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Abstract

Recent work has made important advances in describing the large-scale systems-level organization 

of human cortex by analyzing functional magnetic resonance imaging (fMRI) data averaged across 

groups of subjects. However, new findings have emerged suggesting that individuals’ cortical 

systems are topologically complex, containing small but reliable features that cannot be observed 

in group-averaged datasets, due in part to variability in the position of such features along the 

cortical sheet. This previous work has reported only specific examples of these individual-specific 

system features; to date, such features have not been comprehensively described. Here we used 

fMRI to identify cortical system features in individual subjects within three large cross-subject 

datasets and one highly sampled within-subject dataset. We observed system features that have not 

been previously characterized, but 1) were reliably detected across many scanning sessions within 

a single individual, and 2) could be matched across many individuals. In total, we identified forty-

three system features that did not match group-average systems, but that replicated across three 

independent datasets. We described the size and spatial distribution of each non-group feature. We 

further observed that some individuals were missing specific system features, suggesting 

individual differences in the system membership of cortical regions. Finally, we found that 

individual-specific system features could be used to increase subject-to-subject similarity. 

Together, this work identifies individual-specific features of human brain systems, thus providing a 
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catalog of previously unobserved brain system features and laying the foundation for detailed 

examinations of brain connectivity in individuals.
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1. INTRODUCTION

The human cortex is organized into large-scale, spatially-distributed systems. These systems 

can be described in vivo using a functional magnetic resonance imaging (fMRI)-based 

technique known as resting state functional connectivity (RSFC), which relies on the 

observation that in the absence of any task, spatially distant regions of cortex exhibit highly 

correlated patterns of BOLD activity (Biswal et al., 1995). This is posited to at least partly 

reflect the statistical history of interactions between regions (Dosenbach et al., 2007). RSFC-

based approaches have consistently identified around 10–17 brain systems that replicate 

across multiple datasets and analysis strategies (Power et al., 2011; Yeo et al., 2011). The 

spatial characterization of these systems has enabled the identification of plausible links 

between brain organization and cognitive function by associating specific systems identified 

during the resting state with sets of regions activated during cognitive processes (Bertolero et 

al., 2015; Dosenbach et al., 2007; Laird et al., 2011; Smith et al., 2009).

Previous descriptions of cortical systems using RSFC have usually been derived from data 

averaged across many individuals. While RSFC correlation patterns calculated in single 

individuals are broadly similar across people (Shehzad et al., 2009; Van Dijk et al., 2010), 

inter-individual variability can nonetheless be observed in these patterns (Laumann et al., 

2015; Mueller et al., 2013; D. Wang et al., 2015). This variability has been presumed to 

reflect individual differences in the strength of communication between brain areas. Thus, 

many investigators test whether measured differences in RSFC relate to group membership 

or to individual differences in cognitive function. However, an implicit assumption in this 

approach is that a given section of cortex always represents the same brain area—or at least 

the same brain system—across individuals (Dubois and Adolphs, 2016; Satterthwaite and 

Davatzikos, 2015; Wang and Liu, 2014).

Recent work has suggested that this may not be the case. Detailed descriptions of RSFC-

derived brain systems in single individuals suggest that inter-subject variability in these 

systems is not solely driven by varying strengths of network connections. Rather, the 

topological features of individual-level systems can vary in shape from one individual to the 

next (Gordon et al., 2015; Langs et al., 2015; Laumann et al., 2015; D. Wang et al., 2015), 

such that, for example, a portion of cortex that is in the Default system in one subject may be 

more strongly connected to the Fronto-Parietal system in another.

Critically, systems of individuals also tend to have focal topological features that cannot be 

observed in group-averages (Harrison et al., 2015; Laumann et al., 2015; D. Wang et al., 

2015). As a result, the brain systems present at a given cortical location can vary 

dramatically and categorically between an individual and a group-average (Laumann et al., 
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2015), as well as between one individual and the next (Gordon et al., 2015). These variable 

brain system features can be consistently observed across many— but not all—individuals 

(Gordon et al., 2015).

Why do these system features appear in individual data but not in group averages? Laumann 

et al. (2015) proposed that two factors may account for this observation. First, some features 

of brain systems may be sufficiently spatially variable (relative to the morphological features 

of cortex used for cross-subject alignment) that they do not overlap well across individuals. 

This would cause such features to be “smeared out” when averaged across individuals at 

each cortical location, creating the appearance of reduced topological complexity in group-

average systems. Second, some features of brain systems may be “missing” from some 

individuals due to specific cortical areas being connected to different brain systems in 

different individuals. If only a minority of individuals have a strong connection between a 

brain system and a given cortical area, that connection will not be evident in group-average 

data.

If this conceptualization of individual variability in brain systems is correct, then it is likely 

that the system features observed in individuals may represent detailed aspects of the 

systems-level organization of the brain that, due to reliance on group-average data, have not 

previously been described. Identifying and characterizing such variable, individual-specific 

features of brain organization across many individuals would thus advance our 

understanding of the brain’s functional organization.

In the present study we attempted a comprehensive description of the features in individual-

specific brain systems that do not emerge in group-average systems. This was accomplished 

by using a template matching technique (Gordon et al., 2015) to identify features of brain 

systems in individuals. We first established the within-subject reliability of this technique by 

examining the consistency of observed brain features across five hours of resting-state fMRI 

data collected from a single subject. We then identified brain system features that were 

common across many subjects by applying the technique to many individuals and matching 

the discrete features of identified brain systems across individuals. We performed several 

analyses of these commonly-present features. First, we characterized the size, spatial 

distribution, and frequency of occurrence of each system feature. Second, we determined 

whether we could observe system features that appeared consistently across subjects, but 

that were not present in group-average systems. Third, we examined whether these system 

features reliably emerged across three independent datasets, and whether they reliably 

emerged when a different set of brain system templates was used for systems definition. 

Finally, we tested whether matching system features across subjects increased the similarity 

of functional connectivity patterns.

2. METHODS

2.1 Single Subject dataset

2.1.1—Data was collected from a single healthy, right-handed, young adult male subject, 

age 34 (author ND). Informed consent was obtained from the subject. The study was 

approved by the Washington University School of Medicine Human Studies Committee and 
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Institutional Review Board. These data were previously described in the Supplemental 

Material of Laumann et al(2015).

2.1.2 Data Acquisition—Imaging was performed on a MAGNETOM Trio Tim 3.0T 

Scanner (Erlangen, Germany) with a Siemens 12 channel Head Matrix Coil. Four T1-

weighted images (sagittal, 224 slices, 0.8mm isotropic resolution, TE=3.74ms, TR=2400ms, 

TI=1000ms, flip angle=8°) and four high-resolution T2-weighted images (sagittal, 224 

slices, 0.8 mm isotropic resolution, TE=479ms, TR=3200ms) were obtained. Thirty 

contiguous minutes of resting state data were collected in ten separate sessions, each on a 

different day (total time = 300 minutes). The subject visually fixated on a white crosshair 

presented against a black background. Functional imaging was performed using a gradient-

echo EPI sequence (TR=2.2s, TE=27ms, flip angle=90°, voxel size = 4×4×4 mm, 36 slices). 

In each session, a gradient echo field map sequence was acquired with the same prescription 

as the functional images.

2.1.3 Distortion correction—Mean field map creation: A mean field map was generated 

based on the field maps collected in each session, and was then applied to all sessions for 

distortion correction. See the Supplemental Materials and Laumann et al. (2015) for details 

on this procedure.

2.1.4 Preprocessing—Functional data were preprocessed to reduce artifact and to 

maximize cross-session registration. All sessions underwent intensity normalization to a 

whole brain mode value of 1000 and within run correction for head movement. Atlas 

transformation was computed by registering the mean intensity image from a single BOLD 

session to atlas space via the average high-resolution T2-weighted image (n = 4) and average 

high-resolution T1-weighted image (n = 4). All subsequent BOLD sessions were linearly 

registered to this first session. Atlas transformation, distortion correction, and resampling to 

an isotropic 3-mm atlas space (Talairach and Tournoux, 1988) were combined into a single 

interpolation using FSL’s applywarp tool (Smith et al., 2004).

2.2 Washington University (Wash U) Dataset

2.2.1 Subjects—Data was collected from 120 healthy young adult subjects during relaxed 

eyes-open fixation (60 females, mean age = 25 years, age range = 19–32 years). All subjects 

were native speakers of English and right-handed. Subjects were recruited from the 

Washington University community and were screened with a self-report questionnaire to 

ensure that they had no current or previous history of neurological or psychiatric diagnosis. 

Informed consent was obtained from all subjects. The study was approved by the 

Washington University School of Medicine Human Studies Committee and Institutional 

Review Board.

2.2.2 Data Acquisition—Structural and functional MRI data were obtained with a 

Siemens MAGNETOM Trio Tim 3.0T Scanner (Erlangen, Germany) and a Siemens 12 

channel Head Matrix Coil. A T1-weighted sagittal magnetization-prepared rapid acquisition 

gradient echo (MP-RAGE) structural image was obtained (TE=3.08ms, TR(partition)=2.4s, 

TI=1000ms, flip angle=8°, 176 slices with 1×1×1mm voxels) (Mugler and Brookeman, 

Gordon et al. Page 4

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1990). An auto align pulse sequence protocol provided in the Siemens software was used to 

align the acquisition slices of the functional scans parallel to the anterior commissure-

posterior commissure (AC-PC) plane and centered on the brain. This plane is parallel to the 

slices in the Talairach atlas (Talairach and Tournoux, 1988).

