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Abstract

Objectives—The purpose of this study was twofold: 1) to determine the effect of an acute 

simulated unilateral hearing loss on children’s spatial release from masking in two-talker speech 

and speech-shaped noise, and 2) to develop a procedure to be used in future studies that will assess 

spatial release from masking in children who have permanent unilateral hearing loss. There were 

three main predictions. First, spatial release from masking was expected to be larger in two-talker 

speech than speech-shaped noise. Second, simulated unilateral hearing loss was expected to 

worsen performance in all listening conditions, but particularly in the spatially separated two-

talker speech masker. Third, spatial release from masking was expected to be smaller for children 

than for adults in the two-talker masker.

Design—Participants were 12 children (8.7 to 10.9 yrs) and 11 adults (18.5 to 30.4 yrs) with 

normal bilateral hearing. Thresholds for 50%-correct recognition of Bamford-Kowal-Bench 

sentences were measured adaptively in continuous two-talker speech or speech-shaped noise. 

Target sentences were always presented from a loudspeaker at 0° azimuth. The masker stimulus 

was either co-located with the target or spatially separated to +90° or −90° azimuth. Spatial release 

from masking was quantified as the difference between thresholds obtained when the target and 

masker were co-located and thresholds obtained when the masker was presented from +90° or 

− 90°. Testing was completed both with and without a moderate simulated unilateral hearing loss, 

created with a foam earplug and supra-aural earmuff. A repeated-measures design was used to 

compare performance between children and adults, and performance in the no-plug and simulated-

unilateral-hearing-loss conditions.

Results—All listeners benefited from spatial separation of target and masker stimuli on the 

azimuth plane in the no-plug listening conditions; this benefit was larger in two-talker speech than 

in speech-shaped noise. In the simulated-unilateral-hearing-loss conditions, a positive spatial 
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release from masking was observed only when the masker was presented ipsilateral to the 

simulated unilateral hearing loss. In the speech-shaped noise masker, spatial release from masking 

in the no-plug condition was similar to that obtained when the masker was presented ipsilateral to 

the simulated unilateral hearing loss. In contrast, in the two-talker speech masker, spatial release 

from masking in the no-plug condition was much larger than that obtained when the masker was 

presented ipsilateral to the simulated unilateral hearing loss. When either masker was presented 

contralateral to the simulated unilateral hearing loss, spatial release from masking was negative. 

This pattern of results was observed for both children and adults, although children performed 

more poorly overall.

Conclusions—Children and adults with normal bilateral hearing experience greater spatial 

release from masking for a two-talker speech than a speech-shaped noise masker. Testing in a two-

talker speech masker revealed listening difficulties in the presence of disrupted binaural input that 

were not observed in a speech-shaped noise masker. This procedure offers promise for the 

assessment of spatial release from masking in children with permanent unilateral hearing loss.

INTRODUCTION

Pediatric permanent unilateral hearing loss (UHL) represents a growing concern in the 

audiology community. This concern is due to the wide variability in developmental 

outcomes observed among children with permanent UHL and the lack of consensus 

regarding the audiologic management for this population. Children with permanent UHL 

often experience developmental difficulties, even in cases of mild UHL. This could be due, 

in part to reduced access to binaural cues, which are important for speech perception in 

complex listening environments (Quigley & Thomure 1969; Bess et al. 1986; Brookhouser 

et al. 1991; Lieu et al. 2010, 2012, 2013). Specifically, binaural cues facilitate spatial release 

from masking (SRM) when a target talker (e.g., the teacher) is spatially separated from 

background talkers (e.g., classmates). For adults with normal hearing, SRM is more 

pronounced when the masker is acoustically and perceptually complex (e.g., 1 or 2 

competing talkers) relative to when the masker is noise or babble composed of many talkers 

(e.g., Arbogast et al. 2002; Freyman et al. 2001). Adults with permanent or simulated UHL 

achieve significantly less SRM than their counterparts with normal bilateral hearing, and this 

deficit is exacerbated in the presence of relatively complex maskers (e.g., two-talker speech; 

Marrone et al. 2008; Rothpletz et al. 2012). While previous studies demonstrate that children 

with permanent UHL experience degraded speech understanding in relatively steady 

maskers (e.g., Bess et al. 1986; Ruscetta et al. 2005; Lieu et al. 2013), their ability to achieve 

SRM in the presence of complex maskers has not been systematically investigated. This is a 

critical gap in the literature considering recent evidence that the real-world performance of 

children with permanent bilateral hearing loss is better predicted by speech recognition in a 

two-talker than a steady noise masker (Hillock-Dunn et al. 2015). The purpose of this study 

was twofold: 1) to determine the effect of an acute simulated UHL on SRM in two-talker 

speech and speech-shaped noise for children, and 2) to develop a procedure to be used in 

future studies that will assess SRM in children who have permanent UHL.

Population-based prevalence estimates of permanent UHL among children ages 6 to 19 

years range from 3% to 6%, depending on how UHL is defined (Bess et al. 1998; Niskar et 

Corbin et al. Page 2

Ear Hear. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al. 1998; Fortnum et al. 2001; Ross et al. 2010). Conventional wisdom has been that, with 

one normal-hearing ear, children with UHL will acquire speech and language normally and 

achieve age-appropriate developmental milestones. It is now recognized that children with 

UHL are at an increased risk for academic, cognitive, social-emotional, speech, and 

language problems relative to their peers with normal hearing in both ears (Bess & Tharpe 

1984; Borg et al. 2002; Lieu et al. 2010; Ead et al. 2013). For instance, an estimated 36% to 

54% of school-age children with UHL require educational assistance and/or receive speech-

language therapy, and at least one-third of them experience behavioral problems in the 

classroom (Bess & Tharpe 1984; Oyler et al. 1988; Dancer et al. 1995; Sedey et al. 2002; 

Lieu et al. 2012). However, there are considerable individual differences in developmental 

outcomes among children with UHL. Despite increased early identification, variability in 

outcomes contributes to the lack of consensus regarding audiologic management for this 

population and results in a costly, failure-based model of intervention (Knightly et al. 2007; 

Porter & Bess 2011; Fitzpatrick et al. 2014). The field of audiology currently lacks 

assessment tools that predict which children with UHL are most at risk for functional 

communication deficits. A potential explanation for this void is that the majority of 

conventional clinical tools fail to capture the difficulties faced by children with UHL in the 

complex listening conditions they encounter in their everyday lives.

One of the reasons children with UHL often experience poorer outcomes than their peers 

with normal bilateral hearing is their lack of access to binaural cues. Head shadow effect, 

binaural squelch, and binaural summation are the three binaural effects traditionally 

associated with the benefit of listening with two ears relative to one in multi-source 

environments (Bronkhorst & Plomp 1988). In natural listening environments, listeners often 

turn to face a target of interest, such that it originates from 0° azimuth in listener-centric 

coordinates. Under these conditions, the target stimulus reaching the two ears is functionally 

identical. In contrast, when a masker is spatially separated from the target in azimuth, it will 

arrive at the listener’s ears at different times and with different intensities. Listeners are able 

to use these interaural time differences (predominantly below 1500 Hz) and interaural 

intensity differences (predominantly above 1500 Hz) to their advantage. The signal-to-noise 

ratio (SNR) will be better at the ear furthest from the masker source due to the high-

frequency acoustic shadow the head casts over that ear. By virtue of this head shadow effect, 

the listener has the opportunity to attend to the ear with the better SNR to improve speech 

recognition performance by 3 to 8 dB (Bronkhorst & Plomp 1988). Listeners also use 

information from the ear with the less favorable SNR. Access to interaural time differences 

associated with the target and masker stimuli at the two ears improves listeners’ performance 

by 3 to 7 dB; this effect is known as binaural squelch (e.g., Levitt & Rabiner 1967; 

Bronkhorst & Plomp 1988; Hawley et al. 2004). Even when the target and masker both 

originate from the front of a listener and there are no interaural time or level differences, 

listeners benefit from having access to two neural representations of the target and masker 

stimuli. This binaural cue is known as binaural summation, and it typically improves speech 

recognition performance in noise by 1 to 3 dB (Bronkhorst & Plomp 1988; Davis et al. 

