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Abstract

Background—Delaying plasma separation after phlebotomy (processing delay) can cause 

perturbations of numerous small molecule analytes. This poses a major challenge to the clinical 

application of metabolomics analyses. In this study, we further define the analyte changes that 

occur during processing delays and generate a model for the post hoc detection of this 

preanalytical error.

Methods—Using an untargeted metabolomics platform we analyzed EDTA-preserved plasma 

specimens harvested after processing delays lasting from minutes to days. Identified biomarkers 

were tested on (i) a test-set of samples exposed to either minimal (n=28) or long delays (n=40) and 

(ii) samples collected in a clinical setting for metabolomics analysis (n= 141).

Results—A total of 149 of 803 plasma analytes changed significantly during processing delays 

lasting 0–20 h. Biomarkers related to erythrocyte metabolism, e.g., 5-oxoproline, lactate, and an 

ornithine/arginine ratio, were the strongest predictors of plasma separation delays, providing 100% 

diagnostic accuracy in the test set. Together these biomarkers could accurately predict processing 

delays >2 h in a pilot study and we found evidence of sample mishandling in 4 of 141 clinically 

derived specimens.

Conclusions—Our study highlights the widespread effects of processing delays and proposes 

that erythrocyte metabolism creates a reproducible signal that can identify mishandled specimens 

in metabolomics studies.

*Corresponding author at: Department of Molecular and Human Genetics, One Baylor Plaza, NAB2015, Baylor College of Medicine, 
Houston, TX 77030, United States. marcusm@bcm.edu (M.J. Miller). 

Declaration of interest
Mahim Jain, Sarah H. Elsea and Marcus J. Miller are members of the Department of Molecular and Human Genetics at Baylor 
College of Medicine, and this department, alone or as part of a joint venture with Miraca Holdings, offers a number of clinical tests on 
a fee-for-service basis, but these in no way conflict with the research reported here. Adam D. Kennedy is an employee of Metabolon, 
Inc. and, as such, has affiliations with or financial involvement with Metabolon, Inc. The authors have no other relevant affiliations or 
financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or 
materials discussed in the manuscript apart from those disclosed.

Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cca.2017.01.005.

HHS Public Access
Author manuscript
Clin Chim Acta. Author manuscript; available in PMC 2018 March 01.

Published in final edited form as:
Clin Chim Acta. 2017 March ; 466: 105–111. doi:10.1016/j.cca.2017.01.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1016/j.cca.2017.01.005


Keywords

Preanalytical error; Clinical metabolomics; Quality control; Whole blood stability; Phlebotomy

1. Introduction

The majority of clinical testing errors occur during the preanalytical stages of test 

requisition, sample collection, storage, and transport to the testing facility; this form of error 

is often underappreciated and can lead to substantial analyte perturbations [1,2]. This issue is 

particularly relevant to metabolomics analyses [3]. Untargeted mass spectrometry (MS) 

based metabolomics platforms, in particular, can identify 1000s of small molecule analytes 

in human plasma, and enable the detection of rare or novel analytes with relevance to 

diseases such as inborn errors of metabolism [4,5]. It is therefore difficult to anticipate the 

effects of preanalytical variables on all clinically relevant analytes potentially detectable by 

untargeted metabolomics studies and thus, it is imperative that preanalytical error be avoided 

or at least recognized prior to data interpretation. Failure to do so could lead to a missed or 

incorrect diagnosis.

In a clinical setting, the preanalytical variable of the timing from phlebotomy to plasma 

separation and storage (processing delay) is difficult to precisely regulate. This poses a 

major quality control challenge for clinical metabolomics studies, especially when specimen 

collection occurs across multiple centers working independent of the testing laboratory. 

Even with the appropriate use of anticoagulants such as EDTA, when whole blood is left at 

room temperature, the concentrations of a diverse list of clinically important biomarkers 

change with time, for example: glucose, alanine transaminase, creatine kinase, and cell free 

DNA [6–8]. Relevant to metabolomics analyses, numerous small molecule analytes have 

been shown to undergo significant changes in concentration during delays in blood 

processing, with some analytes showing marked changes when plasma separation is delayed 

by as a little as 2 h [9–12]. Conversely, many other analytes appear to be stable in whole 

blood, remaining unchanged over processing delays of at least 24 h [13]. The overall pattern 

of change may be explained, in part, by continued cellular and enzymatic activity, as well as 

cell lysis and/or hemoconcentration [14,15].