During functional MRI data acquisition, subjects were instructed to relax while fixating on a 

black crosshair that was presented against a white background. Functional imaging was 

performed using a blood oxygenation level-dependent (BOLD) contrast sensitive gradient 

echo echo-planar sequence (TE=27ms, flip angle=90°, in-plane resolution=4×4 mm). Whole 

brain EPI volumes (MR frames) of 32 contiguous, 4 mm-thick axial slices were obtained 

every 2.5 seconds. A T2-weighted turbo spin echo structural image (TE=84ms, TR=6.8s, 32 

slices with 1×1×4 mm voxels) in the same anatomical planes as the BOLD images was also 

obtained to improve alignment to an atlas. An average of 336 volumes (14.0 mins) were 

collected from each subject (range: 184–729 frames).

2.2.3 Preprocessing—Functional images were first processed to reduce artifacts (Miezin 

et al., 2000). These steps included: (i) correction of odd vs. even slice intensity differences 

attributable to interleaved acquisition without gaps, (ii) correction for head movement within 

and across runs and (iii) across-run intensity normalization to a whole brain mode value of 

1000. Atlas transformation of the functional data was computed for each individual using the 

MP-RAGE scan. Each run was then re-sampled to an isotropic 3-mm atlas space (Talairach 

and Tournoux, 1988), combining movement correction and atlas transformation in a single 

cubic spline interpolation (Lancaster et al., 1995; Snyder, 1996).

2.3 Dartmouth Dataset

2.3.1 Subjects—Data were collected from 104 healthy young adult subjects during 

relaxed eyes-open fixation (67 females, mean age = 21 years, age range = 18–32 years). 

Subjects were recruited from the Dartmouth College community and were screened with a 

self-report questionnaire to ensure that they had no neurological problems, were not using 

psychoactive medications and had normal or corrected to normal vision. Participants were 

given course credit or monetary compensation in exchange for their participation and were 

provided informed consent in accordance with the guidelines set by the Committee for the 

Protection of Human Subjects at Dartmouth College. These subjects were selected as the 

subjects with minimal in-scan head motion from a larger cohort of 746 subjects.

2.3.2 Data Acquisition—Structural and functional MRI data were obtained with a Philips 

Achieva 3.0 Tesla scanner and a thirty-two channel phased array coil. A T1-weighted 

sagittal magnetization-prepared rapid acquisition gradient echo (MP-RAGE) structural 

image was obtained (TE=4.6ms, TR=9.9ms, flip angle=8°, 160 slices with 1×1×1mm 

voxels.

During functional MRI data acquisition, subjects were instructed to relax while fixating on a 

white crosshair that was presented against a black background. Functional imaging was 

performed using a blood oxygenation level-dependent (BOLD) contrast sensitive gradient 

echo echo-planar sequence (TE=35ms, flip angle=90°, in-plane resolution=3×3 mm, sense 

factor = 2). Whole brain EPI volumes (MR frames) of 36 3.5 mm-thick axial slices were 
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obtained every 2.5 seconds with .5mm skip between slices. Two 5:00 minute runs (240 

volumes total) were collected from each subject.

2.3.3 Preprocessing—Preprocessing procedures were identical to the Wash U dataset.

2.4 Human Connectome Project (HCP) Dataset

2.4.1 Subjects—80 subjects (40 females; mean age=29 years, age range=22–36) were 

retrieved from the publicly available Human Connectome Project (HCP) dataset (Van Essen 

et al., 2013, 2012b). These subjects were selected as the subjects with minimal in-scan head 

motion estimates from the S500 data release.

2.4.2 Data Acquisition—See Van Essen et al. (2012b) and Smith et al. (2013) for details 

of the data acquisition procedures. Briefly, structural and functional MRI data were acquired 

on a custom Siemens Skyra 3T scanner. T1-weighted MP-RAGE images were acquired at .

7×.7×.7mm resolution. Four 15-minute resting-state BOLD runs were acquired at 2×2×2mm 

resolution, with images collected every .7 seconds; the two runs (one each of left-right/right-

left phase-encoding) with minimal in-scan motion were selected for each subject.

2.4.3 Preprocessing—Functional images were processed using the HCP minimal 

preprocessing pipeline (Glasser et al., 2013), which includes head motion correction, 

intensity normalization, bias field correction, and transformation to an isotropic 2-mm MNI 

atlas space.

Further analysis of the three datasets was identical except where specified. Note that the 

different volumetric atlas spaces used in the different datasets do not impede inter-dataset 

comparisons because of the subsequent registration to a common surface atlas (see “Surface 

processing and CIFTI creation” below).

2.5 Functional connectivity processing

Additional preprocessing steps to reduce spurious variance unlikely to reflect neuronal 

activity were executed as recommended in (Power et al., 2014). Temporal masks were 

created to flag motion-contaminated frames. Motion contaminated volumes were identified 

by frame-by-frame displacement (FD, described in Power et al. (2012)), calculated as the 

sum of absolute values of the differentials of the 3 translational motion parameters and 3 

rotational motion parameters.

In the HCP dataset, this FD metric did not appear to have a “noise floor” enabling clear 

definition of an FD threshold for volume censoring across subjects. We found that 

temporally filtering the movement parameters allowed identification of this threshold. Thus, 

volumes with FD > 0.2 mm (Single Subject and Wash U datasets)/FD > .25mm (Dartmouth 

dataset)/filtered FD > .04mm (HCP dataset), as well as uncensored segments of data lasting 

fewer than 5 contiguous volumes, were flagged for removal. In the Single Subject dataset, 

this mask censored 11.4% of the data, with 7250 volumes retained. In the Wash U dataset, 

these masks censored 16% ± 14% (range: 0.7% – 66%) of the data across subjects; on 

average, subjects retained 279 ± 107 volumes (range: 151 – 719). In the Dartmouth dataset, 

these masks censored 9% ± 4% (range: 4% – 29%) of the data across subjects; on average, 
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subjects retained 220 ± 10 volumes (range: 170 – 230). In the HCP dataset, these masks 

censored 3% ± 3% (range: 0% – 16%) of the data across subjects; on average, subjects 

retained 2318 ± 76 volumes (range: 2018 – 2399). We note that the mean percentage of data 

lost was higher in the Single Subject and Wash U datasets because subjects in the other two 

datasets were preselected to have minimal movement.

After computing the temporal masks for high motion frame censoring, the data were 

processed with the following steps: (i) demeaning and detrending, (ii), multiple regression 

including: whole brain, ventricular and white matter signals, and motion regressors derived 

by Volterra expansion (Friston et al., 1996), with censored data ignored during beta 

estimation, (iii) interpolation across censored frames using least squares spectral estimation 

of the values at censored frames (Power et al., 2014) so that continuous data can be passed 

through (iv) a band-pass filter (0.009 Hz < f < 0.08 Hz) without contaminating frames near 

high motion frames (Carp, 2013; Power et al., 2012). Censored frames were then excised 

from the data for all subsequent analyses.

2.6 Surface processing and CIFTI creation

Surface generation and sampling of functional data to anatomical surfaces followed the 

procedures described in (Gordon et al., 2016, 2015; Laumann et al., 2015). First, following 

volumetric registration, anatomical surfaces were generated from each subject’s MP-RAGE 

image using FreeSurfer’s default recon-all processing pipeline. This pipeline included brain 

extraction, segmentation, generation of white matter and pial surfaces, inflation of the 

surfaces to a sphere, and surface shape-based spherical registration of the subject’s ‘native’ 

surface to the fsaverage surface (Dale et al., 1999; Dale and Sereno, 1993; Fischl et al., 

1999; Ségonne et al., 2005, 2004). The fsaverage-registered left and right hemisphere 

surfaces were then brought into register with each other (Van Essen et al., 2012a) and 

resampled to a resolution of 164,000 vertices using Caret tools (Van Essen et al., 2001). 

Finally, each subject’s surface was down-sampled to a 32,492 vertex surface (fs_LR 32k), a 

computationally tractable surface space that allows for quantitative analysis across subjects. 

A script for this procedure is available on the Van Essen Lab website (Freesurfer_to_fs_LR 

Pipeline, http://brainvis.wustl.edu/wiki/index.php/Caret:Operations/Freesurfer_to_fs_LR).

Surface processing of the BOLD data proceeded through the following steps. First, the 

BOLD volumes were sampled to each subject’s individual ‘native’ midthickness surface 

(generated as the average of the white and pial surfaces) using the ribbon-constrained 

sampling procedure available in Connectome Workbench 1.0, which samples data from 

voxels within the gray matter ribbon (i.e. between the white and pial surfaces) (Glasser and 

Van Essen, 2011). Voxels with a timeseries coefficient of variation 0.5 standard deviations 

higher than the mean coefficient of variation of nearby voxels (within a 5 mm sigma 

Gaussian neighborhood) were excluded from the volume to surface sampling (Glasser et al., 

2013). After being sampled to the ‘native’ surface, timecourses were deformed and 

resampled to the 32k fs_LR surface described above. Finally, the time courses were 

smoothed along the 32k fs_LR surface using a Gaussian smoothing kernel (σ = 2.55mm).

These surfaces are then combined with volumetric subcortical and cerebellar data into the 

CIFTI format using Connectome Workbench (Glasser et al., 2013), creating full brain 
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timecourses that exclude non-gray matter tissue. Subcortical (including accumbens, 

amygdala, caudate, hippocampus, pallidum, putamen, and thalamus) and cerebellar voxels 

were selected based on a mask generated separately in each dataset by finding the modal 

assignment of voxels by Freesurfer segmentation across subjects within each dataset. 

