components of the joint model are 

correctly specified but fit to the longitudinal data, which are less correlated to the survival 

data; in scenarios (iii), (iv), and (v), the longitudinal component is correctly specified, the 

survival component is misspecified, and both components fit the true longitudinal and 

survival data; and in scenario (vi), both components of the joint model are misspecified but 

fit the true data.

For each simulated dataset, we take 5000 Gibbs samples with 100 burn-in iterations. The 

means of ΔDICSurv and ΔLPMLSurv as well as the frequencies of ranking each model as best 

based on ΔDICSurv and ΔLPMLSurv are reported in Table 1. From this table, we see that 

True has the largest means of ΔDICSurv and ΔLPMLSurv, which are 18.72 and 9.37, and gets 

ranked as the best with 423 times out of 500 by both criteria, while SurvI has the smallest 

means of ΔDICSurv and ΔLPMLSurv and never gets ranked as the best by these two criteria 

in these 500 simulated datasets. These results show that both ΔDICSurv and ΔLPMLSurv can 

correctly identify the true model or the true data.

Figure 1 shows boxplots of the ΔDICSurv and ΔLPMLSurv differences between True and 

each of Long, SurvI, SurvII, TM, and Long&Surv. We see from this figure that boxplots for 

ΔDICSurv and ΔLPMLSurv differences are almost above zero, indicating that the true model 

does fit the true data much better than other models based on either ΔDICSurv or 

ΔLPMLSurv. These results are consistent with those based on the means of ΔDICSurv and 

ΔLPMLSurv and the frequencies of ranking each model as best as shown in Table 1.
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4 Analysis of the EMPHACIS Data

We consider a dataset from a multicenter, randomized, single-blind, EMPHACIS lung 

cancer clinical trial (Evaluation of MTA in Mesothelioma in a Phase III Study with 

Cisplatin) (Vogelzang et al., 2003). The study drug was multi-targeted antifolate (MTA) 

pemetrexed given in combination with cisplatin (the PEM/Cis arm), and the active-treatment 

comparator was cisplatin alone (the Cis arm). The treatment for both arms was structured as 

six 21-day cycles of therapy; patients receiving treatment benefit could receive additional 

cycles based on investigator discretion. Malignant pleural mesothelioma is characterized by 

rapid disease progression, high symptom burden, and a relatively short median survival of 12 

months after diagnosis (Thompson et al., 2014). Accordingly, patient-reported assessments 

are important for evaluation of disease progression and patients’ response to therapy. In 

oncology, the patients’ importance ratings on the magnitude of progression-free survival 

improvement has been shown to depend on the severity of disease-related symptoms 

(Bridges et al., 2012). We analyzed the disease-specific patient-reported Lung Cancer 

Symptom Scales (LCSS) (Patricia et al., 2006) to evaluate the patient-level association of 

five of the six instrument items (i.e., anorexia, cough, dyspnea, fatigue, and pain) with 

progression-free survival using the EMPHACIS trial data. Progression free survival time 

(PFS) is defined as the time from randomization to the time until documented progression or 

death from any cause. We are interested in the association between post-baseline LCSS 

measurements and PFS. The main goal of applying joint models in this study is to assess the 

association of each longitudinal LCSS symptom with PFS and the treatment effects on each 

LCSS item and PFS simultaneously. More importantly, with the decomposition of DIC and 

LPML, the longitudinal LCSS symptoms can be compared in terms of their contribution to 

the fit of the PFS data as well as the gain in the fit of the longitudinal data for each LCSS 

symptom using the information from the PFS data can be determined.

Our study cohort consists of 425 patients with at least one post-baseline value of each 

longitudinal measure and seven binary covariates, including race (xi1 = 1 if white), gender 

(xi2 = 1 if male), age (xi3 = 1 if age ≥ 65), Karnofsky status (xi4 = 1 if Karnofsky status is 

high), baseline stage of disease (xi5 = 1 if stage I/II), vitamin supplementation (xi6 = 1 if full 

vitamin supplementation), and treatment assignment (xi7 = 1 if the ith patient is in the 

pemetrexed/cisplatin arm). Among the 425 patients, 394 patients experienced disease 

progression. Among these 394 patients, there were only 129 distinct disease progression 

times. In all the computations, we used zi = xi and standardized these five LCSS measures, 

where the means and standard deviations were 30.79 and 27.19, 11.48 and 17.93, 31.41 and 

26.33, 39.38 and 27.06, and 24.64 and 24.90 for anorexia, cough, dyspnea, fatigue, and pain, 

respectively. The total numbers of longitudinal measures (i.e., ) including the 

baseline measures were 5504, 5544, 5553, 5530, and 5546 for anorexia, cough, dyspnea, 

fatigue, and pain.

