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Abstract

Background—Associating a patient’s profile with the memories of prototypical patients built 

through previous repeat clinical experience is a key process in clinical judgment. We hypothesized 

that a similar process using a cognitive computing tool would be well suited for learning and 

recalling multidimensional attributes of speckle tracking echocardiography (STE) data sets derived 

from patients with known constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM).

Methods and Results—Clinical and echocardiographic data of 50 patients with CP and 44 

with RCM were used for developing an associative memory classifier (AMC) based machine 

learning algorithm. The STE data was normalized in reference to 47 controls with no structural 

heart disease, and the diagnostic area under the receiver operating characteristic curve (AUC) of 

the AMC was evaluated for differentiating CP from RCM. Using only STE variables, AMC 

achieved a diagnostic AUC of 89·2%, which improved to 96·2% with addition of 4 

echocardiographic variables. In comparison, the AUC of early diastolic mitral annular velocity and 

left ventricular longitudinal strain were 82.1% and 63·7%, respectively. Furthermore, AMC 

demonstrated greater accuracy and shorter learning curves than other machine learning approaches 

with accuracy asymptotically approaching 90% after a training fraction of 0·3 and remaining flat 

at higher training fractions.

Conclusions—This study demonstrates feasibility of a cognitive machine learning approach for 

learning and recalling patterns observed during echocardiographic evaluations. Incorporation of 

machine learning algorithms in cardiac imaging may aid standardized assessments and support the 

quality of interpretations, particularly for novice readers with limited experience.

Keywords

pericardial disease; cardiomyopathy; cardiovascular imaging; speckle tracking echocardiography; 
database; machine learning; cognitive tools

Echocardiography is the most widely used cardiac imaging modality and is indispensable in 

the management of most patients with a suspected or known cardiac illness. However, 

echocardiography is highly operator dependent, and requires considerable expertise.1–4 This 

is especially relevant in the contemporary clinical environments that demand higher 

precision in diagnosis while the required high-level diagnostic expertise remains in short 

supply. Automated techniques using novel machine learning approaches may potentially 

help transforming the interpretation process and render clinical imaging much smarter, 

efficient and cost effective.

The new generation of so called “Big Data” machine learning techniques has potential 

applications for non-parametric analysis of cardiac imaging data during routine clinical 

assessments. However, using traditional statistical model-based or logic/rule-based tools5–7 
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would differ from the working of the human brain, which draws relevant inferences by 

recognizing patterns stored in memories built through previous and repeated experiences in 

assessing cardiac structure and function.8 Associative memory can be thought of as 

conceptually similar to “clinical judgment” in the medical setting, where the brain of a 

trained doctor intuitively attempts to ‘connect the dots’ in search for the ‘best fit’ or 

‘associations’ for understanding a pattern of medical abnormality. Associative memory-

based ‘brain-like’ machine learning algorithms have been recently applied successfully in 

the operational risk intelligence areas of national security and defense, however, their 

application in clinical medicine or cardiac imaging has not been hitherto reported.9

In this investigation we hypothesized that a cognitive machine learning approach would be 

well suited for integrating clinical and echocardiographic data for differentiating complex 

patterns of cardiac structural and functional abnormalities in different cardiac 

pathologies.10–12 This may be particularly relevant for integrating novel echocardiographic 

techniques like speckle tracking echocardiography (STE) or features tracking of cardiac 

magnetic resonance images where a large volume of the spatially and temporally diverse 

data are generated and clinical interpretations currently are time-constrained by graph-based 

assessments of spatially averaged functional data over a cardiac cycle.13 We utilized 

constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM) as an initial clinical 

model to test the feasibility and effectiveness of employing an associative memory-based 

machine learning approach for differentiating the disparate patterns of cardiac tissue motion 

abnormalities.

METHODS

We analyzed the echocardiography data of patients pooled from two previously described 

databases10, 14, with a total of 54 patients with CP and 49 patients with RCM. Appropriate 

institutional review board approval was previously obtained for each database 10, 14. Four 

patients with CP and five patients with RCM were excluded due to errors in tracking the 

stored echocardiography images. Thus, 94 patients [50 with CP, mean age 57·8±13·4 years, 

32 (64·0%) males; 44 with RCM, mean age 64·0±11·8 years, 30 (68·2%) males] were 

included in this investigation. The etiology and the diagnostic criteria for CP and RCM is 

presented in Table 1.10, 14 Briefly, these patients had presented with heart failure with 

preserved left ventricular (LV) ejection fraction and the initial echocardiogram had 

suggested a possibility of CP or RCM. CP was surgically confirmed at pericardiectomy in 41 

