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Abstract

Cerebrovascular reactivity (CVR), the ability of cerebral vessels to dilate or constrict, has been 

shown to provide valuable information in the diagnosis and treatment evaluation of patients with 

various cerebrovascular conditions. CVR mapping is typically performed using hypercapnic gas 

inhalation as a vasoactive challenge while collecting BOLD images, but the inherent need of gas 

inhalation and the associated apparatus setup present a practical obstacle in applying it in routine 

clinical use. Therefore, we aimed to develop a new method to map CVR using resting-state BOLD 

data without the need of gas inhalation. This approach exploits the natural variation in respiration 

and measures its influence on BOLD MRI signal. In this work, we first identified a surrogate of 

the arterial CO2 fluctuation during spontaneous breathing from the global BOLD signal. Second, 

we tested the feasibility and reproducibility of the proposed approach to use the above-mentioned 

surrogate as a regressor to estimate voxel-wise CVR. Third, we validated the “resting-state CVR 

map” with a conventional CVR map obtained with hypercapnic gas inhalation in healthy 

volunteers. Finally, we tested the utility of this new approach in detecting abnormal CVR in a 

group of patients with Moyamoya disease, and again validated the results using the conventional 

gas inhalation method. Our results showed that global BOLD signal fluctuation in the frequency 

range of 0.02–0.04 Hz contains the most prominent contribution from natural variation in arterial 

CO2. The CVR map calculated using this signal as a regressor is reproducible across runs 

(ICC=0.91±0.06), and manifests a strong spatial correlation with results measured with a 

conventional hypercapnia-based method in healthy subjects (r=0.88, p<0.001). We also found that 

resting-state CVR was able to identify vasodilatory deficit in patients with steno-occlusive disease, 
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the spatial pattern of which matches that obtained using the conventional gas method 

(r=0.71±0.18). These results suggest that CVR obtained with resting-state BOLD may be a useful 

alternative in detecting vascular deficits in clinical applications when gas challenge is not feasible.
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1. Introduction

Cerebrovascular reactivity (CVR) is a measure of the dilatory function of cerebral blood 

vessels. Compared to other vascular measures such as cerebral blood flow (CBF) and 

cerebral blood volume (CBV), CVR is thought to be a more specific indicator of vascular 

health. CVR mapping has been shown to provide valuable information in the evaluation of 

various cerebrovascular conditions, including arterial stenosis (Donahue et al., 2013; Gupta 

et al., 2012; Mandell et al., 2008; Mikulis et al., 2005), stroke (Geranmayeh et al., 2015), 

small vessel disease (Greenberg, 2006), brain tumors (Zaca et al., 2014), traumatic brain 

injury (Chan et al., 2015; Kenney et al., 2016), substance abuse (Han et al., 2008), and 

normal aging (Gauthier et al., 2013; Lu et al., 2011). CVR also has important utility in 

normalizing blood-oxygenation level dependent (BOLD) fMRI signal to differentiate 

neuronal from vascular alternations in brain function (Liu et al., 2013a; Liu et al., 2013b).

At present, CVR mapping is typically performed using hypercapnic gas inhalation as a 

vasoactive challenge while collecting perfusion sensitive MRI images (Lu et al., 2014; 

Spano et al., 2013; Wise et al., 2007; Yezhuvath et al., 2009). Hypercapnic gas inhalation 

increases the blood concentration of CO2, which, as a potent vasodilator, dilates blood 

vessels and increases cerebral perfusion (Brian, 1998). CVR can then be quantified by the 

BOLD signal changes associated with CO2 inhalation. Although the BOLD signal is not a 

direct measure of CBF change in the brain and thus may be confounded by changes in 

cerebral oxygen metabolism (Xu et al., 2011), it is often preferred over perfusion signal (e.g. 

using arterial-spin-labeling MRI) due to its higher signal-to-noise ratio (SNR). This CVR 

mapping method has been successfully applied in a number of research studies in healthy 

and chronic disease patients (Donahue et al., 2013; Donahue et al., 2014; Han et al., 2008; 

Liu et al., 2013b; Lu et al., 2011; Mandell et al., 2008; Marshall et al., 2014; Mikulis et al., 

2005; Thomas et al., 2013). However, the inherent need of gas inhalation and the associated 

apparatus setup requires additional time and expertise for handling and monitoring, which 

may limit the applications of this technique. This is especially the case when examining 

acute patients (e.g., acute stoke, acute traumatic brain injury). Breath-holding is another 

approach to manipulate blood CO2 concentration (Kastrup et al., 1998; Murphy et al., 2011; 

Tancredi and Hoge, 2013; Zaca et al., 2014). But the requirement of subject’s cooperation in 

performing breath-holding tasks also makes it difficult for patients with acute or severe 

conditions.

