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This article represents the first in a series of tutorials on model evaluation in nonlinear mixed effect models (NLMEMs), from
the International Society of Pharmacometrics (ISoP) Model Evaluation Group. Numerous tools are available for evaluation of
NLMEM, with a particular emphasis on visual assessment. This first basic tutorial focuses on presenting graphical evaluation
tools of NLMEM for continuous data. It illustrates graphs for correct or misspecified models, discusses their pros and cons,
and recalls the definition of metrics used.
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Nonlinear mixed effects models (NLMEMs) have been
established as the state of the art methodology in pharma-

cometrics for analysis of longitudinal pharmacokinetic (PK)
and pharmacodynamic (PD) measurements collected in

preclinical and clinical studies, especially in drug develop-
ment.1–3 NLMEM for continuous PK/PD data use nonlinear

dynamic models that draw on physiological or pharmaco-

logical principles to provide a reasonable approximation of
the dynamics of the drug in the body and of their effects.

They describe both population and subject-specific charac-
teristics, represented as fixed parameters for population

characteristics and random parameters for subjects.
NLMEMs are widely applied because of their ability to

quantify several levels of variability, to handle unbalanced
data, and to identify individual specific covariates.

In any regression modeling, after fitting a model to a

dataset, it is essential to assess the goodness-of-fit
between the model and the dataset and to determine

whether the underlying model assumptions seem appropri-

ate. In this tutorial, we refer to this procedure as “model
evaluation,” although, in literature, it has been described

under several more or less equivalent terms, such
as “model diagnostics,” “model adequacy,” “model

assessment,” “model checking,” “model appropriateness,”
and “model validation.” Model evaluation has to be

clearly distinguished from “model building” and “model
qualification” processes, which are two steps of model

development that require model evaluation but imply
different concepts. “Model building” is the process of devel-

oping a model on a given dataset to achieve clearly defined
analysis objectives. “Model qualification” is the assessment

of the performance of a model in fulfilling the analysis

objectives. “Model evaluation” is required for both process-
es to diagnose one or several intermediary or key models

in a model-building step or evaluate a selected model with

respect to the modeling objectives. In this tutorial, we will
only focus on the model evaluation step and describe vari-

ous tools for evaluation of a NLMEM, regardless of whether

it is an intermediary model, a key model in the model-
building step, or a best model that can be used for further

inferences.
Although there are many statistical tools for model evalu-

ation, the primary tool for most biomedical science and

engineering modeling applications is graphical analysis.

Graphical methods have an advantage over numeric meth-
ods for model evaluation because they readily shed light on

a broad range of complex aspects of the relationship

between the model and the data. Different types of graphi-
cal analyses evaluating a fitted model provide information

on the adequacy of different aspects of the model. NLMEM
methodology is naturally linked with many assumptions

related to executed design (e.g., unbalance design), data

collection, form of structural model, multiple levels of vari-
ability to be quantified, residual model, and covariate mod-

el. Interactions between model components such that

misspecification of one component may have conse-
quences for the apparent appropriateness of other compo-

nents in the fitted NLMEM adds to the challenge of model
evaluation, therefore, a large set of tools is required.

In recent years, many new methods for graphical model

evaluation have been developed. For example, new

residual-based model diagnostics have been developed
(e.g., conditional weighted residuals (CWRES), normalized

prediction distribution errors (NPDE), etc.),4–6 new models
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Table 1 Various evaluation graphs in nonlinear mixed effect modela and proposal for a core set of evaluation graphs

Graphs In core set

What to expect

if the model is correct?

What to do if the graph

does not fulfill the

requirements?

Basic (prediction-based) evaluation

Population-based graphs

OBS vs. xPRED

(x5 1, C, and Pb)

Yes

NB: CPRED or PPREDc

Data points are scattered around the identity

line (but not necessarily evenly)

Trends may suggest a modification of

structural model, residual error mod-

el or interindividual variability model.

NB: Trends can also appear in absence

of model misspecifications for mod-

els highly nonlinear with respect to

random effects and large interindi-

vidual variability, especially when

using PRED.

xWRES (x5 1, C, and Pb)

vs. time or xPRED

Yes

NB: CWRES or PWRESc

Data points are scattered around the

horizontal zero-line (more or less evenly)

Trends may suggest a modification of

structural model, residual error mod-

el, or interindividual variability model.

Trends by conditioning on covariates

suggest including covariates.

NB: Trends can also appear in absence

of model misspecifications for mod-

els highly nonlinear with respect to

random effects and large interindi-

vidual variability, especially when

using WRES.

xWRES (x5 1, C, and Pb)

vs. covariates

Yes if covariates are considered No substantial correlation appears Trends suggest including covariates

or changing the covariate model.

Individual-based graphsd

Individual fits Yes

NB: at least for some

representative individuals

Observations are distributed evenly around

the individual predicted curve

A substantial discordance between

observations and predictions sug-

gests a modification of the structur-

al model, parameter variability

model, or the residual error model.

NB: This diagnostic is not useful for

sparse data.

OBS vs. IPRED Yes Data points are scattered evenly around the

identity line. Points cluster closer to the

line than with observations vs. PRED,

especially when interindividual variability is

large

Trends may suggest a modification of

the structural model or the residual

error model. A lack of trend may

not necessarily be associated with

absence of model misspecification

if data are sparse.

IWRES vs. time or IPRED Yes

NB: Graphs of absolute

IWRES vs. IPRED are

also informative

Data points are scattered evenly around the

horizontal zero-line. Most of the points lie

within (21.96 to 1.96)

Trends suggest a modification of

structural model or residual error

model. A cone-shaped graph of

IWRES vs. IPRED suggests a

change in the error model. A lack

of trend may not be necessarily be

associated with absence of model

misspecification if data are sparse.

Correlation between EBEs Yes No trend is expected in model without corre-

lation between random effects if data are

rich (i.e., low eta-shrinkage)

Correlation between EBE suggests

including correlation between ran-

dom effects unless data are

sparse.

EBEs vs. covariates Yes if covariates

are considered

No substantial correlation appears between

EBE and covariates

Trends between EBE and covariates

suggest, including covariates or

changing the covariate model.

Simulation-based graphs

VPC or pcVPC Yes

NB: The choice between the two

depends on the importance

of covariates and use of adaptive

designs

Observed percentiles are not systematically

different from the corresponding predicted

percentiles and are within the correspond-

ing confidence interval

Trends may suggest a modification of

the structural model, the residual

error model, or the parameter vari-

ability model. Trends when condi-

tioning on covariates suggest

including covariates or changing

the covariate model.

NPC coverage Observed percentiles are within the confi-

dence interval of the corresponding pre-

dicted percentiles

Trends may suggest a modification of

the structural model, the residual

error model, or the interindividual
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for the study of variance have been proposed, shortcom-
ings of commonly used empirical Bayes estimates (EBEs)
have been underlined7 and methods for using visual predic-
tive checks (VPCs) have been developed and described.8,9

To provide a compass and fit-for-purpose direction in the
emerging and very active field of model-based drug develop-
ment, the International Society of Pharmacometrics (ISoP)
Best Practice Committee has initiated a “Model Evaluation
Group” to provide detailed guidance for model evaluation of
NLMEM. This basic tutorial represents the first in a series of
tutorials on model evaluation. It describes a core set of
graphical tools for evaluation of NLMEM for continuous data
and provides guidance, especially to beginner modelers, on
how they are meant to be used. It includes a description of
the different metrics, an illustration about their graphical use
on “true” and “misspecified” models, and a discussion of their
pros and cons. Each metric is first described by equations
and then by a less technical explanation in order to make the
definition of each tool easier to understand for readers with
statistical or pharmacometric backgrounds. The graphs are
broadly separated into two categories: prediction-based
(basic) and simulation-based tools (Table 1). The use of
each graph is illustrated via two case examples, which were
chosen to show the properties and behaviors of different
evaluation tools in different situations. This is not necessarily
to mimic what should be done in real-world modeling. There-
fore, in these two examples, we used only simulated data
and ignored important steps, such as exploring data,
researching literature to understand the data, and to propose
a set of plausible models, etc. The first example is a con-
trived example, in which we used a very simple PK model.
The designs (dose, distribution of covariates, and allocation
of sampling times) were selected to easily show the proper-
ties of various evaluation tools, although they may not resem-
ble real data conditions. In the second part of the tutorial, we
applied the presented graphical tools to evaluate a more
complex example that is based on a real study. This is a PK/

PD model describing the total warfarin concentration and its
effect on prothrombin complex activity. For each example, we
simulated data from a “true” model and fitted different mod-
els, including the “true” and various “misspecified” models to
highlight some types of model deficiency. To show the avail-
ability of several software tools developed for NLMEM estima-
tion and simulation, the steps of simulating data, estimating
parameters, and computing evaluation metrics were per-
formed using a variety of software, including R (https://cran.r-
project.org/), NONMEM (http://www.iconplc.com/innovation/
solutions/nonmem/), MONOLIX (http://lixoft.com/products/
monolix/), and PHOENIX (https://www.certara.com/software/
pkpd-modeling-and-simulation/phoenix-nlme/). The graphical
displays presented in the tutorial are a suggestion using R
scripts but it is not a recommendation from the ISoP Model
Evaluation group.