In (2.2), we assume a piecewise constant hazard function for λ0(t) defined as

(4.1)
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where 0 = s0 < s1 < s2 < . . . < sK−1 < sK = ∞ is a finite partition of the time axis. The sk's in 

(4.1) were constructed based on the percentiles such as the first (Q1), second (Q2), and third 

(Q3) quartiles of the PFS times. Let Danorexia, Dcough, Ddyspnea, Dfatigue, and Dpain denote the 

five observed LCSS longitudinal datasets and also let DSurv denote the observed PFS data. 

We fit the shared parameter model and the trajectory model with a linear trajectory, denoted 

by SPML and TML, respectively, to each pair of the PFS data and one of the five LCSS 

longitudinal outcomes corresponding to anorexia, cough, dyspnea, fatigue, and pain, namely, 

Danorexia + DSurv, Dcough + DSurv, Ddyspnea + DSurv, Dfatigue + DSurv, and Dpain + DSurv. The 

prior π(g=f) in (2.6) is specified in Appendix A of the supplementary material. For TML, we 

specify a N(0, 10000) prior distribution for α.

To construct the partition {sk, k = 0, 1, . . . , K}, we adopt the left bi-sectional quantile 

partition (LBSQP) method proposed in Zhang et al. (2015b). We use DICSurv, 0 and 

LPMLSurv, 0 to determine the number of intervals (K) in (4.1). We start with a large value of 

K, which is close to the number of distinct PFS times, and work down to a smaller value of 

K. For the EMPHACIS data, K = 100 should be sufficiently large given that there were only 

129 distinct PFS times. We determine an “optimal” value of K according to DICSurv, 0 and 

LPMLSurv, 0 by fitting the PFS data alone. Table S1 of the supplementary material shows the 

results for various values of K. From Table S1, we see that the respective values of 

DICSurv, 0 and LPMLSurv, 0 were 2070.61 and −1070.94 for K = 100; 2022.56 and −1012.62 

for K = 35; 2018.49 and −1010.07 for K = 30; 2026.85 and −1014.27 for K = 25; and 

2206.05 and −1103.10 for K = 2. Thus, the piecewise constant baseline hazard function with 

K = 30 fit the PFS data alone best according to both DICSurv, 0 and LPMLSurv, 0. We then fit 

each of the LCSS longitudinal and PFS data, Danorexia + DSurv, Dcough + DSurv, Ddyspnea + 

DSurv, Dfatigue + DSurv, and Dpain + DSurv, with the “best” value of K = 30 in fitting the PFS 

data alone along with K = 25 and K = 35. We used the Laplace approximation to construct a 

multivariate normal density for wi in computing LPML (MC), LPMLSurv|Long (MC), and 

ΔLPMLSurv (MC). Table 2 shows DIC, DICSurv|Long, ΔDICSurv, LPML, LPMLSurv|Long, and 

ΔLPMLSurv using the proposed MC method for each of the five PROs for K = 25, 30, and 35 

under SPML and TML, respectively. The values of pD and pD[Surv|Long] associated with DIC 

and DICSurv|Long are given in Table S2 of the supplemental material. Table S3 of the 

supplemental material shows LPML, LPMLSurv|Long, and ΔLPMLSurv using the AGQ 

approach. We see from Table 2 and Table S3 that LPML (MC), LPMLSurv|Long (MC), and 

ΔLPMLSurv (MC) are very close to LPML (GQ), LPMLSurv|Long (GQ), and ΔLPMLSurv 

(GQ). We also see from Table 2 that (a) according to DICSurv|Long and LPMLSurv|Long, the 

joint model with K = 30 fit the longitudinal and survival data better than those models with 

