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Edge currents shunt the insulating bulk in gapped
graphene
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An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV

in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected

at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity.

Here we revisit the issue by investigating proximity-induced superconductivity in gapped

graphene and comparing normal-state measurements in the Hall bar and Corbino geometries.

We find that the supercurrent at the charge neutrality point in gapped graphene propagates

along narrow channels near the edges. This observation is corroborated by using the edgeless

Corbino geometry in which case resistivity at the neutrality point increases exponentially with

increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the

Hall bar geometry saturates to values of about a few resistance quanta. We attribute the

metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.
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T
he gapless spectra of mono- and bilayer graphene (MLG
and BLG, respectively) are protected by symmetry of their
crystal lattices. If the symmetry is broken by interaction

with a substrate1,2 or by applying an electric field3,4, an energy
gap opens in the spectrum. In BLG, its size Egap can be controlled
by the displacement field D applied between the two graphene
layers. Large gaps were found using optical methods5 and
extracted from temperature (T) dependences of resistivity r at
sufficiently high T (refs 6–10). Their values are in good agreement
with theory. On the other hand, at low T (typically, below 50 K),
r at the charge neutrality point (CNP) in gapped graphene is
often found to saturate to relatively low values that are
incompatible with large Egap (refs 6–11). This disagreement is
attributed to remnant charge inhomogeneity6,8,10 that results in
hopping conductivity and, therefore, weakens T dependences.
Alternative models to explain the subgap conductivity were
proposed, too. They rely on the nontrivial topology of Dirac
bands in gapped MLG and BLG12–15, which gives rise to
valley-polarized currents13–15. Large nonlocal resistances were
reported for both graphene systems at the CNP and explained
by valley currents propagating through the charge-neutral
bulk16–18. Graphene edges12,15, p–n junctions19 and stacking
boundaries20 can also support topological currents. These
conductive channels were suggested to shunt the insulating
bulk, leading to a finite r. Experimentally, the situation is even
more complicated because additional conductivity may appear for
trivial reasons such as charge inhomogeneity induced by chemical
or electrostatic doping21–23. Here we show that highly conductive
channels appear near edges of charge-neutral graphene if an
energy gap is opened in its spectrum. We tentatively attribute the
edge channels to the presence of such unavoidable defects as,
for example, short zigzag-edge segments12. Their wavefunctions
extend deep into the insulating bulk where they sufficiently
overlap to create a quasi-one-dimensional impurity band with
little intervalley scattering and high conductivity. We believe that,
in certain graphene devices, the localization length can be very
long, comparable to typical distances between electric contacts,
which effectively results in shunting the gapped bulk.

Results
Josephson current distributions. We start with discussing
behaviour observed for superconductor-graphene-superconductor
(SGS) Josephson junctions. Our devices were short and
wide graphene crystals that connected superconducting Nb
electrodes24 (Fig. 1). Each device contained several such SGS
junctions with the length L varying from 300 to 500 nm and the
width W from 3 to 5 mm. To ensure highest possible quality24,
graphene was encapsulated between hexagonal boron nitride
(hBN) crystals with the upper hBN serving as a top gate dielectric
and the Si/SiO2 substrate as a bottom gate (Fig. 1b). For details of
device fabrication and characterization, we refer to ‘Methods’
section and Supplementary Note 1 and Supplementary Fig. 1. By
measuring the critical current Ic as a function of perpendicular
magnetic field B, the local density Js(x) in the x direction
perpendicular to the supercurrent flow can be deduced25,
as illustrated in Fig. 1c,d. This technique is well established and
was previously used to examine, for example, edge states in
topological insulators26 and wave-guided states in graphene22.
In our report, we exploit the electrostatic control of the BLG
spectrum to examine how Js(x) changes with opening the gap.

