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We establish a general unified formulation which,
using the optical theorem of electromagnetic helicity,
shows that dichorism is a phenomenon arising in any
scattering—or diffraction—process, elastic or not, of
chiral electromagnetic fields by objects either chiral
or achiral. It is shown how this approach paves
the way to overcoming well-known limitations of
standard circular dichroism, like its weak signal or the
difficulties of using it with magnetodielectric particles.
Based on the angular spectrum, representation of
optical fields with only right circular or left circular
plane waves, we introduce beams with transverse
elliptic polarization and possessing a longitudinal
component. Then, our formulation for general optical
fields shows how to enhance the extinction rate of
incident helicity (and therefore the dichroism signal)
versus that of energy of the light scattered or emitted
by a particle, or vice versa.

This article is part of the themed issue
‘New horizons for nanophotonics’.

1. Introduction
Chiral fields are acquiring increasing attention due to
their potential as probes of matter at the nanoscale [1–9],
of which life molecules are of paramount importance, or
as high information capacity signals in communication
channels [8,10–13] with control and transfer of angular
momentum, which includes recently developed structured
materials and metasurfaces. The conservation of the
electromagnetic helicity of wavefields (or, equivalently,
chirality when they are quasi-monochromatic; we shall
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indistinctly use both terms for such fields) [4,6,14,15] was recently shown [16] to lead to a new
optical theorem which characterizes the excitation and emission of field helicity—or chirality—by
bodies, and that we believe should play a growing relevant role in coming years with the progress
of research on applications of twisted light.

In this context, we pointed out [16] that circular dichroism (CD) [17–19], i.e. the difference in
absorption—or emission—of energy by molecular objects according to the handness of circularly
polarized light (CPL), is a particular case of this optical theorem for scatterers, and hence it does
not need to resort to quantum mechanics as usually done in its standard formulation. Thus,
this phenomenon is just a consequence of the conservation of helicity of electromagnetic fields
on scattering.

Different studies have discussed what kind of structures are necessary to produce chiral fields
and whether CD requires those objects being chiral. However, some works have recently shown
that this effect can be obtained with achiral objects [20]. Moreover, separating the existence of
chirality from dichroism effects may be a problem in some observations [21,22]. Nonetheless no
general and unified framework, not limited to particular structures, has been yet established.

In this paper, we show that dichorism is not only an effect due to absorption and e.g.
fluorescent re-emission by molecules; but it constitutes a property of any scattering interaction,
elastic or not, of electromagnetic twisted fields. Thus, based on the aforementioned optical
theorem for the helicity, we generalize the concept of dichroism and demonstrate how it appears
not only with CPL waves, but also with arbitrary chiral optical fields. This allows the design of
an illumination that enhances the information content of the scattered signal, overcoming well-
known limitations of standard CD detection, like its weak signal or its difficulties with magnetic
objects [23].

For comprehensiveness, we next present a summary of concepts associated with the helicity
and its optical theorem. Then, we show how general optical fields, expressed by its angular
spectrum of plane waves, may be represented as a superposition of CPL components of right
handed (RCP) and/or left-handed (LCP) polarization. This explicitly formulates in a quantitative
manner previous descriptions of helicity of general wavefields, and permits us to introduce a class
of elliptically polarized hypergeometric beams, as well as their Hermite and Laguerre derivations,
which naturally appear when such representation is applied to a Gaussian angular spectrum.

We then establish how the helicity optical theorem, applied to arbitrary fields and to chiral
optical beams in particular, leads to a unified generalization of the theory of dichroism. A first
consequence of which is to put forward the way of enhancing either the extinction of helicity and hence
the dichroic signal, or the extinction of intensity. Such configurations and detections are amenable to
future experiments.

(a) The excitation of helicity
Quasimonochromatic fields have a time-harmonic dependence, i.e. their electric and magnetic
vectors E and B are described in terms of their complex representations E and B as: E(r, t) =
�[E(r) exp(−iωt)] and B(r, t) = �[B(r) exp(−iωt)], respectively. � denoting real part. Then, the
two fundamental quantities we deal with in this work are the helicity density, H , and the
density of flow of helicity, F , which in a non-absorbing dielectric medium of permittivity ε,
permeability μ and refractive index n = √

εμ are [6,16]: H = 〈H 〉 = (1/2k)
√

ε/μ�(E · B∗) and
F = 〈F 〉 = (c/4nk)�(εE∗ × E + (1/μ)B∗ × B). 〈·〉 denoting time-average, � meaning imaginary
part and k = nω/c. It must be recalled that for these time-harmonic fields F coincides with the
spin angular momentum density and is [4,6,15,16] k2 times the flow of chirality. On the other hand,
H is k2 times the chirality. Also, they fulfil the continuity equation [4,6,15,16]: Ḣ + ∇ · F = −P .
Where the helicity dissipation on interaction of the fields with matter is represented by P .

Let a quasi-monochromatic field, whose space-dependent complex representation is denoted
as Ei, Bi, illuminate a particle which we consider magnetodielectric and bi-isotropic [24,25],
dipolar in the wide sense, i.e. if for instance it is a sphere, its magnetodielectric response is
characterized by its electric, magnetic and magnetoelectric polarizabilities: αe, αm, αem, αme,
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given by the first-order Mie coefficients as αe = i(3/2k3)a1, αm = i(3/2k3)b1, αem = i(3/2k3)c1, αme =
i(3/2k3)d1 = −αem. a1, b1 and c1 = −d1 standing for the electric, magnetic and magnetoelectric
first Mie coefficients, respectively [25,26]. The condition αem = −αme expressing that the object
is chiral. We remark that by particle we shall understand small objects such as atoms, molecules,
material macroscopic particles or quantum dots.