While it is clear that processing delays should be avoided, our understanding of changes 

caused by this error remains far from complete and currently there are no proven methods 

for the detection of plasma processing delays from metabolomics data. A better 

understanding of this preanalytical variable may improve clinical outcomes and allow 

individuals to critically review previously generated metabolomics data for sample integrity 

issues.

In the following study, we hypothesized that preanalytical error could be reliably detected 

through recurrent signatures of degradation found in metabolomics profiles. To test this 

hypothesis, we used an untargeted metabolomics platform to catalogue the analyte changes 

that occur during delays lasting from minutes to days. We mined this dataset to identify the 

key indicators of processing delays. These markers were then applied to the detection of 

sample handling errors on (i) a test set of specimens of known sample quality as well as (ii) 
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samples collected in a heterogeneous clinical diagnostic setting for metabolomics analysis. 

Results of this study demonstrate accurate prediction of samples exposed to processing 

delays.

2. Materials and methods

2.1. Sample collection

To determine the changes in small molecule analytes that occur during processing delays, we 

performed 2 time course studies (0–20 h and multi day) using EDTA plasma specimens 

collected from volunteers within our laboratory. The diagnostic utility of the biomarkers 

from this initial study was further investigated using additional test specimens (TESTneg and 

TESTpos). Finally, to explore the real-world application of the discovered biomarkers, we 

studied these analytes in a sample set (referred to as “clinical”) that was sent to our 

laboratory for clinical metabolomics analysis with the purpose of screening for inborn errors 

of metabolism. A further description of the collection protocols for these samples is 

provided below.

Samples in the 0–20 h time-course assay (n=5) and the optimally handled control sample set 

(TESTneg; n=28) were drawn from volunteers at the site of this study by venipuncture using 

23 G × 3/4″ × 12″ butterfly needles and 6 ml Becton, Dickinson and Company (BD) 

vacutainer® tubes containing 10.8 mg K2-EDTA. Blood samples remained at room 

temperature (19–22 °C) for the specified times and then plasma was harvested by 

centrifugation and placed in a −80 °C freezer for long term storage. For TESTneg samples, 

no sample experienced a processing delay >15 min. Collection occurred between 9 AM–5 

PM and did not exclude participants based on dietary status. An unstructured collection 

protocol was followed due to volunteer recruitment limitations and also to mimic the clinical 

sample collection used by our clinical biochemical genetics laboratory. We reasoned that this 

protocol would capture the variability in dietary status and time-of-collection anticipated in a 

clinical setting where sampling occurs throughout the day and compliance is an issue. 

Samples collected for the multi-day assay (n = 4) were collected offsite, using the above 

methods with the exception that the initial time 0 time point was not harvested and frozen 

until approximately 1 h after collection, as a result of transportation delays.

Samples from the TESTpos (n = 40) population were collected offsite, preserved in EDTA, 

and shipped to our laboratory as whole blood at ambient temperature. Samples were in 

transit for ≤48 h. Upon arrival, samples were stored at 4 °C for an additional 1–3 days prior 

to harvesting plasma, as described above.

Finally, the clinical sample set (n=141) came from multiple institutions across the US with 

the requirement that samples be collected in EDTA containing tubes, processed to plasma, 

and frozen immediately, prior to overnight shipping of frozen samples on dry ice. We 

presume that most clinical samples were processed within an h of collection; however, 

compliance with our specimen collection guidelines cannot be guaranteed in this clinical 

sample set. Retrospective analyses of these previously harvested samples were completed 

with a waiver of informed consent. All procedures were approved by the Baylor College of 

Medicine Institutional Review Board.
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2.2. Metabolomics analysis

