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Abstract

Whole-brain fMRI signals are a subject of intense interest: variance in the global fMRI signal (the 

spatial mean of all signals in the brain) indexes subject arousal, and psychiatric conditions such as 

schizophrenia and autism have been characterized by differences in the global fMRI signal. 

Further, vigorous debates exist on whether global signals ought to be removed from fMRI data. 

However, surprisingly little research has focused on the empirical properties of whole-brain fMRI 

signals. Here we map the spatial and temporal properties of the global signal, individually, in 

1000+ fMRI scans. Variance in the global fMRI signal is strongly linked to head motion, to 

hardware artifacts, and to respiratory patterns and their attendant physiologic changes. Many 

techniques used to prepare fMRI data for analysis fail to remove these uninteresting kinds of 

global signal fluctuations. Thus, many studies include, at the time of analysis, prominent global 

effects of yawns, breathing changes, and head motion, among other signals. Such artifacts will 

mimic dynamic neural activity and will spuriously alter signal covariance throughout the brain. 

Methods capable of isolating and removing global artifactual variance while preserving putative 

“neural” variance are needed; this paper adopts no position on the topic of global signal 

regression.

Introduction

Cognitive and clinical correlates of global fMRI signals (the average signal of all gray matter 

signals or of all in-brain signals, see below) have gained much attention in recent years. For 

example, more attentive or vigilant (or caffeinated) human subjects exhibit reduced variance 

in the global fMRI signal (Wong et al., 2016; Wong et al., 2012, 2013). And psychiatric 

conditions have been characterized by differences in global fMRI signals, for example by 

altered variance in subjects with schizophrenia (Hahamy et al., 2014; Yang et al., 2014), or 

by an altered spatial distribution of the global signal in patients with autism spectrum 

disorder (Gotts et al., 2013; Gotts et al., 2012). Such findings, coupled with a report of an 
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electrophysiological basis for global fMRI signals (Scholvinck et al., 2010), have generated 

intense interest in global fMRI signals.

Additionally, debates on the practice of removing brain-wide signals are among the most 

controversial, but consequential, issues in human neuroimaging. Although debates on 

removal of brain-wide signals date to the 1980s (for PET imaging, (Fox and Raichle, 1984; 

Horwitz et al., 1984)) and the 1990s (for task fMRI, (Aguirre et al., 1998)), the current 

debates concern studies of resting state functional connectivity MRI, a widely used 

technique for assessing brain organization (see (Power et al., 2014b) for review). In most 

human functional connectivity studies, fMRI data are obtained from subjects lying quietly in 

the scanner, and covariance between signals is the feature of interest. Several groups have 

argued that removing global fMRI signals from datasets prior to or during functional 

connectivity analyses renders the data (nearly) uninterpretable, on the presumption that the 

global fMRI signal is substantially composed of a mixture of non-global signals (Gotts et al., 

2013; Murphy et al., 2009; Saad et al., 2012). These arguments gain force to the extent that a 

true global signal does not exist, and also gain (or lose) force to the extent that the signals in 

a scan exhibit low (or high) dimensionality. A related argument is that global neural signals 

may discriminate conditions or populations and thus ought not be removed. These arguments 

have been accepted by much of the field, and many groups now avoid removing global 

signal fluctuations in functional connectivity analyses.

In light of these considerations, it is perhaps surprising how little is firmly established about 

the empirical properties of global fMRI signals. For example, although the spatial 

distribution of the global fMRI signal has been used to characterize clinical status and plays 

an important role in the above-mentioned debates, the spatial distribution of the global fMRI 

signal in typical adults changes across studies that explicitly examine it: some studies find a 

rather uniform distribution of the global signal across gray and white matter (Aguirre et al., 

1997; Zarahn et al., 1997), whereas others report that the global signal is found primarily in 

gray matter and not in white matter (Fox et al., 2009) (Figure S1). The reasons for the 

discrepancy are unclear.

The spatial and temporal characteristics of certain causes of brain-wide signals are partially 

known. Relatively recently, it was reported that motion can cause transient, brain-wide 

changes in signals that are typically signal decreases (Satterthwaite et al., 2013) (Figure S1). 

And a long series of studies have demonstrated that signals across much of the brain can be 

modulated by breath-holding maneuvers or forced alterations in blood gases that cause 

hypoxia or hypercapnia (Kastrup et al., 1998; Poulin et al., 1996; Stillman et al., 1995) 

(Figure S1). Extensions of those studies have linked breathing patterns at rest to fMRI signal 

changes across much of the brain, with Wise and colleagues reporting modulation in gray 

and white matter (Wise et al., 2004) and more recent studies emphasizing gray matter 

changes (Birn et al., 2006; Birn et al., 2008; Chang and Glover, 2009). It is thus known that 

motion and respiration (among other potential factors, see (Murphy et al., 2013)) can cause 

potent, brain-wide modulation of fMRI signals. There are some similarities, but also 

dissimilarities, of the reported spatial distribution of the global fMRI signal to the reported 

spatial effects of motion and respiration (Figure S1).
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In sum, our present knowledge about global fMRI signals is fragmentary. On the one hand, 

based on the findings of Scholvinck and colleagues, the global fMRI signal might represent 

a global neural signal. On the other hand, effects of respiration and motion can cause global 

fMRI signal changes, and are probably present in many datasets, so the global fMRI signal 

is likely to include signals due to such influences. Although global neural signals would be 

of considerable interest, global effects of motion or respiration are typically considered 

artifact that need to be removed: they degrade statistical power in task fMRI modeling and 

will spuriously alter signal covariance in functional connectivity analyses. But if one decides 

to remove the global signal, one encounters the argument that the global signal must to some 

extent represent a mixture of non-global signals and thus should not be removed (in the 

worst case scenario, there is no true global signal at all, only a mixture of non-global 

signals). Faced with these considerations, an investigator would like to know the extent to 

which global artifacts, to the extent that they exist, are identified and removed during typical 

processing. However, there is almost no information in the literature on the composition of 

the global signal in typical data, much less the extent to which the global signal can be 

broken into constituent signals worth preserving or discarding.

This paper aims to help address such issues, which are fundamental to the conduct and 

interpretation of fMRI studies. We present and analyze whole-brain fMRI signals in over 

1000 scans collected from 8 distinct sites, representing over 700 subjects. The scans 

represent a variety of subject populations, scanners, and scanner sequences, including newer 

multi-band sequences with relatively high temporal and spatial resolution. These scans thus 

provide a representation of the quality and kind of data obtained in many human functional 

neuroimaging studies. All scans are examined at the individual level and group levels. We 

have found single-subject presentations so useful for understanding global signals that we 

have prepared individual versions of every figure for each scan included in the paper, which 

can be viewed immediately as videos on YouTube and/or downloaded at the authors’ 

website1. A few minutes spent with these videos can familiarize a reader with effects present 

over hundreds of individuals.

Several clarifications will help define the scope and intent of this paper. First, by the “global 

signal” we mean the average fMRI signal over the entire brain, as it is typically and 

historically used (Aguirre et al., 1997; Fox et al., 2005; Fox et al., 2009; Greicius et al., 

2003; Murphy et al., 2009; Zarahn et al., 1997). This signal is nearly identical to the mean 

signal of the gray matter for reasons that will shortly become apparent (the average 

correlation is r = 0.98 over all subjects of this paper), and is thus nearly synonymous with 

“mean gray matter timeseries”. Because multiple influences can modulate fMRI signals 

globally (e.g., motion, respiration, etc.), it is understood that the global signal represents not 

a single phenomenon, but just the observed average brain signal. When we begin to speak of 

multiple kinds of global signal, it will be understood that we are referring to multiple but 

distinct processes with signals sufficiently widespread (or of adequate amplitude) to affect 

the average whole-brain fMRI signal.

1www.jonathanpower.net/paper-gscorr.html
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For brevity, we will sometimes refer to all kinds of unwanted signals as artifacts (or noise), 

to contrast them with the neurally-caused “signal” of interest. While respiratory or other 

physiological sources of variance constitute true fMRI signals, in most contexts these 

sources of variance are considered nuisance signals that need to be separated from signal of 

interest. We will also sometimes refer to “neural” fMRI signals; by this we mean signals 

contingent on changes in blood oxygenation principally caused by neural activity of interest.

Methods

Six large fMRI datasets are examined, all of which have been published previously. The 

datasets will be referred to as the Washington University (WU), the National Institute of 

Health (NIH), the Autism Brain Imaging Data Exchange (ABIDE), the Brain Genomics 

Superstruct (GSP), the Russ Poldrack (RP), and the Human Connectome Project (HCP) 

cohorts. Each subject’s data included a high-resolution T1-weighted (MP-RAGE) scan and 

one or more resting state T2*-weighted (BOLD-weighted) scans. Pertinent details of the 

functional data are given in Table 1, and more details can be found in the following 

references: WU: (Power et al., 2014a); NIH: (Gotts et al., 2012); ABIDE2; GSP: (Holmes et 

al., 2015); RP: (Poldrack et al., 2015); HCP: (Glasser et al., 2013).

Idiosyncratic details of the datasets are mentioned here. Unlike other datasets, the WU 

dataset contains scans of varying length, ranging from 5.4–30 minutes (14.4 min on 

average), and variable numbers of runs per subject, due to collating scans from several 

studies. The ABIDE dataset contains many sites; the 3 sites examined here were chosen 

simply because they were on local servers. The GSP dataset contains 1000+ subjects; the 

first 235 were selected simply to conserve disk space. The HCP dataset presently includes 

900 subjects; we use only the “40 Unrelated Subjects” download of this dataset (which 

actually contains only 38 subjects), simply to conserve disk space.

Five of these datasets are examined in detail (WU, NIH, ABIDE, GSP, RP) and processing 

for these datasets is described below. The HCP dataset was processed per the HCP 

processing pipelines (Glasser et al., 2013) and did not receive any additional processing here 

(other than constructing brain compartment masks, described below). The HCP data have 

undergone an independent components analysis (ICA) denoising procedure designed and 

administered by experts in that technique (Salimi-Khorshidi et al., 2014), which is the 

reason this dataset is of interest. The datasets used are the “Pre-processed” and “FIX-ICA 

Extended” atlas-registered scans, reflecting data before and after ICA denoising.