The electric and magnetic dipole moments, p and m, induced in the particle by this incident
field are

p = αeEi + αemBi, m = αmeEi + αmBi. (1.1)

At any point outside this scattering object, the total field is written as E(r) = Ei(r) + Es(r),
B(r) = Bi(r) + Bs(r). The subindex s denoting the scattered, or radiated, field.

The optical theorem that rules the conservation of helicity described by the above-mentioned
equation, Ḣ + ∇ · F = −P , is [16]

−Wa
H = 8πck3

3ε
�[p · m∗] − 2πc

μ
�
{
−1

ε
p · B∗

i + μm · E∗
i

}
. (1.2)

On the left side of (1.2), Wa
H is the rate of dissipation by the particle of the incident field helicity.

It comes from the integration of P in a volume that contains this body. On the other hand,
from the Gauss divergence theorem the terms in the right side of (1.2) arise from the flow of F

across a surface that contains the particle [16]. The first of these terms represents the total helicity
scattered or radiated by the object, whereas the second one constitutes the extinction of helicity of
the incident wave on scattering. This latter extinction term −(2πc/μ)�{−(1/ε)p · B∗

i + μm · E∗
i }

should be used for determining both dissipated and radiated, or scattered, helicity by a dipolar
particle in an arbitrary, homogeneous or inhomogeneous, embedding medium. To emphasize this
interpretation, we recall its analogy with the well-known optical theorem for energies [27]

−Wa = ck4

3n
[ε−1|p|2 + μ|m|2] − ω

2
�[p · E∗

i + m · B∗
i ]. (1.3)

Wa being the rate of energy absorption from the illuminating wave. In the right side of (1.3),
the first term constitutes the total energy scattered by the dipolar object, whereas the second one
represents the energy extinguished from the illuminating field, or rate of energy excitation in the
scattering object.

Henceforth, we remark the analogous role played by the right-side terms in both optical
theorems (1.2) and (1.3). As it is well known, (ω/2)�[p · E∗ + m · B∗] has been extensively
employed for characterizing dipole optical interactions [28–30]. We thus expect that progress on
research of radiation–matter interactions with chiral fields will give rise to a growing use of the
helicity extinction in equation (1.2): (2πc/μ)�{−ε−1p · B∗

i + μm · E∗
i }. Based on this reasoning, we

find it natural to introduce an enhancement factor FH for the emission of helicity in analogy with
the Purcell factor for a radiating electric and/or magnetic dipole: F = 1 + (3/2k3)[�{p · E∗ + m ·
B∗}]/[ε−1|p|2 + μ|m|2], viz.

FH = 1 + 3ε

4μk3

�{−(1/ε)p · B∗
i + μm · E∗

i }
�[p · m∗} . (1.4)

In this connection, and analogously to the complex Poynting vector theorem of energy
conservation (see section 6.10 of [31] and also [21,22]), the integration of the above-mentioned
continuity equation for a lossy particle of volume V with constitutive parameters ε = εR + iεI and
μ = μR + iμI, in the absence of induced currents, yields (1.2) with: Wa

H = (c2/2n2)
∫

V dv(εRμI +
εIμR)�{E · B∗/μ∗}; which links fields in, or close to, the object with those in any other region of
space; in particular in the far-zone.

2. The angular spectrum of circularly polarized plane wave components
We address the wide variety of fields propagating in a half-space z > 0, or z < 0, free from sources,
represented by an angular spectrum of plane waves [32,33]. This includes optical fields. Such
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Figure 1. Afield E(r), withwavefront shownby the brown-yellow surface, propagates into the half-space z > 0 along arbitrary
directions (light-brown arrows). In the 0XYZ framework, the propagation vector along s of each plane wave component of E(r)
has polar and azimuthal angles θ and φ. The polarization of each of these plane waves is characterized by the orthonormal
system {ε⊥, ε‖, s}. The unit vector ε‖ is in the polar plane containing both s and its projection (green broken line) on OXY ,
and points in the rotation sense of θ . On the other hand, ε⊥ is normal to this plane and points against the sense of rotation of
φ. (Online version in colour.)

representation of either incident and scattered fields, with subindex i and s respectively, is

Ei,s(r) =
∫
D

ei,s(s⊥) eik(s·r)dΩ , Bi,s(r) =
∫
D

bi,s(s⊥) eik(s·r)dΩ . (2.1)

The integration being done on the contour D that contains both propagating and evanescent
waves [32,33]. s = (s⊥, sz) is the unit wavevector of the plane wave component of amplitude
ei,s(s⊥) and bi,s(s⊥) , where s⊥ = (sx, sy, 0) and sz = ±

√
1 − |s⊥|2 if |s⊥|2 ≤ 1 (propagating

components), and sz = ±i
√

|s⊥|2 − 1 if |s⊥|2 > 1 (evanescent components). dΩ = sin θdθdϕ. sx =
sin θ cos ϕ, sy = sin θ sin ϕ, sz = cos θ . 0 ≤ ϕ ≤ 2π , 0 ≤ θ ≤ π/2 for propagating components and
θ = π/2 − iδ, 0 < δ ≤ ∞ for evanescent components. The + or − sign in sz applies according to
whether propagation is in z > 0 or z < 0, respectively. We shall assume the first case. For z < 0,
the results are similar. In general, all plane wave components are elliptically polarized. For
the incident and scattered fields one has: bi,s(s⊥) = ns × ei,s(s⊥), ei,s(s⊥) · s = bi,s(s⊥) · s = 0. The
complex amplitudes of the scattered, or radiated, field angular spectrum being

es(s⊥) = k2
[
ε−1(s × p) × s −

√
μ

ε
(s × m)

]

and bs(s⊥) = k2
[
μ(s × m) × s +

√
μ

ε
(s × p)

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

For each plane wave component with wavevector ks of either the incident or the scattered
field (2.1), we consider an orthonormal set of unit vectors (cf. figure 1) {ε̂⊥, ε̂‖, s} from which
we define an helicity basis of rotating vectors: ε±(s) = (1/

√
2)(ε̂⊥(s), ±iε̂‖(s)), ε±∗(s) · ε∓(s) = 0.