(82%) cases. In the remaining 9 patients who did not undergo pericardiectomy the diagnosis 

of CP was confirmed by multimodality imaging (echo and CT or CMR) and cardiac 

catheterization. CP in the later cases was diagnosed by the presence of at least one of the 

following four additional criteria: (1) cardiac catheterization findings consistent with CP; (2) 

evidence of thickened pericardium (thickness >4 mm by CMR); or (3) evidence of increased 

LV-right ventricular (RV) coupling (septal shift with respiration) by both echocardiography 

and CMR. The catheterization criteria included presence of ≥2 of the following: (1) a 

difference between LV end-diastolic pressure and RV end-diastolic pressure of ≤5 mm Hg; 

(2) pulmonary arterial systolic pressure <55 mm Hg; (3) a ratio of RV end-diastolic pressure 

to RV systolic pressure of >1/3; (4) inspiratory decrease in pulmonary capillary wedge 

pressure/LV end-diastolic pressure difference of >5 mm Hg; and (5) the ratio of the right 
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ventricular to left ventricular systolic pressure-time area during inspiration versus expiration 

(systolic area index) >1·1.10, 14 Restrictive cardiomyopathy was defined as myocardial 

disease that was characterized by restrictive physiology demonstrated by Doppler transmitral 

diastolic flow velocity, reduced diastolic LV volumes, and preserved LV ejection fraction. 

The underlying etiology of RCM was biopsy proven in 33 (75%) and based upon delayed 

enhanced CMR demonstration of cardiac infiltrative disease in 11 (25%) cases. Biopsy 

confirmed cardiac amyloidosis in 26 (59%) and was consistent with idiopathic RCM in 

remaining 7 (16%) patients.

Study Parameters

For the purpose of the present study, clinical parameters and conventional echocardiographic 

and STE data were collected for all of the patients (Table 2). STE was performed offline 

using the vendor-customized two-dimensional Cardiac Performance Analysis software for 

echocardiography (2D-CPA, version 1·1·3, TomTec Imaging Systems GmbH, 

Unterschleissheim, Germany). Gray scale images, obtained from the apical four chamber 

and the mid-ventricular short-axis views and stored at a frame rate of 25–40 frames/sec, 

were used for this purpose. A total of 20 measurements (including velocity, displacement, 

area, strain, and strain rate) were derived from these two views.

Associative memory machine learning algorithm

The development of an associative memory-based machine learning algorithm was a multi-

step process. The algorithm was implemented and executed using Classification Application 

Programming Interface in Saffron’s Natural Intelligence Platform, version 10·0·0, a 

commercially available cognitive software solution (Saffron Technology, NC).

STE data normalization and binning—STE measurements were performed by a single 

individual and the STE data was stored in text and excel files. During image analysis, the 

STE software measures each parameter at multiple spatial locations within the myocardium, 

and at multiple time-points within the cardiac cycle (Supplemental Figure 1). To allow for 

proper comparisons, the data was transformed using spatial and temporal normalization 

techniques.15 For temporal normalization, the entire cardiac cycle was divided into 20 time 

intervals (t1 – t20), each corresponding to a 5% increment. All measurements for a specific 

STE variable were then binned into these intervals using interpolation of a spline function. 

The myocardial 4-chamber or short-axis views were further divided into six segments (s1–

s6) and measurements were obtained for locations within each myocardial segment. AMC 

can handle multiple data types and integrate with approaches like (autoregressive integrated 

moving average) for analyzing real-time, time series data streams. For the present study 

quintiles of the raw data from the echo images were used and thresholding-based 

categorization used to improve the speed and scalability. Thus all continuous data were 

categorized or binned into quintiles (Figure 1). For quintile binning, we used a comparison 

cohort of 47 control subjects (54±14 years, 29 males) with no structural heart disease from 

the previously described databases.10, 14 Break points of quintile binning were produced for 

each variable to categorize continuous values in one of the five bins numbered from 1 to 5, 

where bin-1 represents the lowest value and bin-5 the highest. The process of data 

normalization and discretization yielded approximately 1800 STE data points for each 
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patient as compared to roughly 20000 variables available originally (for further details, 
please refer to ‘Data Discretization’ sections in Supplemental Methods).