Volumetric data was smoothed within this mask with a Gaussian kernel (σ = 2.55mm).

2.7 Template matching for systems identification in individual subjects

Many different techniques have been proposed to identify brain systems at the individual 

level (Filippini et al., 2009; Harrison et al., 2015; Langs et al., 2015; Laumann et al., 2015; 

D. Wang et al., 2015). In the present study, we elected to use a template-matching technique 

we have described in previous work (Gordon et al., 2015). This approach was chosen for two 

reasons. First, our technique describes brain systems by comparing individual RSFC patterns 

to a set of brain system priors. Using priors ensures that individual subject versions of brain 

systems are “labeled” and thus easily comparable to one another (something that is not 

guaranteed using data-driven approaches). Second, our technique makes comparisons 

between individual RSFC patterns and the priors based on the strongest positive FC 

connections only. This approach follows graph-theory-based analyses of both functional and 

diffusion MRI that conceptualize the brain as a network of nodes communicating via 

relatively sparse connections; this requires removal of all negative and weak positive 

connections in functional data (Rubinov and Sporns, 2010).

2.7.1 Calculating templates for each brain system—The template-matching 

procedure was conducted using the following steps. First, we built a connectivity template 

for each system in a previously described group-average systems map (Figure 3, top; 

described in detail in (Gordon et al., 2015; Laumann et al., 2015)); these templates 

represented the average RSFC pattern of each system across many individuals. For each 

subject in the Wash U dataset, we calculated the average timecourse across cortical vertices 

within each system. Then, we correlated that timecourse against all other gray matter 

timecourses in that subject to obtain a subject-specific system connectivity map. We then 

applied the Fisher transform and averaged these maps across subjects. Finally, we 

thresholded and binarized each averaged system map at the top 5% of connectivity strengths 

(as calculated across systems), which was Z(r) >= .383. These binarized maps serve as 

templates for individual subject matching. The template maps used are identical to the 

templates used in our previous work (Gordon et al., 2015), with the exception that two 

additional templates, in anterior and posterior medial temporal lobe, were also included. See 

Supplemental Figure 1 for template maps. We note that the particular binarization threshold 

used here (5%) was chosen as to be approximately in the middle of the threshold range 

explored in previous work (Power et al., 2011). However, because template and 

individualized maps are thresholded to the same extent before matching (see below), the 

particular value chosen for this threshold has minimal effect on the systems identified (see 

Supplemental Figure 2 for a demonstration of this in the Single Subject dataset). Note also 

that this single set of templates, which was derived from the Wash U dataset, was used to 

investigate all four datasets.
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2.7.2 Conducting the template-matching procedure in each subject to identify 
individual-specific brain systems—In each subject, we identified that subject’s 

versions of group-average systems by matching each vertex’s subject-specific connectivity 

pattern to the set of templates described above. See Figure 1A for a graphical illustration of 

this procedure. We first correlated the vertex’s timecourse with all other gray matter 

timecourses in that subject’s data, Fisher transformed the resulting connectivity map, and 

then thresholded and binarized the resulting map at the top 5% of connectivity values (as 

calculated across vertices). This resulted in a binarized map of regions with high 

connectivity to the chosen cortical vertex. We then calculated the Dice coefficient of overlap 

between the binarized vertex connectivity map and each binarized template map, excluding 

from the calculation data from all vertices within 30mm geodesic distance from the selected 

vertex. The template with the highest overlap was judged to be the best match, and that 

template’s system identity was assigned to that vertex in that subject. We note that the 

distance-based vertex exclusion step is critical in voxel- or vertex-wise network detection 

analyses because correlation maps are known to be artifactually dominated by very strong 

local correlations (Power et al., 2011). Artifactually elevated local correlations are 

problematic for any network detection procedure, but are especially problematic for those 

which employ priors. As the vertices near a given seed vertex always have the strongest 

correlations in the brain, these local connections will strongly bias comparisons with the 

prior.

Finally, given the resolution of our datasets (ranging from 4×4×4mm voxels to 2×2×2mm 

voxels, smoothed on the cortical surface with σ = 2.55mm), surface objects below 30 mm2 

are likely smaller than the approximate effective resolution of our data. Thus, contiguous 

surface patches smaller than 30 mm2 were removed from subsequent analysis.

Within the Single Subject dataset, systems derived from this technique were observed to 

both have strong correspondence with a widely used graph-theory based approach for 

community detection (infomap; (Rosvall and Bergstrom, 2008) (Supplemental Figure 3) and 

to have within-subject reliabilities comparable to previously published approaches for 

systems identification (D. Wang et al., 2015) (Supplemental Figures 4 and 5); see 

Supplemental Materials for details.

2.8 Matching system patches across individuals and sessions

Discrete pieces of subject-level system maps (“system patches”) are expected to vary across 

subjects, both in their position on the cortical surface and in their size (Frost and Goebel, 

2012; Gordon et al., 2015; Harrison et al., 2015; Laumann et al., 2015). However, despite 

this variance, it is possible to compare system patches between individuals based on their 

spatial position and overall shape. Here, we matched system patches within and across 

individuals by modifying the approach for subject-group comparisons described in Gordon 

et al. (2015). This procedure was conducted separately for the Single Subject dataset (in 

which system patches from individual scanning sessions were matched to each other) and 

for each of the three cross-subject datasets (in which patches from individual subjects were 

matched to each other).
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A graphical summary of this procedure can be seen in Figure 1B. We first identified the 

discrete, discontiguous patches of each brain system in each individual. For each pair of 

subjects, we compared each patch of a given system identity in one subject with all patches 

of the same system identity in the other subject. ‘Matches’ were determined based on the 

geodesic distance between two patches in different subjects, calculated as the average 

distance between each vertex and the nearest vertex in the other subject’s patch. Thus, 

vertices that overlapped between the two patches would have distances of zero, while 

vertices that did not overlap would have nonzero distances, with the exact distance 

depending on the proximity to the closest vertex in the other subject’s patch. If many 

vertices overlapped or were proximal in the two patches, the average distance would be 

small. This distance-based approach thus indexes the spatial similarity between two local, 

binarized maps by testing for proximity rather than simple overlap. Because we observed 

that a single patch in one individual could be split into multiple patches in another 

individual, multiple-to-one matches were allowed if adding additional patches reduced the 

average distance of the match. Potential patch-to-patch matches were considered successful 

if the average minimum distance of the match was less than 10mm.

This procedure matched system patches to each other in a pairwise subject-to-subject 

fashion. To combine these matches across all subjects, we represented all patch-to-patch 

matches in a large binary [# subject patches] X [# subject patches] matrix, in which a “1” 

represented a successful match between patches and a “0” represented no match. We then 

clustered this matrix using the Infomap community detection algorithm (Rosvall and 

Bergstrom, 2008), where each community represented patches that tended to be matched to 

each other across subjects. This approach allows system patches to be sorted into clusters, 

even if not every subject patch in the cluster was successfully matched to every other subject 

patch. Thus, commonalities across patches are identified in a way that is robust to spatial 

variability across subjects and to low data quality of any given subject.

While system patches can be expected to vary substantially across individuals, they should 

vary only minimally across scanning sessions within a single subject. To test this, we also 

applied the patch matching procedure described above to the various sessions of the Single 

Subject dataset.

The threshold of 10mm to define a patch-to-patch match conforms with work by Fischl et al. 

(2008), who estimated the subject-to-subject spatial displacement of most architectonic 

cortical areas to be within 10mm. While this previous work was conducted on very different 

types of data, making exact application of this threshold somewhat dubious, we observed 

that varying this threshold across a substantial range had effectively no impact on the 

identification of common clusters of systems patches across sessions in the Single Subject 

dataset (see Supplemental Figure 6), or the Wash U dataset (see Supplemental Figure 7).

2.9 Characterizing system patches that were matched across individuals

For each patch identified across the subjects in each dataset, we characterized four features 

of the patch. First, we calculated the percent of subjects that had that patch. Second, we 

characterized the spatial distribution of the individual versions of the patch by summing each 

binarized patch vertexwise across subjects and dividing by the number of subjects that had 
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that patch. This created a probabilistic map of the patch. In the Single Subject dataset, these 

characterizations represent the detectability and spatial reliability of each patch. In the cross-

subject datasets, they represent the similarity of patches across subjects.

Third, we calculated the median surface area of the patch. Fourth, we created a 

‘characteristic’ patch that was the same size as the median patch and followed the contours 

of the probabilistic spatial distribution map; this object can be thought of as the central 

tendency of that patch. Figure 1B shows examples of system patches that were matched (left 

of figure) and grouped into clusters (middle of figure), as well as resulting probabilistic 

maps (right of figure, red underlays) and characteristic patches (right of figure, green outline 

overlays), from the Wash U dataset.

2.10 Identifying system patches present and absent from group-average systems

In the Wash U dataset, we visually identified all system patches that did and did not 

represent patches present in the group-average systems, based on the spatial pattern of their 

probabilistic maps. In order to avoid making claims about the presence of brain systems in 

regions with poor BOLD signal, we conservatively excluded any patches that were primarily 

in regions known to have low signal-to-noise (SNR) ratios (defined as regions with mean 

BOLD signal < 750, consisting primarily of orbitofrontal cortex, ventral/anterior temporal 

lobe, and occipital pole; see (Ojemann et al., 1997; Wig et al., 2014)).