K = 25 and K = 35 under both SPML and TML; and (b) according to DIC and LPML, 

SPML fit Danorexia + DSurv, Ddyspnea + DSurv, Dfatigue + DSurv, and Dpain + DSurv better than 

TML except for Dcough + DSurv. Among the five PROs, pain had the largest values of 

ΔDICSurv and ΔLPMLSurv while cough had the smallest values of ΔDICSurv and ΔLPMLSurv 

under both SPML and TML. These results indicate that pain led to the most gain in fitting 

the PFS data while cough had the least contribution to the fit of the PFS data. We mention 

here that the overall DIC and LPML were not able to determine the contribution of the 

longitudinal data in fitting the survival data for these five LCSS longitudinal measures under 

the joint modeling framework. From Table 2, we observe that the smallest DICLong (or 
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largest LPMLLong) value was the main reason for dyspnea having the smallest DIC (largest 

LPML) value, which had no implication on the contribution of the LCSS data to the fit of 

the PFS data. In addition, DIC and LPML were not directly comparable among these five 

PROs since the total numbers of longitudinal measures were different.

Tables 3 and 4 show the posterior estimates and 95% highest posterior density (HPD) 

intervals of the hazard ratio (HR) of the overall treatment effect on PFS (β1) and the 

estimates (Est) of the regression coefficients α associated with the random effects under 

SPML and TML with K = 30, respectively. We observe that except for dyspnea under 

SPML, the HRs under the joint model (ranging from 0.614 to 0.634 under SPML and 

ranging from 0.608 to 0.636 under TML) were smaller than or close to the HR of 0.638 

when fitting the PFS data alone.

We used the overlapping batch statistics approach with a batch size of 2000 (Meketon and 

Schmeiser, 1984; and Chen et al., 2000, Section 3.3) to compute the Monte Carlo (MC) 

standard errors of DICSurv|Long, ΔDICSurv, LPMLSurv|Long, and ΔLPMLSurv under SPML 

and TML. The results are reported in Table 5. From this table, we see that (i) the MC 

standard errors ranged from 0.074 to 0.620 for all of DICSurv|Long, ΔDICSurv, 

LPMLSurv|Long, and ΔLPMLSurv, which were reasonably small compared to the magnitudes 

of their estimated values; and (ii) the MC standard errors of LPMLSurv|Long (GQ) and 

LPMLSurv|Long (MC), and ΔLPMLSurv (GQ) and ΔLPMLSurv (MC) were very close, which 

empirically confirmed that the proposed MC approach for estimating LPMLSurv|Long and 

ΔLPMLSurv were as accurate as the numerical approximation approach for computing these 

quantities. Table 6 shows the running times in minutes on an Intel i686 processor machine 

with 16 GB of RAM memory using a GNU/Linux operating system for computing 

ΔDICSurv, ΔLPMLSurv (GQ), and ΔLPMLSurv (MC) under SPML and TML with K = 30 

based on an Markov chain Monte Carlo (MCMC) sample size of 20,000. From Table 6, we 

see that (i) the running times for computing ΔLPMLSurv (MC) were similar to those for 

computing ΔDICSurv under SPML though ΔLPMLSurv (MC) required two MCMC samples; 

(ii) SPML required much less running time than TML; and (iii) ΔLPMLSurv (GQ) required 

the most running time.

Finally, we computed relevant quantities under the second decomposition of DIC and LPML 

given in Appendix B of the supplementary material to quantify the contribution of the PFS 

data to the fit of the longitudinal data. The results are shown in Table 7. As mentioned 

earlier, the total numbers of observations for these five symptoms were different, implying 

that ΔDICLong and ΔLPMLLong were not directly comparable for the EMPHACIS data. 

Therefore, we consider the relative ΔDICLong and ΔLPMLLong defined by

and
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From Table 7, we see that pain had the largest relative improvement in terms of both 

RΔDICLong and RΔLPMLLong (MC), which were 5.00 and 6.18 under SPML and 3.52 and 

4.83 under TML, and cough had the smallest relative improvement with RΔDICLong = 0.35 

and RΔLPMLLong = 1.46 (MC) under SPML and RΔDICLong = 0.57 and RΔLPMLLong = 

1.90 (MC) under TML. The values of RΔDICLong and RΔLPMLLong (MC) for anorexia, 

dyspnea, and fatigue, were 1.89 and 2.77, 1.89 and 3.04, and 2.91 and 3.89, respectively, 

under SPML; and 1.68 and 2.76, 1.09 and 2.33, and 2.26 and 3.43, respectively, under TML.