PHARMACOKINETIC CASE EXAMPLE
Structural model
A simple PK model for a hypothetical drug was utilized
throughout the next two sections (Basic evaluation tools &
Simulation-based evaluation tools) to illustrate different eval-
uation tools for detecting various types of model misspecifi-
cation. The PK model is a two-compartment model with first-
order elimination following a single i.v. bolus administration.
Time course of drug concentration is described by Eq. 1:

dA1

dt
52

CL
V1

3A12
Q
V1

3A11
Q
V2

3A2

dA2

dt
5

Q
V1

3A12
Q
V2

3A2

C tð Þ5 A1

V1

(1)

The model has four parameters CL, V1, Q, and V2 repre-
senting clearance, volume of distribution for the central

Table 1. Continued

Graphs In core set

What to expect

if the model is correct?

What to do if the graph

does not fulfill the

requirements?

variability model. Trends when con-

ditioning on covariates suggest

including covariates.

npd (NPDE) vs. time or PPREDe Yes Data points are scattered evenly around the

horizontal zero-line. Most of the points lie

within (21.96 to 1.96). For graphs with

observed and predicted percentiles and the

confidence intervals: observed percentiles

are not systematically different from the

corresponding predicted percentiles and

are within the corresponding confidence

interval

Trends may suggest a modification of

structural model, residual error

model, or interindividual variability

models. A cone-shaped graph if

npd vs. PPRED suggest a change

in the residual error model. Trends

when conditioning on covariates

suggest including covariates.

npd (NPDE) vs. covariates Yes if covariates are considered No substantial correlation appears Trends suggest including covariates

or changing the covariate model

CPRED, conditional population predictions; EBE, empirical Bayes estimate; FO, first order; IPRED, individual prediction; IWRES, individual weighted residuals;

NB, nota bene; NPC, numerical predictive check; npd, normalized prediction distribution; NPDE, normalized prediction distribution error; OBS, observations;

pcVPC, prediction-corrected visual predictive check; PPRED, simulation-based population predictions; PRED, FO population predictions; VPC, visual predictive

check; WRES, weighted residuals.
aSee text or Supplementary Table S3 for definition of terms. bPPRED and PWRES are denoted EPRED and expectation weighted residuals in NONMEM, respectively.
cDepending on the method used for parameter estimation (see text). dCaution in interpretation in case of high shrinkage. enpd is preferred over NPDE for graphical use.
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compartment, intercompartmental clearance, and volume of

distribution for the peripheral compartment, respectively.

We evaluated a binary covariate effect of concomitant treat-

ment (without 5 0, with 5 1) on clearance and a linear effect

of body weight on the central volume of distribution. Half of

the hypothetical patients received a concomitant treatment

in addition to the drug. Body weight is assumed to be dis-

tributed normally across the population, with a mean value

of 70 kg and SD of 15 kg.

Statistical model
The central compartment drug concentration yij for individu-

al i, observed at time tij is given by:

yij 5f hi ; tij
� �

1Eij (2)

where f is the PK function, which is identical for all the indi-

viduals; hi is a vector of p individual parameters for the indi-

vidual i, and eij is the residual error. Let yi denote the vector

of ni observations yij, ti the vector of ni sampling times tij, ei

the vector of ni residual errors eij with j51. . .ni. ei is

assumed to follow a normal distribution with mean 0 and

variance R(hi,ti) as follows:

R hi ; tið Þ5 radd 1 rprop f hi ; tið Þ
� �

radd 1 rprop f hi ; tið Þ
� �0

(3)

For this example, we assumed a combined error model

with radd, rprop 6¼0.
The vector of individual parameters hi can be characterized

by a function h of the fixed effects, representing the typical

population values of the parameters and random effects gi

specific for each individual. The random effects are assumed

to follow a multinormal distribution with mean 0 and variance

X, N(0, X). Here, we assumed that each PK parameter fol-

lows a log-normal distribution, therefore, h has an exponen-

tial form. For instance, for the kth parameter, h is given by:

hik 5h l; gikð Þ5l3exp gikð Þ (4)

The variance-covariance matrix X of the random effects is

assumed in this PK model to have all diagonal elements

equal to x2, where x is the SD of the individual random

effects for each PK parameter. Of course, this is not a com-

mon situation because the variability of parameter usually

differs from each other. We also assumed a correlation

between the random effects of CL and V1 (i.e., a non-null

covariance term between CL and V1 in the matrix X). A

part of the interindividual variability may be explained by

including covariates. In the presence of covariates, the indi-

vidual parameters hik are described by:

hik 5h l; gik ; zið Þ5l3exp b3zið Þ3exp gikð Þ (5)

where zi is the vector of covariates for individual i, which

can be a binary (or categorical) covariate (e.g., concomitant

treatment in this example), or a continuous covariate (e.g.,

body weight in this example), and b is the vector of covari-

ate effect. Of note, a transformation was made for the body

weight so that the reference profile corresponds to that of a

patient with a weight of 70 kg.

TWeighti 5 log
Weighti

70

� �
(6)

We call W the vector of population parameters, where

W 5 {m, X, b, radd, rprop}.

Study design and data simulation
We considered a balanced design, with five sampling times

per patient (t 5 0.5, 1, 4, 12, 24 hours after treatment), which

we call the standard design. Two other designs, referred to as

the sparse and very sparse designs, with two or one sampling

times per patient, respectively, were also used to illustrate the

influence of shrinkage on some of the evaluation graphs. In

these sparse sampling designs, samples were randomly

selected from the five sampling times above. A dataset of 180
patients with three treatment groups each receiving one of

the three different doses of 10, 100, and 1,000 mg, was simu-

lated using the model with the sampling designs described

above and parameters provided in Supplementary Table S1.

Evaluated scenarios
To illustrate the properties of various evaluation graphs in

different situations in which the model may or may not be

appropriate for describing the data, we fitted several mod-

els to the simulated data: i) the true model that was used

for data simulation; ii) a misspecified structural model, in

which the structural model was changed into a one-

compartment model; iii) a model without covariates, in
which no covariate effect was considered; iv) a misspecified

correlation model, in which we neglected the correlation

between the random effects of clearance and distribution

volume; and v) two misspecified residual error models, in

which we considered only a constant (radd 6¼ 0, rprop 5 0) or

proportional error model (radd 5 0, rprop 6¼ 0). Note that we

modified only one property of the true model at the same

time to obtain these different types of model misspecifications.

Parameter estimation, computation of evaluation

metrics, and software
Population parameters were estimated using the default
option of the Stochastic Approximation Expectation Maximi-

zation algorithm implemented in MONOLIX version 4.3.3

(http://lixoft.com/products/monolix/). The simulated data and

medians of predictions for different models are shown in

Supplementary Figure S1.
Individual parameters were then estimated as EBEs

which are the mode of the conditional posterior distribution,

given the observed data and the population model. Let p

gi jyi ;Wð Þ the conditional distribution of gI. The EBE estimate

of gi is given by:

ĝ i 5argmaxgi
p gi jyi ;Wð Þð Þ5 argmaxgi

p yi jgi ;Wð Þ3p gi jWð Þ
p yið Þ

� �
(7)

At this stage, l has been estimated. Therefore, once ĝ i is

estimated, ĥ i 5h l; ĝ i ; zið Þ can be easily calculated.
Once the model parameters were estimated, evaluation

metrics were computed using additional software. In this

paper, all the goodness-of-fit graphs were generated using

R and several R packages for which scripts are available in
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Supplementary R Codes. The full process for generating

evaluation graphs for the different models is summarized in

Supplementary Figure S2.