Spatial masks of brain compartments

All T1-weighted images in the WU, NIH, ABIDE, and GSP cohorts underwent automated 

segmentation by FreeSurfer version 5.3. FreeSurfer segmentations for the RP and HCP data 

were already available.

FreeSurfer segmentation yielded high-resolution (1 mm isotropic) masks of brain 

compartments. Lower resolution masks to match the fMRI data (3 or 2 mm isotropic as 

2http://fcon_1000.projects.nitrc.org/indi/abide/
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appropriate) were created using nearest-neighbor resampling. Separate gray matter masks of 

the cortical ribbon, cerebellum, and subcortical nuclei were created. Masks of the white 

matter underwent 0–4 erosion cycles, and ventricle masks underwent 0–2 erosion cycles at 1 

mm resolution prior to resampling to fMRI resolution.

To study the properties of signals with varying proximity to gray matter, fMRI-resolution 

masks were subtracted from each other to identify voxels in superficial, deeper, and deepest 

masks (in white matter: ero0-ero2, ero2-ero4, and ero4 masks). In the ventricles, which are 

much smaller, only superficial and deeper masks (ero0-2 and ero2) were possible. In 

Figures, color darkness corresponds to mask depth (i.e., light green are superficial voxels, 

dark green are deepest voxels).

Two whole-brain masks are used. The all-brain mask contains all voxels inside the brain 

based on FreeSurfer segmentation, and is used to calculate the global signal. Because the 

spatial coverage of the structural image is often larger than that of the fMRI data (e.g., fMRI 

acquisitions often crop out portions of the cerebellum), another whole-brain mask including 

only voxels with mean fMRI values over 20% of the modal value was combined with all the 

above-mentioned masks to exclude any non-scanned parts of the brain.

Video 1 shows all masks in all subjects at both MP-RAGE and fMRI resolutions.

fMRI data processing

The RP cohort was processed exactly as described in (Laumann et al., 2015), and the HCP 

data was obtained from the HCP website in already-processed form. These datasets 

underwent no other processing by the authors. For all other cohorts, all fMRI scans 

underwent identical processing as described in (Power, submittedA), summarized below.

The first 4 volumes from all fMRI scans were ignored to ensure magnetization equilibrium. 

All scans were slice-time corrected using the AFNI command “3dTshift”. Scan realignment 

was calculated using AFNI’s “3dVolReg”.

To register data to an atlas space, the subject’s scan-space MP-RAGE was registered using a 

12-parameter affine transform to the target atlas space (via AFNI’s “@auto_tlrc” command), 

the first used volume of the first fMRI scan was registered to the scan-space MP-RAGE, and 

all fMRI scans were registered to the first volume of the first fMRI scan in the realignment 

step. These registrations were concatenated into a single transform and the scan-space fMRI 

data were then transformed to atlas space and resampled to 3 mm isotropic voxels in a single 

step. The target was the “TT_N27” atlas in AFNI. Note that this procedure enforces cross-

run alignment of multiple BOLD runs via the realignment step.

Each functional scan of each subject was visually checked for goodness of spatial 

registration and for complete brain coverage in the scan. If coverage or spatial registration 

was deemed inadequate, the scan (and, if necessary, the subject) was removed from further 

analysis. This selection based on spatial coverage and registration was the only exclusion 

criterion for the study and was performed prior to any examination of other data 

characteristics. This exclusion criterion resulted in the loss of 3/120 WU subjects, 0/91 NIH 

subjects, 3/164 ABIDE subjects, and 27/231 GSP subjects.
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fMRI signals are always presented in mode 1000 notation (the modal value is 1000, i.e., 1% 

signal change is 10 units) unless otherwise noted (occasionally z-scores are used instead).

Spatial smoothing

fMRI data are not smoothed during processing, other than the smoothing implicit in 

resampling the data during realignment and registration. Explicit smoothing was avoided 

because we are interested in the distinct signals of various adjacent tissues.

However, smoothing is used for cosmetic purposes to create the 2D gray-scale plots seen in 

some Figures (Video 2 shows pre- and post-blurred versions, the Gaussian kernel is 6 mm 

FWHM). This blurring is performed using AFNI’s “3dBlurInMask” command, such that the 

blurring only occurs within-compartment and not across compartments (i.e., a voxel in the 

gray matter cortical mask will only be blurred with other voxels in the same gray matter 

mask, likewise for all masks). This blurring is performed because near-white (Rician) noise 

is prominent in datasets with small voxels (the NIH, RP, and HCP data) and obscures the 

presence of widespread signal changes in the gray-scale plots. In other words, gray-scale 

plots without smoothing in high-resolution datasets tend only to show a wall of static, 

despite the presence of structured signals “underneath” the noise, which become visible after 

smoothing.

Mean compartment signals are unchanged by this blurring procedure. The entire paper 

utilizes only unsmoothed data for computations, with the exception that the nuisance 

regressions in Figure 7 are performed on the smoothed data; performing the computations on 

unsmoothed data does not appreciably change the results (data not shown).

Data traces

Motion estimates (MOT): head position was estimated using 3dVolReg in unprocessed data 

for the WU, NIH, ABIDE, and GSP data (since motion estimates after slice time correction 

under-represent motion (Power, submittedA)). Motion estimates were provided for RP and 

HCP data.

Framewise displacement (FD): framewise displacement indexes head motion. FD is 

calculated as the sum of the absolute values of the differentiated (in time) motion estimates, 

after converting rotational positions to arc length displacements at a radius of 50 mm, as in 

(Power et al., 2012). By convention, FD = 0 for the first volume.

fMRI signals: signals from various tissue compartments are presented as average signals 

within brain masks. Nuisance signals and the global signal are derived using the already-

described masks.

fMRI signal heatmaps: all voxel signals within one or more brain compartments will often 

be shown as gray-scale heatmaps, with time on the X axis and voxels on the Y axis. These 

heatmaps are always scaled −20 to 20 in mode 1000 units. Brain compartments are usually 

denoted by colored bars beside the heat map (e.g., light green for superficial white matter 

voxels).
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Mapping the spatial distribution of the global fMRI signal: GSCORR

To show how each voxel signal relates to the global signal, the global signal is calculated 

from the mean signal of the all-brain mask and is correlated with the signal at every voxel 

using a simple linear Pearson correlation in each subject. Voxelwise mean and linear trend 

terms are removed within each run prior to global signal computation. For any regression (or 

correlation) calculated in this article, mean and trend terms, per run, are removed from all 

involved signals (and for multiple linear regressions, all regressors are standardized).

We call this particular map GSCORR (see (Aguirre et al., 1997; Fox et al., 2009) for other 

examples of the same map, reproduced in Figure S1). When these maps (or any correlation 

measure) are combined across subjects, Fisher-z transforms are used prior to computations, 

and inverse transforms are used to derive r values for reporting purposes.

Physiologic traces

The NIH dataset includes pulse oximeter traces (in arbitrary units) and respiratory belt traces 

(in arbitrary units) for each scan, both sampled at 50 Hz. The respiratory belt traces are 

presented without further processing. The pulse oximeter traces underwent automated peak 

detection to detect systole, and instantaneous heart rate was calculated from peak-to-peak 

intervals. Pulse oximeter traces contain many artifacts, and suspicious portions of signals 

were identified using methods such as wavelet transforms of the raw signal and sensible 

checks on changes in heart rate (e.g., >40 Δbpm in a single beat). All signals and detected 

peaks were manually checked in their entirety to exclude spurious peaks and it is believed 

that the resulting heart rate traces are (nearly) completely accurate for all subjects. Peak 

amplitude was calculated as the difference between an accepted peak and the signal found 

0.14 sec (7 samples) prior to the peak. Video 3 shows all traces and derived measures at fine 

and coarse temporal resolution.

fMRI signal denoising

The ability of several common denoising procedures, in various combinations, to remove 

global artifacts is evaluated. All voxel signals undergoing regression have per-run mean and 

linear trend terms removed, as do all regressors, which were also thereafter standardized. 

Regressors include the signals listed in Table 2, all of which might plausibly capture brain-

wide variance. PCA of gray matter signals was not performed because it is already known 

that the global signal correlates with the 1st principal component of gray matter voxels at r = 

0.95–0.99 (Carbonell et al., 2011). Independent component analysis (ICA) of gray matter 

signals was not performed in the five main cohorts but was instead examined in the HCP 

dataset.

Several models of physiology-related fMRI signal variance were applied to the NIH dataset 

(of the main datasets, it alone has the necessary physiological records). These models 

include RETROICOR (Glover et al., 2000), RVT (Birn et al., 2006), RVT*RRF (Birn et al., 

2008), and RV and RVT*RRF models (Chang et al., 2009). RETROICOR was applied using 

the AFNI command ‘3dretroicor’. Both Respiration Volume per Time (RVT) and 

Respiratory Variation (RV) measures were calculated, as well as elaborations of these 

models that convolve those regressors with “respiratory response functions”. RVT was 
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calculated via “retroTS.m” in AFNI, and RV was calculated as the standard deviation of 

respiratory belt traces over a 6 second window. An empirical respiratory response function 

(RRF) was derived by measuring the average global signal change in the 42 seconds 

following isolated deep breaths apparent in several subjects from the NIH cohort (Figure 6). 

This derived RRF matches the RRFs published in (Birn et al., 2008) and (Chang and Glover, 

2009) reasonably well (Figure S6). The 5 RVT regressors (the “default” approach of one 

RVT regressor with 4 added lags) were convolved with the RRF to yield 5 additional 

regressors intended to remove delayed effects of respiration (5+5 regressors). A similar 

convolution procedure was followed with the RV regressor, which was also lagged 7 seconds 

backward and forward (3+3 regressors). Many other versions of physiological signal 

modeling exist (e.g., (Shmueli et al., 2007), adding lagged heart rate regressors, or (Chang et 

al., 2013), adding regressors related to heart rate variability). We chose the RETROICOR, 

RVT, RVT*RRF, RV, and RV*RRF models because they are among the most commonly 

used models and because there are compelling reasons to focus on respiratory effects. 