Then each incident or scattered component complex amplitude is expressed as the sum of a left-
handed (LCP, sign ‘+’) and a right-handed (RCP, sign ‘−’) circularly polarized plane wave in its
corresponding framework {ε̂⊥, ε̂‖, s} according to

ei,s(s⊥) = e+
i,s(s⊥)ε+(s) + e−

i,s(s⊥)ε−(s) (2.3)

and

bi,s(s⊥) = b+
i,s(s⊥)ε+(s) + b−

i,s(s⊥)ε−(s) = −ni[e+
i,s(s⊥)ε+(s) − e−

i,s(s⊥)ε−(s)]. (2.4)
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With equation ∇ · E = 0 imposing according to (2.1) that ε±(s) · s = 0. In this representation, the
helicity density of each incident or scattered plane wave component reads

H i,s(s⊥) =
( ε

k

)
�[e∗

i,sx(s⊥)ei,sy(s⊥)] =
( ε

2k

)
S3(s⊥) =

( ε

2k

)
[|e+

i,s(s⊥)|2 − |e−
i,s(s⊥)|2]. (2.5)

That is, as the difference between the LCP and RCP intensities of this angular component
of wavevector ks. S3(s⊥) is the fourth Stokes parameter [27,34]. Also |ei,s(s)⊥|2 = |ei,sx(s⊥)|2 +
|ei,sy(s⊥)|2 = (8π/c)

√
μ/ε〈Si,s(s⊥)〉 = 8π/ε〈wi,s(s⊥)〉. 〈Si,s(s⊥)〉 and 〈wi,s(s⊥)〉 representing the

time-averaged Poynting vector magnitude and electromagnetic energy density, respect-
ively: 〈wi,s(s⊥)〉 = 〈wei,s(s⊥)〉 + 〈wmi,s(s⊥)〉 . 〈wei,s(s⊥)〉 = (ε/16π )|ei,s(s⊥)|2, 〈wmi,s(s⊥)〉 = (1/16πμ)|
bi,s(s⊥)|2.

Therefore, for the incident or the scattered field we have from (2.1), (2.3) and (2.4) the following
splitting into LCP and RCP waves

Ei,s(r) = E+
i,s(r) + E−

i,s(r); Bi,s(r) = B+
i,s(r) + B−

i,s(r) = −ni[E+
i,s(r) − E−

i,s(r)] (2.6)

and

E±
i,s(r) =

∫
D

e±
i,s(s⊥)ε±(s) eik(s·r) dΩ . (2.7)

Assuming the particle chiral, αem = −αme, and introducing equations (2.7) into (1.1) we write

p(r) = p+(r) + p−(r); m(r) = m+(r) + m−(r). (2.8)

With

p±(r) = (αe ± niαme)E±
i (r). m±(r) = (αme ∓ niαm)E±

i (r). (2.9)

And substituting (2.1) into (2.9), we see that p±(r) and m±(r) also admit an angular spectrum
representation like (2.1), their respective angular spectra being

p̂±(s⊥) = (αe ± niαme)e±
i (s⊥)ε±(s); m̂±(s⊥) = (αme ∓ niαm)e±

i (s⊥)ε±(s). (2.10)

So that from (2.10), (2.8) and (2.2), we obtain for the scattered field angular spectrum

e±
s (s⊥) = k2

[
αe ± niαme

ε
± i
√

μ

ε
(αme ∓ niαm)

]
e±

i (s⊥)

and b±
s (s⊥) = k2[∓i

√
μ

ε
(αe ± niαme) + μ(αme ∓ niαm)]e±

i (s⊥).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

We obtain the helicity densities Hi,s for either the incident or scattered fields by introducing (2.3)
and (2.4) into (2.1), and inserting the result into the definition introduced in §1a: H = 〈H 〉 =
(1/2k)

√
ε/μ�(E · B∗). Then since after taking imaginary parts the cross-terms containing the

integrand factors nie+
i,s(s⊥)e−∗

i,s (s’⊥)ε+(s) · ε−∗(s’) and −nie+∗
i,s (s⊥)e−

i,s(s’⊥)ε+∗(s) · ε−(s’) cancel each
other, we finally get

Hi,s(r) = ε

2k
[|E+

i,s(r)|2 − |E−
i,s(r)|2]. (2.12)

Equation (2.12) introduced in the optical theorem for the helicity, (1.2), accounts for all chirality
effects due to the interaction of waves with dipolar particles, both in the propagating region (real
sz

i ) of the angular spectrum, as in the evanescent domain (imaginary sz
i ). The latter applies in

particular for the interaction of plasmon polaritons with particles on metallic surfaces.
Expressions (2.12) are of particular importance in the far zone kr → ∞, where [32,33]

E±
i,s(rŝ) ≈ −(2π i/k)e±

i,s(ŝ⊥)ε±(ŝ) exp(ikr)/r. (2.13)

e±
s (ŝ⊥)ε±(ŝ) plays the role of the CPL complex amplitude for a radiated, or scattered, field, and

ŝ = r/r now belongs to the domain of propagating components only. Dropping the sub-indices
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i, s to simplify notation, equations (2.12) and (2.13) lead for either the incident or the scattered
field to

Hff (rŝ) = 2π2ε

k3r2 [|e+(ŝ⊥)|2 − |e−(ŝ⊥)|2]. (2.14)

And their density of flow of helicity is Fff (rŝ) = (c/n)Hff (r)ŝ, which in agreement with the
conservation of helicity, expresses on integration in a large sphere surrounding the scatterer that
the outgoing helicity flow of the field across any plane z = constant, or closed surface, outside
the scattering volume, which equals the flow of helicity across any sphere at infinity, is equal to
c/n times the total helicity enclosed by that sphere:

∫ ∫
z=0 F (r) · ẑ dx dy = ∫

r→∞ Fff (rŝ) · r r2 dΩ .
Where now the solid angle Ω spans on the whole sphere of real angles only. Taking into
account (2.12), and in analogy with the flow of energy [32,33], one sees that the evanescent
components do not contribute to the flux of helicity across the plane z = 0 in the half-space z ≥ 0.