All specimens in this study were subjected to the same untargeted metabolomics analysis 

described here; this includes not only the samples collected within our laboratory but also 

those sent to our laboratory from outside sources. General analyte detection rates are 

described in Table S1. Metabolomics analysis was performed by Metabolon Inc. and was 

completed essentially as described previously [5,16]. Small molecule analytes (50–1500 Da) 

were extracted from plasma in an 80% methanol solution that contained 4 standards used to 

monitor extraction efficiency (tridecanoic acid, 4-Cl-phenylalanine, 2-flurophenylglycine, 

and d6-cholesterol). Clarified supernatant was split into 5 aliquots and dried to completion 

under N2. One aliquot was kept as a spare and the remaining 4 aliquots were each 

resuspended in running buffer and studied in a separate mass spectrometry assay. Aliquot 1 

was reconstituted and derivatized using bistrimethyl-silyl-trifluoroacetamide and was 

analyzed using a Trace DSQ fast-scanning single-quadruple mass spectrometer (Thermo-

Finnigan); aliquot 2 was reconstituted in 50 μl of 6.5 mmol/l ammonium bicarbonate, pH 8, 

and analyzed via liquid chromatography mass spectrometry (LC/MS) in negative ion mode 

(LCneg); aliquot 3 was reconstituted in 50 μl of 0.1% formic acid in water and analyzed via 

LC/MS in positive ion mode (LCpos); final, aliquot 4 was reconstituted in 100 μl 85/15 

acetonitrile/water in 10 mM ammonium formate, pH 10.8 and analyzed using LCneg. For 

aliquots 2–4, chromatographic separation was achieved using an ACQUITY UPLC (Waters) 

equipped with a Waters BEH C18 (aliquot 2 and 3) or HILIC column (aliquot 4) followed by 

analysis with a QExactive high resolution mass spectrometer (Thermo-Finnigan).

All aliquots were resuspended in buffers that contained instrument internal isotopic 

standards. These standards were used to monitor performance and serve as retention time/

index markers. For negative ion mode analyses, the following standards were used: d7-

glucose, d3-methionine, d3-leucine, d8-phenylalanine, d5-tryptophan, Cl-phenylalanine, Br-

phenylalanine, d15-octanoic acid, d19-decanoic acid, d27-tetradecanoic acid, and d35-

octadecanoic acid. For positive ion mode analyses, the following standards were used: d7-

glucose, fluorophenylglycine, d3-methionine, d4-tyrosine, d3-leucine, d8-phenylalanine, d5-

tryptophan, d5-hippuric acid, Cl-phenylalanine, Br-phenylalanine, d5-indole acetate, d9-

progesterone, and d4-dioctylpthalate. For the polar analyses, the following standards were 

used: d35-octadecanoic acid, d5-indole acetate, Br-phenylalanine, d5-tryptophan, d4-

tyrosine, d3-serine, d3-aspartic acid, d7-ornithine, and d4-lysine. Internal standards were 

chosen based on their broad chemical structures, biological variety and their elution 

spectrum on each of the arms of the platform.

Metabolites were identified by matching of chromatographic retention index, accurate mass, 

and mass spectral fragmentation patterns with a reference library that was created using 

purified metabolites analyzed under the same analytical procedures as the experimental 

samples. When an analyte could not be matched to a known reference compound, it was 

assigned as an “X−” compound, which is a reproducibly detected unnamed molecule.

2.3. Data analysis

Raw integrated intensity values were calculated for each analyte using the area under the 

chromatographic peak. Raw values for each analyte were then scaled to the median 
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integrated intensity found in an invariant plasma specimen (termed the internal control 

matrix (ICM) sample) that was independently prepared and analyzed 4–6 times in each MS 

batch (~36 test samples/batch). The resultant value (termed scaled intensity) allowed for 

intra-analyte comparisons across batches. Analytes identified in the test specimen but in 

<2/3 of the ICM specimens were excluded from further analyses.

Analytes that did not have a scaled-intensity value in at least 4 of 5 individuals in time-

course #1 (0–20 h) for all time points tested were excluded from subsequent analyses. 

Similarly for time-course #2 (0–4 days), only analytes found in at least 3 of 4 individuals at 

all time points tested were studied. Missing values were not imputed. Time-course fold 

change values were calculated using scaled-intensity values and time 0 as the denominator.