Variable Selection—From the available 1800 STE data points and 17 clinical and 

conventional echocardiographic variables for each patient, those with the highest predictive 

accuracy were selected for inclusion in the associative memory algorithm. For this purpose, 

we used the wrapper method for feature reduction and prioritization16, which relies on a 

machine learning approach to assess the usefulness of subsets of variables. AMC was used 

as the wrapper in this study. All variables were ranked according to their L1-distance value, 

which estimates the discriminatory ability of a single variable by measuring the non-

overlapping area between the two resultant probability distributions for the two outcomes (in 

this case, CP and RCM) (for formal definition and properties of L1-distance, please see ‘L1-
distance’ section in Supplemental Methods). The variables were arranged in the descending 

order of their L1-distance ranks and the best-ranked variables were then entered one-by-one 

into the set of selected variables to determine the gain in diagnostic accuracy with each 

addition. Variable selection was assumed to be complete when there was no further increase 

in the accuracy with the addition of more variables. The accuracy at each step of variable 

selection was assessed by constructing receiver operating characteristic (ROC) curves and 

computing the area under the curve (AUC).17 By default, the accuracy was averaged over 

rounds of cross-validation tests with random splits, typically at 50/50 or 90/10 ratio, between 

training and test data. This process yielded a final subset that contained the top four 

conventional echocardiographic variables (end-diastolic septal and posterior wall thickness, 

e′ and the ratio of mitral E to e′) and the top 15 STE variables (Table 3). We also tested the 

validity of the analysis by performing a more conservative 50–50 hold out validation in 

which randomly held out 50% of the patients from each class to reduce the total number of 

patients to 44 with 22 CP and 22 RCM patients respectively (for further details, please refer 
to the ‘Variable Selection’, ‘Accuracy Assessment’ sections in Supplemental Methods).

Associative Memory Classifier—AMC is a cognitive computing machine learning 

algorithmic approach used for making predictions based on sets of matrices, called 

associative memories, developed by observing co-occurrences of predictors under 

outcomes.9 Outcomes are the conditions that the AMC is being trained to predict.

To classify CP and RCM, AMC constructed two classes of matrices: a CP matrix and an 

RCM matrix. During the training phase, variables of each patient in the training set were 

transformed into a set of predictors. AMC observed the co-occurrence of the different 

predictors in the corresponding class matrix and counted the number of times any two 

predictors were observed together in the training data for the class. Predictors were paired to 

form the associations and matched against the two classes of matrices. The ratio between the 

numbers of matches between the two classes of matrices provided the likelihood of 

prediction for one class over the other (Figure 2) (for formal treatment of algorithm and 
scoring of AMC, please see the ‘Associative Memory Classifier’ section in Supplemental 

Methods). The bin numbers were treated like integers and could be organized in sorted order 

under the variable such as A:1, A:2, B:1, B2, C:1, C:2, and C:3 (Figure 2). If a test patient 

happened to have a variable instance, say A:3, which had not been observed in the training 
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dataset, a windowing function was applied with a radius centered around A:3 to find 

matches. If the radius was equal to one, A:2 would be matched with much less weight 

comparing to a direct match of A:3 (weight=1.0). The weight was computed by a window 

function (e−αd2
), decreasing sharply with the increase of distance (d) to the center and the 

weight becomes zero when the distance is larger than the radius. This windowing function 

allowed recognition of the individual quintiles treated along an ordinal scale.

Comparative assessment using general machine learning algorithms

To evaluate classification performance and generalizability of the selection, we also 

evaluated diagnostic accuracies of four other machine learning algorithms. Specific R 

packages (‘randomForest’ for Random Forest, ‘class’ for k-Nearest Neighbor, ‘e1071’ for 

Support Vector Machine) were used for this purpose. Learning curves for all the different 

machine learning algorithms, including AMC, were constructed by plotting respective 

diagnostic accuracies at different training fractions and were compared with each other.

Statistical analysis

The clinical and echocardiographic data were managed on Microsoft Excel spreadsheet 

(version 2007, Microsoft Corp, Seattle, Washington) and analyzed using SPSS for Windows 

(Release 15·0, IBM, Armonk, NY, USA). All values were expressed as mean (±standard 

deviation) or as percentages. The comparisons between CP and RCM groups were 

performed using the chi-square test for categorical variables and Student’s independent 

sample t-test for continuous variables. As outlined above, the diagnostic accuracies of the 

different classifiers were assessed by constructing ROC curves under 10-fold cross-

validation tests and using different bootstrap samples.18 AUCs were calculated for each 

classifier approach and used as the basis of comparison (pROC package for R).19 A p-value 

<0·05 was considered statistically significant.