(a) A particular case: incident elliptically polarized plane wave
The significance of the optical theorem (1.2) for the helicity—or chirality—of wavefields is
illustrated considering one of the simplest and most employed configurations: one elliptically
polarized incident plane wave impinging on a dipolar particle with wavevector ksi along
OZ. According to (2.3) and (2.4) the fields are ei = (eix, eiy, 0) = e+

i ε+ + e−
i ε−. bi = (bix, biy, 0) =

n(−eiy, eix, 0) = b+
i ε+ + b−

i ε− = −ni(e+
i ε+ − e−

i ε−).
So that the incident helicity density reads

H i =
( ε

k

)
�[e∗

ixeiy] =
( ε

2k

)
S3 =

( ε

2k

)
[|e+

i |2 − |e−
i |2]. (2.15)

Also, according to (2.8) and (2.9): p = p+ε+ + p−ε−, p± = (αe ∓ niαem)e±
i ; m = m+ε+ +

m−ε−, m± = (αme ∓ niαm)e±
i .

On introducing, these dipole moments and fields into the optical theorems of helicity (1.2) and
energy (1.3), they yield for the rate of helicity and energy extinction

�{(p+ + inm+)e+∗
i − (p− − inm−)e−∗

i } = 4k3n
3ε

�{p+m∗
+ + p−m∗

−} + Wa
H (2.16)

and

�{(p+ + inm+)e+∗
i + (p− − inm−)e−∗

i } = 2k3

3ε
{|p+|2 + |p−|2 + n2(|m+|2 + |m−|2)} + Wa, (2.17)

respectively. Equation (2.16) is identical to the CD law, usually mechanoquantically formulating
molecular absorption and fluorescence effects [18]. However, equations (2.16) and (2.17), obtained
from classical electrodynamics, include the rate of helicity and energy dissipation both by
absorption and scattering (or diffraction), and generalize the CD theory to any wide sense dipolar
‘particle’ or structure.

In other words, the CD phenomenon is not only characterized by the operation of taking the difference
of energy absorption and emission �[p · E∗

i + m · B∗
i ] by chiral molecules as they are separately illuminated

by RCP and LCP waves; i.e. as this absorbed energy is �{(p+ + inm+)e+∗
i } and �{(p− − inm−)e−∗

i },
respectively, as usually considered so far [17–19]. But CD is also, and fundamentally, one of the physical
manfestations of the conservation law of electromagnetic helicity—or chirality—and is represented by the
left-side extinction term of (2.16), �[−(1/ε)p · B∗

i + μm · E∗
i ] = �{(p+ + inm+)e+∗

i − (p− − inm−)e−∗
i }

of the helicity optical theorem (1.2); being involved in any scattering and/or absorption process of LCP and
RCP electromagnetic waves, thus characterizing the rate of extinction helicity, or chirality. In addition,
as shown by equation (2.10) and (2.16), CD arises not only due the chirality of the scattering object,
represented by αme, but also and primarily by the mere induction of their electric and/or magnetic dipoles.

Hence it is not surprising that the ratio of the extinction of incident field helicity (2.16) and
energy (2.17) is identical to the well-known dissymmetry factor of CD [4,17,19]. Moreover, adding
and substracting (2.16) and (2.17) yield the energy excitation by extinction of the respective LCP
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or RCP component of the incident elliptically polarized light according to the dipole handness p±
and/or m±:

�{(p± ± inm±)e±∗
i } = k3

3ε
{|p+ ± inm+|2 + |p− ± inm−|2} + 1

2
(Wa ± Wa

H ). (2.18)

(b) The special case of an incident circularly polarized plane wave
Let the field incident on the particle be just one CPL component, either LCP or RCP, then e±

i = eε±
and p = p±ε±, m = m±ε±, and (2.18) lead to

�{(p± ± inm±)e±∗
i } = k3

3ε
{|p±|2 + n2|m±|2 ± 2n�{p±m∗

±}} + 1
2

(Wa ± Wa
H ) (2.19)

and
k3

3ε
|p± ∓ inm±|2 + 1

2
(Wa ∓ Wa

H ) = 0. (2.20)

From which we obtain

2n�{p±m∗
±} = ±[|p±|2 + n2|m±|2 + 1

2
(Wa ∓ Wa

H )]. (2.21)

Thus, apart from a constant factor, for CPL incidence the scattered helicity equals in modulus the
scattered energy plus the rates of dissipation of helicity and energy, and has a sign that depends
on the handness of the incident light. Of course (2.19)–(2.21) are consistent, as they should, with
equations (2.16) and (2.17), which for CPL become

�{(p± ± inm±)e±∗
i } = ±4k3n

3ε
�{p±m∗

±} ± Wa
H = 2k3

3ε
{|p±|2 + n2|m±|2} + Wa. (2.22)

A comparison of (2.22) with (2.16) and (2.17) shows that the excitation of the particle by both the
LCP and RCP components of an elliptically polarized plane wave is equivalent to performing
two observations separately: one with an LCP plane wave only, and another one with only RCP
(each of which is ruled by (2.22) with the corresponding sign), and then substracting or adding
the respective excitations given by the left sides of (2.22). This operation reproduces the left side
of (2.16) and (2.17), respectively. In other words, equations (2.16) and (2.17) show that the LCP
and RCP components of an incident elliptically polarized plane wave do not interfere and, hence, interact
independently of each other with the particle.

