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Abstract

Despite wide applications of functional magnetic resonance imaging (fMRI) to mapping brain 

activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter 

functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the 

white matter acquired from humans in the resting state or watching a naturalistic movie. By using 

independent component analysis and hierarchical clustering, resting-state fMRI data in the white 

matter were denoised and decomposed into spatially independent components, further assembled 

into hierarchically organized axonal fiber bundles. Interestingly, such components were partly 

reorganized during natural vision. Relative to the resting state, the visual task specifically induced 

a stronger degree of temporal coherence within the optic radiations, as well as significant 

correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI 

contains rich functional information about activity and connectivity within white matter at rest and 

during tasks, challenging the conventional practice of taking white-matter signals as noise or 

artifacts.

Introduction

Since its inception, functional magnetic resonance imaging (fMRI) has been focused on 

mapping activations and connections in the cerebral gray matter (GM) (Bandettini et al. 

1992; Kwong et al. 1992; Ogawa et al. 1992; Biswal et al. 1995; Fox and Raichle 2007). It 

has had limited use in investigating the functional dynamics and organization of the cerebral 

white matter (WM) (Gawryluk et al. 2014). This paucity of WM fMRI literature is 

disproportional considering that WM occupies about half of the human brain volume, 

contains structural pathways for long-range signaling (Sporns et al. 2005), and has critical 

implications for numerous neurological diseases (Ffytche and Catani 2005).

It has been often assumed that WM lacks the typical hemodynamic changes driven by neural 

activity (Logothetis and Wandell 2004). Relative to GM, WM has much lower cerebral 

vascular density (Lierse and Horstmann 1965), blood volume (Jensen et al. 2006), and blood 
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flow (Van Osch et al. 2009). Moreover, energy consumption in WM is about one fourth that 

of GM overall (Logothetis and Wandell 2004), with more energy used on action potentials 

rather than synapses (Harris and Attwell 2012). While neurometabolic and neurovascular 

coupling in WM is also unclear (Logothetis and Wandell 2004), previous findings about the 

relationship between neural and hemodynamic activities are all based on signals specific to 

GM (Logothetis et al. 2001; Smith et al. 2002). It is problematic to simply extrapolate such 

findings either for or against the validity of WM fMRI. Furthermore, artifacts of motion 

(Johnstone et al. 2006), partial-volume (Jo et al. 2010), and physiological origin 

(Makedonov et al. 2015) are also of concern in WM fMRI. Hence, the fMRI signal in WM 

has an unclear basis and an inherently low signal to noise ratio (SNR); as such, it has been 

dismissed from analysis or interpretation in the vast majority of fMRI studies.

However, increasing evidence has shed light on the feasibility of using fMRI to map WM 

activation and connectivity. See Gawryluk et al. (2014) for a review. Previous studies 

showed that inter-hemispheric transfer tasks could induce fMRI activations in the corpus 

callosum (Tettamanti et al. 2002; Fabri et al. 2011; Gawryluk et al. 2011), through which 

activated cortical regions were structurally connected across hemispheres (Mazerolle et al. 

2010). Such callosal activations may have a metabolic basis, since local cerebral metabolic 

rate for glucose was found to depend on neural activity in the corpus callosum given graded 

intra-cortical electrical stimuli (Weber et al. 2002). Beyond the corpus callosum, WM 

activations have rarely been reported in fMRI studies (Mosier et al. 1999; Mazerolle et al. 

2013). Astafiev et al. have demonstrated that symptomatic chronic mTBI subjects show 

abnormal neural activation during visual tracking tasks in a common set of subcortical and 

white matter regions using BOLD fMRI acquisitions (Astafiev et al. 2015; Astafiev et al. 

2016). Moreover, Ding et al. reported that resting-state fMRI signals in WM were correlated 

over long distances, as well as locally in a similar anisotropic manner as observed with 

diffusion tensor imaging (DTI). Although all prior studies that reported WM-fMRI 

activations were based on T2*-weighted MRI sequences, the WM-fMRI signal and its 

correlational structure were recently shown to be blood oxygenation level dependent 

(BOLD) (Ding et al. 2016). This finding is important since T2*-weighted signal fluctuation 

may arise from both BOLD and non-BOLD origins: the former reflects changes in R2*, the 

latter may reflect changes in initial signal intensity (S0) likely due to nuisance effects, e.g. 

motion and physiological noises (Kundu et al., 2012). Collectively, these studies suggest that 

there is no fundamental barrier for which fMRI is doomed to fail for functional imaging in 

WM, paving the way for an emerging domain of fMRI methodologies and applications.

Perhaps the most critical and practical challenge is the much lower dynamic range in WM 

(i.e. versus that in GM). When univariate or multivariate time-series analyses are applied to 

GM and WM voxels together, signal variance and structure are dominated by voxels in GM, 

whereas activity and connectivity patterns in WM are likely under-detected or mistaken as 

noise. One potential way to deal with this issue is to separate WM from GM and use data-

driven analysis, e.g. independent component analysis (ICA), to characterize the 

spatiotemporal patterns of signal vs. noise exclusively in the WM. This is helpful especially 

for the resting state, since the absence of any overt task makes it more difficult to 

discriminate signal from noise without any presumed temporal characteristics. A plausible 

criterion to distinguish signal from noise is based on their expected difference in 
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reproducibility within and across subjects. The brain’s structural and functional organization 

is generalizable and stable, serving as the underlying constraint for the signal characteristics; 

this is not so for noise. Once signal and noise are separated, a new stage may be formed to 

further assess the network patterns of WM activity, as well as their relationships with 

cortical networks. This may also allow for the conjoint evaluation of the roles of WM and 

GM networks in perceptual, behavioral, and cognitive tasks.