5 Discussion

In this paper, we have developed two versions of the DIC and CPO decomposition as well as 

two sets of new criteria in Section 2 (ΔDICSurv, ΔLPMLSurv) and in Appendix B (ΔDICLong, 

ΔLPMLLong). The decompositions, DIC = DICLong + DICSurv|Long and LPML = LPMLLong 

+ LPMLSurv|Long (Decomposition I), are most useful when our primary goal is to make 

inferences about the parameters in the survival component of the joint model while using the 

information from longitudinal data through the joint model. In practice, DICSurv|Long and 

LPMLSurv|Long can be used to select the survival component of the joint model and the main 

utility of ΔDICSurv and ΔLPMLSurv is to determine which longitudinal marker leads to the 

most gain in the fit of the survival data or which longitudinal marker is most highly 

associated with the survival outcome. The simulation study in Section 3 and the real data 

analysis in Section 4 empirically demonstrated that DICSurv|Long, LPMLSurv|Long, ΔDICSurv, 

and ΔLPMLSurv are quite effective and promising in selecting the survival component of the 

joint model and identifying the importance of longitudinal biomarkers in fitting the survival 

data. Decomposition II and the corresponding RΔDICLong and RΔLPMLLong criteria are 

useful when the main focus of a clinical trial is on the longitudinal markers and the primary 

goal is to make inferences about the parameters in the longitudinal component of the joint 

model while using the information from the survival data through the joint model. Similar to 

Decomposition I, DICLong|Surv and LPMLLong|Surv can be used to choose the longitudinal 

component of the joint model and RΔDICLong and RΔLPMLLong are useful to determine the 

gain in the fit of the longitudinal data while using the information from the survival data 

through the joint model.

In the AIC decomposition developed in Zhang et al. (2014), dim(φ1) and dim(φ2) were 

manually allocated to AICLong and AICSurv|Long, respectively, as the dimensions of the 

parameters. However, the parameters φ1 are also involved in computing AICSurv|Long. Thus, 

the appropriateness of these dimension allocations needs to be further validated. The DIC 

decomposition developed in this paper automatically calculates the dimensions of the 

parameters, pD[Long] and pD[Surv|Long], in DICLong and DICSurv|Long. The real data analysis 

in Section 4 and the results shown in Table S2 of the supplementary material empirically 

demonstrated that pD[Long] ≈ dim(φ1) and pD[Surv|Long] ≈ dim(φ2). Since the DIC 

approximates the AIC as discussed in Spiegelhalter et al. (2002) for Gaussian posteriors (or 
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very large samples), our empirical results based on the DIC decomposition confirm that the 

dimension allocations of the model parameters in the AIC decomposition are quite 

appropriate. Both the AIC decomposition and the DIC decomposition require the numerical 

approximation of an intractable integral ∫ f(yi, ti, θi|φ, δi, xi, zi)dθi in (2.4) for computing 

the joint distribution of yi and ti. The proposed LPML decomposition avoids the calculation 

of this integral. As demonstrated in both the simulation study and the real data analysis, 

LPMLSurv|Long and ΔLPMLSurv performed equally well as DICSurv|Long and ΔDICSurv in 

selecting the survival model and identifying the important longitudinal markers. In addition, 

as shown in Table 6, LPMLSurv|Long (MC) and ΔLPMLSurv (MC) require less computing 

time than LPMLSurv|Long (GQ) and ΔLPMLSurv (GQ). Thus, the LPML decomposition may 

be potentially more useful in practice.