1990; Gallun et al. 2005).

Corbin et al. Page 3

Ear Hear. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The binaural benefit associated with spatially separating the target and masker on the 

azimuth is referred to as SRM. Under complex listening conditions, this improvement is 

thought to rely largely on auditory stream segregation, in which interaural difference cues 

are used to perceptually differentiate the target and masker streams (Licklider 1948; 

Bronkhorst & Plomp 1988; Bregman 1990; Zurek 1993; Freyman et al. 1999). SRM is often 

expressed as the difference in speech recognition performance between a condition in which 

target and masker stimuli are co-located in the front of the listener and a condition in which 

the target and masker stimuli are perceived to originate from different locations on the 

azimuthal plane. By assessing SRM, we can estimate the extent to which a listener uses 

binaural cues for hearing in complex listening environments.

In adults, SRM increases as target-masker similarity or stimulus uncertainty increases, 

presumably due to the increasing role of informational masking when the target and masker 

are co-located (Brungart 2001b; Freyman et al. 2001; Arbogast et al. 2002; Durlach et al. 

2003; Culling et al. 2004; Hawley et al. 2004). Speech recognition in steady maskers such as 

speech-shaped noise is traditionally associated with energetic masking (e.g., Fletcher 1940; 

also see Stone et al. 2014). Energetic masking is the consequence of overlapping excitation 

patterns on the basilar membrane, reducing the fidelity with which target and masker stimuli 

are represented in the auditory periphery. Speech recognition in competing speech involves 

both energetic and informational masking. In contrast to energetic masking, informational 

masking reflects a reduced ability to segregate and selectively attend to a particular auditory 

object despite adequate peripheral encoding (Brungart 2001b). For a given angular 

separation, the SRM observed for informational maskers is typically much larger than 

observed for energetic maskers. This is thought to reflect the greater segregation challenge in 

informational maskers. On average, adults with normal hearing bilaterally achieve 6–7 dB 

SRM in the presence of noise maskers, but around 18 dB SRM in the presence of one or two 

competing talkers (Carhart et al. 1969; Kidd et al. 1998; Bronkhorst 2000; Arbogast et al. 

2002; Hawley et al. 2004).

Permanent or simulated UHL reduces SRM in adults. Rothpletz et al. (2012) demonstrated 

that SRM is essentially eliminated for adults with mild to profound permanent UHL for a 

speech-on-speech recognition task involving target and masker sentences that were digitally 

processed to substantially reduce energetic masking. SRM is also eliminated for a speech-

on-speech recognition task when adults with normal hearing listen with an earplug and 

earmuff to simulate a mild UHL (average attenuation = 38.1 dB; Marrone et al. 2008). 

Limited access to the binaural difference cues supporting SRM may not fully explain the 

deficit associated with UHL in adults, however. When the target and masker are co-located 

in front of the listener, a condition in which both interaural time and level differences are 

functionally eliminated, adults with mild to profound UHL perform up to 4.5 dB worse than 

adults with normal hearing under conditions associated with substantial informational 

masking (Rothpletz et al. 2012). These results indicate that UHL degrades speech perception 

for adults in the presence of informational masking, whether or not interaural difference cues 

are available. Moreover, this decrease in performance for adults with UHL is observed even 

for mild hearing losses.
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Similar to adults, children with normal hearing achieve greater SRM in the presence of 

informational relative to energetic masking. In general, SRM in young children with normal 

hearing ranges from 3 to 11 dB, depending on the stimuli and test conditions used (Litovsky 

2005; Lovett et al. 2012). While some studies indicate that SRM continues to develop 

through childhood for complex maskers, (Yuen & Yuan 2014), other data indicate that SRM 

is mature by 3 years of age (Litovsky 2005). On a four-alternative forced-choice spondee 

identification task, Johnstone and Litovsky (2006) found that 5- to 7-year-olds achieved 

significantly greater SRM in the presence of unaltered speech and time-reversed speech (3.4 

dB and 6.7 dB, respectively) relative to modulated noise (0.5 dB). The overall finding that 

children achieved greater SRM for speech-based relative to noise maskers was interpreted as 

being due to greater informational masking. Although it is unclear why the SRM for time-

reversed speech was greater than that observed for unaltered speech, the authors posited that 

the novelty of the time-reversed speech may have resulted in relatively greater informational 

masking, and therefore greater SRM.

There are relatively few data pertinent to SRM in school-age children with permanent 

sensorineural UHL, but available data indicate reduced benefit of target/masker spatial 

separation and poorer speech recognition overall for children with UHL (e.g., Bess et al. 

1986; Bovo et al. 1988; Hartvig et al. 1989; Kenworthy et al. 1990; Updike 1994; Lieu et al. 

2010; Noh & Park 2012; Lieu et al. 2013; Reeder et al. 2015). For example, Reeder et al. 

(2015) reported that 7- to 16-year-olds with moderately-severe to profound sensorineural 

UHL performed worse than age-matched peers with normal hearing on a range of tasks. 

These tasks included: monosyllabic word recognition in quiet and four-talker babble, 

sentence recognition in spatially diffuse restaurant noise, and spondee recognition in quiet, 

single-talker speech, and multitalker babble presented from 0°, +90°, or −90° azimuth. 

While the deficits associated with UHL tended to be largest when the target and masker 

originated from different locations in space, poorer performance relative to children with 

normal hearing was also observed in quiet and when the masker was co-located with the 

target. Poorer performance in children with UHL, even in the absence of a binaural 

difference cue, is consistent with the results of Bess et al. (1986); that study tested 6- to 13-

year-olds with either normal hearing or moderate to severe sensorineural UHL and found a 

detrimental effect of UHL when the target stimulus was presented in quiet to the ear with 

normal hearing sensitivity. Data from Bess et al. (1986) also support the idea that the ability 

to benefit from SRM is related to a child’s listening challenges in daily life. Specifically, 

individual children with UHL who benefitted least from the head shadow effect also tended 

to experience more difficulty in school than those who were better able to use the head 

shadow effect (Bess et al. 1986). These studies suggest that children with UHL, who have 

compromised access to binaural cues, experience marked difficulties in complex listening 

environments characterized by multiple, co-located or spatially separate competing sound 

sources.

While previous studies of spatial hearing in children demonstrate a detrimental effect of 

UHL, none of those studies has explicitly considered the effect of informational versus 

energetic masking. We know that informational masking is associated with an especially 

pronounced SRM in children with normal hearing (Johnstone & Litovsky 2006; Misurelli & 
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Litovsky 2015), and initial data are consistent with the idea that UHL in children is 

particularly detrimental in speech-based maskers (Reeder et al., 2015). Further motivation 

for considering children’s performance in the presence of informational masking is based on 

recent data from Hillock-Dunn et al. (2015). That study evaluated masked speech 

recognition in children with bilateral sensorineural hearing loss, with the target and masker 

both coming from 0° azimuth. Parental reports of their children’s everyday communication 

difficulties were strongly correlated with speech recognition in the two-talker speech 

masker, but not the speech-shaped noise masker. These data suggest that children’s 

susceptibility to informational masking has the potential to provide valuable new 

information about the communication abilities of children with hearing loss outside the 

confines of the audiology booth.

The present study was designed to better understand the effects of UHL in children, 

particularly with respect to SRM in low and high informational masking contexts. The 

approach was to examine the effects of an acute conductive UHL, produced with an earplug 

and earmuff, on SRM in two-talker speech and speech-shaped noise for children and adults 

with normal bilateral hearing. While there are important differences between conductive and 

sensorineural hearing loss (reviewed by Gelfand 2009), and between acute and permanent 

hearing loss (e.g., Kumpik et al. 2010), the goal was to better understand how children and 

adults with normal hearing sensitivity use the cues available to them under these conditions. 

Listeners with normal bilateral hearing completed an open-set sentence recognition task in 

the presence of speech-shaped noise or two-talker speech. The target was presented from the 

front of the listener, and the masker was either co-located with the target or spatially 

separated to one side. Each listener served as his or her own control by completing the SRM 

task in the context of normal bilateral hearing (no plug) and a simulated UHL.