Taking this strategy, we set out to characterize WM-fMRI signals in the resting state and 

also during free viewing of a natural movie. The natural-vision paradigm provides a 

dynamic and realistic behavioral context. As in the resting state, brain activity in this task 

state is seemingly complex and unpredictable, yet it exhibits coordinated cortical network 

patterns that support visual perception (Hasson et al., 2004). Here, we further asked whether 

the patterns of functional connectivity in the white matter would differ between the resting 

state and the natural-vision state. The answer to this question was expected to shed light on 

the functional relevance of white-matter fMRI. Briefly, high-dimensional ICA was used to 

decompose and de-noise WM-fMRI signals in the resting state and during a natural-vision 

task. From the de-noised data, we found that WM-fMRI signals were patterned into clusters 

and hierarchically organized in the resting state, whereas naturalistic visual stimuli drove 

more coherent signal fluctuations within the optic radiations, and the coupling between the 

WM pathways and the GM networks engaged in visual processing and perception.

Methods and Materials

Subjects

Thirteen healthy volunteers (25 ± 3 years old, 6 females, 10 right-handed, normal or 

corrected to normal vision) participated in this study in accordance with a protocol approved 

by the Institutional Review Board at Purdue University. Two subjects were excluded because 

they were self-reported to fall asleep during the sessions.

Experimental Design

Each subject underwent four fMRI sessions with two conditions. Two sessions were in the 

eyes-closed resting state, and the other two were during free-viewing of an identical movie 

clip (The Good, the Bad, and the Ugly, 1966). We chose this movie because it was 

previously used to obtain interesting findings on cortical gray-matter activity during natural 

vision (Hasson et al., 2004). Every movie-stimulation session began with a blank gray 

screen presented for 42 seconds, followed by the movie presented for 5 minutes and 37 

seconds (from 162:54to 168:33 minutes in the film), and ended with the blank screen again 

for 30 seconds. No sound was played during the movie. The resting-state sessions had the 

same duration as the movie-stimulation sessions. The session order was randomized and 

counterbalanced across subjects. The scanner environment was darkened to minimize 

external light exposure. Hereafter, we also refer to the movie stimulation condition as the 

task state, in contrast to the resting state.
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Data acquisition

Whole-brain structural and functional MRI images were acquired using a 3-Tesla Signa HDx 

MRI system (General Electric Health Care, Milwaukee, USA). A 16-channel receive-only 

phase array coil (NOVA Medical, Wilmington, USA) was used during all acquisitions. The 

fMRI data were acquired using a single-shot, gradient-recalled (GRE) echo-planar imaging 

(EPI) sequence (38 interleaved axial slices with 3.5 mm thickness and 3.5 × 3.5 mm2 in-

plane resolution, TR = 2000ms, TE = 35ms, flip angle = 78°, field of view = 22 × 22 cm2). 

T1-weighted anatomical images covering the whole head were acquired with a spoiled 

gradient recalled acquisition (SPGR) sequence (1×1×1 mm3 nominal resolution, TR/TE = 

5.7/2ms, flip angle = 12°).

Pre-processing

Pre-processing of the fMRI images was carried out with a combination of AFNI (Cox 1996), 

FSL (Smith et al. 2004), and MATLAB (Natick, MA). In brief, T1-weighted anatomical 

images were non-linearly registered to the Montreal Neurological Institute (MNI) brain 

template, using a combination of flirt and fnirt in FSL. T2*-weighted functional image time 

series were corrected for slice timing (using slicetimer in FSL), co-registered to the first 

volume within each series to account for head motion (using mcflirt in FSL), masked out 

non-brain tissues (using 3dAutomask in AFNI), aligned to the T1-weighted structural MRI 

(using align_epi_anat.py in AFNI), and registered to the MNI space with 3-mm isotropic 

voxels (using applywarp in FSL, and 3dresample in AFNI).

The first six volumes in the fMRI data were discarded to avoid any pre-steady-state 

longitudinal magnetization. Each session’s data was subjected to third-order de-trending and 

low-pass filtering (<0.1 Hz) using the regression and filtering toolboxes in MATLAB. For 

the movie sessions, we excluded data acquired during the blank gray screen presentation and 

further removed the first 6 volumes and the last 7 volumes of the movie to avoid any 

transient fMRI response during the movie stimulation.

Following the pre-processing steps, data analysis for the fMRI data was twofold: analysis 

within the WM-only and analysis within the GM-only. This was achieved by creating and 

applying a WM mask to the normalized fMRI images to isolate WM-only voxels. The WM 

mask was created from the LONI Probabilistic White Matter template in the MNI space 

(Shattuck et al. 2008) by setting a probabilistic threshold to a level of 0.85. This threshold 

was chosen to be very conservative so as to avoid possible partial volume effects close to 

GM/WM junctions; hence, the mask covered most but not all WM voxels. The thalamus was 

not included in the WM mask. The GM mask was derived by finding the intersection of the 

complement of the WM mask and the brain mask in the MNI template. Both the WM and 

GM masks were restricted to voxels within axial slices from z = −15 mm to z = 51 mm. 

Linear spatial smoothing (FWHM=6 mm) was then performed separately within the WM or 

GM voxels to avoid partial volume effects between them. Effectively, the voxels outside the 

mask were set to null, and thus did not contribute to the smoothed voxel intensity, while the 

spatially smoothed voxel time series was demeaned and variance normalized before any 

subsequent analysis.
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De-noising via Independent Component Analysis (ICA)

For each condition (i.e. the resting state and the task state), the fMRI data were separated 

into two sets for each of the two sessions from every subject. In a total of four sets of fMRI 

data, two were from resting state and the other two from the task state with naturalistic 

visual stimuli. The fMRI data were then temporally concatenated across subjects for each of 

the sets. The four concatenated fMRI time-series data allowed us to evaluate the test-retest 

reproducibility of the group-level ICA maps in the resting state and the task state. Group 

spatial ICA using the Infomax algorithm (Bell and Sejnowski 1995) was applied to each set 

of the concatenated data. This gave rise to 70 spatially independent components (ICs) with 

distinct temporal basis functions that yielded a sparse representation of the data; as such, 

voxels were considered to be synchronized (i.e. functionally related) within each component. 