We observed that many system patches (e.g., the bottom probabilistic map in Figure 1B) 

appeared to represent patches present in the group-average systems map (Figure 3, top). By 

contrast, many other patches did not appear to correspond to anything in the group systems 

(e.g., green arrows in Figure 3, bottom; the top probabilistic map in Figure 1B). It is possible 

that some of these patches may represent features of large-scale systems that are “washed 

out” of group-average data by spatial variability across subjects. However, many of these 

patches may also represent the chance overlap of features present in noisy, relatively low-

data system estimates. For example, 606 clusters of system patches were calculated in the 

Wash U dataset that did not appear similar to anything in the group-average systems, but 324 

of the clusters had patches in fewer than 10% of subjects. Clusters with small numbers of 

subjects very likely represent artifactual patches driven by noise To be confident about 

which patches represent noise and which represent the convergence of real system features 

across subjects, we developed an empirical null model of patch clustering.

2.10.1 Surface rotation-based null model of patch clustering—To determine 

which non-group patches were matched across more subjects than could be expected by 

chance, we developed a null model of non-group patch locations. This procedure follows the 

logic that system patches that emerge purely because of noise will be randomly located on 

the cortex. Randomly located patches should not match across subjects as well as true 

system patches that are in moderately variable, but generally consistent, locations across 

subjects. Thus, in this procedure, we generate randomly placed versions of non-group 

patches, cluster them based on the spatial distance criterion, and determine how many 

subjects are grouped into each cluster. We can then compare the degree of matching across 
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subjects for real patches to the null expectation of matching across subjects for random 

patches.

A graphical illustration of this procedure can be seen in Figure 2. To create these randomly 

rotated patches, we first removed the subject-specific versions of each “group” patch from 

each subject’s systems map (see Figure 2A, left for an example). We then rotated each 

hemisphere of each subject’s non-group patches randomly around each of the x, y, and z 

axes on the spherical expansion of the 32k fs_LR cortical surface. This procedure randomly 

relocated each parcel (see Figure 2B, left for an example). In any random rotation, some 

patches will inevitably be rotated into the ventral medial wall of the cortical surface, where 

the original system maps have no data. Any patch rotated into this medial wall was 

randomly re-rotated until it was entirely within data-containing regions of cortex and did not 

overlap any other rotated patches.

These randomly-placed patches were matched and clustered across subjects, as above 

(Sections 2.7 and 2.8), and the number of subjects in each cluster of random patches was 

recorded. This procedure was iterated 100 times. In total, over 140,000 clusters that had 

system patches from at least two subjects were generated.

The distribution of subject counts in these randomly rotated clusters represents a null 

expectation for convergence of features across subjects. We tested each cluster of patches 

derived from real (i.e. non-rotated) data against this null expectation. Real clusters were 

determined to match across subjects better than random if they had patches from more 

subjects than the top Xth percentile of the distribution of random subject counts, where X 

represents a threshold for “significance”. We conservatively set the percentile threshold for 

significance at 5% divided by the number of real clusters tested (corresponding to p<.05, 

Bonferroni corrected). Thus, for the 606 clusters of patches found in the Wash U dataset, 

clusters were not accepted as significantly different from random noise unless they were 

found in more subjects than 99.992% of randomly rotated clusters. In the Wash U dataset, 

this threshold corresponded to patches being found in at least 52 of 120 subjects (43% of 

subjects); see Figure 2C. Similar thresholds for significance were observed in both the 

Dartmouth dataset (48 of 104 subjects, 46%) and the HCP dataset (37 of 80 subjects, 46%); 

see Supplemental Figure 8.

2.11 Reliability of cross-subject system patches across datasets and system templates

If the system patches described here represent real objects in the brain, they should replicate 

across multiple independent cross-subject datasets. We examined whether the patches 

described above from the Wash U dataset could also be observed in both the Dartmouth and 

HCP datasets by visually comparing the probabilistic maps across datasets that were found 

to be significantly different from random noise.

Further, if the system patches described here represent real objects in the brain, they should 

be observed regardless of the template system maps used. A widely used set of system maps 

was released by (Yeo et al., 2011); the 17-cluster version of these “Yeo” systems have many 

features in common with the Infomap-derived systems used above, but also exhibit some 

notable differences (see Figure 9, top). Similarly, the Human Connectome Project has 
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released parcellations derived by conducting Independent Components Analysis (ICA) on 

the data from the 900 subjects release and assigning each data point to the strongest ICA 

component at that point in a winner-take-all fashion (Smith et al., 2013). The 50-component 

ICA map has 29 components that each cover at least 500 vertices on the cortex; these 29 

“ICA” systems also have many similar features to the Infomap-derived system features used 

above (Supplemental Figure 10, top), but divide the brain more finely. The remaining, 

excluded components constitute five small components in occipital pole and sixteen 

components in subcortical structures. We generated templates using these 29 retained 

components as system maps and repeated the template-matching and patch clustering 

procedures for the Wash U dataset using both the Yeo- and the ICA-derived templates. We 

then examined whether system patches observed using the Infomap-derived templates could 

also be observed using the Yeo- and ICA-derived templates. We then quantitatively 

compared similar patches (determined via maximal spatial correlation) by correlating their 

median sizes, by correlating the percent of subjects in which they were found, and by 

calculating the Dice overlap of their characteristic patches.

Because the Yeo and Infomap templates were relatively similar and had similar 

dimensionality, we were able to make comprehensively direct comparisons between them. In 

some cases, two systems in one set of templates were grouped together and treated as one 

system, whereas the other set of templates had only one equivalent system (e.g. two Dorsal 

Attention systems in Yeo but only one in Infomap; a separation between Ventral 

Somatomotor and Auditory systems in Infomap but no such separation in Yeo). By contrast, 

because the ICA systems were of a substantially higher dimensionality than the Infomap 

systems, comprehensive comparisons between templates were more difficult, as it was not 

always evident which systems corresponded with which. Instead, we focused on identifying 

specific patches derived from systems that were easily comparable.

2.12 Using matched system patches to improve comparisons across subjects

If the matching procedure described here is effective in describing the spatial variability of 

system features at across individuals, then calculating functional connectivity across 

matched patches should remove some or all of the cross-subject variability in functional 

connectivity that can be attributed to spatial variance. Therefore, patch-seeded functional 

connectivity patterns should be more similar between two subjects if matched patches are 

used as seeds than if the same patch is used as a seed in every individual.

To test this hypothesis, we generated matched system patches using data from all three 

cohorts of subjects. For each subject, we calculated the whole-brain functional connectivity 

seeded from the matched patches in each subject, as well as seeded from the same 

“characteristic patch” in each subject. Functional connectivity maps were computed by 

averaging the functional timecourses of all points within each patch and then correlating that 

timecourse against all other timecourses in the brain. We note that the characteristic patches 

are an ideal comparison for the subject-specific patches, as they represent objects that are the 

same median size (across subjects) as the subject-specific patches.

To quantify the overall effectiveness of the patch-matching procedure in improving subject-

to-subject similarity, the similarity between functional connectivity matrices based on 
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subject-specific patches was compared to the similarity between functional connectivity 

matrices based on ‘characteristic’ patches. The functional connectivity matrices were 

generated by computing the Fisher-z transformed, Pearson r correlation between the average 

functional timecourses within each patch. Both group and non-group characteristic patches 

were used in this analysis (seen in Figure 7A). For each pair of subjects, the similarity of the 

subjects’ connectivity matrices was computed as the correlation between the two functional 

connectivity matrices, generating a matrix of subject-to-subject similarities. For the subject-

specific-specific similarity matrix, patches that were not identified in both subjects were not 

considered in this correlation. For the ‘characteristic’ patches similarity matrix, all patches 

were included in each correlation, as they were identical for every subject.

2.13 Testing hub-like behavior of system patches

It is possible that these non-group system patches, which are inconsistently detected across 

subjects, represent regions which have strong functional relationships with multiple brain 

systems, allowing for integration of information across discrete systems. Such regions can 

be conceptualized as “hubs” of the networked brain, and they previously have been posited 

to be critical for maintaining the integrity of the brain network and for performance of 

complex cognitive tasks (Bertolero et al., 2015; Gratton et al., 2012; Warren et al., 2014). 

We tested whether non-group patches preferentially tend to be brain hubs in individual 

subjects by comparing the participation coefficients (PCs) of individual-specific non-group 

patches to the PCs of individual-specific versions of group average patches. PC, a measure 

of the distribution of connectivity across sub-systems within a large network, has previously 

been proposed as a measure of hub-ness (Guimerà et al., 2007; Guimerà and Nunes Amaral, 

2005).

In each subject in the Wash U dataset, we calculated the patch-to-patch correlation matrix 

(as above) and thresholded this matrix at the top 5% of connections. We then used the patch 

system identities to sort patches into “communities”, and calculated the PC of each patch 

following (Guimerà and Nunes Amaral, 2005). For each patch, we then averaged the PC 

values of matched patches across subjects (omitting subjects who did not have a particular 

patch), and we used a two-sample t-test to determine whether patches absent from the group 

average systems had higher PC values than those present in the group average systems.

3. RESULTS

3.1 System patches were reliably detected within a single subject

We identified discrete, contiguous features (hereafter known as “system patches”) in the 

brain system map derived from all concatenated data in the Single Subject dataset. Notably, 

we observed many system patches in this map that did not match any feature of the group-

average systems identification (Figure 3, green arrows), a finding that agrees with several 

recent reports (Harrison et al., 2015; Laumann et al., 2015; D. Wang et al., 2015).