Because there are collinearities between the derived physiologic regressors used in various 

models (e.g., between heart rate variability and respiratory volume), we were reluctant to 

combine large numbers of models without carefully examining the regressors, a procedure 

that becomes difficult with large numbers of tested models. Our goal is not to test all 

possible models, but to illustrate the efficacy of frequently used models.

Video 4 shows many combinations of these regression models in each subject of each 

cohort.

Modeling variance in global signals

In Table 3 and Figures 8–10 we model variance in the global signal, or in GSCORR, as a 

function of one or more variables. The independent variables are mean FD, mean and 

standard deviation of the heart rate, mean and standard deviation of a respiratory variable 

(RVT or RV), and mean and standard deviation of the pulse amplitude. In scatter plots, 

variance in the global signal is the dependent variable. In the brain slices, GSCORR is the 

dependent variable. For the permutation tests shown in Figures 9 and 10, dependent 

variables (variance in the global signal or the GSCORR maps) were shuffled across subjects 

10,000 times while preserving the independent variables at each subject. The histogram in 

Figure 10 reflects the permutation ranks of all voxels in the model of GSCORR as a function 

of RVT variability, after the denoising shown in the 4th row of Figure 7 (MOT MOT’ WM 

CSF RVT RVT*RRF regressors).

Results

Global signal fluctuations are evident in most fMRI scans, and are often artifact

Signals present across most or all of the brain are routine features of fMRI scans. Figure 1 

shows all in-brain signals in a single subject of the WU cohort. The brain next to the traces 

shows tissue compartments defined by segmentation of high-resolution structural images. In 

the heat map, the vertical black and white bands that span most or all brain compartments 

illustrate signals that prominently enter the global fMRI signal. Most of the global 

fluctuations in the gray matter signals are by definition artifact since they are also present 
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throughout white matter and often the cerebrospinal fluid. In the third panel the black trace 

is the global signal and the colored traces represent the mean signals in each compartment. 

At top, the red trace shows head motion. Head motion coincides with (or marks the 

beginning of) many of the most obvious global fluctuations. Such signals are typical of most 

subjects. Readers may view structural brain segmentations for all subjects in Video 1, and 

versions of Figure 1 for all subjects in Video 2.

Signals in the white matter and ventricles are widely considered to be nuisance signals with 

little to no representation of neural activity. However, nuisance signals in the white matter 

and ventricles vary depending on how well-isolated they are from gray matter signals. The 

resolution of the data under study is typical of fMRI data from the last decade: 3 mm 

isotropic voxels at analysis, derived from coarser or finer spatial resolutions at acquisition. 

At such resolution, voxels will often include multiple kinds of tissue (e.g., both gray and 

white matter). Such mixing of signals due to spatial sampling is called a partial volume 

effect. Nuisance voxels near gray matter tend to have signals highly correlated with the gray 

matter, but these correlations decrease in the deeper and deepest white matter voxels 

(medium and dark green masks, see Figure 1). This phenomenon is visible in the grayscale 

heat maps in many Figures (global gray matter signals often fade with depth in white 

matter). The effect is also visible in the traces of Figure 1 (see the red arrows pointing out 

similarities in the dark blue cortical gray matter trace and the light green superficial white 

matter trace). A similar effect is found in the ventricles, which in places abut subcortical 

gray matter. For example, mean subcortical gray matter signals (medium blue) correlate with 

superficial (light yellow) versus deeper (dark yellow) ventricle signals at r = 0.40, 0.29, 0.27, 

0.06, and 0.23 versus 0.12, 0.18, 0.04, −0.13, and 0.18 in the WU, NIH, ABIDE, GSP, and 

RP datasets. In datasets that permit higher resolution analysis, such as the RP and HCP 

datasets, analyzing 2 mm isotropic voxels makes little difference in these numbers. In the 

remainder of the paper we will only use the dark green and dark yellow signals as nuisance 

signals, in all cohorts.

Various kinds of global signal are commonly encountered and can be recognized

Several patterns emerge from viewing these plots in hundreds of subjects, summarized in 

Figure 2. First, in a minority of subjects (or scans), there is little evidence of global signal 

fluctuations. Such subjects always exhibit almost no motion (top row). Second, most 

subjects (or scans) do exhibit prominent global signal fluctuations of a particular kind. These 

fluctuations often occur without obvious motion (second row) but also often occur during 

and after motion (third row). These fluctuations are present throughout gray matter and 

superficial white matter, but they become less prominent (or absent) in deeper white matter 

voxels. Note that these fluctuations are slow – the x-axis shows 6–10 minutes of data in each 

of these subjects. Across hundreds of subjects, most global signal fluctuations exhibit the 

characteristics just described: slow changes present mainly in the gray matter and superficial 

white matter but not in deep white matter. We will refer to these fluctuations as “typical” 

global signals, and will identify their source shortly. The fourth row of Figure 2 shows some 

less usual but still common and recognizable kinds of global signals: at bottom left a global 

signal prominent throughout the entire brain without evidence of motion, at bottom middle a 

motion artifact that affects the entire brain, and at bottom right some unusually protracted 
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changes (of the usual kind shown in rows 2 and 3). The RP scan at bottom right shows a 

motion artifact (white band) affecting the entire brain. The quality of the data shown in this 

figure is representative of all datasets, and, if anything, represent the higher end of data 

quality (see Video 2).

To quantify the qualitative observation that there is little variance in the global signal in 

scans with little motion (row 1), we correlated head motion with the standard deviation in 

the global signal, across subjects. This correlation is r = 0.35, 0.78, 0.51, 0.54, and 0.58 in 

the WU, NIH, ABIDE, GSP, and RP cohorts, all highly significant correlations (Figure S2). 

If timepoints containing motion (e.g., FD > 0.5 mm) are censored to remove most frank 

motion artifact from standard deviation calculations, the relationships are reduced but 

remain significant (r = 0.32, 0.45, 0.36, 0.51, 0.38), consistent with the observation that 

motion often precedes the “typical” fluctuations (e.g., row 3 of Figure 2).

The spatial distributions of the global signal reflect specific artifacts

Figure 3 shows the spatial distribution of the global signal for most scans in Figure 2 (RP 

data are shown in Figure S4). The spatial distribution is illustrated as a heat map of the 

correlation of the global signal to each voxel’s signal. We will refer to this correlation as 

GSCORR. In the first 9 GSCORR maps (drawn from the first 3 rows of Figure 2), it is 

evident that the global signal is most strongly represented in the gray matter and that is only 

weakly present in the white matter and ventricles. These maps are typical of most subjects 

(GSCORR maps are presented individually for all subjects in Video 2). The 10th map (for 

NIH38) illustrates one of the unusual signals from Figure 2, and is an unusual spatial map, 

reflecting a malfunctioning coil in the scanning apparatus (a known historical problem with 

this particular site (Jo et al., 2010)). The 11th map (for ABIDE32) is shown first including all 

timepoints in the scan, resulting in an unusual diagonal banding pattern in the GSCORR 

map, and then excluding several timepoints with very large motions (FD > 1 mm) from 

signal calculations. Note that the banding pattern is removed and a more typical pattern 

emerges when those timepoints are censored.

Atypical GSCORR maps often reflect an identifiable artifact, and particular kinds of atypical 

maps are often associated with a particular scanning site (Figure S3 shows 12 examples). 

The WU site contains many GSCORR maps that are uniformly high across the brain (Figure 

S3), likely a result of a scanner-related artifact (note the many white bands in Figure 1 

present uniformly throughout the brain; such bands are less frequent at other sites). The NIH 

site contains many instances of the asymmetric GSCORR map, reflecting coil artifacts 

(Figure S3). The diagonal banding artifact is present at all sites in subjects with large 

motions (Figure S3). Several other atypical and obviously artifactual GSCORR maps exist in 

the ABIDE dataset (Figure S3). In the RP dataset most scans conform to the “typical” 

pattern (Figure S4, see also Video 2), though there are also several atypical maps (Figure S4 

and Video 2).

To quantify the qualitative observations of “typical” and “atypical” maps, an all-subject 

GSCORR map was created from the median value at each voxel across all 583 subjects of 

the WU, NIH, ABIDE, and GSP datasets (which are all in register (RP and HCP data are in 

different atlas spaces)). Each individual GSCORR map was then correlated with the all-
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subject map (Figure S5). The percentiles next to the maps in Figures 3, S3, and S4 indicate 

the rank of the map’s similarity, within the map’s site, to the all-subject map (100% is the 

most similar). The maps shown in Figures thus far were selected based on qualitative 

assessments of GSCORR maps (prior to quantification of the “typicality” of the maps), but 

the quantitative ranks of the chosen maps reflect these assessments: the presented “typical” 

maps have much higher rankings than the “atypical” maps (68 ± 27 vs 12 ± 14; p = 7.8e–8).

A suggested relation of the “typical” global signal to respiratory effects

To capture the central tendency of GSCORR, median GSCORR maps for each cohort are 

presented in Figure 4. These maps reflect the “typical” maps seen in Figure 3. Though the 

maps differ in magnitude (see Discussion), the spatial pattern of GSCORR is similar across 

maps: all in-register maps correlate at over r = 0.7 (correlations with the NIH data are the 

lowest at r = 0.72, 0.79, and 0.72, whereas the other maps correlate at r = 0.82, 0.84, and 

0.86). These correlations are all highly significant. GSCORR is near zero in deep white 

matter, is slightly negative in the ventricles, and is high in gray matter. GSCORR is 

relatively low in frontal cortex compared to posterior cortex. GSCORR is routinely high in 

much of the midline and in much of occipital cortex, and is also elevated in portions of the 

insula and near the Rolandic fissure.

The GSCORR maps bear resemblance to published maps of BOLD signal dependence on 

pCO2. In Figure 4, the map of Wise et al, 2004 shows how end-tidal pCO2 measured by 

nasal cannula correlates with BOLD signal changes, and the map of Birn et al., 2006 shows 

how respiratory belt measures correlate with BOLD signal changes. This correspondence 

suggests that the “typical” GSCORR maps may in part reflect the influence of pCO2, and, 

correspondingly, that the “typical” global signals illustrated in Figure 2 may, in part, reflect 

effects of respiration.