In modeling experiments, analyte values were converted into amore intuitive median-scaled 

value. This was accomplished by normalizing scaled-intensity values for each analyte to the 

median-scaled intensity found in our clinical reference population, which, at the time of this 

study, was comprised of 141 patient specimens that were collected, analyzed, and scaled 

exactly as described above. Only analytes identified in >50% of all reference population 

samples were median scaled.

2.4. Statistical analysis

We applied a mixed-effects model in R using the lme function in the nlme package (https://

cran.r-project.org/; [17]). In the model, each analyte was treated as a dependent variable and 

was evaluated for the fixed effect of change over time and random effects were used to 

model between-subject variability. Analytes with a false discovery rate (FDR) <0.05 were 

brought forward for further evaluation. Heat maps were created using Java TreeView 

(vs1.16r2). Linear regression analyses were completed using the default parameters in R. We 

performed principal components analysis with fully informative analytes using the NIPALS 

algorithm and calculated components until 99% of variation was explained [18]. 

Components were evaluated for correlation with time. Subsequently, the unknown samples 

were run in a blinded analysis, where the NIPALS algorithm was re-applied to the set of 

controls and the blinded sample. We next prioritized metabolites that showed complete 

separation over time in our reference sample by calculating the %GAP, which we defined as 

the minimal gap between the most extreme participant values for TESTneg and TESTpos 

populations divided by the full range of the values seen across these populations. We 

examined these metabolites in our time-course data and in a set of 141 patient samples that 

were sent for clinical testing.

3. Results

3.1. Analyte perturbations during plasma processing delays

To determine the small molecule analyte changes that occur when plasma separation is 

delayed, we completed a time-course analysis where in whole blood samples from 5 healthy 

individuals were collected in EDTA-vacutubes and then left at room temperature (19–22 °C) 

for 0, 0.5, 1, 2, 4, or 20 h prior to harvesting plasma. Untargeted metabolomics analysis was 

completed on each plasma sample. For each analyte, scaled-intensity values were converted 
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to fold-change values relative to the starting point. Full time-course data were generated for 

803 analytes. We did not detect a significant difference in overall analyte identifications or 

signal intensities between the time points in this assay, thus suggesting that the complete loss 

of analytes is not a major hallmark of processing delays lasting <1 day (Table S1).

By applying a mixed-effects model, we were able to identify 149 analytes (18.6% of total) 

that achieved significant consistent perturbation during this time-course (FDR < 0.05; 

Supplemental dataset). Within this group, the most significantly enriched subpathway 

perturbations included “glycolysis/gluconeogenesis/and pyruvate metabolism”, “TCA cycle” 

and “gamma-glutamyl amino acid” classifications, as well as multiple fatty acid subtypes 

(Table 1). Many unstable analytes followed an apparently linear or logarithmic increase/

decrease in analyte concentration from 0 to 20 h (Figs. 1 and S1A–D), and although the 

patterns of analyte changes were generally similar across individuals, the initial starting 

concentration and/or rate of change often demonstrated marked inter-individual variation 

(Fig. S1A–D).

To confirm our initial findings and to extend the analysis to additional time points, we 

repeated the above analysis using samples from 4 additional volunteers to study the time 

points 0, 1, 2, 3, and 4 days delay prior to harvesting plasma. In general, the number and 

intensity of perturbations were increased over the multi-day time-course compared to the 0–

20 h time-course and the pattern of perturbations found in earlier time points persisted over 

multiple days (Figs. 1 and S2A–C). However, we again noted substantial inter-individual 

differences in the starting concentrations and depletion/accumulation rates of many analytes. 

Despite this, a significant correlation was detected between the 20 h and 1 day time points 

from independent assays (r2 = 0.47; p-value = 2.2 × 10−16), further supporting the 

reproducibility of these findings (Fig. S2D). Collectively, these results confirm that 

numerous recurrent perturbations are detectable during plasma separation delays, but these 

signals may be obscured by inter-individual differences in analyte starting concentrations 

and/or rates of change.