There were three main predictions. First, SRM was expected to be larger in two-talker 

speech than in speech-shaped noise, as observed previously. Considering that SRM is 

dependent on the quality of binaural cues, it was predicted that the differential effect of 

masker might only be observed in the no-plug conditions. Second, the simulated UHL was 

expected to worsen performance in all listening conditions, but particularly in the spatially 

separated two-talker speech masker. Third, SRM was expected to be smaller for children 

than for adults in the two-talker masker. This expectation was based on the observations that 

(1) development of SRM may extend into childhood for complex maskers (Yuen & Yuan 

2014, but see Litovsky 2005) and (2) the binaural masking level difference (MLD) becomes 

adult-like later in development for noise stimuli thought to introduce informational masking 

(Grose et al. 1997).

MATERIALS AND METHODS

Participants

Participants were 12 children (ages 8.7 to 10.9 yrs) and 11 adults (18.5 to 30.4 yrs). Criteria 

for inclusion were: (1) air-conduction hearing thresholds less than or equal to 20 dB HL for 

octave frequencies from 250 Hz to 8000 Hz, bilaterally (ANSI 2010); (2) native speaker of 

American English; and (3) no known history of chronic ear disease. This research was 
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approved by the Institutional Review Board of the University of North Carolina at Chapel 

Hill.

Stimuli and conditions

Target stimuli were Revised Bamford-Kowal-Bench (BKB) sentences (Bench et al. 1979) 

spoken by an adult female native speaker of American English. The BKB corpus includes 21 

lists of 16 sentences, each with 3–4 keywords, for a total of 50 keywords per list. These 

stimuli have previously been used in our lab to examine masked speech perception for 

children as young as 5 years of age (e.g., Hall et al. 2012). Recordings were made in a 

sound-treated room, digitized at a resolution of 32 bits and a sampling rate of 44.1 kHz, and 

saved to disk as wav files. These files were root-mean-square (RMS) normalized and down 

sampled to 24.4 kHz before presentation.

Each sentence was recorded a minimum of two times. Three adults with normal hearing 

listened to the sentence corpus to verify the sound quality of the recordings. The adults 

included two audiology graduate students and one Ph.D.-level research audiologist, all of 

whom were native speakers of American English. Sentences were presented diotically at a 

comfortable loudness level through headphones (Sennheiser; HD25). Listeners were 

instructed to mark any words or sentences with undesirable sound quality characteristics 

(e.g., distortion, peak clipping, irregular speaking rate, and excessively rising or falling 

intonation). Based on this feedback, a subset of sentences was re-recorded and edited. Two 

of the adults conducted a final listening check of the full sentence corpus.

The masker was either two-talker speech or speech-shaped noise, and it was presented 

continuously over the course of a threshold estimation track. Following Calandruccio et al. 

(2014), the two-talker masker was composed of recordings of two female talkers, each 

reading different passages from the children’s story Jack and the Beanstalk (Walker 1999). 

The female talkers were recorded separately. Each of the individual masker streams was 

manually edited to remove silent pauses of 300 ms or greater. The rationale for this editing 

was to reduce opportunities for dip listening. Each masker stream was RMS-normalized 

before summing. The result was a 1.4-min masker sample, which ended with both talkers 

saying a complete word. The speech-shaped noise masker had the same long-term 

magnitude spectrum as the two-talker speech masker. At the outset of each trial, masker 

playback started at the beginning of the associated audio file. Due to the nature of the 

adaptive tracking procedure, each track ended at different time points in the masker.

A custom MATLAB script was used to control selection and presentation of stimuli. Target 

and masker stimuli were processed through separate channels of a real-time processor 

(Tucker Davis Technology; RZ6), amplified (Applied Research Technology; SLA-4), and 

presented through a pair of loudspeakers (JBL; Professional Control 1). Target sentences 

were always presented from a loudspeaker in front of the listener (0° azimuth). The masker 

stimulus was either co-located with the target (0° azimuth) or spatially separated to the right 

(+90° azimuth) or left (−90° azimuth) of the listener.
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Procedure

General procedure—Speech reception thresholds (SRTs) were measured to assess 

performance on an open-set sentence recognition task. Participants were seated in the center 

of a 7 × 7 ft, single-walled sound-treated booth, approximately 3 ft from each of two 

loudspeakers. Experimental stimuli were calibrated with the microphone suspended 2 ft 

above the chair in which participants were seated, at the level of the center of the 

loudspeaker cone; this was also the approximate position of participants’ ears when seated. 

Chair height was not adjusted for individual listeners. For conditions in which the target and 

masker were spatially separated, the loudspeaker associated with the target depended on the 

desired masker position. By changing the physical orientation of the participant’s chair, the 

participant always directly faced the speaker associated with the target stimulus. The side of 

the simulated UHL and the order of testing in each listening mode (no plug or simulated 

UHL) were counterbalanced across participants within each age group4.

In the simulated-UHL listening condition, participants completed the speech recognition 

task with each masker (two-talker speech and speech-shaped noise) at 0° azimuth, +90° 

azimuth, and −90° azimuth. The SRTs in the three simulated UHL conditions will be 

referred to as SRT[simUHL/co-loc] (target and masker co-located), SRT[simUHL/msk-ipsi] 

(masker ipsilateral to the simulated UHL), and SRT[simUHL/msk-contra] (masker 

contralateral to the simulated UHL). In the no-plug listening condition, participants 

completed the task with the masker at 0° azimuth and +90° azimuth. The SRTs in these two 

no-plug conditions will be referred to as SRT[no-plug/co-loc] and SRT[no-plug/msk-side], 

respectively.

During testing, participants wore an FM transmitter (Sennheiser; ew 100 G3) with a lapel 

microphone. The microphone was attached to the participant’s shirt, positioned within 6 

inches of his/her mouth. The participant’s verbal responses were presented to an examiner 

seated outside the booth via an FM receiver coupled to high-quality headphones 

(Sennheiser; HD25). This approach optimized the SNR for the observer, who also monitored 

the participant’s face through a window throughout testing.

Participants were informed that they would first hear continuous speech or noise from the 

front or side loudspeaker, and then a sentence spoken by a female from the front 

loudspeaker. They were instructed to ignore the continuous background sounds and verbally 

repeat each sentence produced by the female from the front loudspeaker. Participants were 

told to make their best guess of the sentence even if they only heard one word because 

scoring was conducted on a word-by-word basis. The examiner scored each keyword as 

correct or incorrect. Keywords were only marked “correct” if the entire word was correctly 

repeated, including pluralization and tense. The maximum response window for each trial 

was 5 sec after the end of the target sentence presentation. If the participant did not respond 

within this window, the tester marked all keywords as incorrect. Formal feedback was not 

4There is no precedent in the literature to expect a difference between SRTs for a makser at +90° or −90° azimuth in normal-hearing 
listeners who are listening without simulated hearing loss. However, there are inconsistent findings in the literature regarding UHL 
laterality on patient outcomes (e.g., speech recognition in noise). In this study, laterality of simulated UHL did not have a statistically 
significant effect on performance.
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given; however, encouragement was provided for children through social reinforcement 

(e.g., smiling and a head nod).

Unilateral hearing loss simulation—Unilateral hearing loss was simulated using a 

foam earplug [Howard Leight Max Small; Noise Reduction Rating (NRR) 30 dB] and a 

supra-aural earmuff (Howard Leight Thunder T3; NRR 30 dB), both placed by the examiner. 

For the UHL simulation, the earplug was deeply inserted into the participant’s ear canal, and 

the supra-aural earmuff was placed over the pinna to optimize attenuation. The supra-aural 

earmuff was modified to remove the ear cup contralateral to the simulated UHL. The 

headband of the supra-aural earmuff was adjusted for comfort and to ensure that the 

contralateral ear was not obstructed. A right unilateral hearing loss was simulated in 6 of 12 

children and 6 of 11 adults. The average attenuation provided by the earplug and earmuff 

combination was measured behaviorally in the sound field at 0° azimuth. Given the amount 

of testing time required to complete the study, detection thresholds with and without the 

simulated UHL were only measured for a warble tone at 500 Hz, 1000 Hz, and 2000 Hz. 