To evaluate the test-retest reproducibility of each of the 70 ICs, we calculated the spatial 

cross correlations between the two sets of ICs for each condition. An IC in one set was 

assumed to be reproducible if there was a corresponding IC in the other set that was spatially 

correlated with this IC. We calculated the absolute values of the correlation coefficients and 

found the optimal pairing by maximizing the sum of the pair-wise absolute cross-correlation 

values. Here, the absolute cross-correlation value was used because spatially consistent ICA 

components might appear 180° out of phase from one another. Upon visual inspection, non-

reproducible components were regarded as noise and discarded, whereas the remaining 

components were re-assembled to generate the de-noised fMRI data for every session and 

every subject. For each condition, the de-noised fMRI data were further concatenated across 

the two sessions for each of the eleven subjects, giving rise to 22 sessions in total. Then, 

group ICA was applied again to the de-noised and concatenated data, generating about 30 

ICs that characterized the WM fMRI signals in the resting state or during the natural visual 

stimulation.

Following group ICA, we used dual regression (Filippini et al. 2009) against each subject’s 

fMRI data to extract subject-specific ICA maps in order to capture inter-subject differences 

(Tavor et al. 2016). Briefly, the first (multiple) regression applied to the spatial domain, 

using the group-level ICA maps as regressors to get individual time series for each subject 

and each component; the second regression applied to the time domain, using the obtained 

individual time series as regressors to get individual-level ICA maps.

Hierarchical Clustering based on Temporal Correlations

In both the resting state and the task state, the ICs of WM-fMRI signals were progressively 

grouped into clusters based on the cross-correlations of their corresponding time series and a 

complete-linkage hierarchical clustering algorithm (Dasgupta and Long 2005). At the 

beginning of the algorithm, each component was in a cluster of its own. These clusters were 

then progressively combined into larger clusters until all components ended up in the same 

cluster. At each step, the clusters separated by the ‘shortest distance’ (i.e. the largest 

temporal cross correlation) were combined. Such hierarchical clustering was visualized as a 

dendrogram, which showed the sequence of clusters merging and the distance at which each 

fusion took place (Cordes et al. 2002; Dasgupta and Long 2005; Wang and Li 2013).

Marussich et al. Page 5

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Comparison between the Resting and Task States

We also compared the reproducibility of WM-fMRI ICA components in the resting state 

versus the task state. For this purpose, the test-retest reproducibility (i.e. spatial cross 

correlations between repeated sessions of the same condition) was compared between the 

resting state and the task state. Specifically, after pairing the ICA components between 

session 1 and session 2 of either the resting state or the task state as aforementioned, the 

pairwise correlation coefficients were transformed into z scores. The z scores were 

compared between the two states, and the significance of their differences was evaluated by 

using a two-sample independent t-test with the significance level at 0.05.

We further compared the WM-fMRI ICA maps in the resting state with those in the task 

state. Specifically, we calculated the spatial cross correlations between every component in 

the resting state and every component in the task state. Then, individual components in the 

resting state were optimally paired to those in the task state to maximize the sum of cross 

correlations between all paired components. After pairing, the pair-wise cross correlations 

were further tested for statistical significance. To calculate the p value from the correlation 

coefficient, we used an approximate estimate of the spatial degree of freedom (DOF), as 

previously described elsewhere (Smith et al., 2009). The voxels were not independent 

samples due to spatial smoothing. For a conservative approximation, we considered 

independent samples as larger (than a voxel) cubes that included five voxels in each 

direction, given that the voxel size is 3mm and the smoothing filter has FWHM=6 mm. For a 

total of 7990 voxels in WM, this approximation yielded an estimated DOF of 64. To be even 

more conservative, we used DOF of 50 to account for other potential spatial dependency in 

data acquisition or processing. Although seemingly arbitrary, the above procedure yielded a 

reasonable approximate of the spatial degree of the freedom.

Functional relations between WM and GM Networks

Furthermore, we assessed the functional relationships between WM and GM networks at 

resting or during task. For this purpose, we first identified a number of functional networks 

within the cortical gray matter during the resting or task state. Specifically, GM-fMRI data 

were concatenated across all sessions from all subjects in the resting or task state. For either 

state, ICA was applied to the concatenated data to produce 70 spatially independent 

components, among which ~45 cortical networks were recognizable as previously reported 

resting state networks (Shirer et al. 2012), and retained for subsequent analyses.

We evaluated the temporal cross correlations between ICA components in WM and those in 

GM. The activity time series of every WM and GM component was extracted from each of 

the 22 sessions separately for the resting state and the task state. For every session of the 

resting or task state, temporal cross correlations were calculated between every GM 

component and every WM component, and then transformed to z scores. To test the 

significance of the cross correlation, the average z score was compared against zero by 

performing one-sample t-test to every pair of GM and WM components (p<0.05, DOF=21).
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Comparison with diffusion MRI

For both resting-state and task conditions, we thresholded the spatial ICA maps to delineate 

the shapes of WM structures revealed in individual components using the method described 

in Beckmann and Smith 2004. Briefly, we first calculated the z-statistic for each voxel and 

each ICA map by dividing the ICA maps by the estimated standard deviations of the voxel-

wise residuals. We further modeled the null distribution of each z-statistic map with a 

mixture of two Gaussian distributions (i.e. Gaussian Mixture Model (GMM)), and then 

calculated the voxel-wise posterior probability based on the estimated GMM. We then 

thresholded the ICA maps according to the voxel-wise posterior probability, which was set 

to 0.6.