It is useful to contextualize these maps in terms of resting state organization. The modular 

organizations of the WU and RP data have been extensively characterized in (Gordon et al., 

2016; Laumann et al., 2015; Power et al., 2011; Power et al., 2013). Published modules for 

these datasets are shown next to GSCORR maps in Figures 4 and S6. GSCORR is notably 

high in visual and auditory and somato-motor modules, as are respiratory effects. Elevations 

in GSCORR are not limited to these locations, but are also high in lateral occipital, superior 

temporal, and superior parietal locations. It seems noteworthy that some of these locations 

are also proximal to major draining veins (e.g., the Labbe, Trolard, and superficial Sylvian 

veins). In some prior work, respiratory effects were interpreted as being prominent in default 

regions of the posterior midline. But In comparing the various maps of Figure 4 it appears 

that respiratory effects may not be particularly prominent in default regions, but rather in 

neighboring occipital and parietal regions. Relatedly, in the RP data, which has no cross-

subject blurring, GSCORR is not nearly as high in the posterior default regions as it is in 

neighboring occipital and parietal regions (Figure S6).

Measuring respiration and its consequences

Most fMRI datasets are acquired without any accompanying physiological information, and 

this is true of the WU, ABIDE, GSP, and RP datasets. However, the NIH datasets have pulse 
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oximeter and respiratory belt records from all scans, allowing us to document the extent to 

which respiration and other physiological changes can account for global signal changes. 

Respiratory belts (strapped about the abdomen) provide a record of expansion and 

contraction during breath cycles, and pulse oximeter traces (here, from a finger) track 

opacity of tissue to light. Because blood volume in the fingertip changes during the heartbeat 

and dynamically impedes light transmission, pulse oximeters can be used to derive multiple 

physiologic indices including heart rate and proxies of arterial pulse pressure. Pulse pressure 

(the difference between systolic and diastolic blood pressure) has only relatively recently 

been described as a measure that can be derived via peak amplitudes from pulse oximeter 

traces (Cannesson et al., 2005), and little is known about its correlates in fMRI signals.

Because pulse oximeter records are often contaminated by artifact, after algorithmic 

detection of peaks corresponding to heart beats, all traces were manually checked in their 

entirety to accept or omit the detected peaks (see Video 3a for fine-grained traces illustrating 

artifacts and quality control decisions in all subjects; see Video 3b for scan-summary 

versions of all traces in all subjects). The regularity of cardiac cycles makes distinction 

between signal and artifact relatively unambiguous in pulse oximeter traces. Instantaneous 

heart rate was calculated from peak-to-peak intervals, and peak amplitude was calculated for 

accepted peaks as the difference between peak signal and signal 0.14 seconds prior the peak 

(see Video 3a). Respiratory patterns may be regular and rhythmic, but they can also be quite 

irregular (see examples in Figures 5 and 6), making it much more difficult to distinguish 

artifacts from an irregular signal. We therefore did not intervene in respiratory belt traces to 

try to identify artifact.

Our goal is to link global fMRI signal changes to changes in physiologic records, with a 

focus on respiration. However, prior to examining those links, it is prudent to examine the 

links between the physiologic records themselves, since respiratory cycles can modulate 

both heart rate (due to intrathoracic pressure changes) and pulse pressure (mainly in 

dehydrated individuals) (Cannesson et al., 2007; Cannesson et al., 2005).

Much of the variance in heart rate can be attributed to respiratory cycles (Figure 5, see also 

subjects 2, 4, 5, and others in Video 3a). The peak correlation between respiratory traces and 

heart rate traces is 0.47 ± 0.22 at a 0.8 second lag of respiratory traces, a highly significant 

correlation. Aside from cyclic heart rate changes due to respiration, another common 

phenomenon is intermittent and transient elevation in heart rate accompanying deep 

inspirations (Figure 5, see also subjects 2, 4, 9, and others in Video 3b). This phenomenon 

accords with prior reports that short-term heart rate variability correlates with respiration 

volume and lowered respiration rate (Chang et al., 2013). Lower-frequency modulations of 

heart rate are present but less frequent; these modulations are often, but not always, 

obviously linked to the envelope of the respiratory belt waveform (see also subjects 12, 14, 

27, 44, and 64 in Video 3b). In short, much variance in heart rate is linked to respiration, and 

there is relatively little modulation of heart rate that appears to be unrelated (with certainty) 

to respiratory patterns.

Consistent with reports in the clinical literature (Cannesson et al., 2005), variance in peak 

amplitude can also be attributed to respiratory cycles, whether as a function of individual 
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respiratory cycles or the envelope of the respiratory waveform (Figure 5, see subjects 17, 58, 

65, 79, or 82 in Video 3b for examples of envelope relations). But in many instances low-

frequency modulation of peak amplitude is not obviously related to the other traces (see 

subjects 41 or 45 in Video 3b for examples). If peak amplitude faithfully reflects pulse 

pressure, unique and perhaps useful information may be gained from variance in this 

measure, since pulse pressure reflects vascular compliance and stroke volume (among other 

factors). However, since peak amplitude is also sensitive to motion of the finger within the 

pulse oximeter (and changes in ambient light), non-cyclic shifts in amplitude may reflect 

uninteresting effects as well. It is likely that some of the low-frequency peak amplitude 

changes without obvious correlates in respiratory traces (or fMRI signals) are artifact due to 

inadequate securing or shielding of the pulse oximeter. Although peak amplitude estimates 

may not be of sufficient quality in these data to establish reliable relationships to fMRI 

timeseries, there are sufficient examples of links between peak amplitude, respiration, and 

fMRI signal changes (e.g., NIH82 in Figure 6) that we nonetheless present peak amplitude 

data to alert readers to the potential utility of this measure in future studies.

In sum, respiratory belt traces have correlates in heart rate and peak amplitudes derived from 

pulse oximeter traces, both at the level of individual respiratory cycles spanning 5–10 

seconds and at longer intervals of dozens to hundreds of seconds (the respiratory trace 

envelope). Much of the variance in heart rate, and in peak amplitude (and thus inferred pulse 

pressure), appears to be a consequence of, or at least correlated with, respiration. Note that 

when sampled to fMRI-scale intervals (3.5 sec in this case) much of the cyclic variability in 

cardiac rate and pulse pressure due to individual respiratory cycles is averaged away (see 

Video 3b).

Respiratory effects are prominent in the global fMRI signal

Figure 6 presents the 3 physiologic traces along with fMRI signals in several NIH subjects. 

These subjects illustrate effects observed across all NIH subjects. Qualitatively, in subjects 

with little global signal change (upper left), there is little change in the physiological signals, 

and in subjects with much global signal change, there is much change in physiological 

signals. This observation can be quantified by correlating, across subjects, variance in 

estimated heart rate or variance in the volume of air respired per unit time (RVT), with the 

standard deviation of the global signal: these correlations are r = 0.55 (p = 5.7e–7) and r = 

0.45 (p = 8.1e–5). These relationships are robust: if volumes with motion (FD > 0.5 mm) are 

excluded from standard deviation calculation in the global signal, the correlations become r 

= 0.38 (p = 0.001) and r = 0.61 (p = 9.3e–9), and if high-motion subjects (mean FD > 0.2 

mm) are also excluded the correlations are r = 0.36 (p = 0.003) and r = 0.60 (p = 1.0e–7).

Deep inspiration precedes large drops in signal across the gray matter, a “typical” global 

signal modulation. To characterize this common modulation, isolated deep breaths without 

head motion or other artifact were identified in several subjects and the mean gray matter 

signal was calculated for 13 timepoints (42 seconds) after the breath. The average derived 

waveform, which may be considered an “impulse response” to a single large breath, matches 

well with waveforms from prior reports of such “respiratory response” functions induced by 

instructed deep breaths (Figures 6 and S7).
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In the bottom left and middle panels of Figure 6, changes in the respiratory envelope 

correlate with large changes in global signals. The bottom middle panel is of particular 

interest for its 3 periods of (near) apnea. The lack of ventilation during apneic periods 

contributes to a gradual development of hypercapnia and hypoxia, both of which 

independently elevate cerebral blood flow. In studies that control blood gas pO2 and pCO2, 

and that induce conditions similar to those caused by 40–60 s of apnea, middle cerebral 

artery blood flow increases to approximately 110–160% over its baseline value (Poulin et 

al., 1996). Much as neural activity enriches local blood oxygenation (Fox and Raichle, 1986) 

by causing increased blood delivery (yielding increased blood oxygen level dependent 

(BOLD) signal), hypoxia and hypercapnia cause similar but global increases in blood flow 

that also enrich blood oxygenation (and increase the BOLD signal). Consistent with these 

observations, fMRI signal increases markedly during the apneic periods in the bottom 

middle panel.

To quantify the relative contributions of motion, respiratory patterns, heart rate, and peak 

amplitude to variability in the global signal, the standard deviation of the global signal was 

modeled (across subjects) by 7 variables: mean FD, and the mean and standard deviation of 

RVT (or RV), heart rate, and peak amplitude. If all timepoints are used to calculate global 

signal standard deviation, ~27% of the variance in global signal variability can be explained 

by these variables, and the most explanatory variables are motion estimates and the standard 

deviation and mean of heart rate (Table 3). If, however, high-motion volumes are excluded 

(which are a small fraction of volumes), the explanatory power of these variables drops and 

respiratory variables are most responsible for the explained variance. These statistics match 

the observation that motion, which causes major global signal artifacts, often accompanies 

deep inspirations that transiently elevate heart rate, and also match the observation that 

respiration-induced global signal changes last dozens of seconds after such events.

Many common fMRI processing methods do not remove global artifacts

The global fMRI signal contains a variety of undesirable signals, including hardware 

artifacts, motion artifacts, and variance linked to respiration. These artifacts will degrade 

modeling of task responses, and will systematically alter the similarity of signals in resting 

state fMRI analyses. Long-lasting global signal changes, such as those caused by 

respiratory-related effects, could be misinterpreted as dynamic neural effects if not identified 

as a nuisance signal.

To accurately assess fMRI data, these global artifacts must be recognized and removed (or 

somehow controlled for in statistical analyses). Many options exist for denoising fMRI data, 

and the techniques listed in Table 2 represent many of the common approaches in the field.