3.2. Principal components analysis provides accurate detection of processing delays ≥20 h

We were next interested in using the above findings to generate tools for the prospective 

detection of sample handling error. For this analysis, we used the 0–20 h time-course data in 

order to perform model-building, and we used a test set comprised of the metabolomics data 

from optimally handled samples (TESTneg; n=28), as well as from samples exposed to 

extreme delays prior to plasma separation, lasting 2–5 days (TESTpos; n=40). In our initial 

analysis of this test set, we performed principal components analysis (PCA) using the 

NIPALS algorithm on all analytes with no missing values in our dataset (n = 727) [18]. This 

failed to provide separation between well-handled and poorly-handled specimens; all 

components had ps > 0.01 when performing regression to time (Fig. S3A). We reasoned that 

multiple factors such as diet, genetic background, and prandial state could be confounding 

this analysis. Therefore, we limited the analysis to 68 metabolites that were previously 

demonstrated to have a fold change of >2 between 0 and 20 h and no missing values. In this 

limited dataset, the first component, which predicts 38.8% of the variance, was demonstrated 

to be significantly correlated with time (p < 0.001) (Fig. S3B). No other components were 
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correlated with time. We observed that although data showed an increased trend, it was 

difficult to separate values from 0 to 2 h. However, the observed increase at 4 h prompted 

evaluation of principal components regression to accurately predict known, but blinded, 

samples. We observed that all samples delayed >20 h are predicted accurately by the model. 

When using cutoffs of 1 and 2 h for the component regression model, we observed 

inaccurate calling of the TESTneg sample but improvement to 82% when using a 4-h cutoff, 

as being well-handled (Fig. S3C).

3.3. Analytes related to erythrocyte metabolism provide the strongest biomarkers for 
processing delays

Given the limitations of the PCA-based approach, we explored the diagnostic utility of 

individual biomarkers identified in the 0–20 h time-course study. To assess the diagnostic 

utility of a biomarker, it is not fully informative to calculate p-values based on mean 

differences in test populations (e.g., Student's t-test). We therefore instead calculated a 

%GAP value for each analyte, which we defined as the minimal gap between the most 

extreme participant values for TESTneg and TESTpos populations divided by the full range 

of the values seen across these populations (see example Fig. 2A). In this case, when a 

biomarker did not provide full separation between TESTneg and TESTpos samples, it 

received a negative value. We applied the %GAP calculation to our list of 149 analytes that 

were significantly perturbed during 0–20 h of processing delay. From this analysis, we 

identified 5 analytes (5-oxoproline, lactate, pyruvate, fumarate, and unknown compound 

X-15678) that alone provided complete separation in our test set, with 5-oxoproline 

performing the best (Fig. 2B). A similar prioritization of biomarkers was obtained when 

using percentile cutoffs as opposed to minimum and maximum values to calculate the 

%GAP (data not shown).

The biomarkers 5-oxoproline, lactate, and pyruvate are all end products of erythrocyte 

metabolism (see discussion). Therefore, we hypothesized that erythrocyte metabolism was a 

major driver of analyte perturbations during processing delays and that additional 

biomarkers of sample degradation may be identified through analyte ratios comprised of 

start and end-products of erythrocyte metabolic processes. This is exemplified by arginine 

and ornithine, a substrate and product, respectively, of the erythrocyte-expressed enzyme 

arginase [19]. Although arginine and ornithine are each highly significant biomarkers for 

processing delays, neither analyte alone could distinguish between TESTneg and TESTpos 

samples in all cases (Fig. 3A and B). However, a ratio of these compounds (ornithine/

arginine) provided superior results, yielding a complete separation between TESTneg and 

TESTpos samples (%GAP = 15.9%; Fig. 3C). This finding is consistent with continued 

erythrocyte arginase enzymatic activity driving plasma depletion of arginine and 

accumulation of ornithine during processing delays.