As regards equation (2.20), because often in molecular spectroscopy |m±| � |p±|, the value of
Wa and/or Wa

H contributes to that of |p±|. Nonetheless, equation (2.20) is also compatible with
the electric and magnetic dipoles excited by CPL light, and the absorption rates, fulfilling

p± = ±inm± ⇔Wa
H = ±Wa. (2.23)

Hence this is a sufficient condition for an electric–magnetic dipole to emit chiral light. Particularly
remarkable is this latter case is when the dissipation rates of helicity and energy either cancel
each other, or the particle introduces no energy or helicity losses, Wa =Wa

H = 0, so that all
energy and helicity extinguished from the incident field are re-radiated by elastic scattering. As
seen from (2.20), in that case 2n�{p±m∗±} = ±[|p±|2 + n2(|m±|2], which states that then the optical
theorems for helicity, equation (2.16), and energy, equation (2.17), are equivalent, and the scattered
helicity is proportional to the scattered intensity and has a sign that depends on the handness of
the incident light, whereas the density of helicity flow (spin) is proportional to that of energy flow
(Poynting vector). Thus in such a situation the optical theorems for helicity (1.2) and energy (1.3)
are equivalent (see also [6,16]).

Equation (2.23) also has some important consequences.

— The far-zone scattered field is circularly polarized. b±(s⊥) = ∓nie±(s⊥) (cf. equations (2.2)).
This circular polarization holds with respect to the Cartesian system of orthogonal
axes defined by the unit vectors: (ε⊥, ε‖, s) (figure 1). ε⊥ and ε‖ being respectively
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perpendicular and parallel to the polar plane (which now becomes the scattering plane)
delimited by s and its projection on OXY; i.e. e±(s⊥) = (e(s⊥) · ε⊥)(ε⊥ + ±iε‖ + 0s) and
b±(s⊥) = (ne(s⊥) · ε⊥)(∓iε⊥ + ε‖ + 0s).

From the above it should also be noticed that it is the handness of the dipole moments, and not
necessarily the chirality αme, the relevant characteristic for these CD effects. Besides, this CPL property
of the scattered field is just a consequence of the optical theorems of energy and helicity, and
does not presupose in the particle neither chirality, αem = −αme, nor duality, ε−1αe = μαm [16].
Although the combination of both theorems imposes [16] that the existence of one these two last
properties of the particle polarizabilities implies the other.

— In the near field zone, the scattered wave in the basis (ε⊥, ε‖, s) has

Enf (r) = 1
εr3 [3s(s · p) − p] = − p±

εr3 e±iφ[±iε⊥ + cosθε‖ − 2sinθs].

and Bnf (r) = μ

r3 [3s(s · m) − m] = −μm±
r3 e±iφ[±iε⊥ + cos θε‖ − 2sinθs].

⎫⎪⎪⎬
⎪⎪⎭ (2.24)

Thus, this field being CPL at points r along the polar axis OZ (θ = 0, or θ = π ).

3. Excitation of helicity and energy with general optical fields: the role of
angular spectra with right-circular and left-circular polarization

Returning to equations (2.6)–(2.10) for general optical fields, we have from the optical theorem for
the helicity (1.2) the following expression for its extinction from the incident field on scattering by
the particle-induced dipole:

�{[p+(r) + inm+(r)] · E+∗
i (r) − [p−(r) − inm−(r)] · E−∗

i (r)} + 2�{αe − n2αm}

× �{E−
i (r) · E+∗

i (r)} = 4k3n
3ε

�{p+(r) · m∗
+(r) + p−(r) · m∗

−(r)}

+ CD(r) + n
2πc

Wa
H . (3.1)

While the extinction of incident energy is according to the standard optical theorem (1.3)

�{[p+(r) + inm+(r)] · E+∗
i (r) + [p−(r) − inm−(r)] · E−∗

i (r)} + 2�(αe − n2αm)

× �{E−
i (r) · E+∗

i (r)} = 2k3

3ε
{|p+(r)|2 + |p−(r)|2 + n2[|m+(r)|2 + |m−(r)|2]}

+ CE(r) + 2
ω
Wa. (3.2)

The terms CD(r) and CE(r) are

CD(r) = 8k3n
3ε

[�{(αe − n2αm)α∗
me}�{E−

i (r) · E+∗
i (r)} − n�{αeα

∗
m}�{E−

i (r) · E+∗
i (r)}] (3.3)

and

CE(r) = 4k3

3ε
{[|αe|2 − n4|αm|2]�{E−

i (r) · E+∗
i (r)} + 2n�[(αe − n2αm)α∗

me]�[E−
i (r) · E+∗

i (r)]}. (3.4)

In these equations, r denotes the position vector of the centre of the particle immersed in the
illuminating field. Now, in contrast with the scattering of an incident elliptically polarized plane
wave discussed above, the scattered helicity and energy convey interference between E−

i and E+
i .

Note that by virtue of the asymptotic expression (2.13), in the far-zone CD(rŝ) = CE(rŝ) = 0
as ε±∗(ŝ) · ε∓(ŝ) = 0. It is also interesting to observe from (3.1)–(3.4) that if the particle is dual,
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αe = n2αm, the terms of interference between E+ and E− are zero and so are CD(r) and CE(r) for
any r. Then (3.1) and (3.2) reduce to equations similar to (2.16) and (2.17).