By varying the top and bottom gate voltages (Vtg and Vbg,
respectively), it is possible to keep BLG charge neutral while
doping the two graphene layers with carriers of the opposite sign
(see Fig. 2a). This results in the displacement field D(Vtg,Vbg) that
translates directly into the spectral gap3–6. Its size Egap(D) can be

deduced not only theoretically but also measured experimentally, as
discussed in section 1 of Supplementary Information Note 1. To
quantify proximity superconductivity in our devices, we define their
critical current Ic as the current at which the differential resistance
dV/dI deviates from zero above our noise level24. With reference to
Fig. 2b, Ic corresponds to the edge of the dark area outlined by
bright contours. At high doping (Fermi energy 4Egap) and low T,
Ic is found to depend weakly on D, reaching values of a few
mAmm� 1, in agreement with the previous reports22,24,27. The
supercurrent generally decreases with increasing junction’s
resistance and becomes small at the CNP. Its value depends on
Egap (Fig. 2b). Accordingly, the largest Ic in the neutral state is
found for zero D (no gap) reaching E300 nA for the junction
shown in Fig. 2. The value drops to 2 nA at D¼±0.07 V nm� 1,
which corresponds to EgapE7 meV. For larger gaps, Ic becomes
smaller than 1 nA and could no longer be resolved because of a
finite temperature (down to 10 mK) and background noise24.

We analyse changes in the interference pattern, Ic(B), with
increasing D (that is, increasing Egap). At zero D, we observe the
standard Fraunhofer pattern at the CNP, which is basically
similar to that measured at high doping (cf. two top panels
of Fig. 2c). Only absolute values of Ic are different because of
different r, as expected24. The Fraunhofer pattern corresponds to
a uniform current flow (Fig. 1c,d). In contrast, the interference
pattern measured at the CNP for a finite gap is qualitatively
different (see Fig. 2c; D¼ 0.055 V nm� 1). The phase of the
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Figure 1 | Gated Josephson junctions and spatial distribution of

supercurrents. (a) Electron micrograph of our typical device (in false

colour). Nb leads (green) are connected to bilayer graphene (its edges are

indicated by red dashes). The top gate is shown in yellow. (b) Schematics of

such junctions. (c) Illustration of uniform and edge-dominant current flow

through Josephson junctions (top and bottom panels, respectively). (d) The

corresponding behaviour of the critical current Ic as a function of B. Ic(B) is

related to Js(x) by the equation shown in d. For a uniform current flow, Ic

should exhibit a Fraunhofer-like pattern (top panel) such that the

supercurrent goes to zero each time an integer number N of magnetic flux

quanta F0 thread through the junction. Maxima in Ic between zeros also

become smaller with increasing N. For the flow along edges (bottom panel),

Ic is minimal for half-integer flux values F¼ (Nþ 1/2)F0, and maxima in Ic

are independent of B. The spatial distribution Js(x) can be found24,25 from

Ic(B) using the inverse FFT. Due to a finite interval of F over which the

interference pattern is usually observed experimentally, Js(x) obtained

from the FFT analysis are usually smeared over the x axis as shown

schematically in c.
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oscillations changes by 90� and the central lobe becomes twice
narrower. In addition, the side lobes no longer decay with
increasing B but exhibit nearly the same amplitude (additional
example in Supplementary Note 2 and Fig. 2). Such a pattern
resembles the one shown schematically in Fig. 1d for the case of
the supercurrent flowing along edges. The only difference with
Fig. 1d is that in our case the central lobe remains higher than the
others. For quantitative analysis, we calculated the inverse
fast Fourier transform (FFT) of Ic(B), which yielded26 the
current distributions Js(x) shown in Fig. 2d. The supercurrent is
progressively pushed towards device edges with increasing
the gap. This is already visible for D¼ 0.025 V nm� 1 but
further increase in D suppresses the bulk current to practically
zero, within the experimental accuracy of our FFT analysis
(Fig. 2d and Supplementary Fig. 3). The accuracy is limited by a
finite range of B in which the interference pattern could be
detected (Supplementary Note 3).