Therefore, in the present work, we aim to show the proof-of-principle of a new CVR 

mapping approach that does not require gas inhalation. This approach utilizes the natural 
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variation in respiration over time as an intrinsic vasoactive stimulus. A surrogate of 

fluctuations in arterial CO2 can be extracted from global BOLD signal. Global, non-region-

specific fluctuation in BOLD MRI signal is known to be attributed to several mechanisms, 

including cardiac cycle, breathing cycle, scanner thermal noise, slow physiological 

variations, and potentially whole-brain neural fluctuation (Birn et al., 2006; Chang et al., 

2009; Glover et al., 2000; Wise et al., 2004; Wong et al., 2013). We hypothesize that the 

signal component association with respiratory variation can be extracted by advanced 

acquisition and analysis schemes of the global BOLD signal, which can then serve as a 

regressor for voxel-wise estimation of CVR, all from the resting-state BOLD data. We 

conducted four studies to test this hypothesis. Firstly, we identified the component in the 

global BOLD signal that has the best correspondence to end-tidal (Et) CO2 time course at 

rest. Secondly, we tested the feasibility and reproducibility of performing voxel-wise 

calculation of CVR using the global BOLD as a regressor. Thirdly, we validated the “resting 

CVR map” with the conventional CVR map obtained by hypercapnic gas inhalation in 

healthy volunteers. Finally, we tested the utility of this new approach in detecting abnormal 

CVR in a group of patients with Moyamoya disease, a cerebrovascular disease characterized 

by intracranial arterial stenosis, and again validated the results using the conventional gas 

inhalation methods.

2. Materials and methods

2.1 General

All MR imaging experiments were conducted on 3 Tesla MR system (Philips Medical 

System, Best, The Netherlands). Foam padding was placed around the head to minimize 

motion. The study protocols were approved by the Institutional Review Boards of the Johns 

Hopkins University School of Medicine, the University of Texas Southwestern Medical 

Center and the University of Texas at Dallas. Written informed consent was obtained from 

all participants before the MRI scans.

Four studies were performed in separate participants. Study 1 and 4 were performed solely 

for the purpose of this report. Study 2 and 3 used resting-state BOLD data collected as part 

of our previous studies (Liu et al., 2013a; Tung et al., 2013). Data from a total of 48 

participants are included.

2.2 Study 1: Identification of CO2 related signal component from global BOLD

It is known that the origins of the global BOLD signal include many components. Therefore, 

the purpose of this study was to experimentally determine which frequency range of the 

global BOLD signal at rest contains the best correspondence to blood CO2 concentration. 

Five healthy volunteers (age 35 ± 13 years, 3 males and 2 females) were scanned using a 32-

channel receive-only head coil. The body coil was used for RF transmission. During the 

resting-state BOLD scan, the subject wore a nasal cannula (Salter Labs, Arvin, CA) through 

which the EtCO2 was recorded using a capnograph device (Capnogard, Model 1265, 

Novametrix Medical Systems, CT). Imaging parameters of the BOLD scan were: single-shot 

gradient-echo EPI, Field-of-view (FOV) = 220×220×30 mm3, voxel size=3.44×3.44×5mm3, 

TR/TE=270/20ms, SENSE factor = 2, 6 axial slices with 1mm gap, 900 dynamics. The 
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imaging slices were positioned parallel to the anterior commissure -posterior commissure 

(AC-PC) line, with the last slice centered on the AC-PC line.

Data analysis was conducted using the software Statistical Parametric Mapping (SPM) 

(University College London, UK) and in-house MATLAB (MathWorks, Natick, MA) 

scripts. Pre-processing of the BOLD image series included motion correction, smoothing 

using a Gaussian filter with a full-width-half-maximum (FWHM) of 8 mm, and linear 

detrending. The EtCO2 time course was shifted to account for the time it takes for the blood 

to travel from the lung to the heart and then to the brain, using a step-wise searching 

procedure described previously (Yezhuvath et al., 2009). The shifted EtCO2 time course was 

in sync with the BOLD images, and was used for the following analysis.