BASIC EVALUATION TOOLS
Evaluation based on population predictions
Population predictions. By definition, population predictions

(xPRED, with x 51, C, or P) are the expectation of the

model, E(yi), given the individual designs and covariates.

There are several methods for computing xPRED. The sim-

plest way is model linearization using the First-Order (FO)

linearization (Eq. 8) (i.e., the prediction assuming all ran-

dom effects equal 0; denoted PRED). The corresponding

predicted profile, given design and covariates, is often

called the prediction for typical individual or typical profile.

E yið Þ � PREDi 5f h l; 0; zið Þ; tið Þ; (8)

An alternative method is to use first order conditional expec-

tation (FOCE) approximation giving predictions denoted

conditional population predictions (CPRED) (Eq. 9):

E yið Þ � CPREDi 5f h l; ĝ i ; zið Þ; tið Þ2df h l; gi ; zið Þ; tið Þ
dgi

�����
gi 5ĝ i

ĝ i
0; (9)

Another method for computing xPRED is to use the Monte

Carlo simulation, in which population predictions (denoted

PPRED) are defined as the mean of the model predictions

(Eq. 10). By definition, PPRED is the “average” prediction

(response) of the population.

E yið Þ � PPREDi �
1
K

XK

k51

ysim kð Þ
i (10)

where y
sim kð Þ
i is the vector of data obtained at the kth simu-

lation using the model and the design of the individual i (ti).

As in NLMEM, E(f(h(l,gi),ti) 6¼ f(l,ti), the “average prediction”

for the population (PPRED) in general differs from PRED,

the prediction for a “typical” patient, especially for models

with high interindividual variability and high nonlinearity.
Observations can be plotted vs. population predictions to

evaluate the population model (the first and second rows of

Figure 1a). The line of identity (and sometimes a local

regression line) is added to the graph. Even if the model is

correctly specified, the data points are not necessarily scat-

tered around the line of identity but the regression line will

be more or less close to the identity line. This can be seen

in the first column of the first and second rows of

Figure 1a, in which the data were fitted to the true model.

A systematic departure of the data points or the trend line

from the identity line (as seen in the second column of the

first and second rows of Figure 1a) could indicate a mis-

specification in the structural model. On the other hand,

misspecification in the residual error model is difficult to

detect using these graphs (i.e., the third and second col-

umn of the two first rows of Figure 1a) because the residu-

al error model is not considered in the computation of

xPRED. Deviations between the local regression and

identity lines could appear independently of model misspe-
cification because, in NLMEM, the observations are not
symmetrically distributed around the mean. This can occur
especially for models with high nonlinearity and large inter-
individual variability, regardless of the method of xPRED
computations. Trends can also appear by using linearization
to compute xPRED, by neglecting the intra-individual corre-
lation, the heterogeneity of residual errors, or the presence
of data below the quantification limits when calculating the
local regression line.7 It is also useful to examine the graph
of observations vs. population predictions in both normal
and log-scale in order to better evaluate the quality of fit,
especially when the data cover several orders of
magnitude.

Population residuals. The population residuals (– xRES with
x 51, C, or P) are defined as the difference between the
observations and population predictions (xRESi 5 yi –
xPREDi). These residuals are correlated within each individ-
ual and their magnitude may depend on that of observations
if the residual error model is not homogeneous (i.e., an addi-
tive error model), which we call heteroscedastic. Population
weighted residuals (xWRES) standardize and decorrelate
the population residuals using the model-predicted variance-
covariance matrix of observations, Var(yi):

xWRESi 5Var yið Þ2
1
23 yi2xPREDið Þ (11)

Depending on the methods used to compute population
xPRED and model-predicted Var(yi), there are various types
of population weighted residuals (PWRES). The classical
PWRES, termed WRES, are calculated from PRED and
Var(yi) obtained with the FO approximation (Eqs. 8 and 12).

Var yið Þ �
df h l; gi ; zið Þ; tið Þ

dgi

�����
gi 50

X
df h l; gi ; zið Þ; tið Þ

dgi

0
�����
gi 50

1R h l; 0; zið Þ; tið Þ

(12)

Another type of PWRES, termed CWRES, is obtained from
CPRED and Var(yi) computed by FOCE (Eqs. 9 and 13).

Var yið Þ �
df h l; gi ; zið Þ; tið Þ

dgi

�����
gi 5ĝ i

X
df h l; gi ; zið Þ; tið Þ

dgi

0
�����
gi 5ĝ i

1R h l; ĝ i ; zið Þ; tið Þ

(13)

Weighted residuals can also be obtained using PPRED and
Var(yi) calculated from Monte Carlo simulation (Eqs. 10 and
14). These residuals are called PWRES or expectation
weighted residuals in MONOLIX and NONMEM, respectively.

Var yið Þ �
1
K

XK

k51

ysim kð Þ
i 2E yið Þ

� �
ysim kð Þ

i 2E yið Þ
� �

’ (14)

Among these three types of population weighted residuals,
WRES was shown to result in misleading diagnoses in
some instances, especially when the model becomes highly
nonlinear, which causes the FO approximation to be
poor.5,7 CWRES obtained by FOCE and PWRES obtained
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Figure 1 Basic goodness-of-fit plots for different models (a) Observation vs. population predictions calculated using the first order con-
ditional estimation (FOCE) method (conditional population predictions (CPRED), first row), Monte Carlo simulation (simulation-based
population predictions (PPRED), second row), or individual predictions (IPRED, third row) for true model (first column), misspecified
structural model (second column), misspecified constant error model (third column), and misspecified proportional error model (last col-
umn). Identity and local regression lines are presented in black and red, respectively. This graph clearly points out that the wrong struc-
tural model underpredicted high concentrations, whereas misspecification of the residual error model is more difficult to be detected
using this type of goodness-of-fit plots. (b) Weighted residuals (conditional weighted residual (CWRES), population weighted residual
(PWRES), and individual weighted residuals (IWRES) from the first row to third row, respectively) vs. time plots for true model (first col-
umn), misspecified structural model (second column), misspecified constant error model (third column), and misspecified proportional
error model (last column). The xWRES are shown as blue points, spline lines are also added in these graphs as the red curves. A sys-
tematic trend indicates a misspecification in the structural model (second column). A cone-shape of residuals indicates a problem of
residual errors (third and last columns). (c) Weighted residuals (CWRES, PWRES, and IWRES from the first row to third row, respec-
tively) vs. population predictions plots for true model (first column), misspecified structural model (second column), misspecified con-
stant error model (third column), and misspecified proportional error model (last column). (d) Weighted residuals (CWRES, PWRES,
and IWRES from the first row to third row, respectively) vs. time, stratifying on binary covariate (concomitant treatment yes/no) for the
true model and the model lacking covariate effects. Systemic biases in the PWRES vs. time plots when conditioning on covariate indi-
cates the need to include the covariate in the model (third and second lines). Unlike PWRES, no visually significant trend can be found
in the plots of IWRES vs. time of the model lacking covariates. This emphasizes once again that IWRES-based graphs cannot be
used to evaluate a covariate model.
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by Monte Carlo simulation have been shown to have better
performance in evaluation of NLMEM5,7 and we present
graphs for these types of weighted residuals for the PK
example. By definition, if the model is true, xWRES should
have zero mean and unit variance. However, unlike weight-
ed residuals of linear mixed models, which should follow a
normal distribution if the model is correct, the xWRES of
NLMEM have an unknown distribution because the margin-
al distribution of observations is not normal.