We examine nearly all of these methods, alone and in combination, for their ability to 

remove global fMRI signals. We do not examine local white matter regressors, but instead 

examine mean white matter signals and principal components of white matter signals, which 

should better target global signals. We do not examine removal of independent 

spatiotemporal components because independent component analysis (ICA) is optimized to 

identify spatially specific signals and is thus unlikely to identify global signals because they 

have little spatial specificity. This observation is demonstrated in Human Connectome 
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Project data: global variance time-locked to motion and changes in respiration are prominent 

both before and after FIX-ICA (Figure S8).

Even when applied in combination, none of the examined methods removes global artifacts 

adequately (apart from techniques that explicitly remove the global signal). Video 4 shows 

many combinations of methods not shown in Figure 7. Motion regressors remove (some) 

motion artifact but will be insensitive to delayed effects of respiration or scanner artifact. 

White matter regressors, when adequately eroded, provide little removal of respiratory 

artifact though they can remove other artifacts (such as motion or scanner artifacts). Models 

of respiration-related signal only partially remove respiratory artifact. Note that most 

datasets cannot leverage physiological models of noise removal since there are no 

physiological records (i.e., these models are inapplicable to the WU, ABIDE, GSP, and RP 

datasets).

Readers may examine many combinations of these strategies in all subjects of the NIH 

cohort in Video 4, such as using principal components from white matter rather than mean 

white matter signals, or using a somewhat different model of respiratory signals (RV versus 

RVT). Although there are sometimes modest changes in the variance removed, the 

fundamental conclusion is unaltered: unwanted global variance time-locked to motion and 

respiration remains, and is often prominent, no matter the applied combination of these 

approaches. Video 4 also shows these same denoising combinations (without the 

physiological models) for the WU, ABIDE, GSP, and RP cohorts, yielding the same 

conclusion. Video 5 shows the effects of FIX ICA in the “40 Unrelated Subjects” HCP 

collection, yielding the same conclusion. No combination of examined methods removes 

global artifacts fully, except those combinations that include explicit removal of brain-wide 

fMRI signal (e.g., the global signal (GS) regressor at the bottom of Figure 7).

Please note that when we speak of failing to remove global artifacts we are not referring to 

failing to remove global signals in general but rather about failing to remove specific 

instances of global signals that are clearly attributable to motion and/or respiration. For 

example, the black bands in the first 2 columns of Figure 7 are time-locked to respiration 

and are not adequately removed by any denoising strategy except those that expressly 

remove all global signals.

Residual global signals

Any investigator who wishes to characterize differences in, or correlates of, global signals in 

fMRI data should first attempt to denoise the data. But how can one infer whether global 

signals after denoising represented “signal” or unremoved “noise”?

One strategy would be to examine the temporal and spatial characteristics of plots such as 

those shown in Figure 7, along with relevant indices of potential artifact, for evidence of 

artifact and artifact removal.

Another strategy would be to correlate the residual global variance with indices of unwanted 

variance. In the NIH cohort, global signal variance in raw data correlates with head motion, 

heart rate variability, and respiratory variability (Figure 8). These correlations remain after 
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any denoising strategy attempted in this paper that does not explicitly remove global signals, 

no matter whether assessed in all data, only in low-motion subjects, or only in low-motion 

subjects and low-motion volumes (Figure 8). These relationships are significant when 

examined separately in “typically developing” (TD) and ASD subjects.

A variation of this procedure is to examine the performance of the model of Table 3 in the 

context of different denoising approaches (Figure 9). In this model, motion and respiratory 

variables account for much global signal variability both in raw data and after any examined 

denoising strategy that doesn’t include explicit removal of global signals. Figure 9 features 

the statistics of low-motion TD data (since these data likely most reflect other data in the 

literature), but the effects are similar in ASD subjects and when including all subjects 

regardless of motion.

Yet another strategy would be to examine the correlations of the residual GSCORR with 

indices of unwanted variance. For example, one can correlate RVT variability, across 

subjects, with GSCORR maps created after denoising. Figure 10 presents such a map for the 

NIH data after the denoising procedure shown in the 4th row of Figure 7, again focusing on 

low-motion TD subjects. GSCORR is dependent on RVT variability after denoising, and 

permutation tests indicate that this dependence is both pervasive and highly significant. Such 

maps are very similar under the other denoising strategies shown in Figure 9.

Discussion

Global fMRI signals play a central role in modern human neuroimaging, whether in the 

context of clinical findings, cognitive paradigms, or studies of resting state functional 

connectivity MRI. By studying many scans at the individual level, we were able to identify 

several common contributors to global fMRI signals, including hardware artifact, head 

motion, and respiratory-related variance. Most fMRI scans contain prominent global 

variance, much of which is caused by or correlated with these influences. This variance is 

often not removed from scans by common denoising techniques. Some implications of these 

findings are now discussed.

Uses of GSCORR

Maps of GSCORR at the individual level are useful for identifying abnormalities in scans. In 

this paper, abnormalities in these maps were produced by motion artifact (banding patterns), 

by scanner artifacts (large, pan-brain elevations in GSCORR), and by malfunctioning 

scanning equipment (the head coil artifact in NIH scans).

GSCORR maps at the individual and group levels suggest that the global signal is often 

largely accounted for by pCO2-related signal changes. Cerebral blood flow regulation (e.g., 

vasodilation in response to hypercapnia) plays an essential role in establishing this spatial 

pattern. An interesting clinical possibility is that GSCORR maps could reflect regional 

abnormalities in blood flow regulation (Lv et al., 2013). Recently, Grinband and colleagues 

have published evidence consistent with this proposition by showing that GSCORR maps 

can reflect non-enhancing spatial features of brain tumors (Chow et al., 2016).
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Interpreting differences in GSCORR across scans, sites, and populations

Because various kinds of global signal have varying spatial properties and qualitatively 

different GSCORR maps, differences in the amounts and kinds of these signals will cause 

differences in individual and group-level GSCORR maps. This effect is seen across sites in 

this paper: the WU scans contained more scanner artifact, uniformly elevating GSCORR 

maps relative to the other sites (Figure 4). Another example is seen in the NIH scans, where 

scans with coil artifact contribute to asymmetric GSCORR especially in the frontal lobes 

(this is one reason why we used median values to create group-level maps, to diminish the 

effect of such atypical scans). Other expected effects are that group of scans with more 

motion will be expected to have noisier, less uniform GSCORR maps than a comparable 

group of scans without motion. Or, a group of scans containing many yawns would be 

expected to have a more prominent representation of respiratory-related signal (the “typical” 

GSCORR map) than a comparable set of scans with more regular breathing rates.

Differences in the spatial distribution of the global signal have been reported and examined 

in various contexts (e.g., ASD vs typical subjects (Gotts et al., 2012), or simulated 

differences in neural signals (Saad et al., 2012)). Empirical differences in GSCORR could be 

due to neural signals or the kinds of uninteresting but spatially widespread signals identified 

in this report. Given the present results, neural interpretations of GSCORR differences 

should be received with caution until artifactual explanations are convincingly excluded.

The utility of single-subject data in understanding global signals

An important distinction needs to be drawn between variance attributable to a process and 

variance that can be presently accounted for by models of a process. For example, in the 

single-subject grayscale plots, changes in respiratory traces are time-locked to a variety of 

prominent changes in fMRI signals, a relationship that is immediately visually obvious 

(Figure 6). This observation, joined with the already-existing mechanism for respiration to 

produce such signal changes, strongly suggests that large portions of the variance in global 

signals should be attributable to respiration.

However, it is equally visually apparent in the single-subject grayscale plots that respiration-

linked variance is not well-removed by existing models of respiratory-related variance 

(Figure 7). In fact, in existing publications, the variance in timeseries accounted for by 

respiratory variables is often a only few percent of the total variance (e.g., (Bianciardi et al., 

2009; Jo et al., 2010; Shmueli et al., 2007)). These low percentages surely reflect the 

inability of the respiratory variables and models to capture respiratory variance, rather than 

respiratory-related variance accounting for a small percentage of variance.

The performance of RVT and other models of respiratory variance is limited both by the 

quality of respiratory records (which are hard to assess for artifacts post-hoc) and by the 

validity of the models used to translate these records into anticipated fMRI signals. For 

example, models of fMRI signal based on “impulse responses” to single deep breaths 

perform relatively well at removing effects of single breaths, but their performance decreases 

when more rapid, or deeper breathing patterns are encountered (Birn et al., 2008). As our 
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results illustrate, breathing patterns in the resting state often contain changes in the rate and 

depth of breathing, and even periods of apnea, complicating the modeling of these signals.

The important point is that the variance explained by a model may not reflect the variance 

that is intended to be explained by the model. In this paper, single-subject plots routinely 

provided critical evidence that the respiratory models were not capturing variance that they 

ought to capture. These limitations accompany not only the use of RVT and RV in timeseries 

denoising procedures (Figure 7), but also the use of such variables in the models of Figures 

8–10 and Table 3. For example, the correlations (or betas) of RVT with global signal 

variance are already high and significant, but the correlations between an ideal respiratory 

variable (and/or model) and global signal variance may be even higher.

On removing the influence of global artifact in fMRI scans

Global artifacts – signal changes that are time-locked to respiration and/or motion and that 

appear throughout the brain – remain in fMRI data following application of many 

combinations of common denoising techniques. These global artifacts, both before and after 

such denoising, are often prominent in the timeseries, and will cause at least two major 

effects. First, global fluctuations will tend to elevate covariance between all signals. Second, 

global fluctuations may easily be mistaken for neural dynamics. To accurately assess neural 

effects in fMRI data, such global fluctuations of no interest must be recognized and either be 

removed from timeseries or statistically accounted for in later analyses. We offer comments 

on both of these topics.

First, global artifacts arise from multiple sources, and effective removal of such signals will 

probably require multiple techniques. For example, deep white matter signals are useful for 

removing scanner artifact, but contain little representation of respiratory-related variance. In 

contrast, RVT captures some respiratory variance, but not scanner artifact.