To identify the best frequency component for the extraction of CO2-related signal from the 

BOLD signal, the BOLD images were filtered into five different frequency bands: 0–0.01 

Hz, 0.01–0.02 Hz, 0.02–0.04 Hz, 0.04–0.08 Hz, 0.08–0.2 Hz, and the global BOLD time 

course for each frequency band was obtained. The frequency width was set to be larger at 

higher frequencies because signal power decays at higher frequencies. Signal frequencies 

above 0.2 Hz were not tested because those signal components are expected to be primarily 

due to cardiac and breathing cycles and there is minimal EtCO2 signal in that frequency 

range (Birn et al., 2006; Chang et al., 2009; Wise et al., 2004). The BOLD signal time 

course was then spatially averaged to minimize scanner thermal noise, generating a 

reference BOLD time course for each frequency range. The cross-correlation coefficient (r) 

between the reference BOLD time course and EtCO2 time course was calculated for each 

frequency band. Paired t-tests were performed to compare the r values across the frequency 

bands to identify the band that provides the highest R, which was used as the optimal 

frequency range for CVR calculations in the following studies.

An exploratory analysis was also performed to compare the statistical significance (indicated 

by Z score) of voxel-wise regression using the filtered reference BOLD signal as regressor to 

that using EtCO2 time course as regressor following a previous study (Golestani et al., 

2016). Z scores from all brain voxels were considered. Paired t-tests were performed to 

evaluate the significance of the comparison between the two methods. The p value <0.05 is 

considered significant.

2.3 Study 2: Feasibility and reproducibility

Study 2 examined the feasibility of using resting-state BOLD fMRI to map CVR, and 

evaluated the reproducibility of this approach. This study was done by using resting state 

data collected in our previous study (Tung et al., 2013). Ten healthy subjects (age 28±7 

years, 6 males and 4 females) underwent a 35-minute session consisting of 7 resting state 

BOLD scans of 5 minutes each. An 8-channel receive-only head coil was used. The BOLD 

imaging parameters were: single-shot gradient-echo EPI, TR/TE=1000/25ms, FOV= 

220×220×104 mm3, voxel size 3.4×3.4×4mm3, 21 axial slices with 1mm gap covering the 

whole cerebrum, 300 dynamics. Compared to Study 1, the data in this study provided a 

substantially larger spatial coverage, although the temporal resolution was lower.
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The data analysis followed the chart shown in Figure 1. The pre-processing was identical to 

that used in Study 1. The temporal filtering of the BOLD time course used the optimal 

frequency band determined from Study 1. A whole-brain mask obtained from a T1-weighted 

MPRAGE image was used as a reference mask and the voxels inside the mask were 

averaged to yield the reference time course. A linear regression analysis was then performed 

in which the reference time course was the independent variable and individual voxel’s time 

course was the dependent variable, yielding a CVR index for each voxel. By normalizing the 

CVR index to a mean value calculated from the reference mask, a resting-state CVR map 

was obtained. We note that the resting-state CVR map is in relative units. To evaluate the 

reproducibility of the resting state CVR maps, intraclass correlation (ICC) analysis was 

performed across multiple runs of the data (Shrout and Fleiss, 1979). For this study, two-

way model, average-measures ICC values were calculated.

2.4 Study 3: Validation of resting-state CVR with gas-inhalation based method

Twenty-six healthy subjects (age 28 ± 5 years, 12 males and 14 females) underwent a 5 min 

resting-state BOLD scan and a 7 min hypercapnia BOLD scan (Liu et al., 2013a). An 8-

channel receive-only head coil was used. The imaging parameters were identical between 

the two scans: TR/TE=2000/25ms, FOV=220×220×150.5mm3, voxel size 3.4×3.4×3.5mm3, 

43 axial slices without gap. During the hypercapnia scan, subjects breathed room-air and 5% 

CO2 (mixed with 21% O2 and 74% N2) in an interleaved fashion (switching every 1 min) 

while BOLD EPI images were acquired continuously. EtCO2 was recorded throughout the 

breathing task.