For completeness, we have also studied SGS junctions that were
fabricated using monolayer graphene placed on top of hBN and
aligned along its crystallographic axes. Such alignment (within
1–2�) results in opening of a gap of E30 meV at the main
CNP1,2, and secondary CNPs appear for high electron and hole
doping1,2,16. Unlike for the case of BLG, Egap cannot be changed
in situ in MLG devices, but one can still compare interference
patterns for neutral and doped states of the same SGS junction
and, also, use nonaligned junctions as a reference. Figure 3a,b
shows typical behaviour of Ic as a function of carrier concentration

n for SGS devices made from gapped (aligned) and gapless
(nonaligned) MLG. In the gapped device, the supercurrent is
suppressed not only at the main CNP but also at secondary CNPs.
For all electron and hole concentrations away from the CNPs, both
devices exhibit the standard Fraunhofer pattern indicating a
uniform supercurrent flow (cf. top panels of Fig. 3c,d). The same
is valid at the CNP in gapless graphene (Fig. 3d,f). In contrast, for
gapped MLG, the interference pattern at the main CNP undergoes
significant changes such that the phase and period of oscillations in
Ic change (Fig. 3c; bottom panel), somewhat similar to the
behaviour of gapped BLG at the CNP. Quantitative analysis using
FFT again shows that, in gapped MLG, the supercurrent flows
predominantly along graphene edges for no±5� 1010 cm� 2

(Fig. 3e). The figure seems to suggest a shift of conductive
channels from edges into the interior. This shift originates from the
increase in the Fraunhofer period at the CNP in Fig. 3c and
corresponds to a decrease in the junction’s effective area. However,
we believe that this shift may arise from non-uniform doping along
the current direction. Our MLG devices do not have a top gate and
this allows doping by metal contacts to extend significantly (tens of
nm) inside the graphene channel28, which reduces the effective
length of the junction.

We emphasize that the observed redistribution of super-
currents towards edges is an extremely robust effect observed for
all eight gapped graphene junctions we studied and in none
without a gap (more than 10)24. In principle, one can imagine
additional electrostatic and/or chemical doping near graphene
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Figure 2 | Redistribution of supercurrent as the gap opens in bilayer graphene. (a) Resistance R of one of our Josephson junctions (3.5mm wide

and 0.4mm long) above the critical T as a function of top and bottom gate voltages. The dashed white line indicates equal doping of the two graphene

layers with carriers of the same sign. The dashed green line marks the CNP (maximum R) and indicates equal doping with opposite sign carriers.

(b) Differential resistance dV/dI measured along the green line in a at low T and in zero B. Transition from the dissipationless regime to a finite voltage

drop shows up as a bright curve indicating Ic. The vertical line marks the superconducting gap of our Nb films. (c) Interference patterns in small B. The

top panel is for the case of high doping [Ic(B¼0) E10mA] and indistinguishable from the standard Fraunhofer-like behaviour illustrated in Fig. 1d.

The patterns below correspond to progressively larger Egap. Changes in the phase of Fraunhofer oscillations are highlighted by the vertical dashed white

lines. (d) Extracted spatial profiles of the supercurrent density (Js) at the CNP for the three values of D in c.
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edges21–23 (Supplementary Note 4), which would enhance their
conductivity and, hence, favour local paths for supercurrent. This
mechanism disagrees with the fact that edge supercurrents
appeared independently of the CNP position as a function of
gate voltage (residual doping in our devices varied from
practically zero to o1011 cm� 2) and were observed for devices
with the top gate being only a few nm away from the graphene
plane. The latter facilitates a uniform electric field distribution
(Supplementary Fig. 4). Chemical doping at graphene edges was
previously reported in non-encapsulated21 and, also, encapsulated
but not annealed devices23. All our devices were encapsulated and
thoroughly annealed, and some of them had edges that were fully
covered by top hBN rather than exposed to air (Supplementary
Figs 5 and 6). We also note our Josephson experiments yielded
similar supercurrent densities at BLG edges, even in the case
where the two edges were fabricated differently (one is etched as
discussed above and the other cleaved and covered with hBN; see
Fig. 1a). The latter observation in particular indicates little
external doping along the edges. Importantly, we have found no
evidence for enhanced transport along edges of similar but
gapless graphene devices. To this end, we refer, for example,
to Fig. 3e,f. In the gapped MLG device, near-edge Js reaches

E100 nA mm� 1. Such supercurrents would certainly be visible in
the distribution profile of the non-gapped graphene at the CNP in
Fig. 3f. All the above observations point at a critical role of the
presence of the gap in creating local edge currents.