Various graphs based on PWRES have been proposed to
evaluate NLMEM, such as the scatterplots of PWRES vs.
time (first and second rows of Figure 1b) or vs. population
predictions (first and second rows of Figure 1c). If the model
is true, the PWRES should be randomly scattered around
the horizontal zero-line, as shown in the first row of
Figure 1b and 1c), in which the true model was fitted to the
data. A systematic bias from the zero-line may imply defi-
ciencies in the structural model (second row of Figure 1b
and 1c) but can also be a consequence of informative cen-
soring or adaptive designs. A misclassified error model can
be identified from the amplitude of the residual distribution
along the x-axis (e.g., a cone-shape pattern of residuals
would suggest a heteroscedastic error model; third and last

rows of Figure 1b and 1c). Trends that appear when condi-

tioning on covariates (first and second rows of Figure 1d) or

when plotting PWRES vs. covariates may suggest a problem

in the covariate model or of the need to include covariates in

the model. Of note, as in NLMEM, observations may not be

distributed symmetrically around the mean, the xWRES,

regardless of how they are computed, are not necessarily

distributed evenly around the horizontal zero line even in

absence of misspecification, especially for models with high

nonlinearity with respect to random effects and large interin-

dividual variability. Another point to bear in mind when exam-

ining these weighted residuals is that decorrelation using the

full variance-covariance matrix may cause some modifica-

tions in the trend lines, for instance, the position where the

trend appears in the plots vs. time or predictions may be dif-

ferent from where it is when examining graphs of normal

residuals vs. time or vs. predictions.

Evaluation based on individual predictions and

individual random effects
Individual predictions and individual residuals. Individual

estimated vector of random effect (ĝi Þ (i.e., evaluation

based on effects (EBEs)) can be used to calculate other

Figure 1 (Continued)
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individual-based evaluation metrics, such as individual pre-

dictions (IPRED) and individual weighted residuals

(IWRES).

IPREDi 5f h l; ĝ i ; zið Þ; tið Þ (15)

IWRESi5 R h l; ĝ i ; zið Þ; tið Þ2
1
23 yi 2IPREDið Þ (16)

Several types of graphs based on these individual metrics

can be used for model evaluation. First of all, the graph of

IPRED vs. observations offers a global assessment of the

individual fit for all patients, mainly to identify a misspecifi-

cation in structural model (last row of Figure 1a). The con-

siderations provided for the observations vs. population

predictions graph are also applicable here. Deficiencies in

structural and residual error models can be detected using

the scatterplot of IWRES vs. time (last row of Figure 1b) or

IPREDs (last row of Figure 1c). The graphs based on

IPREDs or residuals are similar to those based on popula-

tion predictions but with less variability because interindivid-

ual variability was taken into account in their computation.

Therefore, in some cases, model misspecification can be

detected more easily with individual-based metrics. Howev-
er, unlike population-based metrics, IPRED and residuals
do not allow for evaluation of covariate models (last row of
Figure 1d) as the variability that results from any existing
covariate that is not taken into account will be considered
to be part of interindividual variability and, therefore, is
included in the estimated individual random effect, ĝ i .

Finally, the individual fit, obtained by superposing the
individual observations and the IPRED over the indepen-
dent variable in the same graph, is one of the most fre-
quently presented evaluation graphs. It provides a simple
way to visualize whether the model is able to describe indi-
vidual data profiles. A substantial discordance between pre-
dictions and observations could indicate a problem in the
population model, either in the structural model or in the
variability model. However, it would be difficult to determine
the primary cause based solely on this graph (Supplemen-
tary Figure S3). This graph is also useful for identifying
practical problems in the data, such as sample switching,
bioanalysis errors, etc. However, with a large number of
patients, it will be challenging to examine all the individual
fitted graphs. Population predictions can be added to the

Figure 1 (Continued)
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individual fits to provide more information, for instance,

about shrinkage (see below) or how an individual response

differs from that of the population. This is a helpful way of

seeing the IPRED appear to be randomly scattered around

the population prediction.

Evaluation based on empirical Bayes estimates. The esti-

mated EBEs can also be used as an evaluation metric.

They can be used to evaluate the interindividual variability

model. For each component of the vector of EBEs (or of

the vector individual parameter estimates), graphs, such as

a histogram or a boxplot, could be drawn and compared to

their estimated predicted population distribution. A substan-

tial discordance between an EBE distribution and a popula-

tion distribution may imply misspecification of the random

effect models. For instance, a multimodal distribution of an
EBE would suggest the need to include covariates or use a
parameter distribution other than the assumed distribution
(e.g., log-normal distribution) for the corresponding random
effect; a high kurtosis in an EBE distribution may indicate
poor individual information or an incorrect underlying distri-
bution assumption and suggest that variability of this ran-
dom effect may be poorly estimated. EBEs can also be
plotted vs. each other to identify correlation between ran-
dom effects (Supplementary Figure S4a). High correlation
between EBEs of several parameters may also indicate a
problem in model parameterization (overparameterization
or nonidentifiability of model parameters). If the model cor-
rectly handles random effect correlation, one expects to
see almost no trend in the graphs with decorrelated EBEs,

Figure 1 (Continued)
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ĝ�i ; (Supplementary Figure S4b), obtained by standardiz-

ing the EBEs using the estimated variance-covariance

matrix of random effects X̂ (Eq. 17).

ĝ�i 5X̂
21

23ĝ i (17)

EBE-based evaluation graphs can also be used to detect

deficiencies in the structural model. For instance, the

graph of each EBE component vs. doses is one of the

simplest methods to detect model deficiencies for drugs

with nonlinear PK. Another important and frequent use of

EBE-based evaluation graphs is to screen covariate effect

and evaluate a covariate model. This can be done by

examining the correlation between EBE component and a

continuous covariate or a boxplot stratified by different

classes of a categorical covariate. If the model correctly

takes into account the covariate effect, a correlation

would be expected between the covariate and the corre-

sponding individual parameter estimates (Supplementary

Figure S5a), but no correlation should remain between

the corresponding EBE and the covariate (Supplementary

Figure S5b). With rich individual information, the square

value of the coefficient of correlation between the covariate

and the individual parameter estimates represents the frac-

tion of interindividual variability that is explained by the

covariate.

Influence of shrinkage on individual-based evaluation tools.

The estimation of EBE and IPREDs is susceptible to a phe-

nomenon called shrinkage that occurs when the individual

data are not sufficiently informative with respect to one or

more parameters.10 Under these conditions, the EBE and

individual parameter estimates would shrink close to the

population mean. This phenomenon can be quantified by g-

shrinkage, estimated by 1- SD(EBE)/x or 1- var(EBE)/x2,

where x is the interindividual SD estimated in the popula-

tion model.10 The fact that IPREDs may tend to the individ-

ual observations for more or less sparse designs can be

quantified by e-shrinkage, defined as 1-SD(IWRES) or 1-

var(IWRES), where IWRES are the individual weighted

residuals.10 Of note, there are two definitions of shrinkage

in literature, one based on the ratio of variances, and one

based on the ratio of SDs.
With high shrinkage, the individual-based evaluation tools

become less informative and do not allow for a correct

evaluation of a model. For instance, a high g-shrinkage

may hide or falsely induce the true relationships or distort

the shape of the EBE distribution, of the correlation

between EBEs (Supplementary Figure S6a) or of the cor-

relation between EBEs and covariates (Supplementary

Figure S6b).7,10 If overfitting occurs, IWRES will shrink

toward 0, which makes model evaluation based on this

metric less effective or informative.7 Supplementary

Figure S7a provides IPRED vs. observations plots, at dif-

ferent levels of e-shrinkage, of the misspecified structural

model. Supplementary Figure S7b shows the same

graphs of population predictions in which we can also see

the influence of limited information.