The ear contralateral to the simulated UHL was masked with a 50 dB HL noise band 

centered on the test frequency, delivered via insert earphone (Etymotic, ER-3A); this insert 

earphone was not worn during speech recognition testing. Thresholds were assessed with 

and without the earplug + earmuff combination, and the difference was taken to estimate the 

amount of attenuation provided by the UHL simulation. This procedure was completed 

before speech recognition testing for one child and after speech recognition testing for 10 

children. Average attenuation values were not obtained for one child due to participant 

fatigue. Attenuation values were obtained for only two adult participants at the time of the 

main experiment; additional values were subsequently obtained in seven newly recruited 

normal-hearing adults (ages 20.1 to 35.1 years). On average, the simulated UHL condition 

resulted in a moderate flat conductive hearing loss. Additional details appear in the results 

section.

Threshold estimation—A 1-up, 1-down tracking procedure (Levitt 1971) was used to 

estimate speech recognition thresholds corresponding to the average SNR required for 50% 

correct sentence identification. The overall level of the target plus masker was fixed at 60 dB 

SPL. This level was chosen based on the range of conversational speech level in noisy 

environments (Olsen 1998) and the average attenuation achieved through the UHL 

simulation. Using a higher overall target plus masker level would have resulted in greater 

audibility in the simulated UHL condition. Each run was initiated at a SNR of 10 dB. The 

SNR was increased by increasing the signal level and decreasing the masker level if one or 

more keywords were missed. The SNR was reduced by decreasing the signal level and 

increasing the masker level if all keywords were correctly identified. An initial step size of 4 

dB was reduced to 2 dB after the first two reversals. Runs were terminated after eight 

reversals. The SRT was estimated by computing the average SNR at the final six reversals.

The first target sentence presented to a participant was selected randomly from the entire set 

of BKB sentences. Thereafter, sentences were presented in sequential order, ensuring that no 

sentences were repeated. Each run required 16–20 sentences. A minimum of two SRTs was 

estimated for each condition. Data collection in each condition continued until two estimates 
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within 3 dB of each other were obtained. This criterion was typically met with two 

estimates. Adults required more than two runs at a rate of 15% in speech-shaped noise and 

13% in two-talker speech. Children required more than two runs at a rate of 10% in speech-

shaped nose and 12% in two-talker speech. The mean of the two estimates within 3 dB of 

each other represented the final SRT used for the subsequent analyses. Testing for children 

required two visits to the laboratory: one to complete the simulated-UHL conditions, and 

one to complete the no-plug conditions. In the presence of a simulated UHL, total testing 

time was 1.5 to 2 hrs. It took less than 1 hr to complete testing in the no-plug conditions. 

Adults completed all testing in 1 visit, typically lasting 2 to 2.5 hrs. All listeners were given 

breaks throughout testing.

Results were evaluated using repeated-measures ANOVA. Subsequent simple main effects 

testing used Bonferroni adjustment for multiple comparisons. A significance criterion of α 
= 0.05 was adopted. The SRM was quantified as the difference between thresholds obtained 

when the target and masker were co-located and thresholds obtained when the masker was 

presented from +/− 90° from the midline, as follows:

RESULTS

For children, the average amount of attenuation provided by the earplug and earmuff at 500 

Hz, 1000 Hz, and 2000 Hz was 44.8 (SD = 5.20), 42.3 (SD = 6.3), and 39.5 (SD = 4.6) dB 

SPL, respectively. For adults, attenuation at these frequencies was 44.2 (SD = 10.4), 47.9 

(SD = 5.9), and 40.2 (SD = 5.1) dB SPL. For both groups, the simulated UHL resulted in a 

moderate conductive UHL.

Figure 1 shows results of speech recognition testing, with SRTs for children and adults with 

and without simulated UHL in each target-masker configuration plotted separately. The 

SRTs obtained in the speech-shaped noise masker are represented by circles, and those 

obtained in the two-talker speech masker are represented by diamonds. Shading designates 

age group, with black symbols representing data for children and gray symbols representing 

data for adults. Error bars represent one standard deviation. Higher thresholds indicate 

poorer performance. Stars and lines in the top panel of the figure reflect results of simple 

main effects testing, described below. Mean SRTs by listener group and condition, as well as 

the associated standard deviations, are also reported in Table 1.

Overall there was a trend for thresholds to be higher for children than adults, higher in the 

two-talker masker than the speech-shaped noise masker, and higher for the simulated-UHL 

than the no-plug listening condition. However, the magnitude of these trends differed in 

detail across listening conditions, maskers, and age groups. For example, the mean child/

adult difference in the no-plug/msk-side condition was 4.8 dB in the two-talker masker, but 

only 0.6 dB in the speech-shaped noise masker. Average SRTs were more than 3-dB higher 

in the two-talker masker than the speech-shaped noise masker for both groups in most 

Corbin et al. Page 10

Ear Hear. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conditions (see Table 1). The one exception was the no-plug/msk-side condition for adults, 

where the average SRT was 3.6-dB lower in the two-talker masker than the speech-shaped 

noise masker (−11.7 dB versus −8.1 dB, middle of Figure 1). For both children and adults, 

the simulated UHL elevated thresholds in the speech-shaped noise by approximately 1 dB in 

the co-located condition (left panel, Figure 1), 1.3 dB in the msk-ipsi condition, and 6.5 dB 

in the msk-contra condition (right panel, Figure 1). Larger effects of simulated UHL were 

seen for the spatially separated target and two-talker masker, where the average effect of 

simulated UHL was 5.0 dB (child) and 8.4 dB (adult) in the msk-ipsi condition, and 12.3 dB 

(child) and 14.2 dB (adult) in the msk-contra condition.

A repeated-measures analysis of variance was conducted to evaluate the trends observed in 

Figure 1. There were two levels of masker (two-talker speech, speech-shaped noise), five 

levels of listening condition (no-plug/co-loc, no-plug/msk-side, simUHL/co-loc, simUHL/

msk-ipsi, simUHL/msk-contra), and two levels of the between-subjects factor of age group 

(child, adult). Results from this analysis are shown in Table 2. All three main effects reached 

significance, as did two of the two-way interactions. Of particular importance, the three-way 

interaction (Masker x Listening Mode x Age Group) was statistically significant. This 

reflects the fact that the child-adult difference was consistent across listening conditions for 

the speech-shaped noise, but not the two-talker speech masker (middle panel, Figure 1). 

Because of this statistically significant three-way interaction, all lower-order effects should 

be treated with caution.

Simple main effects testing revealed that SRTs were lower for adults than children in all 

cases except for the no-plug/msk-side condition in speech-shaped noise (p = 0.169) and the 

two simUHL/msk-ipsi conditions (p = 0.066 and p = 0.276 for speech-shaped noise and two-

talker maskers, respectively). SRTs were lower for the speech-shaped noise than the two-

talker masker in all cases except the no-plug/msk-side condition for adults (p = 0.350). SRTs 

were significantly lower for the no-plug/co-loc condition than the simUHL/co-loc in all 

cases except for the child data with the two-talker masker (p = 0.208). Significant 

differences resulting from simple main effects testing are represented in the top panel of 

Figure 1. Within a given listening condition, a significant effect of masker is indicated by a 

solid line for children and a dashed line for adults. Stars indicate that children’s thresholds 

are significantly higher than adults’ for a given masker and listening condition.

Figure 2 shows the average SRM achieved by children and adults with and without 

simulated UHL in two-talker speech and speech-shaped noise. As with Figure 1, circles 

represent data obtained in speech-shaped noise, and diamonds represent data obtained in 

two-talker speech. Symbol shading indicates results obtained from either children (black) or 

adults (grey). Error bars represent one standard deviation. Positive SRM values indicate 

better speech recognition performance when the target and masker were spatially separated 

relative to when they were co-located in azimuth.

All listeners benefited from spatial separation of target and masker stimuli along the 

azimuthal plane in the no-plug listening conditions (left third of figure); this benefit was 

approximately 6-dB larger in the two-talker speech than the speech-shaped noise masker. In 

the simulated-UHL listening conditions, a positive SRM was observed only when the 
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masker was presented ipsilateral to the ear with the simulated UHL. For the speech-shaped 

noise, SRM was similar in the no-plug/msk-side and simUHL/msk-ipsi conditions, with 

overall means of 3.7 dB (SD = 1.17) and 3.6 dB (SD = 1.79), respectively. That is, access to 

stimuli from the side of the masker did not improve SRM. In contrast, for the two-talker 

speech, SRM in the no-plug/msk-side condition was larger than for the simUHL/msk-ipsi 

condition, with overall means of 9.7 dB (SD = 3.00) and 4.2 dB (SD = 1.47), respectively. 