Corbino geometry. While providing important insights about the
current flow, Josephson interference experiments are limited to
small Egap such that junction’s resistance remains well below 1
MOhm allowing superconducting proximity. To address the
situation for the larger gaps accessible in BLG devices, we com-
pare their normal transport characteristics in the Corbino and
Hall bar geometries. Because the Corbino geometry does not
involve edges, such a comparison has previously been exploited
to investigate the role of edge transport (for example, in the
quantum Hall effect29). A number of dual-gated BLG devices
such as shown in Fig. 4a were fabricated and examined over a
wide range of D and T. Our experiments revealed a striking
difference between r measured in the two geometries. In the
Corbino geometry, r at the CNP rises exponentially with D and
its value is limited only by a finite dielectric strength of
E0.7 V nm� 1 achievable for our hBN (Fig. 4b) and, at low T,
by leakage currents. In contrast, in the Hall bar geometry, r at the
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CNP saturates at D as low as o0.2 V nm� 1, reaching only a few
tens of kOhms at all T (Fig. 4c). This disparity in the behaviour of
the Hall bar and Corbino devices was observed under the same
measurement conditions and despite the same or higher
homogeneity in the former devices (Supplementary Note 5 and
Supplementary Fig. 7). The profound difference unambiguously
points at a finite conductivity caused by the presence of graphene
edges, in agreement with the conclusions achieved from our
Josephson experiments.

Another noteworthy distinction between the two geometries is
their temperature dependences at the CNP. For T above 100 K,
both Corbino and Hall bar devices exhibited the same activation
behaviour rpexp(Egap/2kBT) as expected for a semiconductor
with the gap Egap (Fig. 4d). Our measurements over a wide range
of D yielded Egap[meV]E100�D[V nm� 1], in quantitative
agreement with theory and previous reports5 (inset of Fig. 4d). At
lower T, resistivity of the Corbino devices continued growing and
is well described by hopping conductivity that may involve both
nearest neighbour and variable range hopping6,8–10 (Fig. 4d). On
the other hand, r(T) found using the Hall bars rapidly saturated
below 100 K to values of a few resistance quantum RQ¼ h/e2 and
changed little (by o30%) with decreasing T down 2 K. The
saturation behaviour is similar to that observed for conductance
along a p–n junction in oppositely biased BLG19, and along walls
separating BLG domains with AB and BA stacking20.

Discussion
Two possible scenarios for shunting the insulating state of gapped
graphene have previously been put forward. Both rely on
nontrivial topology of the gapped Dirac spectrum. One of them
considers electronic states due to short zigzag segments15 that
may be present even at relatively random edges12. Although these
states decay exponentially into the gapped bulk, their penetration
length x is very long with respect to the lattice constant a. For
MLG and BLG, x can be estimated as E:v/Egap and :/

ffiffiffiffiffiffiffiffiffiffiffiffi
mEgap

p
,

respectively, where : is the reduced Planck constant, v the Fermi
velocity in MLG and m the effective mass in BLG. For our typical
gaps, x is about 10–20 nm, much larger than a. This suggests that
wavefunctions of isolated zigzag states should strongly overlap
inside the bulk creating a quasi-one-dimensional band. Moreover,
because x/ac1, the wavefunctions mostly reside in the bulk where

there are little defects, which ensures that impurity bands are
effectively protected against backscattering. The situation resembles
the modulation doping used to achieve high-carrier mobilities in
semiconductor quantum wells. The observed saturation of r to
BRQ and the long-range nonlocal resistance reported previously16–

