Skip to main content
. Author manuscript; available in PMC: 2017 Oct 1.
Published in final edited form as: Methods Ecol Evol. 2016 Apr 28;7(10):1182–1194. doi: 10.1111/2041-210X.12561

Table 1.

Vital rate parameters used to parameterize the density-independent integral projection model. logit specifies a logistic link, x is log zoospore load, and T is temperature.

Description Functional Form Parameters Details of Parameterizatio
Infected survival function,
s(x)
logit[s(x)] = b0,0 + b1,0x b0,0 = 11.824
b1,0 = −0.8605
Logistic Regression
Uninfected survival prob-
ability, s0
Constant s0 = 1 Briggs et al. 2005
Growth function, G (x′, x) μ(x, T) = b0,1 + b1,1x +
b2,1T
σ2 (x) = ν0,1 exp (2c0,1x)
b0,1 = 0.012
b1,1 = 0.799
b2,1 = 0.092
ν0,1 = 5.92
c0,1 = −0.049
Generalized Least Squares
Loss of infection function,
l(x)
logit[l(x, T)] = b0,2 +
b1,2x + b2,2T
b0,2 = 1.213
b1,2 = −0.472
b2,2 = −0.151
Logistic Regression
Initial infection burden
function, G0(x′)
μ(T) = b0,3 + b1,3T
σ2(T) = ν0,3 exp(2c0,3T)
b0,3 = 0.642
b1,3 = 0.137
ν0,3 = 0.59
c0,3 = 0.063
Generalized Least Squares
Transmission function, ϕ logit[ϕ(T)] = b0,4 + b1,4T b0,4 = −1.66
b1,4 = 0.102
Logistic Regression