For each condition, we then used the thresholded ICA maps to create a set of WM structures. 

Such structures, obtained with WM-fMRI in the resting or task state, were visualized in the 

open-source 3D Slicer toolkit (http://www.slicer.org) (Fedorov et al. 2012), and were 

compared with a diffusion tensor imaging atlas, the ICBM-DTI-81 white-matter labels atlas 

(Mori et al. 2008; Oishi et al. 2008).

Results

Spatially independent components of resting-state WM fMRI signals

We explored the spatiotemporal patterns of WM-fMRI data in the resting state by using 

ICA. 70 spatially independent components were extracted from all WM voxel time series, 

after data were temporally standardized and concatenated across all subjects and separately 

for the two repeated resting-state sessions (referred to as session 1 & session 2). 

Components from the two sessions were optimally matched into distinct pairs based on the 

spatial cross correlation between each component from session 1 and its corresponding 

component from session 2. This pair-wise cross-correlation provided the measure of intra-

subject reproducibility for each component. Twenty-eight out of the 70 components were 

found to exhibit relatively high intra-subject reproducibility (|r|=0.4028 ± 0.0276) and were 

paired between the two repeated sessions. Fig. 1 shows the spatial patterns of five example 

components that were found to be reproducible between session 1 (Fig. 1, left) and session 2 

(Fig. 1, middle). Many of the reproducible components appeared cluster-like (or non-fiber-

like), showing spatial distributions confined to focal regions in WM (e.g. Fig. 1 IC 1 and IC 

6). In contrast, some components were readily observed as a fiber-like distribution over a 

long distance, as in the optic radiations (e.g. Fig. 1, IC 2 and IC 13), and the corpus callosum 

(e.g. Fig. 1 IC 8).

We discarded those “noise” components that were spatially inconsistent between the two 

repeated sessions in order to improve the SNR of WM-fMRI data. The discarded 

components had either relatively lower reproducibility (|r|=0.1879 ± 0.0147) between 

session 1 and session 2, or spatially non-specific distribution most likely due to artifacts. 

Thus, we attributed the 28 reproducible components to the “signals” likely of neural origin, 

and attributed the 42 non-reproducible components to “noise”. Such “signal” vs. “noise” 

components accounted for 33.98% and 66.02% of the variance in WM-fMRI, respectively.
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After excluding all noise/artifact components, the signal components were reassembled to 

give rise to presumably de-noised WM-fMRI data. The de-noised data were then 

concatenated across the two resting-state sessions, and further decomposed into 31 spatially 

independent components for subsequent analyses. Here, a buffer (+3 ICs) was provided to 

account for the variation between the two sessions. Among the 31 components, two 

components were not consistent to the spatial maps produced by ICA in either session 1 or 

session 2; they were further discarded, leaving a total of 29 components for subsequent 

analyses. Some example components extracted from the de-noised data are shown in Fig. 1 

(right). All of the 29 components in the resting state are shown in Fig. 2.A.

Hierarchical Organization of WM-fMRI components

We assessed the temporal relationships between different components of the de-noised WM-

fMRI data. These components, although spatially independent, were temporally correlated 

with each other to a varying degree, with the absolute correlation coefficients ranging from 

0.00 to 0.27 (Fig. 2.B, bottom). These temporal cross-correlations were used to 

progressively merge the individual components into a hierarchical organization based on 

hierarchical clustering (Fig. 2.B, top). For example, bilateral optic radiations emerged from 

progressively merging multiple ICs: two adjacent ICs were first grouped into a unilateral 

fiber bundle connecting LGN to V1, and then it was paired with the homologous fiber 

bundle from the opposite hemisphere (Fig. 2.C). Similarly, adjacent segments in the corona 

radiata (Fig. 2.A – IC 17 and IC 28) were clustered to construct the overall fiber bundle (Fig. 

2.B). For comparison, we also applied the same hierarchical clustering analysis to cortical 

networks. Results showed that cortical networks were more tightly correlated and clustered 

than white-matter components (Fig. S1).

Spatiotemporal Structure of WM-fMRI during natural vision

Following this result, we asked whether the above intrinsic patterns and the hierarchical 

structure of WM-fMRI signals were preserved during complex, dynamic and realistic visual 

experiences. To address this question, we analyzed the WM-fMRI data during naturalistic 

visual stimulation using the same method applied in the resting state. Similar to the test-

retest reproducibility evaluated for the resting-state components (Fig. 3.A, left), some ICA 

components were reproducible across the two repeated movie stimulation sessions (Fig. 3.A, 

middle). Twenty-seven components were reproducible (|r|=0.5867 ± 0.0323) and were kept 

as signals, while other components was attributed to noise or artifacts and thus removed. The 

signal and noise/artifact components accounted for 34.69% and 65.31% of the variance in 

WM-fMRI, respectively, which was comparable to that of those in the resting state. Overall, 

the components during the visual task were more reproducible than those in the resting state 

(Fig. 3.A, right) (p<0.0001, two-sample t-test). As done for the resting state, we also 

concatenated the de-noised WM-fMRI data across the two movie sessions, and decomposed 

the concatenated data into 30 spatially independent components. Two components were not 

consistent with any of the components produced by ICA in either session 1 or session 2; the 

other 28 components were kept for subsequent analyses.

The task-state WM ICs mostly resembled those in the resting state (Fig. 3.B). Twenty-one 

out of the 28 components observed during the visual task were also observed in the resting 
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state, giving rise to one-to-one matched pairs with significantly correlated spatial patterns (|r| 

= 0.5306 ± 0.0298, p < 10−5 to p = 0.0207, uncorrected, paired IC 1 (rest) and IC 14 (task) 

were slightly above this threshold with p = 0.0710). For example, IC 3, IC 10, IC 27 were 

three ICA maps in the task state that were matched to IC 8, IC 14, IC 6 in the resting state 

(Fig. 3.B). Four components were not matched (|r| = 0.0868 ± 0.0182, p = 0.3208 to p = 

0.8611, uncorrected) in a one-to-one manner. For an example, see Fig. 3.B, IC 1.