SIMULATION-BASED EVALUATION TOOLS

Simulation-based evaluation tools were first developed by
Bayesian statisticians and are now increasingly used to
evaluate NLMEM. They rely on the concept of the posterior
predictive check,11 whose principle is that if a model cor-
rectly describes a dataset, the data simulated under that
model would be similar to the observations. Hence, to eval-
uate a model with these methods, one needs to simulate a
large number (K) of Monte Carlo samples under the tested
model, using the design of the observed dataset then com-
pare a statistic computed from the observed data with that
computed from the simulated data. The chosen statistic
can be a PK parameter calculated from noncompartmental
analysis, for instance, area under the curve, half-life,
steady-state concentration, maximum or minimum concen-
tration,12,13 or other statistical inferences, such as mean
prediction errors (residuals), root mean square prediction
errors,11,13 or objective function value.14

Instead of using a statistic that condenses all the infor-
mation of the observations into a single value, one can also
evaluate a model using all the observations by comparing
the observations with their predicted distribution. These
observation-based posterior predictive checks, such as the
VPC,8 prediction discrepancies (pd), and normalized predic-
tion distribution errors (NPDE)4,6 are among the most fre-
quently used simulation-based evaluation tools. We may
compare the observed statistics or observations with their
distribution via graphical assessment or statistical tests.
The use of statistical tests is not considered in this tutorial
but is discussed in several papers.6,11,15–17

Visual and numeric predictive check
The VPC offers a graphical comparison of the distribution of
observations and the distribution of predictions vs. an inde-
pendent variable, such as time, dose, or other covariates.8 It
comprises in comparing the distribution of the observations
with that of the predictions using different percentiles of the
distributions. A classical presentation of VPC, originally
termed “scatter VPC,” is obtained by plotting the observa-
tions together with the predicted percentiles of the simulated
data (usually 2.5, 50, and 97.5th, or 5, 50, and 95th, or 10,
50, and 90th percentiles) over the independent variable.8,9

The area defined by the lowest and highest percentiles is
usually called the prediction interval (PI) of the data, for
instance, 10th and 90th percentile define a 80% PI (Supple-
mentary Figure S8a). The “scatter VPC” characterizes
model appropriateness by comparing the number of obser-
vations included within or outside a selected PI of data with
a theoretical value. For instance, in a VPC with an 80% PI,
we expect to have 80% of the observations within the 80%
PI, 50% above and 50% below the median, 10% above the
90th percentile and 10% below the 10th percentile.

A more visually intuitive representation of VPC has been
proposed and has rapidly gained popularity within the last
few years.9 In this new version of VPC, termed “confidence
interval (CI) VPC,” the percentiles of the observations, the
predicted percentiles, and their 95% CIs are plotted (Sup-
plementary Figure S8b).9 For this type of VPC, data bin-
ning, in which an independent variable (usually time) has to
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be split into several bins, each containing an approximately

equal number of observations, is necessary to calculate the

percentiles of observed and predicted data.9 The CIs of the

predicted percentiles are obtained using the K Monte Carlo

samples: the same selected percentiles (e.g., 2.5, 50, and

97.5th percentiles), are calculated for each of the K simulat-

ed datasets. The 95% CI for each of the selected percen-

tiles is then easily obtained from the distribution of the K

percentiles computed for the K simulated datasets. If the

model is correct, the observed percentiles should be close

to the predicted percentiles and remain within the corre-

sponding CI. However, an appropriate VPC may still result

from models in which individual unexplained variability is

misspecified, either because it is absorbed by other model

components (interoccasional variability by residual variabili-

ty, for instance) or because it is contributing little to the

overall variability (e.g., residual variability in the presence of

large interindividual variability).
An important property of VPC is that it conserves the

original units (e.g., time, concentration, etc.) of the model,

therefore, appears familiar. However, VPC also has some

drawbacks. First of all, data binning (frequently necessary

to construct a “CI VPC”) is challenging for unbalanced

designs with differing numbers of observations at each time

point and may influence the interpretation of VPC.18,19 Sec-

ond, heterogeneity in design, such as differing doses, dos-

ing regimen, route of administration, or covariates, may

render the VPC for the whole data noninformative.20 For

instance, in Supplementary Figures S8a,b, the upper,

median, and lower predicted percentiles or CIs correspond

to the observations following the highest, median, and low-

est dose, respectively. In such cases, data stratification by

dose and/or by important covariates or dose normalization

may mitigate these problems. However, data stratification

often leads to a loss of power and dose normalization may

not be appropriate for nonlinear pharmacokinetics (i.e., the

model is nonlinear with respect to dose). Prediction-

corrected VPC (pcVPC) offers a solution to these problems

while retaining the visual presentation of the VPC (Supple-

mentary Figure S8c,d).20 In a pcVPC, the variability in

each bin is removed by normalizing the observed and simu-

lated dependent variables based on the typical population

prediction for the median independent variables.20 The

observation yij and the corresponding simulated data y
sim kð Þ
ij

are corrected by the given formulae:

pc yij 5yij 3
xPR ~E Dbin

xPREDij
(18)

pcysim kð Þ
ij 5ysim kð Þ

ij 3
xPR ~E Dbin

xPREDij
(19)

where xPR ~E Dbin is the population prediction for the median

independent variables in a specific bin and xPREDij is the

population prediction for individual i at time j. In the seminal

paper, Bergstrand et al.20 proposed to use PRED for popu-

lation predictions, whereas in the PK example, we calculat-

ed the pcVPC using PPRED. Of note, for continuous

covariates, a VPC may be constructed using a covariate,

such as body weight, age, or model predictions, as the
independent variable. This does not lose power like data
stratification methods and can provide useful confirmation
of the appropriateness of a covariate model.9,21

Despite these limitations, the VPC offers a very intuitive
assessment of misspecification in structural, variability, and
covariate models, therefore, has now become a widely used
evaluation tool for evaluating NLMEM. Figure 2a,b shows
the VPC plots of different models. We can clearly see that
observed percentiles remain within the corresponding inter-
vals for the true model (first column) whereas clear depar-
ture from the CI is evident for misspecified structural,
residual error (Figure 2a) and covariate models (Figure 2b).

The numeric version of VPC, known as the numeric pre-
dictive check (NPC), is also used in model evaluation.9,22 It
summarizes the information of several “scatter VPCs” eval-
uated at different selected PIs, for instance, the 0, 20, 40,
50, 60, 80, 90, and 95% PI.9,22 NPC calculates the percen-
tages of outliers for each selected PI, which are the
observed data above and below different PIs. By providing
the same calculation for each of the K simulated datasets,
we can obtain a CI for the percentages of outliers. The
observed percentages can be compared with the empirical
CI using a coverage plot. Just as in a VPC plot, a trend in
the NPC coverage plot would indicate a misspecification of
the structural, interindividual variability, or residual error
model (Supplementary Figure S9). As NPC evaluates
model misspecification on several PIs, it may provide addi-
tional information compared to the VPC, which only
presents one selected PI. In addition, it compares each
observation with its own simulated distribution, so normali-
zation and stratification to handle the binning, as in the
VPC, is not necessary. However, unlike VPC, which is a
representation of observations and predictions vs. time,
NPC loses the time dimension; therefore, it would not be
able to point out at which time points the model overpre-
dicted or underpredicted the data.

Prediction discrepancies and normalized prediction
distribution errors
Prediction discrepancies are a form of observation-based
posterior predictive checks, developed for NLMEM by
Mentr�e and Escolano.4 Let Fij denote the cumulative distri-
bution function of the observation yij for the individual i. The
prediction discrepancy of this observation is defined as its
percentile in the predictive distribution, given by:

pdij 5Fij yij
� �

5

ðyij

p y jWð Þdy5

ðyij ð
p y jhi ;Wð Þp hi jWð Þdhi dy (20)

Using the predictive distribution approximated by the K
Monte Carlo simulation samples, the prediction discrepancy
is then calculated by:

pdij 5Fij yij
� �

5
1
K

XK

k51

1ysim kð Þ
ij <yij

(21)

The computation of the pd uses the same simulations as
the VPC. The pd of an observation yij are indeed computed
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as the number of times that the simulations are under the

observation in a VPC.
A decorrelated version of pd, the prediction distribution

error, has been proposed in order to enable the use of sta-

tistical tests.6 The prediction distribution errors are computed

in the same way of pd but from decorrelated (observed and

simulated) data, obtained using Eq. 11 with PPRED and Var

(yi) calculated by a Monte Carlo method (Eqs. 10 and 14):

pdeij 5F�ij y�ij
� �

5
1
K

XK

k51

1ysim kð Þ�
ij <y�ij

(22)

where y�ij and y
sim kð Þ�
ij are decorrelated observed and simu-

lated data, respectively. By construction, pd and prediction

distribution error are expected to follow a uniform distribu-

tion, U[0,1] if the model describes the data adequately. The

normalized pd and prediction distribution error, denoted npd

and NPDE, calculated by Eq. 23, follow a normal distribu-

tion with zero-mean and unit variance, N(0,1):

npdij 5U21 pdij
� �

npdeij 5U21 pdeij
� � (23)

where U is the inverse function of the cumulative distribu-

tion function of N(0,1).
As the npd and NPDE naturally account for the heteroge-

neity in study design by comparing the observations with their

own distribution, no data stratification or dose normalization

are required for a global evaluation using these metrics

(Supplementary Figure S10a), although covariate model

exploration can benefit from stratifying the NPDE plots vs.