We then determined how reliably system patches could be identified in single sessions. We 

identified system patches in the maps of each 30-minute session from the Single Subject 

dataset and then matched and clustered spatially proximal patches across sessions to identify 
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the patches commonly present across sessions, as well as to characterize their frequency of 

detection and their spatial distribution (see Figure 1B). Finally, we matched these 

probabilistically detected patches to patches from all concatenated data.

We observed that the majority of system patches present in the maps derived from all the 

Single Subject data could be reliably detected in single 30-minute sessions (Figure 4A, 

middle), including perfect detection of all system patches greater than 350mm2. Smaller 

patches were not always perfectly detected in all sessions, but were very commonly detected 

more than 80% of the time, including small patches that did not exist in group-average 

systems (see Figure 4B, middle row for examples). Only very small patches near the size 

threshold of 30mm2 (see Methods) were detected less than half the time. The spatial 

distributions of patches from single sessions were also very tight, echoing findings in 

previous work (D. Wang et al., 2015).

We further examined how the reliability of system patches from single sessions changed as a 

function of session length. Notably, we observed that dividing the original sessions into 10-

minute segments only slightly decreased the reliability of detecting a patch (Figure 4A, top), 

and decreases were only observed for medium-sized and small patches. Similarly, 

combining the sessions into 60-minute segments only slightly increased the reliability of 

detecting a patch (Figure 4A, bottom). Further, the spatial distributions of detected patches, 

including small patches that were not present in group-average systems, were largely 

invariant to session length. Figure 4B shows examples of this phenomenon in 10-minute 

sessions (top row), 30-minute sessions (middle row), and 60-minute sessions (bottom row). 

We conclude that the patch-matching methods we employ here can reliably detect most 

individual-specific features of brain systems even from a relatively short amount of data 

(though we note that the contours of these features on the cortex are not reliable when low 

amounts of data are used; see Supplemental Figure 4).

3.2 System patches matched across subjects

We used the template-matching algorithm to estimate brain systems in each individual in 

each of three different datasets (the “Wash U” dataset, the “Dartmouth” dataset, and the 

“HCP” dataset). We then matched spatially proximal system patches across subjects.

In the Wash U dataset, we observed that some of the system patches that matched across 

subjects represented patches in the group-average systems, while others represented patches 

absent from the group systems. Eighty-two patches were found that closely conformed to 

patches in the group-average systems (Table 1; see example in Figure 1B, bottom 

probabilistic map). Seventy-four of these patches were present in at least 90% of individual 

subjects. The median sizes of these patches varied from 70mm2 to 4410mm2.

By contrast, eighty-one patches were found that did not match anything in the group-average 

systems, but were present in significantly more subjects than could be expected due to 

random chance (i.e., at least 52 subjects). Probabilistic maps of these non-group patches can 

be seen in Figure 5. Every brain system was found to have multiple non-group patches 

(though for the medial temporal 1 and 2 systems, all non-group patches were in low-SNR 

areas and so are omitted from the reported results). Across all systems, the median sizes of 
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these patches varied from 44mm2 to 332mm2. The percent of subjects who had each patch 

varied from 43% (i.e. just above the threshold for inclusion) to 100%; see Figure 2C for the 

distribution of these values across patches.

In general, non-group patches were spatially variable. Figure 5 illustrates this variability. 

Note that the color map threshold was dramatically reduced in Figure 5 compared to Figure 

4, in order that the dynamic range of spatial variability could be better shown. A critical 

point here is that the color maps represent the degree of physical overlap across subjects, not 

the existence of the patch across subjects; the spatial variability of these patches mean that 

their physical overlap is always substantially lower than the total number of subjects who 

have a patch. For example, more than eighty percent of subjects had a Dorsal Attention 

patch in the left and right inferior frontal sulcus (regions that do not contain any Dorsal 

Attention representation in most group-average network descriptions (Power et al., 2011; 

Yeo et al., 2011). However, these commonly-present patches did not overlap across more 

than forty-five percent of subjects in any single vertex, indicating variability in the spatial 

positions of the patches.

3.3 System patches replicate across datasets

We tested whether the system patches we observed in the Wash U dataset could also be 

observed in the Dartmouth and HCP datasets. We found that every patch matching the 

group-average system map (Table 1) replicated robustly across datasets. Further, forty-three 

of the eighty-one non-group patches described above, which have not been described in 

previous work, replicated across both the Dartmouth and HCP datasets (Table 2). Examples 

of these replicating patches can be seen in Figure 6. Visually, similar patches appeared to 

have nearly identical spatial distributions in different datasets, indicating a robust central 

tendency of the patches’ spatial variability that consistently emerges in large groups.

Across datasets, we found that these visually similar patches tended to have both similar 

median sizes and a similar proportion of individuals with the patch. For non-group patches, 

the dataset-to-dataset correlations of median patch size were all highly significant (Wash U 

vs Dartmouth: r = .77; Wash U vs HCP: = .47; Dartmouth vs HCP: R = .57; all ps<.005), as 

were the rank correlations of the percent of subjects who had the patch (Wash U vs 

Dartmouth: ρ = .73; Wash U vs HCP: ρ = .48; Dartmouth vs HCP: ρ = .51; all ps<.005).

Figure 7A illustrates the characteristic position of all patches that replicated across datasets, 

including those both present and absent in the group-average systems. Note the extremely 

high similarity between many of these characteristic patches and the group-average systems 

(Figure 3). Figure 7B illustrates the detection rate in the Wash U dataset of each of the 

replicated patches. Finally, the central tendencies of all replicated, non-group patches are 

overlaid on the group-average systems in Figure 7C. This figure represents a first-pass 

estimation of all features of large-scale brain systems that replicate robustly across datasets, 

but are too infrequently present and/or spatially variable relative to their size to emerge in 

group-average data.
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3.4 “Missing” system patches reflect both methodological limitations and true functional 
variability

Some subjects were found to be “missing” patches that were identified across many other 

subjects (Figure 2C). These missing patches may represent a significant form of functional 

variability: cortical regions that are functionally connected to different systems in different 

individuals, as suggested in two very high-data subjects in Laumann et al. (2015). However, 

we also observed that many of the patches that were most commonly missing in individuals 

in the cross-subject datasets, as well as in the individual sessions from the Single Subject 

dataset, were also the smallest patches. This observation raises the possibility that missing 

patches may represent a methodological limitation of the technique. Specifically, it could be 

the case that all system patches exist in all individuals, but that small patches in particular 

may be more difficult to detect, primarily because of the explicit size threshold we imposed 

on system patches.

We reasoned that if a patch exists in an individual but is unnoticed because it is below the set 

detection threshold, then there should still be some evidence of the patch in the Dice maps 

describing the similarity of connectivity to the templates. To examine this possibility, we 

examined the Dice similarity maps in 30-minute sessions from the Single Subject dataset, as 

well as in select individuals with relatively large amounts of data (>25 minutes). This 

examination was restricted to high-data subjects so that we could be relatively confident of 

the reliability of our RSFC estimates (Anderson et al., 2011; Laumann et al., 2015).

We found that some individuals demonstrated very small sections of cortex that might be a 

patch, but were not identified as such using our template matching procedure, likely because 

the identified section of cortex was very small and/or only weakly similar to the system 

template. Similar observations were made for specific sessions in the Single Subject dataset. 

However, we also found individuals for whom no indication of similarity to the relevant 

system could be found. In some cases, the ‘missing’ patches were relatively large, with 

median sizes many times the detection threshold of 30mm2, indicating that near-threshold 

size is not the major determinant of patch existence. This phenomenon is illustrated in 

Figure 8 for two example patches, which were chosen because they were detected in ~50% 

of individuals and were of moderate size (median sizes: 84 and 89 mm2). These findings 

indicate that, while methodological limitations may prevent detection of patches in some 

specific scanning sessions, at least some individuals are truly missing system patches. By 

contrast, no 30-minute session in the Single Subject dataset appeared to have patches that 

were present in some sessions but completely missing in others (i.e. there were “missing” 

patches, but they appeared to represent detection failure rather than the complete absence of 

the patch). This suggests the presence of variable brain system membership of cortical 

regions across individuals, but not across scanning sessions within an individual.

3.5 System patches replicated across different system templates

We examined non-group system patches derived using two alternate sets of priors: a 

publicly-available group-average set of 17 systems derived via a clustering technique (Yeo et 

al., 2011) (“Yeo” systems; Figure 9, top), and a publicly available group-average set of 50 

“systems” derived by applying a winner-take-all procedure to 50-dimensional ICA results; 
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we restricted these to 29 template systems after removing very small components and those 

located entirely in non-cortical regions.

We found that of the forty-three replicating non-group patches that were found using the 

Infomap system templates (described above), thirty-three similar patches were also found 

using the Yeo system templates. These patches can be seen in Figure 9. This finding 

suggests that similar patches that are not present in group-average systems can be identified 

regardless of the template systems used. We quantitatively compared the overlap of the 

similar patches by calculating the Dice coefficient between the characteristic patches for 

each pair of similar patches. On average, the Dice overlap was .63 ± .23 (std deviation), 

indicating good overlap between similar patches. Similarly, we found that twenty-six 

replicating non-group patches found using the Infomap system templates were also found 

using the ICA system templates, with an average Dice overlap between matched patches of .

63 ± .15 (std deviation). See Supplemental Figure 10 for examples of these matched ICA 

patches.

Further, we also observed that two other non-group patches found using the Infomap system 

templates represented regions that were actually included in the Yeo system maps (i.e. they 

were not non-group patches according to the Yeo templates). Similarly, of the patches 

defined using the Yeo systems, fifteen non-group patches corresponded with regions 

included in the Infomap systems. This finding, which is illustrated in Supplemental Figure 

11, suggests that each set of systems describes real aspects of brain organization that are not 

well described by the other.