To further characterize the consistency (and inconsistency) between the resting and task 

states, we compared the hierarchical relationships between spatially independent 

components in these two states. See Fig. 4.A for all 28 components in the task state. The 

independent components that were matched between the task and resting states were also 

found to bear a similar hierarchical organization in both states (Fig. 4.D). For example, the 

corona radiata began to emerge from clustering its three segments (IC 8, IC 23, and IC 17) 

through two hierarchical steps (Fig. 4.B). Among the components that were not matched 

between the task and resting states, a single component (IC 1) in the task state was found to 

encompass the bilateral optic radiations connecting LGN and V1 (Fig. 4.C). This 

observation that the bilateral optic radiations manifested themselves as a single component 

suggests that activity fluctuations within the optic radiations were more coherent during the 

visual stimulation than in the resting state, during which the optic radiations were segregated 

into multiple pieces (Fig. 2.C). Also note that during the task, the optic radiations (IC 1) 

were further clustered with a component corresponding to an anterior segment in the right 

inferior longitudinal fascicular (ILF) (IC 13), which is located near and posterior to the optic 

radiations (see Fig. 4.A & Fig. 4.D) and contains connections between associative visual 

areas and anterior temporal structures (Catani et al. 2003).

While the above results were obtained with group ICA, we also used dual regression to 

obtain the corresponding ICA maps from individual subjects. For both the resting state and 

the task state, the individual-level ICA maps were generally consistent with the group-level 

ICA maps (Fig. 5).

Interactions between WM and GM Networks

To further explore the functional role of the coherent signal within the optic radiations, we 

evaluated its coupling with cortical visual networks in GM by computing their temporal 

cross correlations. For this purpose, 70 spatially independent components were extracted 

from all GM voxel time series after concatenating every session and every subject for the 

visual task; among those, 47 components were recognizable as established intrinsic 

functional networks (Shirer et al. 2012). We identified four cortical networks that had the 

highest (and significant) positive cross-correlations with the optic radiations (p = 0.01 to 

0.047, one-sample t-test, uncorrected). As shown in Fig. 6A, all of these four networks were 

parts of the visual system: namely, the primary visual area (IC 4), higher order visual 

networks (IC 1 and IC 3), and a medial visual network (IC 2). These areas are involved in 

natural visual processing, as shown in previous studies (Hasson et al. 2004).

We performed this analysis on the resting-state data to assess the temporal relationships 

between the optic radiations and intrinsic visual networks in the absence of the visual task. 

As shown in Fig. S2, we identified four cortical networks in the resting state as the 
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counterparts to those vision-related components shown in Fig. 6.A. The optic radiations 

resting-state component was formed from a sum of the three optic radiations components 

(IC 11, IC 13, and IC 2) shown in Fig. 2.C; the time series was formed from the mean of 

those of the three components. However, unlike the task state (Fig. 6.B, left), the resting 

state did not exhibit any significant temporal cross correlations between the optical 

radiations and resting-state visual networks (p = 0.1003 to 0.9526, uncorrected) (Fig. 6.B, 

right).

However, head motion was a potential confounding factor to the above findings. We found 

that the head motion parameters (translations and rotations) exhibited on average 2.3 and 3.5 

times greater standard deviations in the resting state than in the task state, respectively. This 

difference was significant (p<0.00001, Wilcoxon rank sum test). Despite the significantly 

different head motion between the two states, this difference was less likely to account for 

the spatially and functionally specific findings about WM components and their interactions 

with GM networks, the time courses of which did not show the slow drift or abrupt changes 

that characterized the head motion. In addition, we were concerned about whether head 

movements in the task condition were task related; i.e. that common movements between 

sessions would occur at particular moments in the movie at particularly suspenseful or 

surprising points. To effectively capture sudden movements while ignoring slow drifts, we 

evaluated the time derivative of every motion-correction parameter and calculated its 

correlation between the repeated movie sessions within each subject. Only marginal 

correlation was found (r<0.08) for all six motion parameters. Therefore, head motion was a 

confound of major concern.

Relationships with white-matter structure

Finally, we asked whether the ICA maps obtained with WM-fMRI in the resting state and 

the task state were distributed along the axonal fiber tracts. For this purpose, we compared 

the thresholded ICA maps with white-matter tracts based on diffusion MRI using the ICBM-

DTI-81 white-matter labels atlas (Mori et al. 2008; Oishi et al. 2008) (Fig. 7). Qualitatively, 

for both the resting and task states, most of the ICA components of WM-fMRI data covered 

only segments of individual fiber tracts, without extending the full tract length. However, 

some components appeared to align well with major fiber bundles (e.g. the optic radiations, 

the corpus callosum, and the internal capsule). It suggests a complex structure-function 

relationship in the white matter, when observed with white-matter diffusion and functional 

MRI.

Discussion

Using data-driven analysis methods, we examined the spatiotemporal characteristics of 

fMRI time series in the cerebral white matter both in the resting state and during naturalistic 

visual perception. Results led to the following findings: 1) spatially independent components 

of resting-state fMRI signals in WM revealed reproducible cluster-like or fiber-like 

structures with synchronized spontaneous fluctuations within each structure; 2) different 

components were temporally correlated in a hierarchical manner, leading us to report the 

intrinsic functional organization of WM fiber tracts; 3) such intrinsic structures and their 

Marussich et al. Page 10

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hierarchical organization were mostly preserved during naturalistic visual stimulation; 4) 

however, a subset of these structures that were engaged in visual processing showed stronger 

synchronization within themselves and significant interactions with cortical visual networks. 