Second, it is easy to inadvertently remove the global fMRI signal by inadequately eroding 

nuisance masks (Jo et al., 2010). Superficial white matter voxels, constituting approximately 

half of the white matter, have signals that are highly similar to the global signal (Pearson r of 

~0.9). Although this effect would seem attributable to partial volume effects in older 

datasets, it is similar quantitatively in the relatively high-resolution RP and HCP datasets 

(2.4 and 2.0 mm isotropic voxels at acquisition). Another inadvertent way to remove the 

global signal is to remove signals that are outside the brain but inside venous sinuses (e.g. 

note the high GSCORR in the sagittal sinus in Figure 4).

Third, although much attention has recently been given to identifying and removing effects 

of head motion in fMRI scans, less attention has been devoted to effects of respiration. The 

prominence of respiratory effects in global signals, and the difficulty of removing these 

signals, suggests that more work is needed in this area. Relatedly, the pulse pressure traces in 

the NIH cohort contain notable correlates of respiratory envelopes in many subjects, and 

these traces may in principle have interesting or useful correlates in fMRI signals. 

Unfortunately in our data the pulse oximeter traces also contain numerous artifactual 

changes probably due to shifts of the device on the finger, rendering the peak amplitudes 
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unreliable in many respects. Future studies that use better-secured oximeters may find these 

signals helpful for explaining fMRI variance.

Fourth, present implementations of ICA, such as FIX-ICA in the Human Connectome 

Project, tend not to remove respiratory-related global signals (Figure S8), likely because 

these signals do not meet the criteria for spatial specificity built in to these procedures. 

Spatial priors based on respiratory-related signal changes may aid the identification of such 

signals by matrix factorization techniques.

With regard to accounting for shared but unwanted covariance in a statistical manner, some 

groups have suggested covarying mean GSCORR values from datasets across scans (Saad et 

al., 2013), or studying only partial covariance between timeseries (e.g., using LASSO 

techniques). These techniques may help control for artifactual influences, but they also 

constrain studies in important ways. For example, GSCORR is in many cases likely to 

covary with effects of interest. Or, if one views signal similarity of “clean” fMRI signals 

throughout the brain as representing a nested hierarchy of widely distributed processes, then 

isolating unique variance between signals via partial correlations, the technical challenges 

aside, is not necessarily a preferred or natural framework for studying brain organization (in 

other words, some investigators may wish to retain the full nested hierarchy in their 

representations of the data).

Implications: “neural” global fMRI signals in humans

Work in non-human primates and rodents indicates that “global” neural signals may exist.

In alert macaques, Scholvink and colleagues (Scholvinck et al., 2010) demonstrated an 

approximately r = 0.25 correlation between band-limited high-gamma (40–80 Hz) power 

from electrophysiological recordings at multiple sites and fMRI signals 7–8 seconds later at 

multiple cortical sites. Intriguingly, this study also found that fMRI signals 7–8 seconds 

preceding neural activity predicted the band-limited power subsequently recorded. Although 

it is relatively straightforward to postulate mechanisms whereby neural signals elicit global 

changes in blood flow that manifest as global fMRI signals, it is less clear how or why 

global fMRI signal changes might systematically precede global neural activity. Two non-

mutually-exclusive possibilities for the latter observation are 1) periodic processes, or 2) that 

pO2 and/or pCO2 (since they govern cerebral blood flow and thus global T2* signal) may 

systematically affect subsequent neural activity throughout the brain.

Optical imaging in lightly anesthetized mice also suggests the existence of “global” neural 

signals. Matsui and colleagues (Matsui et al., 2016) noted waves of activity that propagated 

across the entire mouse cortex, often in a front-to-back pattern, lasting ~5 seconds with a 

multi-second lag between neural activity and parallel hemodynamic responses. These waves 

occurred at approximately 0.04 Hz, a frequency within the most-studied pass-band of resting 

state fMRI signals in humans.

The results of the present study should not be construed as arguments against “neural” 

global signals in humans or as arguments that the global fMRI signal is entirely artifact. 

However, from a practical standpoint, the current study does indicate that in humans 1) most 
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of the most prominent global fMRI signal changes are artifacts that can be attributed to head 

motion or respiration and 2) methods to selectively identify and successfully remove those 

artifacts are lacking at this time.

Implications: respiratory effects and sensorimotor patterns in fMRI data

“Functional” organization accompanies some artifacts: respiration-related variance affects 

all gray matter but is especially prominent in occipital cortex, peri-Rolandic cortex, and in 

the superior posterior insula, all “sensory” or “motor” brain regions. Results related to such 

spatial patterns may fit respiratory-related explanations just as well as “functional” 

explanations.

Sensorimotor-patterned correlates of cognitive, behavioral, and clinical phenomena should 

be interpreted in light of this observation. For example, many fMRI studies of descent into 

sleep detect spatial patterns of increased variance that are notably similar to the GSCORR 

and pCO2 patterns shown in Figure 4 – changes most prominent in visual and somatomotor 

regions (see, e.g., Figure 3 of (Horovitz et al., 2008), Figure 2 of (Tagliazucchi et al., 2013), 

or Figure 5 of (Tagliazucchi and Laufs, 2014)). Such findings may reflect slowed, deepened 

breathing as subjects fall asleep. Similar sensorimotor patterns have discriminated 

schizophrenic patients from control subjects (Kaufmann et al., 2015).

Another potential manifestation of respiratory effects is the following. With respect to the 

global fMRI signal itself, Wong and colleagues have reported that caffeination and increased 

vigilance in subjects are correlated with decreased variance in the global fMRI signal, using 

denoising similar to the physiological modeling procedure highlighted in Figures 7–10 

(Wong et al., 2012, 2013). Given that these denoising procedures only partially remove 

respiratory variance, which contributes strongly to global signal variance, and that 

caffeinated and/or vigilant subjects are a priori less likely to fall asleep in the scanner, it 

seems possible that respiratory effects contribute to global signal properties that are 

contingent on caffeination and vigilance.

Implications: clinical reports of altered global signals in fMRI data

Several studies have reported changed variance or changed spatial distributions of the global 

signal in clinical conditions. For example, Hahamy and colleagues (Hahamy et al., 2014) 

removed motion, mean CSF, and mean WM signals from fMRI data (similar to the 3rd row 

of Figure 7). This study found large differences in voxel degree between schizophrenic 

patients and typical subjects, and that these differences were abolished when the global 

signal was regressed from the data. Following similar denoising procedures, Yang and 

colleagues (Yang et al., 2014) found increased global variance in schizophrenic patients 

relative to controls. And using denoising similar to the 4th row of Figure 7, Gotts and 

colleagues reported different distributions in GSCORR between autistic and control subjects 

(Figure S2 of (Gotts et al., 2012)).

Based on the present findings, it does not appear that any of these studies can exclude 

unremoved artifact as a source of differences in global fMRI signal properties, whether in 

terms of global signal variance or GSCORR distribution. Given the present difficulties of 

separating global fMRI artifacts from global “neural” signals, it seems that non-fMRI data 
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(e.g., intracranial recordings) may be critical for substantiating global neural phenomena in 

humans.

Implications: global signal regression

As mentioned in the Introduction, the topic of global signal regression (GSR) is one of the 

most controversial issues in neuroimaging. Readers should note that this paper does not 

adopt any position on this topic, which is extraneous to the present results and conclusions. 

Nevertheless the present results should inform these debates and we offer several comments 

below.

Much of the field is reluctant to explicitly remove global fMRI signals from datasets, due in 

part to claims about clinical or cognitive correlates of the global signal (Gotts et al., 2012; 

Yang et al., 2014), and due in part to arguments made against removing a mean signal that 

represents mixtures of signals (Gotts et al., 2013; Murphy et al., 2009; Saad et al., 2012). As 

discussed above, we find the evidence for global “neural” signals in clinical conditions to be 

inconclusive, since it cannot be determined whether those studies were reporting neural 

global effects or the kinds of artifacts shown in this report. The conceptual arguments 

against global signal regression take two forms: first, that negative correlations are 

“induced” by GSR (Murphy et al., 2009; Weissenbacher et al., 2009), and second, that 

differences in covariance structure (i.e., the composition of the global signal, GSCORR) will 

confound comparisons of covariance if mean signals are regressed (Gotts et al., 2013; Saad 

et al., 2012). Both of these arguments are valid but depend critically on the dimensionality of 

the signals entering the global fMRI signal, and on the presence or absence of truly global 

signals. This article contributes to these debates by showing 1) that truly global signals exist, 

2) that truly global signals are prominent features of most scans, and 3) that truly global 

signals frequently arise from respiration and less frequently from head motion and/or 

hardware malfunction. The calculated global signal is thus not just a mixture of focal signals 

but is instead a mixture of focal signals plus a truly global signal with multiple sources, and 

the truly global component is not negligible under most real-world circumstances. Further, 

the artifactual aspects of the truly global component are not removed by most denoising 

strategies.

The theoretical concerns about GSR are valid, but must be weighted alongside concerns 

about unremoved artifact in datasets. For example, it has been found that lagged high gamma 

power in intracranial electrophysiological recordings in humans better approximates fMRI 

signal patterns after removing the global fMRI signal (Keller et al., 2013). In the study by 

Keller and colleagues, the fMRI analysis approaches being contrasted were regression of 6 

motion parameters plus mean white matter and mean ventricle signals from eroded brain 

masks, without or with an additional global signal regressor. This strategy is approximately 

that shown in the 3rd row of Figure 7 compared to the bottom row of Figure 7. While the 

additional consequences of explicitly removing the global signal remain unclear, it seems 

reasonable to think that the enhanced correspondence of electrophysiological signals and 

fMRI signals upon removal of the global signal was mainly due to the removal of 

widespread and uninteresting variance of the kinds described in this report.
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Conclusion

Functional connectivity MRI studies can be deceptively simple: there is no experimental 

paradigm and covariance between timeseries is easily computed. But many unwanted factors 

can influence observed covariance and it takes considerable effort to identify and control for 

these confounds. It should be evident that changes in global signal variance and localization 

are expected simply due to artifact or other factors of no interest. Many standard denoising 

strategies do not guarantee the removal of significant artifact from fMRI datasets at the time 

of analysis. Denoising strategies that isolate and remove artifactual global variance while 

preserving potential “neural” global variance are needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Kevin Tran, David Godlove, and the Biowulf staff at the NIH for their computing support. We thank Steve 
Petersen and Brad Schlaggar for contributing the WU data for analysis. We thank Alan Anticevic and our 
Reviewers for suggestions that improved the manuscript. This work was supported by the Intramural Research 
Program, National Institute of Mental Health/NIH (ZIAMH002920; NCT01031407).