When the masker was presented contralateral to the simulated UHL, the SRM was −2.5 dB 

(SD = 2.04): that is, when the masker was presented to the ear with better hearing sensitivity, 

performance was degraded relative to the co-located baseline.

A repeated-measures analysis of variance was conducted to evaluate the trends in the SRM 

results shown in Figure 2. There were two levels of masker (two-talker speech, speech-

shaped noise), three levels of listening condition (no-plug/msk-side, simUHL/msk-ipsi, 

simUHL/msk-contra), and two levels of the between-subjects factor of age group (child, 

adult). Results from this analysis are shown in Table 3. There was a significant main effect 

of masker and a significant main effect of listening condition, but no main effect of age 

group. There was a significant interaction between masker and listening condition, and 

between masker and age group; the other interactions failed to reach significance. Simple 

main effects testing indicate that SRM was larger for the two-talker than the speech-shaped 

noise masker in the no-plug/msk-side condition (9.7 dB versus 3.7 dB, respectively), but not 

in the simUHL/msk-ipsi or the simUHL/msk-contra conditions (p = 0.181 and p = 0.255, 

respectively). The SRM within a masker type differed across the three listening conditions in 

all cases except the no-plug/msk-side and simUHL/msk-ipsi conditions for the speech-

shaped noise masker (p = 1.00). The SRM was significantly different between groups in the 

two-talker speech (p = .015) but not the speech-shaped noise masker (p = .835).

One question of interest is whether the magnitude of attenuation provided in the simulated 

UHL was associated with the amount of SRM children experienced. Based on the results of 

Reeder at al (2015), this association was predicted for attenuation at 500 Hz, but not at the 

other frequencies. Without correcting for multiple comparisons, the two-tailed bivariate 

correlation between children’s SRM and attenuation values at 500 Hz was statistically 

significant in the two-talker masker for the simUHL/msk-contra listening condition (r = −.

609, p = .047), but not in the other masker conditions (p ≥ .283). Correlations between SRM 

and thresholds at 1000 and 2000 Hz were not significant. These results are consistent with 

the idea that attenuation at low frequencies is more detrimental to SRM than attenuation at 

higher frequencies.

DISCUSSION

The goals of this study were to: 1) determine the effect of an acute simulated UHL on 

children’s SRM in two-talker speech and speech-shaped noise, and 2) develop a method to 

be used in future studies that will assess SRM in children who have permanent UHL. The 

main findings are: 1) SRM is particularly robust in the presence of informational masking 

for both children and adults with normal hearing, 2) disruption of binaural cues via an acute 

simulated UHL has different consequences for SRM in the two maskers, and 3) this 

procedure offers promise for the assessment of SRM in children with permanent UHL. 
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Although it was not the main focus of this study, performance in the co-located conditions 

will be discussed first because they serve as the baseline condition for quantifying SRM.

Performance in co-located conditions (baseline)

When the target and masker were co-located, performance tended to be better in the no-plug 

than the simulated-UHL listening condition. This difference was statistically significant for 

adults in both maskers and for children in the speech-shaped noise masker. There was no 

statistically significant effect of a simulated UHL on children’s performance in the co-

located two-talker masker. The present results are broadly consistent with previous data 

comparing performance between no-plug and simulated-UHL conditions for co-located 

target and masker stimuli. Van Deun et al. (2010) assessed performance with and without a 

unilateral earplug and earmuff for 8-year-olds and adults on the Leuven Intelligibility 

Number Test in the presence of speech-weighted noise. Comparing performance with and 

without the simulated UHL in the co-located target and masker condition, children and 

adults performed similarly and demonstrated statistically significant binaural summation 

(average 1.3 dB and 1.4 dB, respectively). For comparison, values of summation in speech-

shaped noise in the present dataset were 1.3 dB for children and 0.9 dB for adults. Mean 

values of summation in the two-talker masker were 0.7 dB for children and 1.4 dB for 

adults.

It is not clear how to think about the statistically non-significant summation for children in 

the two-talker masker. It is possible that summation does not differ across age groups or 

across maskers, and failure to find a statistically significant effect in the two-talker masker 

for children is a chance finding. Keep in mind that the summation effects observed in the 

present dataset were small. However, there is some precedent in the literature for less robust 

summation in a two-talker masker with a simulated UHL. For example, Marrone et al. 

(2008) did not observe a statistically significant effect of binaural summation for adults on a 

closed-set speech recognition task in the presence of same-sex two-talker speech. In that 

study, adults with normal hearing listened with and without a simulated UHL using a 

unilateral earplug and earmuff (average attenuation for speech = 38.1 dB). There was a 

statistically non-significant 0.5-dB difference between SRTs obtained with and without the 

simulated UHL in the co-located target-masker condition (Marrone et al. 2008).

Summation effects have not consistently been demonstrated in studies of listeners with 

permanent UHL. We cannot demonstrate summation in listeners with permanent UHL by 

comparing speech recognition scores when listening with two ears with normal hearing 

relative to one ear with normal hearing. Rather, summation effects are estimated by 

comparing performance of listeners with permanent UHL to that of listeners with normal 

bilateral hearing. Recall that Reeder et al. (2015) examined performance of children with 

permanent UHL and their peers with normal hearing on a four-alternative forced-choice 

spondee identification task in the presence of competing speech maskers; data figures 

suggest only a 0.3-dB summation effect. However, Rothpletz et al. (2012) observed a 4.5-dB 

summation effect when comparing performance between adults with and without permanent 

UHL on a speech-on-speech recognition task designed to produce minimal energetic 
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masking. They suggested that adults with normal bilateral hearing have better selective 

auditory attentional capabilities than adults with permanent UHL (Rothpletz et al. 2012).

Effects of spatial separation

Effects of a simulated UHL on performance in spatially separated maskers are discussed in 

terms of SRM. Recall that SRM was calculated for three conditions: in the absence of a 

simulated UHL (SRM[no-plug/msk-side]), and for maskers positioned ipsilateral or 

contralateral to the simulated UHL (SRM[simUHL/msk-ipsi] and SRM[simUHL/msk-

contra]). As illustrated in Figure 2, SRM tended to decrease with the introduction of a 

simulated UHL for both children and adults, and for both speech-shaped noise and two-

talker speech maskers. In the two-talker speech conditions, SRM decreased by 5.6 dB when 

the masker was ipsilateral to the simulated UHL, and by 12.2 dB when it was contralateral. 

For the speech-shaped noise conditions, SRM decreased by 5.7 dB when the masker was 

presented contralateral to the simulated UHL; the effect of simulated UHL was not 

statistically significant when the masker was ipsilateral to the simulated UHL. In both 

maskers, children and adults obtained a negative SRM -- worse performance than the co-

located baseline -- when the masker was presented contralateral to the simulated UHL.

The magnitude of SRM observed in a relatively steady noise masker for children and adults 

in the present study is broadly consistent with that found in previous studies. For instance, 

Van Deun et al. (2010) measured performance on a number recognition task in the presence 

of speech-weighted noise. Similar to the present study, Van Deun et al. (2010) used an 

earplug and earmuff to simulate UHL in adults and 8-year-olds with normal hearing. In that 

study, the SRM[no-plug/msk-side] was 3.9 dB (children) and 4.0 dB (adults); the 

SRM[simUHL/msk-ipsi] was 4.2 dB (children) and 4.6 dB (adults). In the present study, the 

SRM[no-plug/msk-side] was 3.9 dB (children) and 3.6 dB (adults), and SRM[simUHL/msk-

ipsi] was 3.9 (children) and 3.3 dB (adults). Considering the difference in task difficulty 

(number recognition versus open-set sentence recognition) and differences in methodology 

between the two studies, our results are in line with those reported by Van Deun et al. 

(2010).