In Section 2, we proposed two approaches (AGQ and MC) for computing CPO related 

criteria. As shown in Section 4, both approaches yielded almost identical results. However, 

the proposed MC method requires less computing time and is more applicable to models 

involving high-dimensional random effects than the AGQ approach. In Section 4, the 

LPMLSurv|Long's were calculated based on the CPO decomposition in (2.18) by taking φ* as 

the posterior mean of φ. We also calculated the LPMLSurv|Long's by taking φ* as the 

posterior median of φ. For the EMPHACIS Data, under SPML with K = 30, the 

LPMLSurv|Long's calculated based on the posterior medians were −998.95, −1008.13, 

−1000.64, −994.54, and −984.13 for anorexia, cough, dyspnea, fatigue, pain, respectively. 

These values are very close to those given in Table 2. Thus, LPMLSurv|Long is relatively 

robust to the choice of φ*.

Hanson et al. (2011) introduced the conditional CPO and LPML. Using our notation, the 

conditional CPO is defined as

where  is the joint posterior of (φ, θR) given DLong,oba and 

 with the survival data deleted for the ith subject. The conditional LPML in Hanson 

et al. (2011) is thus defined by

For the purpose of assessing the fit of the survival data,  and  do 

correspond to CPOi,Surv|Long and LPMLSurv|Long. However, they are not the same unless the 

longitudinal data are independent of the survival data. Although  and 

cannot be used to assess the overall fit of the joint model or to determine the gain in the fit of 

the longitudinal data while using the information from the survival data through the joint 

model, they are quite attractive due to computational simplicity if the primary goal is to 

make inferences about the parameters in the survival component. We defer to a future 
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project for further investigation of theoretical and empirical comparisons between 

 and LPMLSurv|Long.

Although the proposed Bayesian criteria are developed under the joint model in Section 2, 

they can be easily extended to models for other types of data such as longitudinal binary/

ordinal response or count data as well as other types of survival models such as cure rate 

models, nonproportional hazards models, and competing risks models discussed in Klein et 

al. (2013). Furthermore, the proposed MC method for computing CPO is applicable for a 

variety of Bayesian models involving random effects or latent variables. The potential 

applications of the proposed methodology to other types of longitudinal data such as multi-

dimensional longitudinal data and more complex survival data, such as survival data in the 

presence of competing risks and/or semi-competing risks, are currently under investigation.

In Sections 3 and 4, we carried out all computations using the FORTRAN 95 software with 

double precision and IMSL subroutines. The FORTRAN 95 code is available upon request. 

We are currently working on a user-friendly R interface of the FORTRAN code that has 

been developed for this paper so that it would be available to practitioners.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Boxplots of the ΔDICSurv differences and the ΔLPMLSurv differences between True and 

each of Long, SurvI, SurvII, TM, and Long&Surv.
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Table 1

Means of ΔDICSurv and ΔLPMLSurv and frequencies of ranking each model as best based on ΔDICSurv and 

ΔLPMLSurv

ΔDICSurv ΔLPMLSurv

Data Mean Frequency Mean Frequency

True 18.72 423 9.37 423

Long 10.67 27 5.35 28

SurvI 1.31 0 0.63 0

SurvII 10.54 19 5.23 22

TM 4.09 8 1.92 6

Long&Surv 10.59 23 5.30 21

J Comput Graph Stat. Author manuscript; available in PMC 2017 February 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 26

Table 2

The Decompositions of DIC and LPML for five PROs under SPML and TML with different K