References

Aguirre GK, Zarahn E, D'Esposito M. Empirical analyses of BOLD fMRI statistics. II. Spatially 
smoothed data collected under null-hypothesis and experimental conditions. Neuroimage. 1997; 
5:199–212. [PubMed: 9345549] 

Aguirre GK, Zarahn E, D'Esposito M. The inferential impact of global signal covariates in functional 
neuroimaging analyses. Neuroimage. 1998; 8:302–306. [PubMed: 9758743] 

Bianciardi M, Fukunaga M, van Gelderen P, Horovitz SG, de Zwart JA, Shmueli K, Duyn JH. Sources 
of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. 
Magn Reson Imaging. 2009; 27:1019–1029. [PubMed: 19375260] 

Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations 
from neuronal-activity-related fluctuations in fMRI. Neuroimage. 2006; 31:1536–1548. [PubMed: 
16632379] 

Birn RM, Smith MA, Jones TB, Bandettini PA. The respiration response function: the temporal 
dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage. 2008; 40:644–
654. [PubMed: 18234517] 

Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, Bastien O, Lehot JJ. Respiratory 
variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness 
in the operating room. Anesthesiology. 2007; 106:1105–1111. [PubMed: 17525584] 

Cannesson M, Besnard C, Durand PG, Bohe J, Jacques D. Relation between respiratory variations in 
pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated 
patients. Crit Care. 2005; 9:R562–568. [PubMed: 16277719] 

Carbonell F, Bellec P, Shmuel A. Global and system-specific resting-state fMRI fluctuations are 
uncorrelated: principal component analysis reveals anti-correlated networks. Brain Connect. 2011; 
1:496–510. [PubMed: 22444074] 

Chang C, Cunningham JP, Glover GH. Influence of heart rate on the BOLD signal: the cardiac 
response function. Neuroimage. 2009; 44:857–869. [PubMed: 18951982] 

Chang C, Glover GH. Relationship between respiration, end-tidal CO2, and BOLD signals in resting-
state fMRI. Neuroimage. 2009; 47:1381–1393. [PubMed: 19393322] 

Power et al. Page 22

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chang C, Metzger CD, Glover GH, Duyn JH, Heinze HJ, Walter M. Association between heart rate 
variability and fluctuations in resting-state functional connectivity. Neuroimage. 2013; 68:93–104. 
[PubMed: 23246859] 

Chow DS, Horenstein CI, Canoll P, Lignelli A, Hillman EM, Filippi CG, Grinband J. Glioblastoma 
Induces Vascular Dysregulation in Nonenhancing Peritumoral Regions in Humans. AJR Am J 
Roentgenol. 2016; 206:1073–1081. [PubMed: 27007449] 

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is 
intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S 
A. 2005; 102:9673–9678. [PubMed: 15976020] 

Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting 
state brain networks. J Neurophysiol. 2009; 101:3270–3283. [PubMed: 19339462] 

Fox PT, Raichle ME. Stimulus rate dependence of regional cerebral blood flow in human striate cortex, 
demonstrated by positron emission tomography. J Neurophysiol. 1984; 51:1109–1120. [PubMed: 
6610024] 

Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism 
during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986; 83:1140–
1144. [PubMed: 3485282] 

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, 
Webster M, Polimeni JR, Van Essen DC, Jenkinson M. Consortium WUMH. The minimal 
preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013; 80:105–124. 
[PubMed: 23668970] 

Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion 
effects in fMRI: RETROICOR. Magn Reson Med. 2000; 44:162–167. [PubMed: 10893535] 

Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. Generation and 
Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb Cortex. 2016; 
26:288–303. [PubMed: 25316338] 

Gotts SJ, Saad ZS, Jo HJ, Wallace GL, Cox RW, Martin A. The perils of global signal regression for 
group comparisons: a case study of Autism Spectrum Disorders. Front Hum Neurosci. 2013; 
7:356. [PubMed: 23874279] 

Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A. Fractionation of social brain 
circuits in autism spectrum disorders. Brain. 2012; 135:2711–2725. [PubMed: 22791801] 

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network 
analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003; 100:253–258. [PubMed: 
12506194] 

Hahamy A, Calhoun V, Pearlson G, Harel M, Stern N, Attar F, Malach R, Salomon R. Save the global: 
global signal connectivity as a tool for studying clinical populations with functional magnetic 
resonance imaging. Brain Connect. 2014; 4:395–403. [PubMed: 24923194] 

Holmes AJ, Hollinshead MO, O'Keefe TM, Petrov VI, Fariello GR, Wald LL, Fischl B, Rosen BR, 
Mair RW, Roffman JL, Smoller JW, Buckner RL. Brain Genomics Superstruct Project initial data 
release with structural, functional, and behavioral measures. Sci Data. 2015; 2:150031. [PubMed: 
26175908] 

Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH. Low 
frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG–
fMRI study. Hum Brain Mapp. 2008; 29:671–682. [PubMed: 17598166] 

Horwitz B, Duara R, Rapoport SI. Intercorrelations of glucose metabolic rates between brain regions: 
application to healthy males in a state of reduced sensory input. J Cereb Blood Flow Metab. 1984; 
4:484–499. [PubMed: 6501442] 

Jo HJ, Saad ZS, Simmons WK, Milbury LA, Cox RW. Mapping sources of correlation in resting state 
FMRI, with artifact detection and removal. Neuroimage. 2010; 52:571–582. [PubMed: 20420926] 

Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME. Functional magnetic resonance imaging of 
regional cerebral blood oxygenation changes during breath holding. Stroke. 1998; 29:2641–2645. 
[PubMed: 9836778] 

Kaufmann T, Skatun KC, Alnaes D, Doan NT, Duff EP, Tonnesen S, Roussos E, Ueland T, Aminoff 
SR, Lagerberg TV, Agartz I, Melle IS, Smith SM, Andreassen OA, Westlye LT. Disintegration of 

Power et al. Page 23

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sensorimotor Brain Networks in Schizophrenia. Schizophr Bull. 2015; 41:1326–1335. [PubMed: 
25943122] 

Keller CJ, Bickel S, Honey CJ, Groppe DM, Entz L, Craddock RC, Lado FA, Kelly C, Milham M, 
Mehta AD. Neurophysiological investigation of spontaneous correlated and anticorrelated 
fluctuations of the BOLD signal. J Neurosci. 2013; 33:6333–6342. [PubMed: 23575832] 

Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen MY, Gilmore AW, McDermott KB, 
Nelson SM, Dosenbach NU, Schlaggar BL, Mumford JA, Poldrack RA, Petersen SE. Functional 
System and Areal Organization of a Highly Sampled Individual Human Brain. Neuron. 2015; 
87:657–670. [PubMed: 26212711] 

Lv Y, Margulies DS, Cameron Craddock R, Long X, Winter B, Gierhake D, Endres M, Villringer K, 
Fiebach J, Villringer A. Identifying the perfusion deficit in acute stroke with resting-state 
functional magnetic resonance imaging. Ann Neurol. 2013; 73:136–140. [PubMed: 23378326] 

Matsui T, Murakami T, Ohki K. Transient neuronal coactivations embedded in globally propagating 
waves underlie resting-state functional connectivity. Proc Natl Acad Sci U S A. 2016

Murphy K, Birn RM, Bandettini PA. Resting-state fMRI confounds and cleanup. Neuroimage. 2013; 
80:349–359. [PubMed: 23571418] 

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal 
regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 
2009; 44:893–905. [PubMed: 18976716] 

Poldrack RA, Laumann TO, Koyejo O, Gregory B, Hover A, Chen MY, Gorgolewski KJ, Luci J, Joo 
SJ, Boyd RL, Hunicke-Smith S, Simpson ZB, Caven T, Sochat V, Shine JM, Gordon E, Snyder 
AZ, Adeyemo B, Petersen SE, Glahn DC, Reese Mckay D, Curran JE, Goring HH, Carless MA, 
Blangero J, Dougherty R, Leemans A, Handwerker DA, Frick L, Marcotte EM, Mumford JA. 
Long-term neural and physiological phenotyping of a single human. Nat Commun. 2015; 6:8885. 
[PubMed: 26648521] 

Poulin MJ, Liang PJ, Robbins PA. Dynamics of the cerebral blood flow response to step changes in 
end-tidal PCO2 and PO2 in humans. J Appl Physiol (1985). 1996; 81:1084–1095. [PubMed: 
8889738] 

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in 
functional connectivity MRI networks arise from subject motion. Neuroimage. 2012; 59:2142–
2154. [PubMed: 22019881] 

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin 
FM, Schlaggar BL, Petersen SE. Functional network organization of the human brain. Neuron. 
2011; 72:665–678. [PubMed: 22099467] 

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, 
characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014a; 84:320–341. 
[PubMed: 23994314] 

Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. Evidence for hubs in human functional 
brain networks. Neuron. 2013; 79:798–813. [PubMed: 23972601] 

Power JD, Schlaggar BL, Petersen SE. Studying brain organization via spontaneous fMRI signal. 
Neuron. 2014b; 84:681–696. [PubMed: 25459408] 

Power JDPM, Kundu P, Bandettini P, Martin A. Head motion is underestimated in fMRI scans 
following common preprocessing steps. submittedA. 