However, the important point is that now the appearance of the interference factor [E−
i (r) ·

E+∗
i (r)] in (3.1) and (3.2) allows one to choose the incident field such that either �[E−

i · E+∗
i ]

or �[E−
i · E+∗

i ] is zero, or small, for the extinction rates of helicity (3.1) and of intensity (3.2),
respectively. We thus shall analyse the consequences of 2�{αe − n2αm}�{E−

i · E+∗
i } or

2�(αe − n2αm)�{E−
i · E+∗

i } being non-zero in the left sides of (3.1) and (3.2), respectively, as a
consequence of the choice of illumination on the particle.

Using (2.9) the left sides of (3.1) and (3.2) are in terms of the polarizabilities and fields

�{[p+(r) + inm+(r)] · E+∗
i (r) ± [p−(r) − inm−(r)] · E−∗

i (r)}
= �{αe + n2αm}(|E+

i (r)|2 ∓ |E−
i (r)|2) + 2n�{αme}(|E+

i (r)|2 ± |E−
i (r)|2). (3.5)

By means of (3.5) we now address the rate of extinction of helicity Ws
H (cf. equation (17) in [16])

and energy Ws in the particle, given by the left sides of (3.1) and (3.2), as functions of the
polarizabilities

μ

2πc
Ws

H ≡ �{[p+(r) + inm+(r)] · E+∗
i (r) − [p−(r) − inm−(r)] · E−∗

i (r)}

+ 2�{αe − n2αm}�{E−
i (r) · E+∗

i (r)} = �{αe + n2αm}(|E+
i (r)|2 − |E−

i (r)|2)

+ 2n�{αme}(|E+
i (r)|2 + |E−

i (r)|2) + 2�{αe − n2αm}�{E−
i (r) · E+∗

i (r)}. (3.6)

and

2
ω
Ws ≡ �{[p+(r) + inm+(r)] · E+∗

i (r) + [p−(r) − inm−(r)] · E−∗
i (r)}

+ 2�(αe − n2αm)�{E−
i (r) · E+∗

i (r)}] = �{αe + n2αm}(|E+
i (r)|2 + |E−

i (r)|2)

+ 2n�{αme}(|E+
i (r)|2 − |E−

i (r)|2) + 2�{αe − n2αm}�{E−
i (r) · E+∗

i (r)}}. (3.7)

Note that Ws
H �= 0 even if αme = 0 and |E+

i (r)|2 = |E−
i (r)|2. It should be remarked that in the

particular case of incident CPL plane waves, or CPL beams without longitudinal component,
one has (choosing propagation along e.g. OZ): E+

i = E+
i ε+, E−

i = E−
i ε−; and as �{E−

i · E+∗
i } =

�{E−
i · E+∗

i } = 0, equation (3.1) becomes (2.16) and equation (3.2) reduces to (2.17). Hence, in
this case E+

i and E−
i do not interfere, and when |E+

i | = |E−
i | = |Ei| equations (3.6) and (3.7) are

similar to those of standard circular dichroism which our formulation shows that yields the rate
of helicity extinction, first with an incident LCP wave, and then with one being RCP, both of the
same amplitude. In such a situation, (3.6) and (3.7) become respectively proportional to the well-
known numerator, 4nαR

me|Ei(r)|2 and denominator, 2(αI
e + n2αI

m)|Ei(r)|2 of the CD dissymmetry
factor [4,23]. (The superscripts R and I denoting real and imaginary part.)

However, our general equations (3.6) and (3.7) cover many other configurations (in particular
those so-called superchiral fields [4], which is known, however, to be limited to molecules
with αm � 0 [23]). We next show the broader scope of (3.6) and (3.7) with chiral optical beams
possessing a longitudinal component, which as we shall show, plays a key role. We will see
that according to whether one chooses such illuminating beams yielding either �{E−

i · E+∗
i } = 0

or �{E−
i · E+∗

i } = 0 one respectively enhances the extinction rate of helicity (3.6) versus that of
energy (3.7) (and thus the ratio between them) or vice versa. Note that because out of resonance
the real part of the polarizabilities are usually greater than the imaginary parts, the last term
of (3.6) may be larger than that of (3.7). Hence, one may produce bigger enhancement in Ws

H
than in Ws with those choices of � and � of E−

i · E+∗
i .
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4. Optical beamswhose angular spectrum representation contains left-circular
and right-circular plane waves

In the paraxial approximation ∂z � ikz, so that the equation ∇ · E = 0 implies that Ez = (i/k)∇⊥ ·
E⊥ [35]; (⊥ denotes transversal, i.e. XY component). The electric vector of an optical beam is then
written in terms of its angular spectrum as [32,33]

E(r) = eikz
∫∞

−∞
e(s⊥)eiks⊥·Re−ikz |s⊥|2

2 d2s⊥. (4.1)

Having denoted r = (R, z), R = (x, y, 0), s = (s⊥, sz), s⊥ = (sx, sy, 0).
We shall consider the Gaussian beam, i.e. the one from which other fields, like Hermite and

Laguerre–Gaussian beams, are generated [36].
We write for (4.1) the decomposition (2.3) of each component into LCP and RCP waves by

expressing the Gaussian angular spectrum [32,33] as e(s⊥) = (k2W2
0/4π ) exp[−k2W2

0 |s⊥|2/4][e+
0 ε+

(s) + e−
0 ε−(s)]. e+

0 and e−
0 being complex constants, and W0 standing for the beam waist at z = 0.

Then, we express the beam as

E(r) = (kW0)2

4π
eikz

∫∞

−∞
e[−k2W2

0 |s⊥|2/4]eiks⊥·Re−ikz |s⊥|2
2 [e+

0 ε+(s) + e−
0 ε−(s)] d2s⊥. (4.2)

Recalling that ε±(s) = (1/
√

2)(ε̂⊥(s), ±iε̂‖(s), 0), and writing in the Cartesian basis x̂, ŷ, ẑ (figure 1):
ε̂⊥(s) = (sin φ, cos φ, 0), ε̂‖(s) = (cos θ cos φ, cos θ sin φ, − sin θ ), s = (sin θ cos φ, sin θ sin φ, cos θ ),
d2s⊥ = dΩ = sin θ cos θdθdφ. 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π .