Therefore, fMRI signals in WM, like those in GM, may be utilized to uncover the intrinsic 

functional organization of WM, and to map axonal pathways that support neural signaling 

between cortical networks during complex tasks. The WM-fMRI methods as reported here 

and elsewhere (e.g. Gawryluk et al., 2014; Ding et al., 2016), as well as functional DTI 

methods (Mandl et al. 2008; Spees et al. 2013), may begin to uncover WM functionality in 

health and disease.

Spontaneous WM-fMRI signals reflect the hierarchical organization of axonal fibers

Spatial ICA has been widely used to map large-scale resting state networks (RSN) 

(Beckmann and Smith 2004; Calhoun et al. 2008), especially when one seeks a relatively 

lower number of components. For a large-scale RSN that typically includes multiple discrete 

GM regions (e.g. the default-mode network), those regions are temporally correlated (Van 

Dijk et al. 2010) and structurally inter-connected through axonal fibers (Greicius et al. 

2009). In other words, such large-scale RSNs have corresponding structural substrates to 

support neural signaling between different GM regions in the RSN (van den Heuvel and 

Sporns 2013). It is thus tempting to hypothesize that the WM substrate underlying a GM 

network carries synchronized activity within itself, whereas the WM substrates underlying 

different GM networks are temporally distinct in order to support their different functions. If 

this hypothesis were true, one would expect to be able to use ICA to decompose resting-state 

WM-fMRI signals into spatially independent and temporally distinct WM sub-systems that 

consist of axonal fibers connecting regions comprising individual GM networks.

However, spatially independent components of resting-state WM-fMRI signals did not 

appear as long-range fiber tracts; instead, they were mostly shown as cluster-like (or non-

fiber-like) patterns, appearing as local segments of fiber tracts with a varying length. 

Nevertheless, these seemingly fragmented components were not isolated to each other, but 

exhibited a varying level of temporal cross correlations. These fragments tended to be more 

correlated if they were parts of the same fiber tract; combining these correlated components 

gave rise to the entire fiber tract; the combined fiber tract on one hemisphere tended to be 

correlated with the homologous fiber tract in the opposite hemisphere. As such, functional 

networks of WM fiber tracts did not readily result from a single-level decomposition of the 

WM-fMRI signals; instead, they emerged progressively as short segments of fiber tracts 

were combined into a hierarchical organization based on their temporal relations.

The cluster-like appearance and hierarchical organization of the WM-fMRI ICA components 

might be counter-intuitive given what is known about neuronal structure. While the dendrites 

and the soma of a neuron occupy a tiny volume in GM, its axon runs a long distance in WM 

for relaying neuronal spikes. Different locations along the axon carry the same functional 

information, and thus are expected to be temporally synchronized along a long and 

continuous pathway in the fMRI time scale. However, the spatial resolution of fMRI is 

insufficient to resolve axons. An fMRI voxel samples a cubic piece of a large axonal bundle, 

containing a mixture of neuronal activity along every axon in the bundle. The fact that axons 

Marussich et al. Page 11

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are routed and bundled differently at different voxels is expected to cause discontinuity in 

the spatial patterns of temporal synchronization in the fMRI signal. We speculate that this 

discontinuity is a major reason why ICA applied to coarsely sampled WM-fMRI data tend to 

reveal segments of fiber tracts as opposed to the intact long-range fiber tracts.

Also contributing to the discontinuity and segregation of the WM-fMRI signal is the 

orientation-dependence of T2*-sensitive MRI in WM. Magnetic susceptibility contrast in 

WM is anisotropic due to the highly oriented water compartments of the axonal bundles 

(Lee et al. 2011; Duyn 2013). This may in part explain why regions with higher densities of 

parallel axons, such as the corpus callosum, are more reliably detected in previous WM-

fMRI activation studies. Interestingly, Ding et al. showed that the tensor of local temporal 

correlations in WM-fMRI signals demonstrated similar orientations as those observed with 

diffusion MRI (Ding et al. 2013), and could be specifically altered by tasks (Ding et al. 

2016). Combining local and global correlation structures of WM-fMRI is a potentially 

promising direction for future studies.

Natural-vision task reshapes the WM functional organization

It has been increasingly recognized that spontaneously emerging network patterns are 

functionally significant since such activity patterns are well preserved from the resting state 

to various task states (Kenet et al. 2003; Smith et al. 2009; Wilf et al. 2015). Findings from 

the present study further extend this conclusion from the gray matter to the white matter. 

During naturalistic visual stimulation, the WM-fMRI signals exhibited reproducible 

independent components with similar spatial distributions as those observed in the resting 

state. Therefore, like those in the cortex, resting-state fMRI patterns within WM also reflect 

intrinsic functional units that are recruited to perform complex tasks. Although intrinsic 

functional structures in WM were preserved during the naturalistic visual task, the task 

enhanced the temporal synchronization within the task-related WM structures, as well as 

between the task-related WM structures and GM networks. The former is supported by the 

finding that bilateral visual pathways emerge as a single component, as opposed to the 

multiple hierarchical components found during the resting state; this implies that a stronger 

level of synchronization between the left and right optic radiations occur along with the tract 

emanating from LGN. The latter is supported by the finding that the WM component 

showing optic radiations is significantly correlated with several cortical visual networks 

during the task, but not during resting-state (also discussed later).

Previous studies have shown that natural vision evokes reliable cortical fMRI responses 

(Hasson et al. 2004; Jääskeläinen et al. 2008) and spiking activity (Belitski et al. 2008; 

McMahon et al. 2015) within and across subjects. Interestingly, Mukamel et al. have shown 

significant correlations between spiking activity and fMRI response between different 

subjects watching the same movie (Mukamel et al. 2005). Furthermore, Astafiev et al. have 

demonstrated a link between BOLD fMRI in the MT+/LO and FA (measured through DTI) 

in the left optic radiation in mTBI patients (Astafiev et al. 2016). Extrapolating these studies 

and the findings from this study, we speculate that natural visual perception induces reliable 

and synchronized WM activity, which gives rise to spiking activity as the direct effect, and 

the fMRI signal as the secondary indirect effect. While this speculation is reasonable, it 
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remains to be confirmed, ideally with simultaneous white-matter neural recording and fMRI 

imaging.