The values of SRM observed for adults in the two-talker masker can also be compared with 

those obtained in other studies using maskers associated with informational masking. 

Rothpletz et al. (2012) measured SRM for adults using the Coordinate Response Measure 

(CRM; Bolia et al. 2000) paradigm in a single-talker speech masker. The CRM paradigm is 

a closed-set speech recognition task. In the single-talker masker, the CRM is sensitive to 

informational masking (e.g., Brungart 2001a). To further minimize energetic and maximize 

informational masking, Rothpletz et al. (2012) digitally processed the target and masker 

speech to minimize spectral overlap between the target and masker stimuli. Similar to the 

present study, target speech was always presented from 0° azimuth, and the masker was 

presented from 0°, +90°, or −90° azimuth. They found that adults with permanent UHL 

achieved 3.9 dB SRM when the single-talker masker was presented ipsilateral to the ear with 

UHL, and −2.5 dB SRM when it was presented contralateral to the ear with UHL. Adults 

with simulated UHL in the present study achieved 4.1 dB SRM when the two-talker masker 

was presented ipsilateral to the ear with UHL (SRM[simUHL/msk-ipsi]) and −1.7 dB SRM 
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when it was presented contralateral to the ear with simulated UHL (SRM[simUHL/msk-

contra]).

As discussed in the Introduction, there are few studies of masked speech recognition or 

SRM in children with permanent or simulated UHL using maskers associated with 

informational masking. The most relevant comparison can be made between our results and 

those obtained by Reeder et al. (2015). As a reminder, Reeder et al. (2015) assessed 

performance of 7- to 16-year-olds with moderately-severe to profound sensorineural UHL 

on a range of speech recognition tasks. One of their tasks assessed masked spondee 

recognition in single-talker male and female maskers as well as in multitalker babble 

presented from 0°, +90°, or −90° azimuth. To maximize stimulus uncertainty, thereby 

increasing informational masking, masker presentation was pseudorandomized for each 

spondee presentation. Although SRM was not calculated on the spondee recognition task, 

data figures are consistent with an SRM of 9 dB for children with normal hearing. This is 

similar to 8.5-dB SRM[no-plug/msk-side] observed for children in the present study in the 

two-talker masker. For children with permanent UHL, SRM in the Reeder at al. (2015) study 

was 7 dB when the masker was ipsilateral to the UHL and 0 dB when the masker was 

contralateral to the UHL. In contrast, children with simulated UHL in the present study 

achieved an SRM of 4.2 dB when the masker was ipsilateral to the simulated UHL 

(SRM[simUHL/msk-ipsi]) and −3.1 dB when the masker was contralateral to the simulated 

UHL (SRM[simUHL/msk-contra]). One challenge in comparing the present results with 

those of Reeder et al (2015) is that values of SRM based on those published data represent 

average performance in each of three maskers -- single male talker, single female talker, and 

multitalker babble -- whereas the present study used a two-talker masker. Another 

consideration is that the masker was unpredictable from interval to interval in the study of 

Redder et al. (2015); the resulting stimulus uncertainty could have increased informational 

masking. It is therefore difficult to compare the relative influence of informational masking 

on the results obtained across the two studies.

Effect of masker on spatial release from masking

Based on previous data, it was predicted that the benefit of spatially separating the target and 

masker would be larger for the two-talker speech relative to speech-shaped noise masker, 

due to greater informational masking with the two-talker masker. It is often argued that 

spatial separation of target and masker stimuli facilitates auditory stream segregation. When 

tested without the earplug, both children and adults achieved more SRM in the two-talker 

masker than the speech-shaped noise masker. In the no-plug condition, SRM for the two 

maskers differed by 4.6 dB for children and 7.5 dB for adults. These results are consistent 

with data from previous studies showing that listeners achieve greater SRM on a speech 

recognition task in the presence of competing speech than competing noise (e.g., Freyman et 

al. 1999, 2001, 2004; Arbogast et al. 2002, 2005; Johnstone & Litovsky 2006). For instance, 

Freyman et al. (1999) measured adults’ speech recognition for syntactically correct, 

nonsense sentences in the presence of speech-spectrum noise or competing single-talker 

speech. The target and competing speech were both produced by female talkers. Target 

speech was always presented from the front of the listener (0° azimuth), and the competing 

noise or speech was presented from +60° azimuth. The SRM was 8 dB for the speech-
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spectrum noise compared with 14 dB for the single-talker speech masker (Freyman et al. 

1999).

In contrast to the no-plug data, the masker type did not affect SRM in the simulated UHL 

conditions for children or adults. The SRM for both children and adults in two-talker speech 

and speech-shaped noise was approximately 4 dB when the masker was presented ipsilateral 

to the simulated UHL, and approximately −2 dB when the masker was presented 

contralateral to the simulated UHL. This pattern of results was very similar for the speech-

shaped noise and the two-talker masker. Comparing SRM in the simulated UHL and no-plug 

conditions suggests that the availability of binaural cues has very different consequences for 

the two maskers. In the speech-shaped noise, introducing a simulated UHL ipsilateral to the 

masker has no effect on SRM. This observation is consistent with the idea that improved 

SNR in the ear contralateral to the masker (head shadow) is responsible for SRM with a 

speech-shaped noise masker. In contrast, introducing the two-talker speech masker 

ipsilateral to the UHL reduces SRM from 8.5 dB to 4.2 dB in children, and from 11.1 dB to 

4.1 dB in adults. These results suggest that the benefit of access to binaural cues cannot be 

attributed entirely to the head shadow effect when the masker is two-talker speech. The 

benefit of access to cues available in the ear ipsilateral to the masker is sometimes described 

as squelch. The different mix of binaural cues contributing to performance in the two 

maskers could be related to relative contributions of informational masking in the baseline 

condition, where the target and masker are co-located; two-talker speech is thought to 

introduce substantially more informational masking than speech-shaped noise. The present 

results are therefore consistent with the idea that squelch plays an important role for speech 

recognition in an informational masker, but little to no role in an energetic masker.

Child-adult differences in SRM for the two-talker masker

The final prediction was that adults would benefit more than children would from binaural 

cues when the target and two-talker masker were spatially separated. We expected this age 

effect to be most evident in the no-plug conditions since listeners would have full access to 

the binaural cues that support SRM. Results are consistent with the idea that children obtain 

a smaller SRM than adults when the target is spatially separated from the two-talker speech. 

While there was no three-way interaction in the analysis of SRM, the largest mean 

difference between SRM for children and adults (2.6 dB) was observed for the two-talker 

masker in the no-plug/msk-side condition; in contrast, the child-adult difference ranged from 

1.4 to −0.6 dB in the other five test conditions.

There is no consensus on the developmental trajectory of SRM in children. Studies from 

Litovsky and colleagues have concluded that children as young as 3 years of age show adult-

like SRM on masked speech recognition tasks in the presence of competing speech or noise 

(e.g., Litovsky 2005; Garadat & Litovsky 2007). However, other studies suggest that 

development of SRM is not complete until adolescence (e.g., Cameron et al. 2006). For 

instance, Yuen and Yuan (2014) measured SRM on the Mandarin Pediatric Lexical Tone and 

Disyllabic Word Picture Identification Task in Noise (MAPPID-N) in adults and 4.5- to 9-

year-olds. The MAPPID-N is a closed-set forced-choice speech recognition task utilizing 

speech-shaped noise as the masker. Children achieved approximately 3-dB less SRM than 
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adults on the disyllabic word subtest and approximately 4-dB less SRM than adults on the 

lexical tone subtest. Importantly, regression analyses on the child data suggest that children’s 

SRM significantly improved with age on both subtests, and that age accounted for 32–34% 

of the variance in children’s SRM.

The psychoacoustic literature provides additional support for the idea that SRM is immature 

for school-age children when tested using an informational masker. Specifically, that 

literature indicates that children may not process binaural cues as efficiently as adults under 

some conditions. One way to measure the binaural auditory system’s sensitivity to interaural 

time and level differences is the masking level difference (MLD; Hirsh 1948; Grose et al. 