covariate values or categories. This is an advantage of npd or

NPDE compared to the traditional VPC. The assessment of

npd and NPDE could be done using several types of graphs,

such as scatterplots vs. time or predictions, quantile-quantile

(q-q) plots or histograms, scatterplots or boxplots vs. continu-

ous or categorical covariates or doses. For those who prefer

the presentation of a VPC, in which the original units of the

model and data are conserved, a transformed version of the

npd and NPDE has been proposed to take into account the

shape of data evolution over time (Supplementary Figure

S10b).23 As in a VPC, the observed percentiles and CIs of

predicted percentiles can also be added into the evaluation

graphs of npd and NPDE, which requires binning the data.

Like graphs based on population residuals, scatterplots of

npd or NPDE vs. time or predictions are helpful to detect and

distinguish different types of model misspecification (e.g.,

structural, residuals, or covariates). Figure 3a–c shows the

graphs of npd vs. time and predictions for different models.

We can see that misspecification in the structural model, the

error model, and the covariate model can be detected by the

departure of the observed percentiles from their prediction

intervals. For graphical evaluation, it may sometimes be bet-

ter to use npd instead of NPDE because decorrelation can

induce artifacts (i.e., create trends or make trends less appar-

ent in the scatterplots of NPDE vs. time or predictions),17 as

we can see in Figure 3d,e.

Figure 2 The prediction-corrected visual predictive checks (pcVPCs) plots of different models. The blue and red lines are the observed
percentiles (10, 50, and 90th percentiles), the blue and red ribbons are the corresponding 95% confidence intervals. The dashed black
lines are predicted percentiles. Observations corresponding to the lowest, median, and highest doses are shown in blue, pink, and
green, respectively. (a) pcVPC for different models: true model (first column), misspecified structural model (second column), misspeci-
fied constant error model (third column), and misspecified proportional error model (last column). A systemic departure of the observed
percentiles from the prediction intervals could indicate a misspecification in structural or residual error model. (b) pcVPC stratified by
covariate for true model (first two columns) and misspecified covariate model (last two columns) Trends observed when stratifying on
covariates helps to evaluate the covariate model.
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Figure 3 Scatterplots of normalized prediction distribution (npd) or normalized prediction distribution error (NPDE) vs. time or population pre-
dictions (PPREDs) for different models. The blue and red lines are the observed percentiles (10, 50, and 90th percentiles), the blue and red
ribbons are the corresponding 95% confidence intervals. The dashed black lines are predicted percentiles. Observations corresponding to the
lowest, median, and highest doses are shown in blue, pink, and green, respectively. (a) The npd vs. time (first row) for the true model (first
column), misspecified structural model (second column), misspecified constant error model (third column), and misspecified proportional error
model (last column). A systematic trend indicates a misspecification in the structural model. A cone-shape of residuals indicates a problem of
residual errors. (b) The npd vs. PPRED (second row) for the true model (first column), misspecified structural model (second column), mis-
specified constant error model (third column), and misspecified proportional error model (last column). (c) The npd vs. time stratified by binary
covariate for the true (first and second columns) and misspecified covariate model (third and last columns). Systemic biases when conditioning
on covariate reveal a deficiency in the covariate model. (d) NPDE vs. time for the true model (first column), misspecified structural model (sec-
ond column), misspecified constant error model (third column), and misspecified proportional error model (last column). In this case, decorre-
lation makes the trends become less apparent, especially for the misspecified proportional error model. (e) NPDE vs. time for the true (first
and second columns) and misspecified covariate model (third and last columns), stratified by the binary covariate (concomitant treatment). In
this case, decorrelation makes the trends to detect a lack of covariate effect become less apparent.



CORE SET OF COMMON GRAPHS FOR MODEL
EVALUATION

Because NLMEM relies on several assumptions and that
no evaluation tool can address all the components of a
model, a comprehensive evaluation of a pharmacometric
model would usually require examination of several diag-
nostic graphs, as described in detail in the previous section.
A brief description of each evaluation tool and which model

component it addresses is summarized in Table 1 and
Supplementary Table S3.

In this tutorial, we recommend a core set of common
graphs that are useful in most situations for comprehensive
evaluation of a pharmacometric model (column “In core
set” in Table 1). This core set of evaluation graphs includes
basic prediction-based graphs, such as population or
IPREDs vs. observations, individual fits, EBE correlation
graphs, and simulation-based graphs (VPC and npd).

Figure 4 Core set of diagnostic graphs for misspecified delay, immediate effect model. (a) Basic goodness-of-fit plots. Blue points
denote individual data points. Lowess lines are in red. Interpretation should focus on areas where the data are available with little atten-
tion to gaps. (b) Representative randomly selected individual fits. Blue points denote individual observed data points, the green curve
is the individual predicted (IPRED), and the red curve is the population predicted (PRED). (c) Correlations and histogram of empirical
Bayes estimates. (d) Simulation-based diagnostic plots (visual predictive check (VPC), normalized prediction distribution (npd)). The
blue and red lines are the observed percentiles (10, 50, and 90th percentiles), the blue and red ribbons are the corresponding 95%
confidence intervals. The dashed black lines are predicted percentiles. Blue circles are individual observations. Several graphs are
pointing to a potential model deficiency. Residuals, individual fits, VPCs, and npd vs. time show an obvious problem with the ability to
fit the time course of the data. The model predicts a fast and sharp decline from time 0 to 24 hours, whereas the data show a gradual
delayed decrease.
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However, any diagnostic based on EBEs (i.e., EBE, IPRED,
and IWRES), may be misleading in the presence of sub-
stantial shrinkage. For population predictions and residuals,
we recommend to use CPRED (and CWRES) or PPRED
(and PWRES), depending on the estimation method. More
specifically CPRED and CWRES could be used for FOCE
estimation, and PPRED and PWRES when the estimation
methods do not involve linearization.

For VPC, we recommend to use VPC showing observed
and predicted percentiles, such as the “CI” VPC or the
“percentile” VPC.9 The scatter VPC is discouraged because
it is hard to compare the observation distribution with the
predictions, especially when there are many data points.
The pcVPC is recommended if there are important covari-
ate effects, or different dose groups, or an adaptive trial
design has been used.

For EBE correlation graphs, scatterplots of decorrelated
EBEs can also be examined if the variance-covariance
matrix of random effects was not diagonal.

To evaluate a covariate model, some additional graphs are
required according to the column “In core set” in Table 1.

PHARMACOKINETIC PHARMACODYNAMIC CASE

EXAMPLE

In this section, we illustrate the use of the core set of evaluation

graphs on a PK/PD example that is more realistic for modeling

practice. In this example, we only evaluate the PD model and,

as there is no covariate effect in the PD model, no graphs for

evaluating covariate model are displayed.

Structural and statistical models
The exemplary PK/PD model for warfarin is based on data

reported by O’Reilly et al.24 and O’Reilly and Aggeler.25

The PK model, describing total warfarin concentration fol-

lowing a single dose administration, is a one-compartment

model with first-order absorption, a lag-time, and first-

order elimination. A turnover PD model with an inhibitory

maximum effect (Emax) function on the rate of prothrombin

complex activity (PCA) production describes the effect of

warfarin on PCA. The structural model for the PK/PD of

warfarin is described by the following set of differential

equations:

Figure 4 (Continued)
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dA1 tð Þ
dt

5

0 if t < Tlag

2
lnð2Þ
Tabs

A1ðtÞ if t � Tlag
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>>:

dA2ðtÞ
dt

5
ln 2ð Þ
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A1ðtÞ2
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A2ðtÞ

C tð Þ5 A2ðtÞ
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dPCA tð Þ
dt

5Rin 12
EmaxC tð Þ
C tð Þ1C50

� �
2

ln 2ð Þ
Teq

PCA tð Þ

A1 0ð Þ50

A2 0ð Þ50

PCA 0ð Þ5 Rin

ln 2ð Þ
Teq

� �

(24)

where A1(t) and A2(t) are the warfarin amounts at the site

of absorption and in the central compartment, respectively.