Biophysical and physiological origins of WM-fMRI

Here, the so-called “fMRI” signal refers to the temporal variation of voxel intensity in 

gradient-echo echo-planar imaging (GE-EPI) images that primarily carry the T2*-weighted 

contrast. Multiple sources contribute to this signal, but those sources may or may not bear 

any relationship to underlying neural activity (Bianciardi et al. 2009). For the signals from 

gray-matter voxels, the source related to neural activity is blood oxygenation level dependent 

(BOLD) (Ogawa et al. 1990). The BOLD fluctuation reflects the combined effects of 

cerebral blood flow (CBF), blood volume (CBV), and the metabolic rate of oxygen 

(CMRO2) (Buxton et al. 1998). Such hemodynamic and metabolic changes are coupled to 

neural activity in terms of both synaptic input and spiking output (Logothetis et al. 2001; 

Smith et al. 2002). While the basis of fMRI is complex, as it is a topic of active research and 

debate (Leopold and Maier 2012), extra caution should be exercised when interpreting WM-

fMRI.

Is the WM-fMRI signal BOLD? Despite a lower density of vasculature, the white matter has 

the vascular capacity for MRI-detectable hemodynamic changes (Gawryluk et al. 2014). 

Two defining features of the BOLD mechanism, cerebrovascular reactivity (Ogawa et al. 

1990) and echo-time dependence (Kundu et al. 2012), have been both demonstrated for the 

WM-fMRI signal. The WM vasculature dilates in response to hypercapnia, showing 

detectable CBF and BOLD responses in the white matter, although the responses have a 

lower magnitude than in the gray matter (Rostrup et al. 2000; Thomas et al. 2014). The 

fluctuation and correlation of WM-fMRI signals at rest vary with different echo times, 

reaching their maxima at a similar echo time as the T2* in the gray matter (Ding et al. 2016). 

In addition, metabolic changes to neuromodulation are observable in the white matter 

(Weber et al. 2002). Astrocytes, which mediate neurovascular coupling in gray matter 

(Petzold and Murthy 2011), are also present in white matter (Waxman and Ritchie 1993; 

Rash 2010). Therefore, all of the necessary machinery for neurometabolic and neurovascular 

coupling, are generally in place in the white matter to give rise to detectable BOLD signals.

If it is BOLD, does the WM-fMRI signal report neural activity? WM-fMRI signals show 

task-dependent activations as reviewed in (Gawryluk et al. 2014). Their correlational 

structures are reorganized from the resting state to the task state, as shown in this study, as 

well as in (Ding et al. 2016). Therefore, the WM-fMRI signals are functionally relevant, and 

hence report, at least in part, neural activity in the white matter. However, it is not trivial and 

largely speculative to posit the specific type of neural activity that is coupled with the WM-

fMRI signal. The BOLD signal is an indirect measure of neural activity (Logothetis and 

Wandell 2004). In the gray matter, the neuronal origin of the BOLD signal may be synaptic 

activity observed with local field potential (Logothetis et al. 2001; Viswanathan and 

Freeman 2007), or spiking activity observed with single or multi-unit activity (Smith et al. 

2002; Mukamel et al. 2005). Synaptic activity (neuronal input) and spiking activity 

(neuronal output) are inherently linked with one another most of the time; their individual 

couplings with the BOLD signal are in fact comparable (Logothetis et al. 2001). When they 
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have been dissociated under special experimental conditions, the BOLD signal has been 

found to be more coupled with synaptic activity (Viswanathan and Freeman 2007; Rauch et 

al. 2008), although counter-examples have also been demonstrated (Pelled et al. 2009). As 

such, it is still not quantitatively understood which specific types of neuronal activity drive 

BOLD-fMRI. It is at least plausible that spiking activity is partly coupled with the BOLD 

signal, even in the gray matter. In the white matter, neuronal activity is mostly spiking 

activity propagating along the axon, with little synaptic activity (Gawryluk et al., 2014). This 

leads us to hypothesize that the WM-fMRI signal is BOLD and indirectly coupled to spiking 

activity. Nevertheless, this hypothesis is speculative and remains to be tested, while the 

signaling pathway that potentially links spiking activity to vasodilation also needs to be 

elucidated. To the best of our knowledge, there is no study directly addressing the 

relationship between spiking and fMRI signals in the white matter.

Methodological considerations

We did not observe significant interactions between WM and GM at rest, but during task 

(Fig. 6.B). A possible explanation for this observation was that the task might drive greater 

WM activity fluctuations, and thus a higher SNR. We did not expect the difference in SNR 

as a major contributor, because the fraction of the data variance explained by the signal 

versus noise components was comparable for the task state and the resting state. Given 

future improvement in the SNR of WM-fMRI, we anticipate that significant WM-GM 

correlations may also be observable even at rest, while tasks would further strengthen such 

correlations.

As mentioned in Introduction, the separation of the WM voxels from the GM voxels is an 

essential preprocessing step in this work, in order to deal with the different dynamic range 

and correlational structure in WM and GM. When we performed a whole-brain ICA analysis 

on resting state fMRI data without WM-GM separation (the number components was 70), 

most of the components were gray-matter networks, as previously shown in numerous 

resting state fMRI studies. There were a few components for which the spatial distributions 

were more in the white matter than in the gray matter, as shown in Fig. S4. Given the very 

small number of white-matter-like components, the components tended to capture the 

patterns with the strongest degree of coherence (e.g. the global white-matter pattern, the 

optic radiations, and the corpus callosum). Such a whole-brain analysis did not allow for 

finer-grained pattern analysis and hierarchical clustering in the white matter, as enabled by 

only looking at the white-matter voxels.