A regression analysis between EtCO2 and the MRI time course yielded the gas-inhalation-

based CVR map (Lu et al., 2014; Yezhuvath et al., 2009). The resting-state CVR map (in 

relative units) was obtained following the procedures developed in Study 2 (Figure 1). 

Spatial correlation between the resting-state and gas-inhalation CVR maps was calculated as 

the Pearson product-moment coefficient. For easy comparison, the gas-inhalation CVR map 

was also normalized to its whole-brain value.

2.5 Study 4: Evaluation of Moyamoya patients

Seven patients with Moyamoya Disease (age 39 ± 10 years, 1 male and 6 females) were 

recruited. Moyamoya Disease is a steno-occlusive cerebrovascular disease characterized by 

severe narrowing/blockage of the anterior and middle cerebral vessels. The specific 

diagnosis of each patient in this study is listed in Table 1. Four patients had unilateral 

stenosis and three had bilateral stenosis. Each patient underwent a 9 min resting-state BOLD 

scan and a gas inhalation scan of 9 min. The imaging parameters for both the breathing task 

and the resting-state scan were: BOLD sequence, FOV = 205×205×151 mm3, TR/

TE=1510/21ms, 3.2mm isotropic voxels, whole brain coverage using 36 slices with 1mm 

gap. The gas inhalation scan utilized the concomitant CO2/O2 modulation paradigm so that 

CVR and venous CBV maps were obtained simultaneously. Details of the concomitant 

CO2/O2 modulation and data analysis were described previously (Liu et al., 2016). An ASL 

scan was performed to obtain CBF. The imaging parameters of the ASL scan were: 2D 

multi-slice acquisition, labeling duration=1650ms, post-labeling delay = 1525ms, TR/

TE=4260/14 ms, FOV=240×240×145.5mm3, voxel size 3×3×5mm3, whole-brain coverage 
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using 29 axial slices without gap. Anatomical images of FLAIR, T1-weighted MPRAGE, 

and time-of-flight (TOF) angiogram were also obtained. All patients were scanned with a 

32-channel receive-only head coil. The body coil was used for RF transmission.

Resting-state and gas-inhalation CVR maps were obtained using procedures described 

above. Both maps are in relative units. In these analyses, we used cerebellum gray matter as 

the reference region because posterior circulation is usually preserved (as verified by the 

TOF angiogram) in Moyamoya patients. Deficit regions as identified by resting-state and 

gas-inhalation CVR were compared. Quantitative comparison between the two methods was 

performed using scatter plot and spatial correlation. CBF maps were obtained following the 

ASL white paper (Alsop et al., 2015).

3. Results

3.1 Study 1

Figure 2 shows cross-correlation coefficients between EtCO2 and BOLD signal time courses 

for different frequency ranges. It can be seen that the correlation is highest when the time 

courses are filtered at the 0.02–0.04 Hz frequency range. Paired t-tests showed that the 

correlation at 0.02–0.04 Hz is significantly higher than all other frequency bands except for 

0.01–0.02 Hz (Figure 2). Indeed, the peak correlation appeared at the 0.02–0.04 Hz for every 

participant in the study. These observations suggested that BOLD signal at the frequency 

range of 0.02–0.04 Hz provides the best estimation of the spontaneous fluctuation of blood 

CO2 concentration, relative to other frequency bands. Therefore, in the following studies, the 

BOLD time series were all filtered to 0.02–0.04 Hz for the calculation of CVR map using 

resting-state data.

Comparing the methods using global BOLD signal (filtered to 0.02–0.04 Hz) and EtCO2 

time course, the statistical significance of voxel-wise regression is considerably greater when 

using the global BOLD signal (p=0.001). The resulting voxel-wise Z scores were 17.9±3.2 

and 4.0±2.7 for global BOLD and EtCO2 methods, respectively. Similarly, we found that 

90±5% of voxels in the brain has a statistically significance Z score (Z>3) using the global 

BOLD signal as a regressor, as compared to 50±20% using EtCO2 as the regressor 

(p=0.014).