C(t) is the total warfarin concentration, CL, V, Tabs, and Tlag

represent clearance, central volume of distribution, absorp-

tion half-life, and lag time, respectively. CL and V were allo-

metrically scaled by body weight using 70 kg as the

reference value with the allometric exponent b fixed at 3/4

and 1, respectively (Eq. 25). This is an equivalent expres-

sion of Eq. 5 with the transformation described in Eqs. 5

and 6. There are no covariate effects on the PD parame-

ters. PCA(t) denotes the activity of prothrombin complex.

PCA is produced with a zero-order rate Rin and eliminated

with first-order rate constant kout, equal to ln(2)/Teq, where

Teq is the half-life of PCA elimination. PCA was assumed to

be at steady state before administration of warfarin with the

baseline PCA0 5 Rin/kout. The models were parameterized

using PCA0 instead of Rin. Emax is a parameter denoting

the maximum possible effect of warfarin and C50 denotes

the concentration of warfarin that results in half-maximal

inhibition.

hi 5h l; gi ; zið Þ5l3
Weight

70

� �b

3exp gið Þ (25)

We assumed log-normal distribution for CL, V, Tabs Tlag,

Emax, C50, PCA0, and Teq (Eq. 4). A combined additive and

proportional residual error model was used for the PK pre-

dictions and an additive residual error model for the PD

predictions. Model parameters are provided in Supplemen-

tary Table S2.

Study design and data simulation
We considered the same design as the one used in the

original study.24 There were 27 male and 5 female patients

(N 5 32). Body weight ranged from 40–102 kg. The admin-

istered doses were calculated on a 1.5 mg per kg basis.

Central compartment drug concentrations (mg/L) and PCA

(PCA unit) were measured as described in the original

report. A dataset was simulated using the design and mod-

els described above.

Evaluated scenarios
To mimic different types of model misspecification, we fitted
several models to the simulated data: a) a misspecified
structural PD model with effect immediately related to con-
centration (misspecified delay, immediate effect); b) a mis-
specified structural PD model with an effect compartment
(misspecified delay, effect compartment); c) a misspecified
structural PD model and variability model, in which an
effect compartment was used for the PD part and covari-
ance between all PK parameters in one block and all PD
parameters in another block was considered (misspecified
delay and correlation, effect compartment, and full omega);
and d) the true model that was used for data simulation
(true model, turnover PD).

Parameter estimation, computation of evaluation
metrics, and software
Data simulation was performed using NONMEM version 7.3
(http://www.iconplc.com/innovation/solutions/nonmem/). For
parameter estimation, the PK model was first fitted to the
simulated concentrations. The population PK parameters
were then fixed at their estimated values to perform data fit-
ting for the PCA observations. Thus, only the PD model was
misspecified in this example. Parameter estimation was per-
formed using the Quasi-random Parametric Expectation
Maximization algorithm26 in Phoenix NLME 7.0 (https://www.
certara.com/software/pkpd-modeling-and-simulation/phoenix-
nlme/) keeping all default settings. For simulation-based
evaluation graphs, a thousand replicates were performed.

Core set of graphs for model evaluation
In this section, we go through a core set of model evaluation
graphs for each PK/PD model (Figure 4 for the misspecified
delay, immediate effect model; Figure 5 for the misspecified
delay, effect compartment model; Figure 6 for the misspeci-
fied delay and correlation model; and Figure 7 for the true
turn-over model) and provide our assessment in a more gen-
eral sense to illustrate how these evaluation graphs may be
interpreted if the true model is not known. Here, as our mod-
el does not contain covariates, we did not present the spe-
cific graphs that can be used to evaluate the covariate
model. For the basic prediction-based graphs, we presented
PPRED and PWRES graphs because we estimated parame-
ters using the Expectation-Maximization algorithm.

Misspecified delay, immediate effect model
Because the data covers a large range, although the
scatterplots of observations vs. PPRED or IPRED or the
graphs of PWRES or IWRES vs. predictions are not very
informative as there is a big gap in the data, the trends in
those graphs can still show that there is a discordance
between the data and model (Figure 4a, first and last col-
umns). Splitting those graphs into several graphs with dif-
ferent scales may allow for easier interpretation. Clear
trends can be observed in the graphs of PWRES or
IWRES vs. time, showing that the structural model is not
sufficient to describe the observations (Figure 4a, second
column). The discordance between the model and obser-
vations can also be seen in the individual fit graphs of
three randomly selected individuals (Figure 4b) as well
as in the simulation-based graphs (Figure 4d). Very high
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correlations between all PD parameters may be a result

of misspecification of the structural model (Figure 4c).

Misspecified delay, effect compartment model
The basic (prediction-based) goodness-of-fit plots (Figure 5a),

as well as the individual fits (Figure 5b) do not show any impor-

tant disagreement between the data and model predictions.

However, the simulation-based graphs with CIs added show

that the chosen structural model can describe the median but

not sufficiently characterize the upper and lower percentiles

(Figure 5d). High correlations between all PD parameters may

indicate that the model is misspecified (Figure 5c).

Misspecified delay and correlation model
Similar to the previous model, the basic goodness-of-fit plots

(Figure 6a) as well as the individual fit plots (Figure 6b) do

Figure 5 Core set of diagnostic graphs for misspecified delay, effect compartment model. (a) Basic goodness-of-fit plots. Blue points
denote individual data points. Lowess lines are in red. Interpretation should focus on areas where the data are available with little
attention to gaps. (b) Representative randomly selected individual fits. Blue points denote individual observed data points, green
curve is the individual prediction (IPRED), red curve is the population predicted (PRED). (c) Correlations, distribution, and histogram
of empirical Bayes estimates (EBEs). (d) Simulation-based diagnostic plots (visual predictive check (VPC), normalized prediction dis-
tribution (npd)). The blue and red lines are the observed percentiles (10, 50, and 90th percentiles), the blue and red ribbons are the
corresponding 95% confidence intervals. The dashed black lines are predicted percentiles. Blue circles are individual observations.
Basic goodness-of-fit plots and individual fits provide no hint for model and data disagreement. Simulation-based graphs clearly
show that the model can only describe the median and fails to characterize the upper and lower percentiles. The EBE correlation
graphs show high correlations between all pharmacodynamic (PD) parameters and this could be an indication of model
misspecification.
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not allow seeing an important discordance between the data
and model. The simulation-based diagnostics show that the
model describes well the median but seems to fail to capture
the 90th percentile and the 10th percentile.

True model – turnover model
All the evaluation graphs of the turnover model show that
the model seems to be adequate to describe the data (Fig-
ure 7) and reveal no problem with the parametrization of
the model (Figure 7c). Some potential underestimation of
the upper 90th percentile can be observed in the VPC and
npd vs. time plots and this could indicate that the model
may still have some problems in describing the variability.
However, in this case, it results from the limited number
of observations or patients included in the analysis
(Figure 7d) because the model is known to be correctly
specified. This illustrates why the percentiles and CIs
should not be used too rigorously to either accept a model
or identify problems.

For completeness, Supplementary Figure S12 presents
the NPC coverage for different models. The immediate
effect model had some observed/expected ratios outside of

the CI. Even the observed/expected ratios of the two effect
compartment models that remained within the CI show a
systemic departure from the expected ratio of 1, indicating
that the models may not be appropriate. Finally, an NPC
coverage plot of the turnover model with the lower and
upper ratio close to 1 confirms that this model seems suffi-
cient to describe the observed data.

DISCUSSION

Numerous model evaluation metrics have been developed
to evaluate NLMEM and their underlying assumptions. As
mentioned earlier, we focus here only on graphical tools
used in model evaluation and not in model building nor in
model qualification, even though model evaluation is
involved in the two latter steps of modeling. A brief descrip-
tion of each evaluation tool and which model components it
addresses are provided in Table 1 and Supplementary
Table S3.