3.4. Pilot application of biomarkers for the detection of processing delays

We were next interested in examining whether the above identified biomarkers could predict 

preanalytical error in samples exposed to shorter delay times (<20 h) or samples collected 

under true clinical testing conditions. For this pilot study we used an analyte cutoff of a 

log2(medscale) increase of 0.5 (1.41 on linear scale) to call mishandled samples. We 
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compared the performance of ornithine/arginine, 5-oxoproline, lactate, pyruvate and 

fumarate across our test-set (TESTneg and TESTpos) and the one-day time-course data. We 

also tested these biomarkers on a clinical sample set collected across multiple clinical 

centers and sent to our laboratory for untargeted metabolomics screening for inborn errors of 

metabolism (n=141). At the threshold of 1.41× the median, each individual metric had false 

positive and/or negative predictions, where delays >2 h were considered mishandled and 

vice versa (Table 2). We were able to improve upon the results using a two-step approach 

wherein two criteria had to be met in order to call a sample mishandled: (i) ornithine/

arginine ratio ≥1.41 × median and (ii) 3 out of 4 individual biomarkers (5-oxoproline, 

lactate, pyruvate or fumarate) ≥1.41 × median. Using this criterion, we found no false 

positives for samples experiencing delays ≤1 h and all samples delayed for ≥4 h were 

identified as poorly handled (50/50) (Table 2). Additionally, with the two-step criterion, 4 of 

141 clinical samples were predicted to have experienced sample processing delays.

4. Discussion

The major conclusion from this study is that during plasma processing delays, recurrent 

patterns of small molecule analyte perturbations emerge and when used appropriately, these 

biomarkers can enable the detection of preanalytical error in metabolomics datasets. The 

strongest recurrent biomarkers identified in our study could be mapped to metabolic 

pathways of erythrocytes. This is not surprising given that erythrocytes account for 40–45% 

of the volume of whole blood and greatly out-number any other cell type in this 

biospecimen. The best performing single biomarker in our study, 5-oxoproline, is the 

metabolic end product of erythrocyte glutathione metabolism [20]. Consistent with previous 

studies, we found glucose depletions and lactate and pyruvate elevations to be highly 

significant biomarkers of processing delays; these compounds are the start and end-products 

of the truncated glycolytic pathway present in erythrocytes [15,21]. Finally, the predictive 

success of the ornithine/arginine ratio may be explained by persistent activity of arginase, an 

enzyme highly expressed in erythrocytes that cleaves arginine, producing ornithine and urea 

[19]. Collectively, our results indicate that, following phlebotomy, continued erythrocyte 

activity and/or lysis generates a predictable output that can be used to detect sample 

processing delays.

Limitations of this study should be considered. A myriad of factors such as diet, prandial 

state, gender, age, and genetic background can influence plasma levels of small molecule 

analytes [22–26]. These factors may have unanticipated effects not fully studied here. For 

example, lactate elevations appeared to be a strong biomarker for separation delays. 

However, plasma lactate elevations can be precipitated by numerous other factors including 

intense exercise or mitochondrial disease [27]. As another example, arginine levels can be 

highly skewed in critically ill individuals or in patients with argininemia-a rare inherited 

metabolic disease caused by a loss of arginase activity [28,29]. In these cases, an ornithine/

arginine ratio may fail to detect preanalytical error. We would therefore caution against the 

strict use of any single analyte as a marker of preanalytical error and instead propose that 

any predictions of sample handling error should be based on the observation of multiple 

perturbed biomarkers and/or ratios of biomarkers.
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Our work explored the utility of a principal components regression to detect preanalytical 

error. PCA and regression have been utilized for quality control procedures across many 

disciplines [30–32]. However, in the setting of metabolomics data, this would procedurally 

require establishing reliable time-course controls which may be cumbersome and expensive. 

If missing data are present, this is typically handled by (i) removal from the dataset, thus 

decreasing power to detect systematic differences, or (ii) by imputation, which can lead to 

overall bias for relatively small datasets or those with non-random missing data [33–35].

We found the best predictive outcomes using a model predicated on a small number of 

strong biomarkers linked to erythrocyte metabolism. Specifically, this model used 2 criteria 

to identify mishandled specimens (i) moderate elevations of ornithine/arginine and (ii) 

moderate increases in 3 of the following 4 compounds: 5-oxoproline, lactate, pyruvate and 

fumarate. Our results clearly demonstrate the utility of these biomarkers for the detection of 

long processing delays (≥20 h) but additional studies are needed to further define the 

sensitivity and specificity of these biomarkers for the detection of short term processing 

delays (<20 h).