3.2 Study 2

Figure 3 demonstrates the resting-state CVR maps obtained from seven consecutive scans 

from a representative subject. The maps showed clear gray matter – white matter contrast, 

which is consistent across different scans. The resting-state CVR maps of all scans from all 

subjects are shown in Supplementary Figure S1. The ICC values were found to be 0.91±0.06 

(mean±standard deviation) across 10 subjects (range from 0.79 to 0.98), indicating a good 

reproducibility of the resting-state CVR maps.

3.3 Study 3

Figure 4a displays group-averaged CVR maps obtained from the resting-state and 

hypercapnia scans. Visual inspection suggests that the two CVR maps, although obtained by 
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different techniques, have virtually identical image contrast. The gray matter has larger CVR 

than white matter, and voxels containing veins shows the highest CVR values due to the 

blood volume effect. The voxels containing veins were identified by visual inspection based 

on knowledge of the vessel anatomy of large draining veins. Consistency of the two CVR 

maps was confirmed by quantitative analysis of their scatter plot, shown in Figure 4b. There 

was a strong spatial correlation (r=0.88) between the two maps. The individual resting-state 

and hypercapnia-derived CVR maps of all subjects are shown in Supplementary Figure S2. 

To compare the sensitivity of the resting-state CVR method with the standard gas method, 

Figure 4c shows the histogram of Z-statistics of the resting-state and hypercapnia-based 

techniques. It can be seen that the resting-state method (Z=7.47±1.75, N=26) is less sensitive 

compared to the hypercapnia CVR mapping technique (Z=11.94±2.54, N=26), as expected.

3.4 Study 4

The demographic information of the Moyamoya patients is shown in Table 1. Figure 5 

shows CVR maps from resting-state and hypercapnia scans of all seven patients. For 

reference, the patients’ MRI angiograms are also shown, illustrating the specific stenosis site 

of each patient (red arrows). T1-MPRAGE, FLAIR, CBF and venous CBV images are also 

displayed. Reduced CVR was observed in the disease territories in all patients. Resting-state 

CVR maps were found to reveal a similar deficit pattern as the hypercapnia CVR maps, 

suggesting that CVR measured with resting-state BOLD fMRI can provide similar 

information of cerebrovascular dysfunction as that obtained using a conventional 

hypercapnia-based method. Scatter plots between the two CVR maps are shown in Figure 5 

(bottom row). Their spatial correlation coefficient was 0.71±0.18. We have also investigated 

resting-state CVR mapping using the frequency bands other than 0.02–0.04 Hz, and found 

that the resulted resting-state CVR maps were less consistent with the hypercapnia CVR 

map (Supplementary Figure S3).

Comparing to CBF and venous CBV maps, the two CVR maps showed their unique deficit 

pattern, suggesting that the resting-state CVR we obtained measures the specific vascular 

function as the hypercapnia CVR.

4. Discussion

In this report, we propose a new method to map cerebrovascular reactivity without the need 

of gas inhalation. We identified that global BOLD signal fluctuation in the frequency range 

of 0.02–0.04 Hz contains the most prominent contribution from natural variation in arterial 

CO2. We then utilized this signal as a regressor for CVR estimation from the resting-state 

BOLD fMRI data. Our results showed that the CVR map calculated with this method is 

reproducible across runs, and manifests a strong spatial correlation with results measured 

with a conventional hypercapnia-based method. Resting-state CVR was able to identify 

vasodilatory deficits in patients with steno-occlusive disease, the spatial pattern of which is 

similar to that using conventional gas method.

CVR indicates the ability of blood vessels to dilate upon demand, and is thought to be a 

specific marker of vascular health compared to cerebral perfusion, which may be affected by 

non-vascular factors such as neural activity, metabolism, and consumption of caffeine (Chen 
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and Parrish, 2009; Fujishima et al., 1971). CVR has shown an important value in research 

studies involving chronic ischemic conditions such as atherosclerotic arterial steno-occlusive 

disease and Moyamoya disease (Donahue et al., 2013; Gupta et al., 2012; Mandell et al., 