18 imply that the mean free path along the quasi--one-dimensional
channels can reach a micrometre scale for high-mobility graphene.
Although numerical simulations12 yielded zero-T localization
lengths at least an order of magnitude shorter than this scale,
localization in the edge channels may be suppressed by a finite T
and electron–electron interactions that are prominent especially in
low-dimensional conductors. Such delocalization effects have so far
not been investigated theoretically. The invoked edge channels
would be consistent with our experimental observations. Obviously,
the mean free path can vary from sample to sample and strongly
depend on fabrication procedures, which may explain only weakly
saturating behaviour that was reported in some gapped graphene
devices16,17,19. In addition, there is a complementary scenario that
also relies on the nontrivial topology of the gapped Dirac spectra
but may not require zigzag segments. The valley Hall effect is
inherent to gapped graphene and generates valley currents that flow
perpendicular to applied electric field13,16. If injected from electric
contacts into the gapped bulk, they are expected to become
squeezed towards weakly conductive edges, similar to what is
known for the case of the quantum Hall effect30 and in agreement
with recent simulations for gapped MLG14. Lastly, let us mention
another relevant suggestion that a weak confining potential at
graphene edges may guide electronic states over large distances,
independently of its strength22,31. In the latter scenario, an
enhanced edge conductance is expected irrespectively of the gap
size, which seems to contradict our experimental observation that
there is little enhancement of near-edge supercurrent in the absence
of the gap.

Our results can explain low apparent resistivity often
observed for charge-neural gapped graphene at low temperatures,
especially in devices made from high-quality graphene in which
the bulk is expected to contribute little to either hopping
conductivity or backscattering of edge modes5–11,19. Further
experiments and theory are needed to distinguish between the
possible scenarios described above and elucidate the nature of the
reported edge conductance.
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Methods
Device fabrication. Mono- or bilayer graphene crystals were encapsulated
between hBN crystals (typically, E30 nm thick) using the dry transfer technique as
detailed previously32. The hBN-graphene-hBN stack was assembled on top of an
oxidized Si wafer (300 or 90 nm of SiO2) and then annealed at 300 �C in a forming
gas (Ar–H2 mixture) for 3 h. As the next step, we used the standard electron-beam
lithography to create a poly (methyl methacrylate) (PMMA) mask that defined
contact regions. Reactive ion etching (Oxford Plasma Lab 100) was employed to
make trenches in the heterostructure through the mask. We used a mixture of
CHF3 and O2, which provided easy lift-off of PMMA, so that metal contacts could
be deposited directly after plasma etching. This also allowed us to minimize
contamination of the exposed graphene edges24. After this, for BLG devices,
another metal film (typically, Au/Cr) was deposited on top of the heterostructure to
serve as the top gate. To avoid the edges of graphene extending out of the metal
gate, the latter is used as a part of the final etch-mask; the uncovered graphene
between the contacts and the gate is protected by a second PMMA mask, allowing
the metal gate to extend slightly at the crucial edge locations. For the Hall bar
geometry, we often used an additional hBN crystal to cover the hBN-graphene-
hBN stack after plasma etching, which allowed the metal film for the top gate to go
over exposed graphene edges without touching them. To provide the central
contact in Corbino devices, we used air bridges33. In some of our Josephson
devices, graphene was not etched but made directly from cleaved crystals selected
to have a strip-like shape. In this case, graphene edges were not exposed but fully
encapsulated in hBN. Similar transport and Josephson behaviour was found in all
cases, independent of the variations in fabrication procedures.

Transport experiments. All electrical measurements were carried out in a He3
cryostat (Oxford Instruments) for T down to 0.3 K and, for lower T, in a dilution
refrigerator with the base temperature of 10 mK (BlueFors Cryogenics). The
differential resistance was measured in a quasi-four-terminal configuration (two
superconducting leads for driving the current and the other two for measuring
voltage) using a low-frequency lock-in technique. All electrical connections to our
devices passed through a cold RC filter (Aivon Therma) placed close to the sample
and additional AC filters were used outside the cryostats. At large displacement
fields, our Corbino devices exhibited high resistivity such that the lock-in technique
became inappropriate. In this case, we used dc measurements.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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