Performing the φ and θ integrals we obtain (see integrals 3.937.2 and 6.631.1 of [37]) after
making cos θ � 1 in all factors of the integrand but not in the exponentials as involved in the
paraxial approximation, and writing x + iy = R exp(iΦ), Φ being the azimuthal angle, we derive

E(r) = W2
0

4
√

πσ 3 eikz

{
R
2 1F1

(
3
2

; 2; − R2

2σ 2

)
[−e+

0 exp(−iΦ)(x̂ + iŷ) + e−
0 exp(iΦ)(x̂ − iŷ)]

+ i
k

(e+
0 − e−

0 )1F1

(
3
2

; 1; − R2

2σ 2

)
ẑ

}
. (4.3)

1F1 is Kummer’s confluent hypergeometric function [38]. σ 2 = W2
0/2 + iz/k. Equation (4.3)

represents a hypergeometric beam which, containing LCP and RCP plane waves, differs from
some previously put forward [39]. A generalization of this beam to arbitrary index m with vortices
exp(±imΦ) and topological charge m is made by including a factor exp(−imφ) in e(s⊥). Note
from (4.3) that due to the paraxial approximation the transversal XY-component of E is the sum
of two fields (cf. equation (2.7)): one, E+, is LCP and has a complex amplitude proportional
to −e+

0 ; the other, E−, is RCP and its amplitude factors e−
0 . These two CPL beams also have a

longitudinal component Ez, proportional to (i/k)e+
0 and −(i/k)e−

0 , respectively, as shown by the
last term of (4.3). Next, we see the relevance of this longitudinal component to control the dipole
emission, enhancing either the emitted helicity or energy. Using (4.3), we obtain for the incident
energy and helicity factors in the left side of (3.6) and (3.7) (we now drop the subindex i in those
equations, understanding that the incident electric field is (4.3))

|E+(r)|2 ± |E−(r)|2 = W4
0

16πσ 6 (|e+
0 |2 ± |e−

0 |2)

[
R2

2 1F2
1

(
3
2

; 2; − R2

2σ 2

)
+ 1

k2 1F2
1

(
3
2

; 1; − R2

2σ 2

)]
. (4.4)

Of course the choice of the upper or lower sign in ± of (4.4) yields the beam energy or the helicity
(cf. equation (2.12)), respectively.

Figure 2 shows the transversal intensity distribution |E+|2 + |E−|2 of this beam, given by
equation (4.4) at z = 0, for e−

0 = ae+
0 exp(ibπ/2), b real, e+

0 = 1 (in arbitrary units) a = 1 , λ = 589 nm,
W0 = 4λ. This choice of the value of e+

0 and the presence of the factor W2
0/4

√
π σ 3 of the beam

amplitude in (4.2) produces small values of these intensities. Also as R2 � λ2, apart from points
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Figure 2. Intensity |E+|2 + |E−|2 (cf. equation (4.4)) at z = 0 of the hypergeometric beam of equation (4.3) . (a) Colourmap
of the transversal distribution. (b) A cut of this spatial distribution as a function of the coordinate R along a diameter (full red).
The distribution when the 1F1 functions are replaced by a Gaussian of the same σ is also shown (broken blue line). (Online
version in colour.)

close to R = 0 the second term of (4.4), given by the longitudinal component of the beam, hardly
contributes to this intensity distribution. However as seen next, this longitudinal component
becomes crucial when the helicity, extinguished from the incident beam and thus radiated or
scattered by the particle is considered. For comparison, we also show this intensity distribution
when the 1F1 functions of (4.4) are substituted by a Gaussian with the same value of σ 2. The
difference between both distributions is small due to the similar shapes of the Gaussian and these
hypergeometric functions. On the other hand, the real (and imaginary) part of the product E− · E+

reduces to{
�
�

}
[E− · E+∗] =

{
�
�

}
[E−

z · E+∗
z ] = − W4

0
16πσ 6k2

{
�
�

}
[e−

0 e+∗
0 ]1F2

1

(
3
2

; 1; − R2

2σ 2

)
}. (4.5)

So that either of these quantities, �[·] or �[·], may be made arbitrarily small (or zero) depending
on the choice of parameters e−

0 and e+
0 for the beam, which may make arbitrarily small (or zero)

the factor { �
� }[e−

0 e+∗
0 ]. In the next section, we show the relevance of this choice in connection with

equations (3.6) and (3.7). For example, choosing as for figure 2 e−
0 /e+

0 = ±a exp(ibπ/2), a and b

being real, the value of { �
� }[E− · E+∗] will oscillate as ∓{ cos(bπ/2)

sin(bπ/2) }, thus possessing several zero
values in the interval 0 ≤ b ≤ 4.

Note that a kind of Hermite and Laguerre–Gaussian beam modes (m, n) are straightforwardly
worked out from (4.3) on making upon E(r) the operations ∂m

x ∂n
y and (∂x + i∂y)m(∂x − i∂y)m+n,

respectively [36]. Likewise, Bessel beams with LCP and RCP angular components may be
described by equation (4.2) using an angular spectrum δ(s − s0)[e+

0 (ε̂⊥(s) + iε̂‖(s)) + e−
0 (ε̂⊥(s) −

iε̂‖(s))].