3.6 Using matched system patches as seeds increases the similarity of functional 
connectivity measures across subjects

To investigate whether using matched subject-specific system patches improves comparisons 

across subjects, we examined how whole-brain connectivity maps differed across subjects if 

they were seeded from matched subject-specific system patches rather than from the same 

region of interest in every subject.

Across all three datasets, when using matched system patches as seeds, the average pairwise 

similarity between subjects’ patch-to-patch correlation matrices was r = .62 ± .06. By 

contrast, when using the “characteristic patches” as seeds (which were identical for every 

subject), the average similarity between subjects’ patch-to-patch correlation matrices was r 

= .50 ± .06 (Figure 10A). Further, correlation matrices derived from matched system patches 

were more similar to each other than matrices derived from characteristic patches for 98.6% 

of pairwise subject-to-subject comparisons (Figure 10B). These findings suggest that 

matching system patches across subjects increases the specificity of regions used as seeds in 

functional connectivity analysis by accounting for the spatial variance of network features 

across subjects.

This phenomenon is illustrated for a specific patch in Figure 10C. For each subject, whole-

brain connectivity maps seeded from the subject-specific, matched patches were compared 

to maps seeded from the corresponding characteristic patch. We observed that maps seeded 

from subject-specific Fronto-parietal system patches near middle cingulate cortex always 
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had strong connectivity in classical Fronto-parietal regions, such as lateral frontal, inferior 

parietal, and occipito-temporal cortex. By contrast, maps seeded from the same patch across 

subjects sometimes differed substantially, demonstrating weaker connectivity in Fronto-

parietal regions, but stronger connectivity in classical Default system regions such as 

posterior cingulate (green arrow), angular gyrus (light blue arrow), or ventromedial 

prefrontal cortex (see magenta arrow).

3.7 Non-group patches are not more hub-like than group patches

In each subject, we calculated participation coefficients (PCs) for all patches observed in the 

group average systems, as well as for all patches absent from the group systems, and we 

averaged PC values across subjects. We found that the PC values for non-group patches did 

not differ from those of group patches (non-group: mean PC = .26 ± .12 (std dev); group: 

mean PC = .26 ± .09 (std dev); t(177) = .22; p = .82), indicating that that these non-group 

patches are not more likely to be hubs than group patches.

4. DISCUSSION

4.1 Features of brain systems are spatially variable across individuals

In this work we characterized features of large-scale systems specific to individual human 

brains. We found that individuals’ brain systems had features that did not appear in group-

averaged systems maps, but that could be reliably detected within an individual and, 

importantly, could be matched across many individuals much more frequently than would be 

expected by a spatially random distribution of features (Figure 2C). The fact that these 

individual-specific system features systematically appear across subjects in specific 

locations rather than randomly across the cortex suggests that they represent genuine 

features of the brain’s functional organization.

Several previous studies have made important progress in describing inter-individual 

variance in RSFC patterns (Mennes et al., 2010; Mueller et al., 2013), including 

demonstrating that such variance can uniquely identify individuals from each other (Finn et 

al., 2015). Further, recent individual-level investigations have observed that the brain 

systems of individuals vary categorically, rather than continuously, from each other by the 

presence, absence, or spatial variability of specific system features that cannot be observed 

in group-average data (Gordon et al., 2015; Harrison et al., 2015; Laumann et al., 2015; 

Satterthwaite and Davatzikos, 2015; D. Wang et al., 2015). The present work expands on 

these findings by demonstrating both the reliability of such individual-specific features 

within a single subject and the convergence of such features across subjects. In identifying 

and characterizing such individual-specific features across the entire cortex (Figure 7C, 

Table 2), these findings are an important reference for future work making claims about the 

system identity of a region of cortex.

Within a single individual, the spatial locations of these individual-specific features were 

reliable across scanning sessions (Figure 4). However, across individuals, many of these 

features also had large spatial distributions relative to their size, indicating that they were in 

different locations on the aligned cortical surface from individual to individual (Figure 5). 
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High spatial variability of a system feature has been hypothesized to impair detection of that 

feature in group-average data, as vertex-wise averaging will blur that feature with different 

system features in other subjects (Laumann et al., 2015).

Spatial variability of system features is likely influenced by two independent factors. First, 

these features may be spatially distributed because of imperfect inter-individual registration 

techniques that may register data from different anatomical regions to the same spatial point. 

The surface-based alignment approach employed here (Glasser et al., 2013; Van Essen et al., 

2012a) is the current state-of-the-art anatomical registration, but is still imperfect, 

particularly in anatomically variable regions such as prefrontal cortex. However, we have 

shown in previous work that the quality of this registration does not substantially explain 

variance in brain system estimates (Gordon et al., 2015).

Second, system features may be spatially distributed because they reflect the variable 

positions of cytoarchitectonic cortical areas, which are the discrete units of cortex that 

interact to form large-scale systems (Sejnowski and Churchland, 1989). Like the system 

features described here, cortical areas are spatially variable across individuals relative to 

gyral anatomy (Caspers et al., 2008; Fischl et al., 2008; Malikovic et al., 2007; Van Essen et 

al., 2012a). Further, published probabilistic maps of specific highly variable cortical areas 

(e.g., area 44 (Fischl et al., 2008); area hOc5 (Van Essen et al., 2012a)) appear to correspond 

with some of the probabilistic maps of system features described here (respectively, Ventral 

Attention system, right hemisphere inferior frontal gyrus; and Dorsal Motor system, bilateral 

lateral occipital cortex; see Figure 5). The possibility that some of these system features may 

represent subject-specific cortical areas remains to be explicitly tested in the future.

4.2 Features of brain systems were not always observed in every subject

Beyond being spatially variable, brain systems were also topologically variable across 

individuals, such that some system features were absent in a given individual. Indeed, some 

system features clustered together across subjects significantly better than random, but still 

could be detected in fewer than half of subjects (Figure 2C, Table 2). While detection of 

system features may have failed in some scanning sessions due to methodological choices 

and/or intra-individual variability in connectivity strengths (see Figure 8, bottom for 

examples), system features appeared to be truly absent in many other subjects (Figure 8, 

middle).

One possible explanation for a system feature being present in one individual but absent in 

another is that the regions of cortex underlying that feature (potentially cortical areas, as 

discussed above) may be functionally related to different systems in the two individuals. 

Such variant function has previously been observed in individuals with developmental 

experiences that differ dramatically from the general population. For example, extrastriate 

visual cortex responds during auditory tasks in congenitally blind individuals (Amedi et al., 

2003; Gougoux et al., 2009; Röder et al., 2002), and demonstrates elevated connectivity with 

widespread regions in frontal cortex (X. Wang et al., 2015; Heine et al., 2015). The present 

data suggest less extreme versions of the same effect may be present within a healthy 

population, such that an individual with different genetics or life experiences could 

demonstrate variant functional connectivity patterns.
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Together, these findings strongly suggest that small features of functional brain systems 

detected during the resting state not only vary across subjects in their size, shape, and spatial 

position, but also in their function (i.e., which brain system they are coupled to). Notably, 

this work converges with recent findings by Tavor et al. (2016) showing that individual 

variability in the size, shape, spatial position, and local presence of functional task responses 

can be predicted by applying machine-learning techniques to RSFC data. We hypothesize 

that the features of the RSFC data that predict task responses in that work are the same 

variable system features we describe here.

4.3 Individual-level brain system features replicated across multiple datasets and template 
systems

Most identified system features—including those not observed in group-average systems— 

replicated across three independent datasets collected with different sequences on different 

scanners and processed with different pipelines. This replication was observed not only in 

the cortical location of the features, but also in the shape of the features’ spatial distribution 

(Figure 6, Supplemental Figure 9), in the median sizes of the features, and in the percent of 

subjects in which the features were observed.

A similar result was observed when comparing system features identified using three 

different sets of system priors. The first prior was generated by applying the Infomap 

procedure to a group-average of the Wash U dataset; the second prior is a publicly available 

set of 17 brain systems (Yeo et al., 2011); and the third prior is a publicly available set of 

ICA components calculated from Human Connectome Project data (Smith et al., 2013). 

Many similar system features absent from the templates were detected regardless of which 

template was used (Figure 9; Supplemental Figure 10). In some cases, any set of system 

templates could be used to identify individual-specific system features present in one but not 

all template sets (Supplemental Figure 11). This suggests that each brain system map may 

describe real features of individual-specific brain systems that are not well described by the 

others, though this hypothesis should ideally be tested in individual subjects using a more 

data-driven approach (see “Limitations” below).

Together, these results indicate that the individual-specific system features described here 

represent meaningful functional objects that are similarly probabilistically present and 

spatially distributed in any sufficiently large group of healthy adults, and that they can be 

detected using multiple priors.

4.4 Matching system features can help control for inter-individual variance in brain 
systems

Individual variability in brain systems is an important consideration for neuroimaging 

studies (Gordon et al., 2015; Laumann et al., 2015; Satterthwaite and Davatzikos, 2015; 

Wang and Liu, 2014). If neurobiological objects of interest are spatially variable across 

individuals, then in any given subject it is unclear whether a weaker observed response in a 

brain region indicates altered function, or whether it indicates a poorly aligned system 

feature. We showed that allowing seed regions of interest to vary across individuals 

according to features of their brain systems maps results in more similar seed-based 
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connectivity patterns across individuals and datasets (Figure 10). This suggests that utilizing 

information about subject-specific features of brain systems can help reduce the portion of 

inter-subject variability in functional connectivity that is driven by variable spatial positions 

of functional units.