The sponsor of the study had no role in study design, data collection or data interpretation. 

The primary author had full access to all the data, had final responsibility for the decision to 

submit for publication and is guarantor.

RESULTS

Clinical and conventional echocardiography variables in the two groups are presented in 

Table 2. Although the RCM patients were older (64.0±11·8 years vs 57·8±13·4 years, P = 

0·018), there were no other significant differences between the two groups in the clinical 

parameters.

The basic echocardiographic parameters in the two groups were consistent with their 

respective hemodynamic profiles. As compared to the patients with CP, those with RCM had 

greater LV wall thickness (septum 8·8±1·6 mm vs 13·4±2·7 mm, P <0·0001; posterior wall 

9·0±1·7 mm vs 13·6±2·56 mm, P <0·0001), reduced medial mitral e′ velocity (11·1±4·5 

cm/s vs. 5·02±1·6 cm/s, P <0·0001) and significantly elevated mitral E/e′ ratios (10±7·5 vs 

19·9±8·5, P <0·0001).
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On STE, RCM patients had reduced average longitudinal strain (−12·1±4·44% vs 

−14·2±5·47, P 0·047) as compared to those with CP. The radial and circumferential strain 

values, however, were not different between the two groups.

Classification accuracy of AMC

Under 10-fold cross-validation tests, AMC achieved an average AUC of 89·2% using the top 

15 STE variables (Figure 3). In comparison, the AUC of e′ was 82·1%, and that of 

longitudinal strain was 63·7% (Figure 3, p<0.0001 for both). Four echocardiographic 

variables (e′, E/e′, septal and posterior wall thickness) had an AUC of 94.2%, and on 

combining with the top 15 STE variables, the AUC of the resultant AMC increased 

marginally from 94·2% to 96·2% (Table 4). The incremental diagnostic value of AMC using 

top 15 STE variables over e′ and 4 combined echocardiography variables (e′, E/e′, septal 

and posterior wall thickness) was also confirmed using a more conservative holdout 

validation testing (Table 5).

Learning curve of AMC

On plotting the prediction accuracies achieved with increasing sizes of training data, 

significant differences were noted in learning curves for different machine learning 

approaches (Figure 4A, 4B). Among all machine learning algorithms evaluated, AMC 

performed the best [averaged classification accuracy (ACC) 93·7%, AUC 96·2%], with 

Random Forest (ACC 88·3%, AUC 94·2%) and Support Vector Machines (ACC 87·4%, 

AUC 92·2%) ranking second and third, respectively. For AMC, the accuracy at a high 

training fraction was relatively flat and asymptotically approached 90% after a training 

fraction of 0·3. This indicated that at least 30 trials were needed for AMC to be sufficiently 

trained, but only small gains occurred with more data (Figure 4A). However, at all training 

fractions, the diagnostic accuracy of AMC remained superior as compared to the other 

machine learning algorithms [all p-values <0·05 (−log10 p-value >1·3)] (Figure 4B). This 

remained true asymptotically as the differences became smaller with increasing training 

fractions. Random Forest showed the second best performance and the p-values for its 

comparison with AMC are listed in Table 6.

DISCUSSION

To the best of our knowledge, this is the first report describing the development and 

validation of a cognitive computing machine learning approach for interpreting large, high-

dimensional data from cardiac imaging. The entire clinical, echocardiography and STE data 

with ≈2000 motion and deformation features obtained from a single patient were used to 

train and develop an associative memory-based algorithm. Total 15 STE and the 4 echo 

variables were automatically selected by the AMC. The addition of 15 STE to 4 echo 

variables (e′, E/e′, septal and posterior LV wall thickness) showed incremental diagnostic 

value in distinguishing CP from RCM. The approach presented here does not contest the 

value of traditional imaging and interpretation; however, illustrates a technique for 

automation and acceleration of diagnostic decisions. The application of machine-learning 

algorithms to automated STE could enable development of real-time decision support 

system for differentiating disease phenotype directly from just grey scale 2D echo images. 
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Further addition of parameters (like tissue Doppler, clinical variables or manual extracted 

data-points) could help enrich the diagnostic yield. The ability to handle large volumes of 

data using this approach and ability to integrate it with clinical echo variables is an unmet 

need and has a potential for standardizing and improving workflow in busy 

echocardiography labs.