2008; Mikulis et al., 2005; Pandya et al., 2015). However, despite its potential, CVR 

mapping has not been used in large-scale clinical trials or routine clinical practice. One of 

the most important limitations of this method is that CVR mapping using gas-inhalation is 

typically viewed as cumbersome (although recent development in breathing apparatus (Lu et 

al., 2014; Tancredi et al., 2014) has begun to address these issues) and thus cannot be 

applied routinely. There are additional concerns of using gas challenges in acute or severely 

ill patients, as they may not tolerate or report their intolerance of hypercapnia. It has also 

been suggested that patients with significant pulmonary or cardiac disease should not be 

given gas challenge (Moreton et al., 2016). Therefore, there is significant clinical value to 

develop a CVR mapping method that does not require gas inhalation. The present work is 

one of such efforts to measure CVR using resting-state BOLD data. We have shown that 

resting-state CVR maps have a strong correlation with conventional, gas-inhalation based 

CVR maps, although its overall sensitivity, as measured by Z-statistic, is lower. We also note 

that the resting-state CVR mapping is based on the spontaneous fluctuation of blood CO2 

content, which is in the range of 2–4 mmHg. This natural variation is much smaller than the 

change induced by 5% CO2 breathing (usually 8–10 mmHg), but is more relevant to the 

degree of daily neural activation induced blood flow changes. Given the non-linear 

relationship between blood CO2 content and CBF change (Fox et al., 1992; Ito et al., 2003), 

it is expected that the BOLD signal may also change non-linearly with blood CO2.

Resting-state fMRI data are known to contain information about the brain’s vasculature, in 

addition to its common use of mapping functional connectivity (Birn et al., 2006; Wise et al., 

2004). Kannurpatti and Biswal showed that the resting-state fluctuation amplitude (RSFA), 

computed as the temporal standard deviation of the BOLD time series, is correlated with 

CVR measured with breath-holding (Kannurpatti and Biswal, 2008). Jahanian et al. further 

showed that coefficient of variance (CV, standard deviation divided by mean) of the BOLD 

signal was significantly higher in hypertensive elderly subjects with chronic kidney disease 

than in young healthy volunteers (Jahanian et al., 2014). Other studies have explored a 

parameter that quantifying the degree of low-frequency variation of the BOLD signal, 

referred to as Amplitude of low-frequency fluctuations (ALFF), and have demonstrated a 

correlation between ALFF and hypercapnia-derived CVR (Di et al., 2013; Kazan et al., 

2016). These methods have not attempted to differentiate various components of the BOLD 

signal, thus may contain a variety of physiological origins. In our study, we considered the 

multi-factorial mechanism of the global BOLD signal and developed specific acquisition and 

analysis schemes to maximally isolate signal component associated with natural fluctuation 

in blood CO2. The effects of cardiac and respiratory cycles on the BOLD time course were 

alleviated by acquiring data at a relatively high temporal frequency, thus such effects can be 

removed by low-pass filtering. Scanner thermal noise was minimized by spatially averaging 

a large number of voxels, e.g. the whole-brain, and by using the averaged signal as a 

regressor in CVR calculation. Further effort to obtain the signal component that is most 

relevant to CO2 fluctuation was undertaken by identifying the frequency band (0.02–0.04 

Hz) that shows the higher correlation with end-tidal CO2. A few studies have also been 
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reported to use resting-state fMRI data to estimate blood transit time in the brain (Amemiya 

et al., 2014; Christen et al., 2015; Tong and Frederick, 2014). We have tried to obtain the 

voxel-wise delay following a previous study (Christen et al., 2015) and apply it in resting-

state CVR mapping. However, the resulted CVR maps were noisy, probably due to the low 

SNR in resting-state delay mapping. Therefore, we did not account for voxel-wise blood 

transit delay in our CVR analyses. As a result, the deficit regions in the CVR maps of the 

Moyamoya patients (Figure 5) reflect both diminished CVR and lengthened blood transit 

delay in those regions.

Recently, two studies reported the use of EtCO2 time course recorded during the resting-

state BOLD scan as a regressor to map CVR in healthy volunteers (Golestani et al., 2016; 

Lipp et al., 2015). Compared to these previous studies, the present study is the first to apply 

these methodologies in patients with cerebrovascular diseases. Moreover, the present work 

has primarily focused on the use of filtered global BOLD signal as a regressor, rather than 

EtCO2 as the regressor, due to the following reasons. First, when comparing the EtCO2 and 

global BOLD methods, we found that the global BOLD method provided significantly better 

CVR maps (in terms of Z-scores). This is because EtCO2 has a lower sampling frequency, 

e.g. one measure every 4 seconds, whereas the resulting BOLD signal change has a higher 

sampling frequency, e.g. one measure every 270 ms. Thus, a regression analysis between 

these two time series requires substantial temporal interpolation. One could downsample the 

BOLD images to match the sampling rate of EtCO2 and conduct the regression analysis. 