K Model Anorexia Cough Dyspnea Fatigue Pain

25 SPML DIC 14022.37 14271.39 11920.73 13001.30 12843.70

DICSurv|Long 2004.52 2022.77 2007.75 1995.93 1975.15

ΔDICSurv 22.33 4.08 19.10 30.91 51.70

LPML −7015.02 −7145.62 −5965.58 −6504.33 −6428.93

LPMLSurv|Long −1003.19 −1012.15 −1004.82 −998.63 −988.28

ΔLPMLSurv 11.08 2.12 9.45 15.63 25.99

TML DIC 14024.40 14269.30 11927.25 13007.29 12858.02

DICSurv|Long 2006.64 2020.66 2015.58 2001.91 1990.13

ΔDICSurv 20.20 6.19 11.27 24.93 36.71

LPML −7016.13 −7144.96 −5968.82 −6507.33 −6436.08

LPMLSurv|Long −1004.31 −1011.09 −1008.75 −1001.89 −995.99

ΔLPMLSurv 9.96 3.17 5.51 12.38 18.27

30 SPML DIC 14014.67 14262.97 11911.96 12993.00 12835.64

DICSurv|Long 1996.62 2014.65 1999.37 1987.86 1967.00

ΔDICSurv 21.86 3.84 19.11 30.62 51.49

LPML −7011.19 −7141.36 −5960.94 −6500.14 −6424.85

LPMLSurv|Long −999.00 −1008.05 −1000.58 −994.65 −984.21

ΔLPMLSurv 11.07 2.02 9.48 15.41 25.86

TML DIC 14016.65 14260.43 11919.21 12999.26 12849.74

DICSurv|Long 1998.91 2012.10 2007.31 1994.24 1982.24

ΔDICSurv 19.58 6.39 11.18 24.25 36.24

LPML −7012.14 −7140.22 −5964.61 −6503.19 −6431.90

LPMLSurv|Long −1000.25 −1006.79 −1004.63 −997.96 −991.98

ΔLPMLSurv 9.82 3.28 5.44 12.11 18.09

35 SPML DIC 14018.84 14267.09 11914.40 12997.21 12839.63

DICSurv|Long 2000.43 2018.43 2002.76 1991.57 1970.54

ΔDICSurv 22.13 4.13 19.81 31.00 52.02

LPML −7013.76 −7143.93 −5962.76 −6502.81 −6427.37

LPMLSurv|Long −1001.53 −1010.42 −1002.91 −997.12 −986.54

ΔLPMLSurv 11.09 2.20 9.71 15.50 26.07

TML DIC 14019.89 14264.71 11923.25 13002.92 12853.22

DICSurv|Long 2002.30 2015.98 2011.28 1998.05 1986.04
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K Model Anorexia Cough Dyspnea Fatigue Pain

ΔDICSurv 20.27 6.58 11.28 24.52 36.52

LPML −7014.31 −7143.10 −5967.13 −6505.60 −6434.11

LPMLSurv|Long −1002.67 −1009.37 −1007.04 −1000.34 −994.39

ΔLPMLSurv 9.95 3.25 5.58 12.28 18.23
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Table 3

Parameter estimates under SPML with K = 30

β 1 α 1 α 2

PRO HR 95% HPD Int. Est 95% HPD Int. Est 95% HPD Int.

Anorexia 0.614 (0.495, 0.756) 0.365 (0.202, 0.530) 1.178 (0.449, 1.893)

Cough 0.634 (0.516, 0.777) 0.200 (0.060, 0.343) 0.608 (−0.060, 1.230)

Dyspnea 0.641 (0.522, 0.790) 0.203 (0.068, 0.343) 1.412 (0.770, 2.069)

Fatigue 0.620 (0.498, 0.765) 0.367 (0.205, 0.534) 1.437 (0.706, 2.176)

Pain 0.622 (0.502, 0.776) 0.349 (0.206, 0.489) 1.938 (1.354, 2.537)

When fitting the PFS data alone, the estimate and 95% HPD interval of exp(β1) are 0.638 and (0.526, 0.785).
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Table 4

Parameter estimates under TML with K = 30

β 1 α 

PRO HR 95% HPD Int. Est 95% HPD Int.

Anorexia 0.620 (0.501, 0.760) 0.320 (0.186, 0.455)

Cough 0.636 (0.520, 0.782) 0.192 (0.064, 0.318)

Dyspnea 0.631 (0.518, 0.776) 0.223 (0.098, 0.340)

Fatigue 0.620 (0.501, 0.759) 0.343 (0.215, 0.478)

Pain 0.608 (0.491, 0.751) 0.391 (0.273, 0.515)

J Comput Graph Stat. Author manuscript; available in PMC 2017 February 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 30

Table 5

MC Standard Errors of DICSurv|Long, ADICSurv, LPMLSurv|Long, and ΔLPMLSurv under SPML and TML with 