The need for machine-based automation

Cardiac imaging techniques like two-dimensional echocardiography generate several 

thousand data points during each examination and these numbers are likely to grow further 

with advent of multidimensional cardiac imaging techniques like STE. However, it is 

difficult for clinicians to fully assimilate and interpret such large and complex data sets, and 

therefore, only a fraction of the available potentially useful information is fully utilized for 

diagnostic interpretations and clinical decision making. Interestingly, recent standardization 

efforts20 have made surprising revelation that STE derived measurements are more 

reproducible than conventional 2D and Doppler measurements. Furthermore, automated 

approaches in STE have been recently developed and shown to improve efficiency and 

reduce inter- and intra-observer variability21. While echo-Doppler measurements are pivotal 

for differentiating CP from RCM, the clinical validity of some of the older variables have 

been challenged. For example, a recent study of 130 surgically confirmed CP from Mayo 

Clinic showed little diagnostic value of respiratory variations in mitral inflow E velocity for 

differentiate CP from RCM22. Investigators have recently described unique patterns of 

speckle tracking derived abnormalities in CP14, 23, 24. Since complex pattern recognition in 

big data is better performed using machine approaches, a potential solution to meet this 

challenge is to develop computer-based cognitive tools for automated analysis. Such 

cognitive computing tools have been successfully applied in various fields including national 

security, defense, and manufacturing and are beginning to be employed in medical 

field.9, 25–29 However, their feasibility and effectiveness in automated analysis and 

interpretation of echocardiography images have not been explored previously.

To meet this objective, we compared various machine learning approaches, including a 

cognitive computing approach, to the problem of differentiating CP and RCM. Although 

rare, the differentiation of RCM and CP is perhaps one of the most challenging and complex 

echocardiographic conundrums, because of the inherent similarities in the clinical and 

echocardiographic profiles of these two diseases.1

In our study, using a set of selected STE variables, the AMC achieved AUC of 89·2%. This 

result was superior to the performance of commonly used echocardiographic variables such 

as early diastolic mitral annular longitudinal velocity and global longitudinal strain for 

differentiating CP from RCM. The observed diagnostic values on 10-fold cross validation 

was higher than holdout validation. This is expected since holdout sets (different splits) 

result in smaller training samples with heterogeneous results. Additionally, depending on the 

size of available data, one can underestimate of the generalization capability. On the other 

hand, 10-fold cross validation allows a better use of the available dataset to obtain a better 

aggregate measure of classification accuracy.
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The AMC algorithm was able to automatically use multiple data points, learning to filter, 

store and then recall those predictors that had the highest yield in differentiating the two 

conditions. Interestingly, two other machine learning algorithms- Random Forest and 

Support Vector Machines- also achieved similar high level of performance (AUC >90%) 

under the same variable selection but differed in the extent of training required. These results 

indicate that machine learning algorithms can perform well for the diagnosis of cardiac 

pathologies, and the reliability of diagnosis can be increased with an ensemble of 

algorithms.

The choice of machine learning approach

Learning curves are an important consideration in the choice of a machine learning 

algorithm, as the amount of data required for each algorithm would vary accordingly. For 

rare diseases, data is often scarce and therefore it would be important to ascertain whether an 

algorithm could be as effective with less data. In this regard AMC not only had much higher 

accuracy, it had a shorter learning curve as well.

Given the same variable subset, differences in classification accuracy likely resulted from 

how the variables were modeled by the different machine learning algorithms. By default, 

most algorithms follow the logic of decision-tree based approaches and use a linear 

combination of the predictors to model the training data. In contrast, AMC relies on 

recognizing patterns by observing pair-wise as well as triangular associations of variables to 

make diagnostic predictions. In this manner, the functioning of AMC is analogous to aspects 

of human cognition. Our minds do not incorporate the slow, sequential, logical ways of 

thinking that has been a characteristic of earlier algorithms. Instead, our thinking is fast and 

mostly based on our memory of learned associations built through repeated previous 

experiences. Using statistical modeling, AMC explores data sets to discover the most 

predictive candidate variables and the relationships between these variables to address a 

complex-use case question. The hypothesis-free data representation, a key characteristic of 

AMC, helps accelerate the identification of the most relevant connections between variables. 

This ability to recognize the unknown nonlinear entity relationships is perhaps the most 

valuable feature of a cognitive computing approach such as AMC.