1997). The MLD is estimated by measuring thresholds in two conditions: with the target and 

masker presented diotically and with those stimuli presented dichotically. The difference in 

thresholds for these two conditions is the MLD. For narrowband maskers, the MLD is 

smaller for school-age children than adults (Grose et al. 1997). This child-adult difference is 

thought to reflect children’s inability to use the interaural difference cues to capitalize on 

stimulus cues present in the masker envelope minima (Hall et al. 2004). Immaturity in the 

ability to use binaural cues in a narrowband masker may reflect the same limitations as 

observed in the two-talker masker of the present dataset. For instance, children’s immature 

ability to use binaural cues to capitalize on target speech cues in the fluctuating two-talker 

masker could have contributed to the observed child-adult difference in SRM[no-plug/msk-

side] for that masker in the present data.

Extent of simulated UHL

Average degree of simulated UHL—There is precedent for a correlation between SRM 

and low-frequency hearing thresholds for children with UHL. Reeder et al. (2015) reported 

that children with lower (better) thresholds in their normal-hearing ear at 500 Hz had lower 

(better) adaptive SRTs when competing single-talker male or female speech was spatially 

separated to the side of their normal-hearing ear (r = 0.71, p < 0.05); this association was not 

observed with multi-talker babble. Reeder et al. (2015) suggested that even a minimal 

difference in hearing sensitivity is important for binaural processing. Without correcting for 

multiple comparisons, the two-tailed bivariate correlation between children’s SRM in the 

two-talker masker and attenuation values at 500 Hz in the present dataset was statistically 

significant for the simUHL/msk-contra listening condition (r = −.609, p ≤ .05); this was the 

only statistically significant correlation. This result suggests that, as degree of simulated 

UHL increased at 500 Hz, children benefited less from spatial separation of the two-talker 

masker when it was spatially separated to the side of their normal-hearing ear. A parallel 

analysis was not performed on adult data because speech data and attenuation values were 

collected from different individuals in all but two cases. An association between low-

frequency simulated UHL and SRM is also broadly consistent with the results of Noble et al. 

(1994), who reported that, as degree of low-frequency conductive hearing loss increased, 

localization performance in the horizontal plane decreased. Similar results for SRM would 

be predicted to the extent that SRM relies on the same binaural cues as localization.

One limitation of the present protocol is that attenuation was only measured at 500, 1000, 

and 2000 Hz. While attenuation values for adults and children were largely comparable 
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across this range, we cannot rule out the possibility that attenuation differed between groups 

above 2000 Hz or below 500 Hz.

Acute versus chronic UHL—A goal of the present study was to examine the effects of 

an acute simulated UHL on SRM, as a preliminary step towards developing methods of 

assessing SRM in children with long-standing UHL. There is evidence to suggest that the 

auditory system adapts to disrupted binaural input over time (Kumpik et al. 2010). For 

instance, Kumpik et al. (2010) investigated the effect of training on free-field localization of 

flat-spectrum or random-filtered noise stimuli in adults with normal bilateral hearing who 

had an earplug placed in one ear. Relative to the no-plug condition, placement of a unilateral 

earplug significantly reduced localization performance from ≥85% correct to ≤50% correct. 

Adults who received localization training with the unilateral earplug for 7–8 days showed 

significant improvement in free-field localization abilities for flat-spectrum noise. These 

results suggest that the auditory system can adapt to disrupted binaural input by reweighting 

localization cues (Kumpik et al. 2010). However, Kumpik et al. (2010) did not see evidence 

of adaptation within a single test session. Further evidence that adaptation to disrupted 

binaural input does not occur within a single test session comes from Slattery and 

Middlebrooks (1994). In that study, adults with normal bilateral hearing completed a 

localization task in the presence of a unilateral earplug and earmuff. Performance was 

assessed immediately after placing the earplug and after 24-hrs experience wearing the 

earplug; the earmuff was placed over the earplug only during testing. Performance on the 

localization task did not differ between the two time points. It is likely that results from the 

present study would be different had the listeners acclimatized to listening with the 

simulated UHL over a period longer than 24 hrs.

Conductive versus sensorineural hearing loss—There are important differences 

between the impacts of conductive versus sensorineural hearing loss that should be 

considered when interpreting our data. In the present study, we simulated a conductive UHL 

by occluding one ear with an earplug and earmuff. Conductive hearing loss results in 

attenuation of air-conducted auditory stimuli, while sensorineural hearing loss results in 

attenuation and distortion of air-conducted auditory stimuli (Plomp 1978, 1986; Dreschler & 

Plomp 1980, 1985; Glasberg & Moore 1989). In adults with moderate hearing loss, 

symmetrical conductive hearing loss is relatively more detrimental to sound source 

localization in the horizontal plane than symmetrical sensorineural hearing loss (Noble, 

Byrne, & Lepage 1994). This performance difference has been attributed to disruption of 

low-frequency interaural time cues in listeners with conductive hearing loss. For listeners 

with conductive hearing loss, reduced effectiveness of air conducted sound and increased 

reliance on bone conduction leads to a loss or reduction of cochlear isolation (Noble et al. 

1994) and consequent reduction of binaural difference cues. This is relevant to the current 

study because SRM and localization are thought to rely on some of the same binaural cues. 

The distortion of air-conducted sound in sensorineural hearing loss and the disruption of 

bone-conducted interaural cues in conductive hearing loss may affect SRM in ways that are 

not captured by the simulated conductive UHL evaluated in the present study. This 

possibility will be addressed in future studies of children with permanent conductive and 

sensorineural UHL.

Corbin et al. Page 18

Ear Hear. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

Overall, our findings confirm that children and adults with normal bilateral hearing 

experience greater SRM for primarily informational as opposed to energetic masking. Given 

that the effect of masker type on SRM was essentially eliminated in the presence of a 

simulated UHL, these results suggest that the detriment of listening with disrupted binaural 

input is more evident in competing two-talker speech than speech-shaped noise for both 

children and adults. This was a first step towards applying this method of testing to children 

with permanent UHL. We expect that listeners with permanent UHL will experience some of 

the same deficits that listeners with simulated UHL demonstrated on the present task. 

However, we expect that degree and type of hearing loss and the adoption of compensatory 

listening strategies could impact the results obtained in listeners with permanent UHL. The 

present data suggest that even mild to moderate degrees of conductive hearing loss may 

eliminate SRM and potentially result in functional communication difficulties. The finding 

that binaural squelch plays an important role in SRM for competing two-talker speech, but 

not speech-shaped noise, could also have implications for audiologic rehabilitation and 

preferential classroom seating. Specifically, some children may benefit from more 

aggressive audiologic treatment options in the presence of competing speech. Given the 

association between speech recognition performance in a two-talker masker and children’s 

real-world listening difficulties (Hillock-Dunn et al. 2015), assessment of SRM in a two-

talker masker may provide important insight into the difficulties children with UHL face in 

their everyday environments, such as classrooms.
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Figure 1. 
Group average SRTs (in dB SNR) required to reach 50% correct sentence recognition are 

shown for children and adults in all listening conditions, indicated on the abscissa. Results in 

the left panel reflect those obtained in co-located target-masker conditions, while those in 

the right panel reflect those obtained in spatially separated target-masker conditions. Symbol 

shape indicates masker condition. Circles indicate SRTs obtained in speech-shaped noise, 

while diamonds indicate SRTs obtained in two-talker speech. Symbol shading and size 

designate age group. Small black symbols represent data for children, and large grey 

symbols represent data for adults. Error bars represent one standard deviation of the mean. 

Results of simple main effects testing appear at the top of each panel. Stars indicate 

significant differences between SRTs of children and adults within a condition. Lines 

indicate significant effects of maker type within data of either children (solid black lines) or 

adults (dashed grey lines).
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Figure 2. 
Group average SRM (in dB) for children and adults with and without simulated UHL in 

two-talker speech and speech-shaped noise. SRM was calculated as the difference between 

thresholds obtained when the target and masker were co-located and thresholds obtained 

when the masker was presented from +90° or −90° on the azimuth. Circles represent SRM 

achieved in speech-shaped noise, and diamonds represent SRM achieved in two-talker 

speech. Symbol shading and size indicate results obtained from either children (small, black) 

or adults (large, grey). Error bars represent one standard deviation of the mean.