Saad ZS, Gotts SJ, Murphy K, Chen G, Jo HJ, Martin A, Cox RW. Trouble at rest: how correlation 
patterns and group differences become distorted after global signal regression. Brain Connect. 
2012; 2:25–32. [PubMed: 22432927] 

Saad ZS, Reynolds RC, Jo HJ, Gotts SJ, Chen G, Martin A, Cox RW. Correcting brain-wide 
correlation differences in resting-state FMRI. Brain Connect. 2013; 3:339–352. [PubMed: 
23705677] 

Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith SM. Automatic 
denoising of functional MRI data: combining independent component analysis and hierarchical 
fusion of classifiers. Neuroimage. 2014; 90:449–468. [PubMed: 24389422] 

Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, 
Hakonarson H, Gur RC, Gur RE, Wolf DH. An improved framework for confound regression and 

Power et al. Page 24

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



filtering for control of motion artifact in the preprocessing of resting-state functional connectivity 
data. Neuroimage. 2013; 64:240–256. [PubMed: 22926292] 

Scholvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. Neural basis of global resting-state fMRI 
activity. Proc Natl Acad Sci U S A. 2010; 107:10238–10243. [PubMed: 20439733] 

Shmueli K, van Gelderen P, de Zwart JA, Horovitz SG, Fukunaga M, Jansma JM, Duyn JH. Low-
frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD 
signal. Neuroimage. 2007; 38:306–320. [PubMed: 17869543] 

Stillman AE, Hu X, Jerosch-Herold M. Functional MRI of brain during breath holding at 4 T. Magn 
Reson Imaging. 1995; 13:893–897. [PubMed: 8544661] 

Tagliazucchi E, Laufs H. Decoding wakefulness levels from typical fMRI resting-state data reveals 
reliable drifts between wakefulness and sleep. Neuron. 2014; 82:695–708. [PubMed: 24811386] 

Tagliazucchi E, von Wegner F, Morzelewski A, Brodbeck V, Jahnke K, Laufs H. Breakdown of long-
range temporal dependence in default mode and attention networks during deep sleep. Proc Natl 
Acad Sci U S A. 2013; 110:15419–15424. [PubMed: 24003146] 

Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C. Correlations and 
anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of 
preprocessing strategies. Neuroimage. 2009; 47:1408–1416. [PubMed: 19442749] 

Wise RG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant 
low frequency variations in BOLD signal. Neuroimage. 2004; 21:1652–1664. [PubMed: 
15050588] 

Wong CW, DeYoung PN, Liu TT. Differences in the resting-state fMRI global signal amplitude 
between the eyes open and eyes closed states are related to changes in EEG vigilance. 
Neuroimage. 2016; 124:24–31. [PubMed: 26327245] 

Wong CW, Olafsson V, Tal O, Liu TT. Anti-correlated networks, global signal regression, and the 
effects of caffeine in resting-state functional MRI. Neuroimage. 2012; 63:356–364. [PubMed: 
22743194] 

Wong CW, Olafsson V, Tal O, Liu TT. The amplitude of the resting-state fMRI global signal is related 
to EEG vigilance measures. Neuroimage. 2013; 83:983–990. [PubMed: 23899724] 

Yang GJ, Murray JD, Repovs G, Cole MW, Savic A, Glasser MF, Pittenger C, Krystal JH, Wang XJ, 
Pearlson GD, Glahn DC, Anticevic A. Altered global brain signal in schizophrenia. Proc Natl 
Acad Sci U S A. 2014; 111:7438–7443. [PubMed: 24799682] 

Zarahn E, Aguirre GK, D'Esposito M. Empirical analyses of BOLD fMRI statistics. I. Spatially 
unsmoothed data collected under null-hypothesis conditions. Neuroimage. 1997; 5:179–197. 
[PubMed: 9345548] 

Power et al. Page 25

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Demonstrates brain-wide (global) fMRI signals, individually, in 1000+ scans 

from 8 sites

• Global signals often reflect artifact caused by head motion, respiration, or 

hardware problems

• Most existing fMRI denoising methods do not adequately remove global 

artifacts

• Global artifacts mimic dynamic neural activity and modulate signal 

correlations

• Studies reporting global fMRI signal effects must carefully account for 

artifact
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Figure 1. All voxel signals in a single subject
At top a head motion (FD) trace is shown to establish when artifactual signals are expected. 

At bottom right are compartment masks. In the middle panels, signals from all in-brain 

voxels are shown, organized by mask. The traces are z-scored so that differences in signal 

magnitudes do not obscure signal (dis)similarities. Over half of all white matter voxels are in 

the ero0-2 erosion mask (lightest green) and signals at these white matter voxels are highly 

correlated with cortical gray matter signals (see red arrows), especially when compared with 

the signals deeper in the white matter (ero4, dark green). At bottom, the table shows 

correlations in each cohort of mean cortical ribbon signals and mean signals found in the 

various white matter masks.
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Figure 2. Kinds of global signals
The top row shows subjects with very little motion and unobtrusive global signal 

fluctuations. The second row shows a common signal pattern: prominent global signal 

fluctuations mostly in the absence of motion. The third row shows a common signal pattern: 

motion followed by a prominent signal fluctuation. The fourth row shows other signals or 

less common versions of signals. The signal in NIH38 (purple arrow) is likely due to a head 

coil malfunction. The signal in ABIDE32 (orange arrow) is due to a large motion. The very 

low frequency signal modulations in GSP32 are likely due to respiratory artifact. The white 

bands in RP33 are associated with large motions.
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Figure 3. Spatial distribution of global signals
For several scans of Figure 2, maps are shown of each voxel’s correlation with the global 

signal (GSCORR). The first 3 subjects exhibit minimal fluctuations, the next 3 exhibit 

obvious fluctuations, the next 3 exhibit obvious fluctuations and head motion, and the final 

maps show examples of global signal distributions that reflect artifact.
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Figure 4. Spatial distribution of global signals in each cohort
At top, an atlas image and the WU modules reported in [Power, 2011]. At middle, the 

median GSCORR map across each cohort. In the gray rows, published images are paired to 

the approximately corresponding slices of GSCORR. At bottom, GSCORR in the RP 

datasets (6.5 hours of data, see Figure S4). The RP data, from a single individual, are easier 

to view on a surface because the central tendency of dozens of scans is less spatially blurred 

than in other cohorts and thus contains complex folding patterns. See Figure S6 for further 

illustrations of RP and WU data, and surface visualizations of modules in these datasets.
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Figure 5. Relationships between respiratory cycles, estimated heart rate, and pulse pressures
For 1 minute of data from 3 subjects, top and bottom panels show respiratory belt and pulse 

oximeter traces (both 50 Hz signals). Instantaneous heart rate is calculated from the peak-to-

peak interval and plotted in green at the peak time, as is peak amplitude. Cyclical influences 

of respiration on heart rate and peak amplitude are evident. Such traces can be seen for all 

subjects in Videos 3a and 3b. The black traces at right show the correlation between 

respiratory belt traces and heart rate and peak amplitude, with -5 to 5 seconds of lag applied 

to the respiratory trace.
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Figure 6. Respiratory traces denote many global signal changes
Red traces of FD (mm) show head motion. The middle panels show heart rate (green, beats 

per minute) and peak amplitude (gray, zscore) data derived from a pulse-oximeter trace. The 

unprocessed respiratory belt record is shown in blue (arbitrary units). At bottom all fMRI 

signals in the brain are shown. When green heart rate traces appear to be noisy, for example 

in the bottom middle subject, this variance is not actually random noise, but rather cyclical 

modulation of heart rate by respiratory cycle (see Video 3a and 3b to resolve individual 

cycles). Similar statements apply to the gray peak amplitude trace at upper middle. At 

bottom right, the respiratory response function defined in the NIH data (see Figure S7 for 

more details).
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Figure 7. Removal of respiratory-related variance during denoising is often incomplete
Data for 3 subjects from Figure 6 are shown. At top, respiratory belt and head motion traces. 

The five panels below show data after various combinations of denoising. The labels at left 

denote the kinds and number of regressors used.
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Figure 8. Global signals after denoising continue to reflect unwanted influences
The standard deviation of the global signal is correlated, across subjects, with motion, heart 

rate variability, and respiratory variability. The thin red line fits all the data, the thicker dark 

line fits only subjects with mean FD < 0.2 mm. The top row reflect undenoised data, the 

bottom row reflects data after the denoising procedure shown in the 4th row of Figure 7.
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Figure 9. Global signals after denoising continue to reflect unwanted influences across a variety 
of denoising strategies
Global signal variance was modeled, across subjects, as a function of 7 parameters, as in 

Table 3. The heat maps and tables at left show the percent variance explained and beta 

values for “typical” (TD) subjects, the timepoints entering the model, and the various 

denoising strategies tested. At right, mean values across the 14 columns are shown for all 

NIH subjects, ASD subjects only, and TD subjects only. TT is placed in the mean ASD 

column to indicate that significant relationships exist in some strategies and in raw data, but 

the average is a permutation rank of 88%.
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Figure 10. GSCORR after denoising continue to reflect unwanted influences
GSCORR calculated after denoising is correlated with RVT variability, across subjects, at 

each voxel. The top 10% of correlations determined by 10,000 permutations are shown in 

slices, the ranks of all voxels in the image are shown at right.
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Table 2

Nuisance regressors used to denoise fMRI data

Procedure/regressor # regressors Comment

Motion parameters

Realignment estimates (MOT) 6

Realignment estimate derivatives (MOT′) 6

Nuisance signals

Mean white matter signal (eroded 4x) (WM) 1

Mean ventricle signal (eroded 2x) (CSF) 1

PCA of all eroded white matter and ventricle signals 5

Local white matter Not performed Mean and PCA signals should better reflect global signals

Physiological models

RETROICOR (Glover et al., 2000) 8

RVT (Birn et al., 2006) 5

RVT*RRF (Birn et al., 2008) 5

RV (Chang et al., 2009) 3

RV*RRF (Chang et al., 2009) 3

Gray matter signals

ICA of all gray matter signals Not performed
Studied in the HCP dataset, which has undergone FIX-ICA, see Video 
5

Global signal (GS) 1

PCA of all gray matter signals Not performed Correlates with global signal at nearly r = 1 (Carbonell et al., 2011)

Combinations of Figure 7

MOT+MOT′+WM+CSF (+RVT+RVT*RRF) (+GS)
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Table 3

7-parameter model of global signal variance

Regressor

All timepoints Low-motion timepoints

RVT model RV model RVT model RV model

Mean FD 0.52 0.52 0.11 0.11

Std. RVT/RV 0.25 0.21 0.55 0.40

Std. HR 0.35 0.36 0.24 0.28

Std. PA 0.09 0.10 0.11 0.14

Mean RVT/RV −0.02 0.02 −0.10 0.05

Mean HR −0.32 −0.31 −0.27 −0.28

Mean PA 0.03 0.02 0.11 0.07

% global signal std explained 0.27 0.25 0.19 0.08
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