When the 2-criteria model was retrospectively applied to analyze metabolomics data from 

141 clinically derived samples, we found 4 samples (2.8% of the total) that appeared to have 

been exposed to long processing delays (>2 h). While the true processing delay time for 

these samples cannot be known, a ~3% failure rate is in line with our expectations. In our 

experience, processing times <2 h are difficult for some clinical facilities to achieve. And 

sample collection requirements are not always strictly followed. For example, we have 

identified multiple clinical samples lacking EDTA due to the use of an improper specimen 

collection tube. These preanalytical errors occurred despite strict guidance in the requisition 

form that accompanied this test. Overall, this highlights some of the preanalytical challenges 

facing clinical tests and suggests that failure to follow simple collection requirements occurs 

with some regularity in a clinical setting. If unchecked, this may result in unrecognized 

clinical testing errors. Based on our results, excessive processing delays could induce a 

metabolomics profile that might mimic defects of glycolysis, lipid metabolism, or the TCA 

cycle.

5. Conclusions

Our study demonstrates that widespread changes in small molecule analyte levels begin 

quickly after phlebotomy. This poses a significant challenge to plasma metabolomics 

studies, especially those collected in a clinical setting. By measuring the levels of analytes 

related to erythrocyte metabolism, investigators can probe metabolomics data for clues about 

sample handling. Based on our results, we would recommend first monitoring 5-oxoproline, 

lactate, pyruvate and fumarate for elevations, potentially indicating a plasma processing 

delay. When multiple of these analytes are noted to be increased, we would recommend 

investigators further test for processing delays by assessing whether the ornithine/arginine 

ratio is also increased. Using this approach, it is our hope that investigators can critically 

review published metabolomics datasets and improve quality control in clinical testing.

Jain et al. Page 9

Clin Chim Acta. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Analyte perturbations during processing delays. The heat maps show the average fold 

change values across two independent assays (0–20 h and 0–4 day studies) for a subset of 

relevant analytes (i.e., named compounds that underwent a significant fold change (FDR < 

0.01) during the 0–20 h time course assay). *GPE = glycero-3-phosphoethanolamine; GPI= 

glycerophosphoinositol.
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Fig. 2. 
Utility of single biomarkers in the detection of processing delays. (A) The %GAP 

calculation used to determine test-set diagnostic performance is shown for 5-oxoproline. (−) 

indicates TESTneg and (+) indicates TESTpos samples. (B) The %GAP was calculated for all 

biomarkers identified in the 0–20 h time course assay. %GAP values are plotted in terms of 

p-values (heteroscedastic Student's t-test) to illustrate the utility of the %GAP approach as 

opposed to standard analyses of population mean differences. Dark circles indicate analytes 

with a positive %GAP value, that were thus capable of 100% diagnostic accuracy in the test 

set.
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Fig. 3. 
A ratio of ornithine to arginine is a strong biomarker for processing delays. (A) Ornithine, 

(B) arginine, and (C) ornithine/arginine values are shown for the test-set. (−) indicates 

TESTneg and (+) indicates TESTpos samples.
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Table 1

Metabolic pathways perturbed during plasma separation delays.

Subpathway # perturbed
analytesa

% of
total

p-Valueb

Polyunsaturated fatty acid (n3 and n6) 9/14 64% 0.0002

Glycolysis, gluconeogenesis, and pyruvate
metabolism

4/5 80% 0.0047

Long chain fatty acid 7/14 50% 0.0058

TCA cycle 4/6 67% 0.0115

Gamma-glutamyl amino acid 5/9 56% 0.0118

Phospholipid metabolism 3/4 75% 0.0205

Alanine and aspartate metabolism 3/4 75% 0.0205

Methionine, cysteine, SAM and taurine
metabolism

6/14 43% 0.023

Ketone bodies 2/2 100% 0.0342

Endocannabinoid 2/2 100% 0.0342

Glutathione metabolism 2/2 100% 0.0342

Purine metabolism,
(hypo)xanthine/inosine containing

3/6 50% 0.0686

a
Total number of subpathway analytes significantly perturbed during the 0 to 20 h time course over the total number of analytes detected in the 

subpathway.

b
Calculated using a Fisher's exact test.
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