Besides the graphical tools presented in this paper,
numeric tools and methods, such as model identifiability

Figure 5 (Continued)
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assessment,27 parameter estimation SEs,2,12 resampling-
based methods, such as the bootstrap28 or model selec-
tion criteria (22 log likelihood or objective function,
Akaike information criterion, and Bayesian information
criteria),2,12,29,30 are always used in parallel to provide
additional information for the reliability of a model or for
model comparison. However, in this first tutorial about model
evaluation, we chose to focus only on graphical tools for

several reasons. First, graphical tools are commonly used
and reported tools for model evaluation. Second, unlike
numerical tools that compact all the information of model
misspecification in a single statistic, such as a P value,
graphical tools can show how much the model is able to
characterize the data, where it fails to do so, and, therefore,
provide hints for model misspecification. Finally, many
numerical tools (e.g., objective function, Akaike information

Figure 6 Core set of diagnostic graphs for misspecified delay and correlation model (effect compartment, full omega). (a) Basic
goodness-of-fit plots. Blue points denote individual data points. Lowess lines are in red. Interpretation should focus on areas where the
data are available with little attention to gaps. (b) Representative randomly selected individual fits. Blue points denote individual
observed data points, green curve is the individual prediction (IPRED), red curve is the population predicted (PRED). (c) Correlations,
distribution, and histogram of empirical Bayes estimates. (d) Simulation-based diagnostic plots (visual predictive check (VPC), normal-
ized prediction distribution (npd)). The blue and red lines are the observed percentiles (10, 50, and 90th percentiles), the blue and red
ribbons are the corresponding 95% confidence intervals. The dashed black lines are predicted percentiles. Blue circles are individual
observations. The discordance between the 10th and 90th observed percentiles and the corresponding predicted percentiles show that
the model may not be able to characterize the data. High correlation between two parameters may indicate a problem in model
parameterization.
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criterion, and Bayesian information criterion) are only useful
for comparison between models (in model building or qualifi-
cation) and do not allow the evaluation of a single model for
its adequacy. Of course, we cannot neglect their role in
model development.

The evaluation metrics and their visualization discussed
in this paper can be classified in two categories: prediction-
based and simulation-based metrics. Prediction-based met-
rics, except for PPRED and PWRES, two metrics that are
computed by Monte Carlo simulation, can be provided with
little computational burden and, therefore, can be used to
assess model appropriateness in every step of model build-
ing. However, population prediction-based metrics comput-
ed using FO or FOCE linearization may result in misleading
evaluation when the linearization used is inappropriate. Indi-
vidual prediction-based metrics may not be sufficiently reli-
able at high levels of shrinkage (see specific section for
more details). For this reason, shrinkage should be evaluat-
ed and reported to provide information about relevance of
the IPRED-based evaluation tools. Currently, there is no

consensus on the level of shrinkage that renders these indi-
vidual metrics no longer reliable. A shrinkage value of 30%
or 50%, if calculated from SD or variance, respectively, has
been suggested as a threshold for high shrinkage,7,10 but
whether this threshold should be applied for all models and
population parameter values remains to be evaluated.

As indicated by their name, simulation-based metrics
requires data simulation. However, many design and data
features, such as adaptive design, response-guided treat-
ment, changes in dosing regimen to limit adverse effect or
to maintain drug concentrations within the therapeutic win-
dow (therapeutic drug monitoring), missing data, or drop-
out, etc., may be difficult to reproduce through simulation. If
these features are neglected, simulation-based graphs may
show significant trends, even though the underlying model
is adequate to describe the data.20,31,32 One solution is to
develop joint models that describe the longitudinal data and
the features in question, for instance a time-to-event cou-
pled with longitudinal data to handle dropouts, so that the
link between the two processes may be correctly taken into

Figure 6 (Continued)
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account during simulation.31–33As a large number of simula-
tions is required (usually �1,000 simulations),34 the compu-
tation of these metrics can be a time-consuming process,
especially with complex models and large datasets, and,
therefore, may not always be feasible for evaluating models
when the timelines for decision-making are tight, especially
in an industrial setting. However, the resource limitations
related to time may become less severe with the widespread

availability of high performance computing and better project
management.

In general, the uncertainty in model parameters is not
always accounted for when computing simulation-based eval-
uation metrics. Using a simple PK/PD example, Yano et al.11

found that using point estimates provided similar results to
other approaches, which consider not only the point esti-
mates but also parameter uncertainty. Nevertheless, they did

Figure 7 Core set of diagnostic graphs for true model – turnover model. (a) Basic goodness-of-fit plots for the true turnover pharmaco-
dynamic (PD) model. Blue points denote individual data points. Lowess lines are in red. Interpretation should focus on areas where the
data are available with little attention to the gaps. (b) Representative randomly selected individual fits from the true turnover PD model.
Blue points denote individual observed data points, green curve is the individual prediction (IPRED), red curve is the population pre-
dicted (PRED). (c) Correlations, distribution histogram, and scatterplots of empirical Bayes estimates. (d) Simulation-based diagnostic
plots (visual predictive check (VPC), normalized prediction distribution (npd)). The blue and red lines are the observed percentiles (10,
50, and 90th percentiles), the blue and red ribbons are the corresponding 95% confidence intervals. The dashed black lines are pre-
dicted percentiles. Blue circles are individual observations. In general all graphs point to a good model with the exception of the VPC
and npd vs. time graphs that are pointing to a potential underestimation of the data 90th percentiles and to a lower extent to an under-
estimation of the 10th percentiles.
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mention that this conclusion may depend on study designs
and the extent of interindividual variability. Samtani et al.35

suggested that parameter uncertainty could be ignored in
data simulation if it is negligible with respect to the between
and within subject variability and the sample size available.
Otherwise, the computation of simulation-based metrics
should account for uncertainty in the model parameter.35

Even though simulation-based evaluation tools now have
become standard evaluation graphs, which are reported in
most population analysis, they may still remain less familiar
than classical evaluation tools, such as predictions or weight-
ed residuals to audiences composed of nonmodelers.

Throughout the two examples, we show the properties of
several evaluation tools in various situations in which we
have different types of model misspecification. Of note, in
this tutorial, we used many instances of the terms “model
misspecification” or “model deficiency,” as in both exam-
ples, we used simulated data and fitted them to different
models, which were already known to be true or false. In
our opinion, these two terms should not be used in real-
world data-driven analysis as there is no “true” model and

other terms, such as “goodness-of-fit” or “agreement with
data” are more appropriate.

Various tools have been developed and are required to
evaluate NLMEM because no single evaluation tools or pla-
nar graphs can effectively address all aspects of the model
components. To detect a specific misspecification or to
identify a problem, one diagnostic graph may be sufficient
(Table 1 and Supplementary Table S3). However, a mod-
el may present deficiencies in various components and a
misspecification of one component may conceal misspecifi-
cation in other components. Therefore, in our opinion, in
order to comprehensively evaluate a model, the core set of
graphs proposed in this paper should be examined.

In summary, we presented in this tutorial different evalua-
tion tools and illustrated their graphical use to evaluate sim-
ple pharmacometric models that may arise during all the
processes of model development. We also defined a core
set of common graphs that may be shown and examined
during model evaluation. As the target audience of this tutori-
al is beginner modelers with statistical or pharmacometric
backgrounds, we did not attempt to provide an exhaustive

Figure 7 (Continued)
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list of all the existing evaluation tools and methods for

NLMEM but restricted ourselves to some of the most fre-

quently used tools in pharmacometrics. Although some

methods have been proposed to account for several factors

that can influence model evaluation, as mentioned in the

previous paragraph such as adaptive design,20 data below

the limit of quantification36 or dropout,32,33 we avoided

describing these more advanced methods and chose to

keep this subject for a future tutorial of the ISoP Model Eval-

uation group. We also focused only on model evaluation for

continuous longitudinal data, which represents a significant

portion of population modeling. Model evaluation for other

types of data and models, such as discrete data, categorical

data, time-to-event data, etc., requires additional evaluation

tools and would merit additional tutorials.
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