5. Example: enhancing the extinction of either chirality or energy
As an illustration of the relevance of equations (3.6) and (3.7), we consider a helical molecule
with αR

e = 1.04 × 10−2 nm3, αI
me = 6.2 × 10−5 nm3, αR

me = 0, in an environment with ε = μ = 1 at
an illumination wavelength λ = 589 nm. αI

e = (2/3)(2π/λ)3(αR
e )2 � 0.96 · 10−10nm3 � αR

e , |αm| <
10−5|αe| [19,40].

These polarizabilities yield according to (3.6) and (3.7) for the helicity extinction Ws
H

μ

2πc
Ws

H � (αI
e + αI

m)(|E+
i |2 − |E−

i |2) + 2(αR
e − αR

m)�[E−
i · E+∗

i ]; (5.1)
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Figure 3. (a) Intensity, plus= |E+|2 + |E−|2 (red line), and helicity,minus= |E+|2 − |E−|2 (blue line) (cf. equation (4.4)),
as a function of b for the hypergeometric beam of equation (4.3) at z = 0 and near the peak at R= 2000 nm (figure 2b).
e−0 = ae+0 exp(ibπ/2), e+0 = 1 (in arbitrary units), a= 1. (b) Re= �[E−·E+∗] and Im= �[E−·E+∗] (cf. equation (4.5)),
for the same beam and choice of parameters. (c) Extinction rate of helicityW s

H (full red) and energyW s (broken blue) in
terms of b. (Online version in colour.)

and for the total emitted energy Ws

2
ω
Ws � (αI

e + αI
m)(|E+

i |2 + |E−
i |2) + 2(αI

e − αI
m)�[E−

i · E+∗
i ]. (5.2)

We see from (5.1) that objects with such a purely imaginary αme would produce no signal in
a standard circular dichroism configuration, i.e. under illumination with plane CPL waves, for
which |E+

i |2 = |E−
i |2, E− · E+∗ = 0. (We recall that in such experiments the objects (molecules)

usually have αR
me ≤ 10−3αI

e, but αR
me �= 0.) However, impinging the particle by LCP and RCP

beams with longitudinal component, like those of equation (4.3), and for example choosing as
above e−

0 /e+
0 = ±a exp(ibπ/2), figure 3 shows, at R = 2000 nm and z = 0, |E+

i |2 ± |E−
i |2, as well

as � (and �) of [E− · E+∗] as functions of b for W0 = 4λ, a = 1. The incident helicity, given by
the quantity minus of figure 3, is zero as |E+

i |2 = |E−
i |2. As seen, the oscillations of the term

2(αR
e − αR

m)�[E−
i · E+∗

i ] of (5.1) and of 2(αI
e − αI

m)�[E−
i · E+∗

i ] of (5.2) lead to those of the helicity
Ws

H and energy Ws extinction rates, respectively. The latter is constantly zero due to the very
small value of the factor (αI

e − αI
m) for these polarizabilities.

The corresponding quotient between Ws
H and Ws would be very large in this case. Therefore,

this is just an illustration of how such a ratio may be enhanced depending on the constitutive
parameters of the particle and choice of the beam. Other objects with different values of the
polarizabilities may yield similar enhancements of either the emitted helicity—chirality—or
energy depending on whether �[E− · E+∗] dominates upon �[E− · E+∗] in (3.6) and (3.7), or
vice versa. For instance, were the ‘particle’ magnetodielectric with αI

m comparable to αR
e , or
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just one or two orders of magnitude smaller (a difficult case to deal with conventional circular
dichroism [23]), the factor 2(αI

e − αI
m)�[E−

i · E+∗
i ] will give rise to an amplitude of the oscillations

in Ws comparable to that in Ws
H , or one or two orders of magnitude lower. However, the phase

shift of the oscillations of �[E−
i · E+∗

i ] and �[E−
i · E+∗

i ] (cf. Re and Im in figure 3) allows us to tailor
the beam, producing an enhancement of Ws

H or of Ws.

6. Concluding remarks
Based on a recent optical theorem put forward for the electromagnetic helicity, or chirality,
extinction rate of quasi-monochromatic wavefields [16], which characterizes the emitted or
scattered helicity by extinction of that of the incident field, we have demonstrated that dichroism
is not only a manifestation of molecular absorption, but it is a universal phenomenon which
appears in the scattering or diffraction of twisted waves. This provides a general basic answer
to the question on the conditions under which an object produces chiral fields and/or dichroism,
and whether a chiral scatterer is required to produce such effect.

In this respect, we have established that both dichroism and chirality of emitted or
scattered wavefields from wide sense dipolar particles are consequences of the helicity of the
illumination, or of the mutual relationship between the emitting electric and magnetic dipoles;
but these phenomena do not require the object constitutive parameters, refractive indices and
polarizabilities, to be those of a chiral structure. For example, as we have shown, to obtain a
circularly polarized emitted or scattered field, it is a sufficient condition that the particle-induced
electric and magnetic dipoles rotate and differ from each other by only a ±π/2 phase; but no chiral
cross-polarizability αme is necessary. Thus, an achiral particle (αme = 0) may produce dichroism
on scattering of a chiral incident wave. Henceforth, the standard concept of circular dichroism is
generalized to include fields with both LCP and RCP components and a net helicity.

Based on the angular spectrum representation, we have introduced new families of optical
beams with right-circular and left-circular polarization, and with longitudinal components.
Tailoring these fields, used in our optical theorem as incident waves on the scattering particle,
overcomes previous limitations of circular dichroism without needing to place nearby additional
objects to enhance the signal [29,30,41]. Depending on the parameters chosen for these beams,
the enhancement of the extinction rate of helicity and/or of energy is produced, i.e. the dichroism
scattered signal is either augmented or lowered. This not only provides a new procedure for object
(and particularly enantiomeric) characterization on illumination with twisted beams, but it also
yields a way of controlling the helicity and energy of radiated wavefields by using such scattering
particles as secondary sources.
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