Several recent publications have focused on developing techniques for similarly reducing or 

eliminating spatial variability by registering individual brains to each other based on 

functional responses, including RSFC patterns—in other words, conducting a functional 

registration. Techniques developed by Sabuncu et al. (2010) and Conroy et al. (2013) warp 

pre-anatomically-aligned fMRI data along the cortical sheet by maximizing the similarity of 

functional responses, while approaches developed by Frost and Goebel (2013) and Robinson 

et al. (2014) integrate the functional alignment with the anatomical alignment procedure to 

accomplish a single-step cross-subject functional/anatomic registration. Other approaches 

have discarded the idea of registering subjects into an anatomical space, instead using fMRI 

responses to warp individuals into an abstract, high-dimensional space that can be projected 

back into the anatomical space of any individual subject (Guntupalli et al., 2016; Haxby et 

al., 2011; Langs et al., 2015). These methods have all demonstrated successful 

improvements in inter-subject alignment. However, by rigorously aligning functional 

features across individuals, these approaches do not account for the possibility that some 

brain system features might not be identifiable in all individuals (whether due to technical 

limitations, intra-individual variability, or true neurobiological differences).

By contrast, the inter-subject feature-matching procedure described here is not in and of 

itself a functional registration, as it does not put all subjects into a true common space—all 

matching is directly subject-to-subject. However, this procedure could form the basis for a 

functional registration that both removes inter-individual spatial variance and accounts for 

the possibility of similar functional regions demonstrating variant function across 

individuals, thus allowing better direct comparison of functionally similar regions.

4.5 Post-hoc correspondence of unusual system features with known cortical functions

Several of the features described here appear to represent the presence of brain systems in 

unusual cortical locations. For example, we demonstrated that more than half of our subjects 

have patches of Visual system outside of occipital cortex, in both bilateral superior parietal 

and bilateral precentral gyrus. We further observed patches of Fronto-parietal system that 

consistently emerged in bilateral posterior cingulate cortex, an area usually thought of as the 

core of the Default system.

While these regions seem at first to be dubious locations for such systems to emerge, we 

argue that that the observed unexpected system identities are plausibly explained by previous 

work at the single-subject level. For example, Meier et al. (2008) demonstrated that a region 

of precentral gyrus of almost the exact same size, shape, and position as our precentral 

Visual system patch was engaged by the motor control of squinting behaviors in single 

subjects. Sereno et al. (2001) demonstrated the existence of a retinotopic map preferentially 

engaged by attention-demanding stimuli that is in the same area of superior parietal cortex as 

our patch of Visual system; this finding has been confirmed by Hagler et al. (2007) and 

Swisher et al. (2007). And finally, Tavor et al. (2016) recently demonstrated that, along with 
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the rest of the Fronto-parietal system, a region in posterior cingulate cortex of nearly the 

exact size, shape, and position as our Fronto-parietal patch activated more to a math task 

than a language task, but only in specific subjects. See Figure 11 for illustrations of these 

corresponding regions. The fact that some of the system features we identify here 

correspond closely with localized cortical regions of known function supports the idea that 

these features may represent real, discrete, functionally meaningful regions on the cortex. 

However, future work comparing across multiple highly sampled single subject data sets is 

needed to confirm that the system features described here overlap with functional responses 

elicited in the same subjects.

It is noteworthy that these previous findings all come from examinations of single subjects. 

Indeed, in each of these previous findings, illustration of the same effect in multiple subjects 

has demonstrated either a poor overlap of the functional response across subjects (Hagler et 

al., 2007; Meier et al., 2008; Sereno et al., 2001; Swisher et al., 2007) or an absence of 

detectable response in some subjects in that region of cortex (Tavor et al., 2016). This is very 

similar to our finding that these small system patches both overlap poorly across subjects 

and are not present in all subjects, and it reinforces the idea that some features of brain 

systems cannot be easily detected except via detailed examination of single subjects.

4.6 Limitations

The approaches described here are primarily intended to identify regularities in brain 

systems across individuals. As such, we do not make strong claims about the accuracy of 

systems identified in any single subject in our cross-subject datasets. We selected a template-

matching approach to estimate cortical systems in these individual subjects because 1) it 

assigns systems based on strong positive connectivities only, following graph-theory based 

conceptualizations of networks; and 2) it enforces identical brain systems across individuals, 

which is required for the cross-subject comparisons employed here. However, despite their 

popularity, it is possible that these specific graph-theory approaches may not be the best way 

to describe brain systems. Further, the use of a strong prior in the present technique may be 

obscuring some of the more subtle aspects of individual-specific brain systems. In particular, 

it is possible that this approach may slightly bias the systems detected in individuals to look 

more like the group-derived systems; and further, since the templates were derived from only 

the Wash U dataset, it may subtly bias individuals in other datasets to look more like the 

Wash U subjects. Accordingly, we do not claim that this technique is the best possible 

description of individual brain systems. However, we note that such potential biases would 

not account for the observation of system features not present in any prior. Further, given the 

convergence we observed between template matching-derived systems and systems derived 

from a widely employed data-driven approach (see Supplemental Figure 3), we argue that 

the template matching approach is at least an adequate technique for brain systems 

identification, and that resulting system maps are well-suited for matching across subjects. 

We hope that future work will clarify which of many proposed methods (e.g., (Beckmann 

and Smith, 2004; Filippini et al., 2009; Gordon et al., 2015; Hacker et al., 2013; Harrison et 

al., 2015; Laumann et al., 2015; D. Wang et al., 2015) are optimal for brain system 

identification in single individuals.
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The accuracy of system estimation in a specific subject may also be affected by data 

limitations. Reliable estimation of single-subject RSFC patterns requires upwards of 25 

minutes of data (Anderson et al., 2011; Laumann et al., 2015; Mueller et al., 2015), which 

only a minority of our subjects have. Accordingly, our analyses of within-subject reliability 

suggested that system maps derived from 10 minutes of data (an amount similar to many of 

our lower-data subjects from the Wash U and Dartmouth datasets) have reduced vertex-wise 

reliability (Supplemental Figure 4). While we did find that most system features present in 

300 minutes of data were reliably detected even in 10-minute sessions (i.e. system feature 

detection has relatively high sensitivity), we cannot rule out the possibility of “extra” system 

features appearing in noisy, low-data RSFC estimates (i.e., low specificity). Further, the 

sensitivity of this detection procedure was enhanced by comparing it to a robust set of 

system estimates derived from 300 minutes of data; comparing 10-minute sessions to 10-

minute sessions would have resulted in lower reliability of system feature detection. For the 

purposes of matching system features across subjects, we anticipate that relatively low 

amounts of data could be used, but that lower data quantity will produce noisier, less 

accurate network maps with worse cross-subject agreement in each patch. We note, for 

example, how in Figure 6, cross-subject overlaps appear markedly better in the higher-data 

HCP dataset than in the lower-data Wash U and Dartmouth datasets.

To reduce the influence of such noise on identified cross-subject features, we required a 

minimum percentage of subjects to have any given system feature, as empirically 

determined by comparison to a null model developed by rotating real system patches 

randomly around the cortical surface. This thresholding appeared effective, as features 

identified in the low-data Wash U. and Dartmouth datasets were extremely similar to those 

identified in the higher-data HCP dataset. However, this cutoff makes it impossible to 

identify possible unique or very rare features that might be present in only a few subjects, 

which would not be easily distinguishable from noise. Future work may characterize rare 

features of brain systems by increasing the reliability of system estimates using extensive 

single-subject sampling, as in our Single Subject dataset (Laumann et al., 2015).

4.7 Conclusions

Here we describe individual-specific features of large-scale brain systems that emerged 

consistently within and across individuals, datasets, and choice of priors for systems 

definition. The exact significance of these system features is not yet clear, but one exciting 

possibility is that they may represent cortical areas, or combinations of adjacent cortical 

areas, found in individual brains. If this is true—a possibility that should be examined in 

future work—it opens the door for detailed investigations of functionally aligned cortical 

areas in individual humans, including investigating the possibility that some cortical areas 

may have variant functional relationships with large-scale brain systems across individuals.