K = 30 based on an MC sample size of 20,000

Model Anorexia Cough Dyspnea Fatigue Pain

SPML DICSurv|Long 0.391 0.263 0.397 0.396 0.458

ΔDICSurv 0.530 0.444 0.535 0.534 0.581

LPMLSurv|Long (GQ) 0.248 0.246 0.200 0.196 0.225

LPMLSurv|Long (MC) 0.248 0.246 0.201 0.197 0.222

ΔLPMLSurv (GQ) 0.314 0.313 0.278 0.275 0.297

ΔLPMLSurv (MC) 0.314 0.313 0.279 0.275 0.294

TML DICSurv|Long 0.288 0.346 0.451 0.512 0.370

ΔDICSurv 0.460 0.498 0.576 0.624 0.515

LPMLSurv|Long (GQ) 0.104 0.125 0.114 0.073 0.074

LPMLSurv|Long (MC) 0.104 0.125 0.114 0.073 0.074

ΔLPMLSurv (GQ) 0.219 0.230 0.224 0.206 0.207

ΔLPMLSurv (MC) 0.219 0.230 0.224 0.206 0.207
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Table 6

Running Times in Minutes for Computing ΔDICSurv, ΔLPMLSurv (GQ), and ΔLPMLSurv (MC) under SPML 

and TML with K = 30 based on an MC sample size of 20,000

Model Anorexia Cough Dyspnea Fatigue Pain

SPML MCMC Sampling 6.0 5.9 5.8 6.3 5.9

ΔDICSurv 16.0 14.9 18.3 17.7 16.9

ΔLPMLSurv (GQ) 18.2 17.6 21.0 20.3 21.4

ΔLPMLSurv (MC) 17.6 16.0 18.5 17.9 18.5

TML MCMC Sampling 523.9 526.2 525.7 521.9 516.6

ΔDICSurv 1142.7 1070.9 1195.1 1153.4 1245.6

ΔLPMLSurv (GQ) 1681.2 1711.8 1704.2 1718.3 1665.4

ΔLPMLSurv (MC) 1488.4 1494.2 1397.0 1486.3 1373.8
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Table 7

Decomposition II of DICs and LPMLs under SPML and TML with K = 30

Model Anorexia Cough Dyspnea Fatigue Pain

Long alone DICLong,alone 12017.52 12248.60 9911.66 11005.02 10867.34

LPMLLong,alone −6011.72 −6133.68 −4959.88 −5505.25 −5439.62

SPML DICSurv 2019.87 2018.65 2019.26 2019.99 2022.59

(pD[Surv]) 37.28 37.32 36.94 37.06 36.42

DICLong|Surv 11994.80 12244.31 9892.94 10973.01 10813.05

(pD[Long|Surv]) 15.17 14.95 15.70 15.10 15.94

ΔDICLong 22.72 4.28 18.73 32.00 54.29

RΔDICLong 1.89 0.35 1.89 2.91 5.00

LPMLLong|Surv (GQ) −5995.08 −6124.71 −4944.80 −5483.84 −5405.97

LPMLLong|Surv (MC) −5995.08 −6124.70 −4944.78 −5483.83 −5406.03

ΔLPMLLong (GQ) 16.64 8.97 15.08 21.41 33.65

ΔLPMLLong (MC) 16.64 8.98 15.09 21.42 33.59

RΔLPMLLong (GQ) 2.77 1.46 3.04 3.89 6.19

RΔLPMLLong (MC) 2.77 1.46 3.04 3.89 6.18

TML DICSurv 2019.31 2018.87 2018.34 2019.08 2020.69

(pD[Surv]) 37.29 37.20 37.28 37.26 36.89

DICLong|Surv 11997.34 12241.56 9900.87 10980.18 10829.05

(pD[Long|Surv]) 14.15 14.12 14.03 14.12 14.53

ΔDICLong 20.18 7.04 10.79 24.84 38.29

RΔDICLong 1.68 0.57 1.09 2.26 3.52

LPMLLong|Surv (GQ) −5995.20 −6122.07 −4948.57 −5486.61 −5413.59

LPMLLong|Surv (MC) −5995.11 −6122.04 −4948.30 −5486.38 −5413.33

ΔLPMLLong (GQ) 16.51 11.61 11.30 18.64 26.03

ΔLPMLLong (MC) 16.60 11.64 11.58 18.87 26.29

RΔLPMLLong (GQ) 2.75 1.89 2.28 3.39 4.78

RΔLPMLLong (MC) 2.76 1.90 2.33 3.43 4.83
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