Limitations and Future Directions

First, the selection and ranking of variables and selection are data- and algorithm-dependent. 

Thus, the variables selected by our algorithm should be viewed as one of the many possible 

selections and not the only possible selection. Interestingly, however, the currently selected 

STE variables were seen to cluster at early systole or end-systole, which is consistent with 

previous description of pre-ejection and end-ejection variables for differentiating CP from 

RCM.10, 30 Although STE had incremental value over conventional echocardiography 

variables like e′, the diagnostic gain was marginal when STE parameters were added to 4 

echocardiographic variables for differentiating CP from RCM. Despite these limitations, the 

study illustrated the superiority of machine learning techniques to analyze STE data. The 

traditional STE analysis yielded differences in Longitudinal strain with AUC of 63.7%. 

There were no differences in radial and circumferential strain. Whereas, AUC of AMC for 

integrating the STE data using 15 variables was 89.2%. The ability to automate and handle 
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large volumes of data using this approach and ability to integrate it with clinical echo 

variables is an unmet need and has a potential for imparting automation during reporting. 

The incremental value of machine-learning algorithm for STE in other disease states 

requires systematic exploration. Secondly, although our sample size can be considered 

modest because of the rarity of the disease1, given the large number of available STE 

variables, the analysis may be susceptible to over-fitting. This approach for high 

dimensionality (several variables tested) for small sample size (<100 patients) mirrors 

microarray-related studies that often involve a very large number of genes (100–1000 

variables) for small sample size 31, 32. Interestingly a previous method paper showed that 

such morphophenotypic classifications could be achieved with 10–20 training samples with 

“reasonably accurate” extrapolation requiring only 30–40 training samples in studies that 

have small sample size data 32. Moreover, we applied a combination of techniques such as 

cross-validation, bootstrapping, plotting learning curves, and favoring the selection with 

fewer variables to detect and prevent such over-fitting. The data showed consistency using 

both 10-fold cross-validation and the 50–50 hold out analysis, with k-fold validation 

providing higher accuracy numbers because of the larger training data set. Our learning 

curves illustrated that the accuracies from rounds of bootstraps were asymptotically stable 

under different algorithms as more training data were made available, indicating that the 

prediction for selected variables was likely well generalized. The technique to use learning 

curve post-hoc to understand the stability of classification accuracy provides additional 

validity where the sample size is small 33. Finally, it should be noted that for various 

machine-learning algorithms other than AMC, we used the default settings of the relevant 

software packages as listed above. Hence, the relative performance of these different 

machine-learning algorithms demonstrated in our study is applicable only to those settings 

and should not be generalized beyond the conditions tested. The performance also may vary 

for the etiologies of CP and RCM which was not separately assessed due to the small sample 

size in the subgroups. The direct head-to-head comparison of AMC with good clinical 

judgement or expert echo interpretation was not attempted and would require further 

investigation. It would be important to recognize that the machine learning algorithms do not 

contest the value of ‘traditional parameters’ and manual analysis; however, provides 

oppurtunities for automation and acceleration of diagnostic decisions. For example, we have 

shown that acquisition of STE can be automated and data can be extracted automatically 

within ‘8-seconds’ with ‘zero’ intra-observer and ‘inter-observer’ variability 34. Acceleration 

and automation may represent the logical next steps in the presence complex high-

dimensional data in echocardiography and requires systematic investigations in the future.

CONCLUSIONS

This investigation used a complex chronic disease model of CP and RCM for demonstrating 

the feasibility and effectiveness of a cognitive computing machine learning approach for 

automated interpretations of STE data. Incorporation of a cognitive computing machine 

learning algorithm in cardiac imaging may aid standardized assessments and support the 

quality of interpretations, particularly for novice readers with limited experience.
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Clinical Perspective

The currently available cardiac imaging techniques have the capabilities to generate vast 

amount of cardiac structural and functional data during routine cardiac imaging. 