Corbin et al. Page 25

Ear Hear. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Corbin et al. Page 26

Ta
b

le
 1

M
ea

n 
sp

ee
ch

 r
ec

og
ni

tio
n 

th
re

sh
ol

ds
 (

SR
T

s,
 d

B
 S

N
R

) 
w

ith
 a

nd
 w

ith
ou

t s
im

ul
at

ed
 U

H
L

 f
or

 c
hi

ld
re

n 
an

d 
ad

ul
ts

 in
 e

ac
h 

m
as

ke
r. 

T
he

 ta
rg

et
 a

nd
 m

as
ke

r 

w
er

e 
ei

th
er

 c
o-

lo
ca

te
d 

(c
o-

lo
c)

, o
r 

th
e 

m
as

ke
r 

w
as

 p
re

se
nt

ed
 f

ro
m

 th
e 

si
de

 (
m

sk
-s

id
e)

; i
n 

th
e 

si
m

ul
at

ed
 U

H
L

 c
on

di
tio

n,
 th

e 
m

as
ke

r 
w

as
 p

re
se

nt
ed

 e
ith

er
 

ip
si

la
te

ra
l (

m
sk

-i
ps

i)
 o

r 
co

nt
ra

la
te

ra
l (

m
sk

-c
on

tr
a)

 to
 th

e 
si

m
ul

at
ed

 lo
ss

. S
ta

nd
ar

d 
de

vi
at

io
ns

 a
pp

ea
r 

be
lo

w
 e

ac
h 

m
ea

n,
 in

 p
ar

en
th

es
es

.

N
o 

pl
ug

Si
m

ul
at

ed
 U

H
L

T
w

o-
ta

lk
er

 s
pe

ec
h

Sp
ee

ch
-s

ha
pe

d 
no

is
e

T
w

o-
ta

lk
er

 s
pe

ec
h

Sp
ee

ch
-s

ha
pe

d 
no

is
e

C
o-

lo
c

M
sk

-s
id

e
C

o-
lo

c
M

sk
-s

id
e

C
o-

lo
c

M
sk

-i
ps

i
M

sk
-c

on
tr

a
C

o-
lo

c
M

sk
-i

ps
i

M
sk

-c
on

tr
a

C
hi

ld
 n

 =
 1

2
1.

61
*  

(1
.0

3)
−

6.
90

*  
(2

.5
5)

−
3.

56
*  

(1
.2

1)
−

7.
43

 (
1.

18
)

2.
28

*  
(0

.7
7)

−
1.

92
 (

1.
73

)
5.

39
*  

(1
.6

0)
−

2.
22

*  
(0

.6
8)

−
6.

11
 (

1.
96

)
0.

01
*  

(2
.3

9)

A
du

lt 
n 

=
 1

1
−

0.
61

*  
(1

.6
7)

−
11

.6
7*

 (
2.

08
)

−
4.

52
*  

(0
.5

1)
−

8.
08

 (
0.

96
)

0.
83

*  
(0

.8
5)

−
3.

27
 (

1.
61

)
2.

56
*  

(1
.4

2)
−

3.
59

*  
(0

.8
3)

−
6.

86
 (

1.
10

)
−

1.
97

*  
(1

.6
2)

* In
di

ca
te

s 
m

ea
n 

di
ff

er
en

ce
 b

et
w

ee
n 

ch
ild

re
n 

an
d 

ad
ul

ts
 is

 s
ig

ni
fi

ca
nt

 (
p 

<
 .0

5)
 w

ith
 B

on
fe

rr
on

i a
dj

us
tm

en
t f

or
 m

ul
tip

le
 c

om
pa

ri
so

ns
.

Ear Hear. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Corbin et al. Page 27

Ta
b

le
 2

R
es

ul
ts

 o
f 

an
 r

m
A

N
O

V
A

 e
va

lu
at

in
g 

th
e 

ef
fe

ct
s 

of
 a

ge
 g

ro
up

 (
ch

ild
, a

du
lt)

, m
as

ke
r 

(t
w

o-
ta

lk
er

 s
pe

ec
h,

 s
pe

ec
h-

sh
ap

ed
 n

oi
se

),
 a

nd
 li

st
en

in
g 

co
nd

iti
on

 (
no

-

pl
ug

/c
o-

lo
c,

 n
o-

pl
ug

/m
sk

-s
id

e,
 s

im
U

H
L

/c
o-

lo
c,

 s
im

U
H

L
/m

sk
-i

ps
i, 

si
m

U
H

L
/m

sk
-c

on
tr

a)
 o

n 
SR

T
s.

So
ur

ce
F

df
p

pa
rt

ia
l η

2

A
ge

 G
ro

up
43

.0
4

1,
 2

1
<

.0
01

**
.6

72

M
as

ke
r

58
1.

81
1,

 2
1

<
.0

01
**

.9
65

L
is

te
ni

ng
 C

on
di

tio
n

22
4.

22
4,

 8
4

<
.0

01
**

.9
14

M
as

ke
r 

x 
A

ge
 G

ro
up

26
.0

3
1,

 2
1

<
.0

01
**

.5
53

L
is

te
ni

ng
 C

on
di

tio
n 

x 
A

ge
 G

ro
up

1.
82

4,
 8

4
.1

34
.0

80

M
as

ke
r 

x 
L

is
te

ni
ng

 C
on

di
tio

n
69

.5
4

4,
 8

4
<

.0
01

**
.7

68

M
as

ke
r 

x 
L

is
te

ni
ng

 C
on

di
tio

n 
x 

A
ge

 G
ro

up
6.

00
4,

 8
4

<
.0

01
**

.2
22

* p 
<

 .0
5

**
p 

<
 .0

01

Ear Hear. Author manuscript; available in PMC 2018 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Corbin et al. Page 28

Ta
b

le
 3

R
es

ul
ts

 o
f 

an
 r

m
A

N
O

V
A

 e
va

lu
at

in
g 

th
e 

ef
fe

ct
s 

of
 a

ge
 g

ro
up

 (
ch

ild
, a

du
lt)

, m
as

ke
r 

(t
w

o-
ta

lk
er

 s
pe

ec
h,

 s
pe

ec
h-

sh
ap

ed
 n

oi
se

),
 a

nd
 li

st
en

in
g 

co
nd

iti
on

 (
no

-

pl
ug

/m
sk

-s
id

e,
 s

im
U

H
L

/m
sk

-i
ps

i, 
si

m
U

H
L

/m
sk

-c
on

tr
a)

 o
n 

sp
at

ia
l r

el
ea

se
 f

ro
m

 m
as

ki
ng

.

So
ur

ce
F

df
p

pa
rt

ia
l η

2

A
ge

 G
ro

up
2.

03
1,

 2
1

.1
69

.0
88

M
as

ke
r

57
.9

9
1,

 2
1

<
.0

01
**

.7
34

L
is

te
ni

ng
 C

on
di

tio
n

18
7.

87
2,

 4
2

<
.0

01
**

.8
99

M
as

ke
r 

x 
A

ge
 G

ro
up

6.
63

1,
 2

1
.0

18
*

.2
40

L
is

te
ni

ng
 C

on
di

tio
n 

x 
A

ge
 G

ro
up

1.
51

2,
 4

2
.2

33
.0

67

M
as

ke
r 

x 
L

is
te

ni
ng

 C
on

di
tio

n
55

.4
2

2,
 4

2
<

.0
01

**
.7

25

M
as

ke
r 

x 
L

is
te

ni
ng

 C
on

di
tio

n 
x 

A
ge

 G
ro

up
1.

84
2,

 4
2

.1
71

.0
81

* p 
<

 .0
5

**
p 

<
 .0

01

Ear Hear. Author manuscript; available in PMC 2018 March 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Stimuli and conditions
	Procedure
	General procedure
	Unilateral hearing loss simulation
	Threshold estimation


	RESULTS
	DISCUSSION
	Performance in co-located conditions (baseline)
	Effects of spatial separation
	Effect of masker on spatial release from masking
	Child-adult differences in SRM for the two-talker masker
	Extent of simulated UHL
	Average degree of simulated UHL
	Acute versus chronic UHL
	Conductive versus sensorineural hearing loss

	Conclusions

	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3