Spatial smoothing was also helpful to improve the SNR of WM-fMRI. When we performed 

the white-matter ICA analysis on data without spatial smoothing, some of the general 

features are still observed, even without smoothing (Fig. S3). However, without spatial 

smoothing, the overall reproducibility of the ICA maps was lower (Fig. S3.A). Given the 

same criteria of selecting signal versus noise ICA components, we were only able to identify 

less than 10 “signal” components in the white matter, making the denoising process more 

challenging. However, when we kept an identical number of components, we found 

qualitatively similar results in that components showing optic tracts appeared unilateral in 
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the resting state (Fig. S3.B), but bilateral in the task state (Fig. S3.C). Thus, the spatial 

smoothing is a helpful preprocessing step but not as essential as is the WM-GM separation.

Head motion is generally a concern in fMRI (Van Dijk et al. 2012) and is likely a 

confounding factor in our WM-fMRI findings. In this study, we found that the resting state 

sessions had significantly more head motion than the task state, likely because the 

engagement in the natural movie helped the subjects restrain their heads. Although we could 

not rule out the potential effects of head motion, we considered it as a minor confound to the 

WM-fMRI signals and components for the following reasons. First, the effects of head 

motion usually occur at the borders of different tissues (e.g. GM versus WM). As mentioned 

before, we used a conservative WM mask so as to avoid voxels around the GM-WM 

borders. Second, most of the head motion parameters varied in time as slow drifts, which 

were discounted as the WM-fMRI signals were detrended (by removing up to 3rd order 

polynomial functions). Furthermore, the ICs kept in the ICA-based denoising procedure 

were consistent across sessions and subjects, unlikely to be attributable to head motions. The 

time courses of the “signal” components also did not show either any signal drift or any 

abrupt change, which likely arose from head motion. Finally, it is worth noting that overall, 

our results demonstrate that head movements occurring during the task are unlikely to be 

task-related.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reproducibility
A sample of reproducible components from Session 1 to Session 2, along with the 

corresponding de-noised components that consisted of information from both sessions. The 

z-coordinate (mm) of the position of each axial image is shown in the lower right corner. IC 

#8 corresponds to the posterior (splenium) corpus callosum. IC #1 corresponds to the right 

forceps minor. IC #6 corresponds to part of the cingulum. IC #2 corresponds to part of the 

optic radiations. IC #13 also corresponds to a part of the optic radiations.
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Figure 2. Hierarchical clustering of WM ICs in the resting state
A. 29 resting-state components were obtained after de-noising. B. The dendrogram used in 

the hierarchical clustering (top) with the corresponding temporal correlation values between 

WM ICs. C. Two portions of the left optic radiation were first clustered together, followed 

by clustering with a portion of the right optic radiation. For all axial slices in A and C, the z-

coordinate (mm) is shown in the lower right corner.
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Figure 3. Reproducibility of ICA components
A. Reproducibility within the resting state or the task state. The spatial maps between 

session 1 and session 2 were optimally matched into pairs sorted in descending order of their 

spatial cross correlations. The matrices show the spatial correlations of one session’s 70 

components to the other session’s 70 components, for either the resting state (left) or the 

movie task state (middle). The diagonal elements are the spatial correlations between 

individually ‘paired’ components. The ‘paired’ components generated by the movie task 

demonstrated stronger spatial correlations with one another than in the resting state (right). 
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B. Rest and task comparison of WM components. Four example pairs of components 

obtained from resting-state (right) and task-state (left) are shown. While the first row shows 

notably different maps, the other three rows show similar patterns. The z-coordinate (mm) of 

the position of each axial image is shown in the lower right corner.

Marussich et al. Page 23

Neuroimage. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Task-state WM activity patterns
A. 28 task components were obtained after de-noising. The component number is shown in 

the top left corner. B. The dendrogram used in the hierarchical clustering (top) with the 

corresponding temporal correlation values between WM ICs during the naturalistic visual 

task. C. Hierarchical clustering of task unrelated components – (right anterior corona 

radiata). Two portions of a single tract were paired together, which were then paired with a 

more dorsal portion. D. Task-related component. One component shows the optic radiations 
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emanating from the LGN. For all axial slices in A, C, and D, the z-coordinate (mm) is 

shown in the lower right corner.
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Figure 5. 
ICA maps from individual subjects obtained through dual regression in resting-state (A) and 

during the task (B). For each state, the left-most column shows the group level map; the right 

columns show the map obtained from an individual subject using this method. The z-

coordinate (mm) is shown in the lower right corner.
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Figure 6. 
Functional relationships between WM and GM networks. A. During natural visual 

perception, the optic radiations in WM (OR) were temporally correlated with four cortical 

visual networks in GM (ICs #1, #2, #3, and #4). Shown next to each connection is the 

average z-transformed cross correlation between the corresponding WM and GM regions. 

The z-coordinate (mm) is shown in the lower right corner. B. Such temporal correlations 

were statistically significant in the task state (left), but not in the resting state (right). These 

functional connectivity relationships are presented as OR-1 (i.e. optic radiations cross-
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correlation with cortical visual IC #1), OR-2, OR-3, and OR-4. The bar height indicates the 

average z-transformed cross correlation. The error bar indicates the standard error of the 

mean.
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Figure 7. Structural vs. functional parcellation of the white matter
The first row shows the white-matter parcellation based on diffusion MRI (JHU ICBM-

DTI-81 atlas). The second and third rows show the white-matter structures delineated from 

the thresholded ICA maps obtained from resting state fMRI or natural-vision task fMRI 

data, respectively.
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