However, due to the inability of a clinician to fully assimilate and interpret such large and 

complex data sets, only a fraction of the available potentially useful information is fully 

utilized for diagnostic interpretations and clinical decision making. A potential solution 

to meet this challenge is to develop computer-based cognitive tools for automated 

analysis of big functional data sets. Although such cognitive computing tools have been 

successfully applied in various fields, their application in the medical field has been very 

limited with no previous study describing their feasibility and effectiveness in analysis 

and interpretation of echocardiography images. We investigated the feasibility and 

diagnostic accuracy of an associative memory-based machine-learning algorithm in 

automated analysis and interpretation of speckle tracking echocardiography data sets 

derived from patients with constrictive pericarditis and restrictive cardiomyopathy. The 

associative memory classifier showed a short learning curve achieving over 90% of 

asymptotic accuracy with only 30% of the data trained, and achieved a diagnostic area 

under the curve of 89.2%, which was superior to that of conventional echocardiographic 

variables like early diastolic mitral annular velocity and longitudinal strain (82.1% and.

63.7% respectively) used for differentiating the two conditions. These findings suggest 

that incorporation of an automated cognitive machine learning algorithm in cardiac 

imaging is feasible and may aid standardized assessments and support the quality of 

interpretations, particularly for novice readers with limited experience.

Sengupta et al. Page 14

Circ Cardiovasc Imaging. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Data normalization for speckle tracking echocardiography based data. Each measurement 

was subjected first to temporal normalization followed by spatial normalization. All 

normalized variables were then binned in to quintiles based on similar data derived from 

normal subjects.

CP, constrictive pericarditis; LV, left ventricular; RCM, restrictive cardiomyopathy; STE, 

speckle tracking echocardiography
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Figure 2. 
Classification training and testing of associative memories. The figure illustrates the concept 

of training data of four patients with variables A, B, and C (Patient 1 and 2 represent 

examples of CP patients and, patients 3 and 4 are examples of RCM). The patient 1 (CP) has 

there variables (A, B, C) where their magnitude is falling into respective quintiles 1, 2, 3 and 

hence the labels A: 1, B: 2 and C: 3. The fully connected associations are displayed in the 

CP matrix: (A:1, A:1), (A:1, B:2), (B:2, A:1), (B:2, B:2), (A:1, C:3), (C:3, A1), (C:3, C:3), 

(B:2, C:3), and (C:3, B2) with co-occurrence count 1. The same process when next repeated 

for patient-2, one observes that the co-occurrence count (C:3, C:3) became 2 in matrix CP 

because C:3 was shared by patient 1 and 2. This process was repeated for all CP patients to 

develop a memory of associations and co-occurrences that represent CP in the training 

phase. Similarly, matrix RCM was trained using Patient 3 and 4. During the testing phase an 

unknown patient (patient 5) is shown with variable A:1, B:2, and C:2. This unknown 

association was matched against the memory of two trained classes of matrices CP and 

RCM. The ratio between the numbers of matches (highlighted cells) between the two classes 

of matrices provided the likelihood of prediction of the unknown patient as CP or RCM.

CP, constrictive pericarditis; RCM, restrictive cardiomyopathy
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Figure 3. 
Diagnostic accuracy of different variables assessed using receiver operating characteristics 

curves under 10-fold cross-validation tests. (A) medial mitral annular early diastolic 

velocity, (B) average left ventricular longitudinal strain, derived from the apical four-

chamber view, (C) top 15 speckle tracking echocardiography variables as included in the 

associative memory classifier, and (D) all the above three compared together.

AMC, associative memory classifier; AUC, area-under-the-curve; e′, medial mitral annular 

early diastolic velocity; STE, speckle tracking echocardiography
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Figure 4. 
(A) Learning curves for various machine learning algorithms using the top four clinical and 

conventional echocardiographic variables and the top 15 speckle tracking echocardiography 

variables; (B) Log10 (p-value) for differences in the area-under-the-curve for associative 

memory classifier and each of the other four machine learning algorithms.

AMC, associative memory classifier; kNN, k-Nearest Neighbor; NN, Neural Networks; RF, 

Random Forests; SVM, Support Vector Machines.
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Table 1

Diagnostic criteria and etiology of constrictive pericarditis and restrictive cardiomyopathy

Constrictive Pericarditis

Final Diagnostic Criteria Surgical pericardiectomy 41 (82%)

Multimodality (CT/CMR, Catheterization) 9 (18%)

Etiology Idiopathic 20 (40%)

Previous Cardiac Surgery 11 (22%)

Radiotherapy 9 (18%)

Previous Known Pericarditis 10 (20%)

Restrictive Cardiomyopathy

Final Diagnostic Criteria Biopsy 33 (75%)

Echocardiogram and Late Gadolinium enhanced CMR 11 (25%)

Etiology Cardiac amyloidosis 26 (59%)

Idiopathic RCM 7 (16%)