However, that means a large fraction of the BOLD data is discarded. Additionally, CO2 

concentration time course in the lung will be slightly different from that in the brain due to 

dispersion. This could further reduce the degree of association between EtCO2 and BOLD 

signal time courses. Moreover, the placement of EtCO2 recording apparatus may take some 

additional setup time and wearing the apparatus for an extended period of time (i.e. having 

the tips of the nasal cannula at the nostril for the entire session, not just during the resting 

CVR scan) may cause some discomfort. For most cerebrovascular diseases which are 

usually regional, a relative map measured by resting-state CVR is sufficient to delineate 

deficit brain areas. If an absolute CVR (e.g. in %/mmHg) is desired, EtCO2 recording using 

nasal cannula (as done in our Study 1) can be added to the procedure. However, to obtain the 

highest statistical significance, we still recommend the use of filtered global BOLD as the 

regressor. The EtCO2 recording is thus mainly used for the conversion from relative units to 

mmHg units.

This study has a few limitations. First, the resting-state CVR maps we obtained are in 

relative units, instead of in absolute unit of %/mmHg CO2. As mentioned earlier, recording 

of EtCO2 can be added if absolute values are desired. Second, we have empirically found 

that the global BOLD signal within the frequency range of 0.02–0.04 Hz has the strongest 

correlation with EtCO2. However, it is plausible that the signal in this frequency range still 

contains some contributions from non-CO2 related sources, for example, global fluctuations 

in neural activity due to vigilance changes (Liu, 2013; Wong et al., 2013), subject motion 

and heart rate changes. We are conducting further studies with simultaneous fMRI/EEG to 

investigate the extent of this contribution. Third, for Study 1, we did not have hypercapnia 

CVR map to calculate the spatial correlation between resting-state and hypercapnia CVR 

maps.
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5. Conclusions

In this work, we developed a new method to map cerebrovascular reactivity using resting-

state BOLD data without the need of gas inhalation or breath-holding. Our results have 

shown that resting-state CVR maps obtained by this method are reproducible, and are highly 

consistent with conventional, CO2-inhalation-based CVR maps. This method may be a 

useful alternative in detecting vascular deficits in clinical applications when gas challenge is 

not feasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A new method was proposed to map CVR without gas inhalation or breath-

holding

• This method exploits natural variations in respiration and their effect on 

BOLD signal

• The resulted CVR maps were reproducible and consistent with CO2-

inhalation CVR maps

• This method can identify CVR deficit in patients with steno-occlusive disease

• This method may be a useful alternative to map CVR when gas challenges is 

not feasible
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Figure 1. 
Illustration of the data analysis scheme.
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Figure 2. 
The correlation between global BOLD signal and EtCO2 time course at different frequency 

ranges (N=5). Error bars indicate standard error. The p-values are uncorrected.

Liu et al. Page 16

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
CVR maps of seven consecutive resting-state BOLD fMRI scans from a representative 

healthy subject.
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Figure 4. 
Comparison between the group-averaged CVR obtained from resting-state scan (RS) and 

hypercapnia scan (HC) from 26 young healthy subjects. (a) The CVR maps obtained from 

the two scans. (b) Voxel-by-voxel scatter plot between the two maps (down-sampled by 

5×5×5 voxels). (c) Average histograms of voxel-wise Z scores associated with CVR 

mapping using RS scan and HC scan, respectively.
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Figure 5. 
Imaging results from the seven patients with Moyamoya diseases. Row 1: Time-of-flight 

(TOF) MR angiograms (MRA). Red arrows indicate the sties of arterial stenosis. Row 2: 

MPRAGE images. Row 3: T2-FLAIR images. Row 4: CBF maps. Row 5: venous CBV 

maps. Row 6: CVR maps using resting-state scan of these patients. Row 7: CVR maps from 

hypercapnia scan of these patients. Row 8: Scatter plots between the resting-state CVR map 

and hypercapnia CVR map for each patients.
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