Code to perform the template matching procedure for single-subject system identification, 

cross-subject patch-matching and clustering, and the rotation-based null model for 

significance testing are available at http://www.nil.wustl.edu/labs/petersen/Resources.html.
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Highlights

• Features of brain systems identified in individuals are absent from group 

averages

• These features were both reliable within a single subject and present across 

subjects

• These features were observed across three independent datasets

• Some subjects were “missing” system features, suggesting variable system 

connections

• Matching system features between individuals increased inter-individual 

similarity
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Figure 1. 
Visual depiction of methods employed for identifying brain systems and matching system 

patches across subjects. A) a functional connectivity seedmap is generated for each cortical 

point in each subject. This map is binarized to the top 5% of values across seedmaps. Each 

seedmap is compared to a series of templates using Dice coefficient of overlap. The template 

identity with the highest overlap is assigned to that point. This procedure is repeated across 

the cortex to generate a map of brain systems in the individual. B) Discrete contiguous 

patches of brain systems are extracted from an individual’s systems map. Left: For each 

brain system, the physical distance is assessed between all patches in one subject and all 

patches in all other subjects. Distance is calculated as the geodesic distance between each 

point within one subject’s patch and the nearest point in the other subject’s patch; these 

distances are then averaged across all points within both patches to get an overall distance 

between the patches. Middle: Subject patches are “matched” to each other if their pairwise 

distances are below 10mm (black links), but not matched if the distances are above 10mm 

(gray dotted links). A community detection algorithm is applied to the resulting graph of 

pairwise matches to identify clusters of similar system patches (dotted circles). Right: 

probabilistic maps are created for each cluster of patches. The green outline indicates the 

“characteristic patch”, defined as an object with the median surface area of all individual 

patches that follows the topography of the probabilistic map. While the majority of 

individuals had both pictured patches, overlap across subjects was very different in the two 
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patches: in the top patch, no cortical vertex was within the patch in more than 40% of 

individuals.
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Figure 2. 
Randomly rotating patch clusters around the cortical surface provides an empirical 

description of the null expectation for clustering the system patches that are not observed in 

group-average system maps. A) All system patches that do not match the group-average 

systems are identified in each subject (see example on the left) and matched across subjects 

via the distance-based patch-matching procedure. Matched patches are then clustered across 

subjects (see examples on the right), and the number of subjects who have a patch in each 

cluster is noted. B) A null expectation of these patch clusters is created by taking the non-

group system patches in A) and randomly rotating them around the cortex in each subject, 

producing patches of the same size and shape but random locations (see example on the 

left). These randomly rotated patches are then matched across subjects and clustered as in 

A), and the number of subjects who have a patch in each cluster is noted. This procedure is 

iterated 100 times. C) The distributions of subject counts for clusters of real (red) and rotated 

(blue) patches. Many clusters of real patches are entirely outside the distribution of random 

patch clusters. The red dotted line indicates the threshold set to determine real patch clusters 

significantly (p<.05, Bonferroni-corrected for multiple comparisons) outside the distribution 

of random patch clusters.
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Figure 3. 
Topological features of large-scale brain systems can be observed in resting-state fMRI data 

collected from individuals, but are not present in group-average data. Top: Brain systems 

derived from group-average data (described in Gordon et al., 2015; Laumann et al., 2015). 

Bottom: Brain systems derived from an individual with a large quantity of resting-state data 

(300 minutes) are generally similar to group-average systems, but also have numerous 

topological features not found in the group-average systems (see green arrows for 

examples).
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Figure 4. 
Within a single subject, most brain system features can be detected with high probability 

even in relatively short sessions. A) Percent of sessions in which each brain system feature 

was detected. Features were defined in data concatenated across all sessions in the Single 

Subject dataset and are delineated by black outlines. Detection rates are shown for the 

original ten 30-minute sessions (middle), as well as for thirty 10-minute subdivisions of 

those sessions (top) and for five 60-minute sessions built by combining two temporally 

adjacent 30-minute sessions (bottom). B) Spatial distributions and percent detectability 

across sessions for four example features. See labels above top row for system membership 

of these features. These features were not present in group-average systems (see Figure 3), 

but were detected in 80% or more of 10 minute sessions, 90% or more of 30 minute 

sessions, and 100% of 60 minute sessions; and further, they had tight spatial distributions 

across all session lengths.
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Figure 5. 
Probabilistic maps and characteristic patches of all system patches identified in at least 52 

individuals (corresponding to p<.05, Bonferroni corrected) in the Wash U dataset, but not 

similar to anything in the group-average systems (top). All probabilistic maps within a 

system are summed here for display purposes. The green outlines indicate “characteristic 

patches”, defined as objects with the median surface area of all individual subject versions of 

each patch that follow the topography of the patch’s probabilistic map. The color block next 

to each map indicates the brain system of the displayed patches. Note that for the two medial 

temporal systems, no non-group patches were detected outside of low-SNR regions (inferior 

temporal and orbitofrontal cortex). Note the change in color map thresholds relative to 

Figures 1 and 4; this is necessary in order to demonstrate the dynamic range of the spatial 

distributions.
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Figure 6. 
Non-group system features replicate across datasets. Probabilistic maps and characteristic 

patches of example system patches identified in all three of the Wash U, Dartmouth, and 

HCP datasets, but not similar to anything in the group-average systems (Figure 3, top). 43 

out of 84 novel patches identified in the Wash U dataset were also found in both Dartmouth 

and HCP datasets. All probabilistic maps within a system are summed here for display 

purposes. The green outlines indicate “characteristic patches”, defined as objects with the 

median surface area of all individual subject versions of each patch in each dataset that 

follow the topography of the patch’s probabilistic map. The color block above each map 

indicates the brain system of the displayed patches. See Supplemental Figure 9 for 

replicating patches in all systems.
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Figure 7. 
All system features that replicated across three datasets. A) Characteristic patches of all 

replicating system features are colored according to their system membership. In cases 

where two patches overlapped, the smaller patch is shown on top of the larger one. B) 

Detection rates among subjects in the Wash U dataset for all of the system features shown in 

A). C) Features that were not present in group-average systems. Filled regions indicate 

replicable characteristic patches colored according to their system membership. Colored 

outlines indicate borders of group-average brain systems (see Figure 3, top). See Table 2 for 

MNI coordinates of these non-group patches.
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Figure 8. 
“Missing” patches appeared to be truly absent in some subjects, but failed to be identified in 

others. Top row: two example patches, one from the Fronto-parietal system (left) and one 

from the Dorsal Motor system (right), which were detected in ~50% of subjects. Rows 2–4: 

example high-data subjects and Single Subject dataset sessions in whom the patch was 

detected (green arrows). On the left are all patches in the brain system derived from the 

individual’s/session’s data. On the right are the Dice similarity maps to the template brain 

system, indicating how well each cortical vertex’s connectivity pattern matches the template 

system’s connectivity pattern. Regions of high Dice similarity can be clearly matched to the 

identified brain system patches. Rows 5–6: example high-data subjects in whom the patch 
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was not detected (green circles). The Dice maps confirm that no vertices in that area were at 

all similar to the template systems, suggesting a truly missing system patch. No sessions 

from the Single Subject dataset could be found that were truly missing patches present in 

other sessions. Rows 7–8: Example high-data subjects and Single Subject sessions in whom 

the patch was not detected but may exist below the threshold for detection. Small, relatively 

weak regions of Dice similarity (green arrows) were present that could represent the patch, 

but were not identified as such (green circles).
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Figure 9. 
System features are similar when different group-average maps are used as template 

systems. Probabilistic maps and characteristic patches of non-group system patches 

identified using the Infomap-derived group-average systems (top row) and using the 17 

“Yeo” group-average systems previously reported by (Yeo et al., 2011) (second row). Yeo 

systems have been recolored to match the Infomap systems for easy comparison. 33 of 43 

non-group patches that replicated across datasets were also identified when using the Yeo 

systems as templates. All probabilistic maps within a system are summed here for display 
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purposes. The green outlines indicate “characteristic patches”, defined as objects that have 

the median surface area of each patch across subjects in each dataset and follow the 

topography of the patch’s probabilistic map. The color block next to each map indicates the 

brain system of the displayed patches; multiple colors are displayed in cases where one 

system in one map was split into two systems in the other map. Note that for the medial 

temporal and orbitofrontal systems, no non-group patches were detected outside of low-SNR 

regions (inferior temporal and orbitofrontal cortex).
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Figure 10. 
Across all three datasets, single-subject seed-based RSFC maps are more similar to each 

other if individualized system features are used as seeds than if common seeds are used, 

indicating that the identification and cross-subject matching of individualized system 

patches reduces variability in functional connectivity patterns. A) Pairwise subject-to-subject 

similarity of seed-to-seed correlation matrices calculated using matched system patches 

(left) and “characteristic” patches representing the central tendency of each patch location 

across subjects (right). Each row or column represents one subject, while correlation values 

represent the similarity between two subjects’ seed-to-seed correlation matrices. Black lines 

indicate divisions between the three different datasets. B) Improvement in pairwise subject-

to-subject similarities using matched system patches vs. characteristic patches, calculated as 

the left similarity matrix from A) minus the right similarity matrix. 98.6% of these 

differences were positive, indicating that individuals were almost always more similar to 

each other when individual system patches were used as seeds than when characteristic 

patches were used. C) Examples of increased similarity of connectivity patterns when 

individualized seeds are used. For three subjects from the Wash U dataset, whole-brain seed-

connectivity maps were calculated by seeding from matched, individual-specific Fronto-

parietal patches in middle cingulate cortex, as well as from the characteristic patch. All maps 

seeded from the individualized seeds (top of each subject) demonstrated strong connectivity 

in canonical Fronto-parietal regions. However, some maps seeded from the characteristic 

patch (bottom of each subject) had less robust Fronto-parietal connections, but strong 

connectivity in non-Fronto-parietal regions such as posterior cingulate cortex (green arrow), 

angular gyrus (light blue arrow), or ventromedial prefrontal cortex (magenta arrow).
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Figure 11. 
Probability maps of several system features correspond to previous findings demonstrating 

subject-specific localization of various functions. Top row: a Visual system patch in 

precentral gyrus (left) appears very similar to a single-subject map of squinting (right, beige 

colored; green arrow) published in Meier et al., 2008. Middle row: a Visual system patch in 

posterior intraparietal sulcus (left) appears in a very similar location to a subject-specific, 

attention-dependent retinotopic map (right) described by Sereno et al. (2001). Bottom row: 

A Fronto-parietal system patch in posterior cingulate cortex (left) has a very similar location 

and shape to a region in a subject-specific map of increased activation during a math task 

compared to a language task (right), as described by Tavor et al. (2016). Figures adapted 

with permission from Meier et al., 2008, Sereno et al., 2001, and Tavor et al., 2016.
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