Unknown (CMR based evidence of myocardial infiltrative cardiomyopathy) 11 (25%)
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Table 2

Clinical and echocardiographic parameters in the two groups

CP (n=50) RCM (n=44) P-value

Clinical variables

Age, years 57·8±13·4 64·1±11·8 0·018

Male gender, n (%) 32 (64·0) 30 (68·2) 0·669

Body surface area, m2 1·94±0·27 1·88±0·22 0·271

Systolic blood pressure, mmHg 113±16·7 115±18.0 0·556

Diastolic blood pressure, mmHg 68·5±8·2 69·6±11·1 0·616

Heart rate, beats/min 80·1±17·7 74·9±13·2 0·105

Conventional echocardiographic variables

End-diastolic ventricular septal thickness, mm 8·8±1·6 13·4±2·7 <0·0001

End-diastolic LV posterior wall thickness, mm 9·0±1·7 13·6±2·6 <0·0001

End-diastolic LV cavity size, mm 43±6·1 41·1±5·6 0·121

End-systolic LV cavity size, mm 28±5·4 26·9±5·7 0·364

LV ejection fraction, % 60±8·9 59·6±7·6 0·795

Left atrial volume index, ml/m2 40·2±18·6 44±14·3 0·277

Mitral inflow E velocity, cm/sec 88.2±33.0 95.5±36.3 0·318

Mitral inflow A velocity, cm/sec 49.9±17.5 64.5±32.5 0·017

Mitral inflow E/A ratio 1.80±0·69 1·75±0·98 0·775

Mitral inflow E wave deceleration time, msec 166±40·8 172.6±64.6 0·566

Mitral E wave respiratory variation >25%, n (%) 27 (54%) - -

Medial mitral annular e′ velocity, cm/sec 11·1±4·5 5·02±1·6 <0·0001

Mitral E/e′ ratio 10±7·4 19·9±8·5 <0·0001

Speckle tracking echocardiographic variables

Longitudinal strain, % −14·2±5·47 −12·1±4·44 0·047

Circumferential strain, % −22·6±8.2 −22·5±6·91 0·925

Radial strain, % 21·7±20·5 24·4±16·7 0·479

A, late diastolic mitral inflow velocity; CP, constrictive pericarditis; E, early diastolic mitral inflow velocity; e′, early diastolic mitral annular 
velocity; LV, left ventricular; RCM, restrictive cardiomyopathy
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Table 3

L1-distance ranking of speckle tracking echocardiography variables included in the final dataset

Variable* L1-Distance Data Set

Segmental volume_s1_t12 0·828 STE (apical four-chamber)

Longitudinal strain rate_s5_t12 0·728 STE (apical four-chamber)

Minimum displacement_t12 0·707 STE (apical four-chamber)

Longitudinal strain rate _s2_t3 0·678 STE (apical four-chamber)

Transverse strain_s4_t12 0·653 STE (short-axis)

Transverse velocity_s6_t3 0·637 STE (apical four-chamber)

Longitudinal strain_s5_t4 0·629 STE (apical four-chamber)

Longitudinal velocity_s6_t3 0·626 STE (apical four-chamber)

Longitudinal strain rate_s5_t4 0·617 STE (apical four-chamber)

Longitudinal strain rate_s1_t4 0·610 STE (apical four-chamber)

Segmental volume_s4_t3 0·578 STE (apical four-chamber)

Transverse strain rate_s4_t4 0·573 STE (apical four-chamber)

Maximum displacement_t12 0·570 STE (apical four-chamber)

Heart rate# 0·563 Clinical/conventional echocardiographic

Circumferential strain rate_s1_t12 0·557 STE (short axis)

Longitudinal strain rate_s2_t12 0·556 STE (apical four-chamber)

*
sN in the name of a variable refers to a specific spatial segment location within the myocardium and tN refers to a specific time interval within the 

cardiac cycle (please refer to the text for further details);

#
Heart rate was used a probe to remove unwarranted STE variables from the initial dataset.

STE, speckle tracking echocardiography.
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Table 6

P-values for differences in diagnostic accuracy of Associate Memory Classifier and Random Forest algorithms 

at different fractions of training data

Training Fraction P-value for AUC difference

0·1 0·001

0·2 0·156

0·3 2·97E-04

0·4 8·21E-16

0·5 1·43E-13

0·6 1·57E-20

0·7 1·24E-15

0·8 1·19E-08

0·9 7·31E-07

AUC, area-under-the-curve.
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