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Abstract

Endocrine disrupting chemicals (EDCs) may increase the risk of childhood diseases by disrupting 

hormonally mediated processes critical for growth and development during gestation, infancy, or 

childhood. The fetus, infant, and child may have enhanced sensitivity to environmental stressors 

like EDCs due to rapid development and greater exposure to some EDCs that results from their 

developmentally appropriate behavior, anatomy, and physiology. This review summarizes 

epidemiological studies examining the relations of early-life exposure to bisphenol A (BPA), 

phthalates, triclosan, and perfluoroalkyl substance (PFAS) with childhood neurobehavioral 

disorders and obesity. The available epidemiological evidence suggests that prenatal exposure to 

several of these ubiquitous EDCs is associated with adverse neurobehavior (BPA and phthalates) 

and excess adiposity or increased risk of obesity/overweight (PFAS). Quantifying the effects of 

EDC mixtures, improving EDC exposure assessment, reducing bias from confounding, identifying 

periods of heightened vulnerability, and elucidating the presence and nature of sexually dimorphic 

EDC effects would result in stronger inferences from epidemiological studies. Ultimately, better 

estimates of the causal effects of EDC exposures on child health could help identify susceptible 

sub-populations and lead to public health interventions to reduce these exposures.

Introduction

Accumulating research shows that environmental stressors during gestation, infancy, and 

early childhood are risk factors for diseases in childhood and adulthood.1,2 These studies 

demonstrate that perturbation of sensitive biological processes during distinct periods of 

development can increase the risk of adverse health outcomes years or decades after 

exposure to the stressor. For example, exposure to environmental chemicals, 

pharmaceuticals, tobacco smoke, alcohol, and stress increase the risk of obesity, type 2 

diabetes, reproductive disorders, neurodevelopmental disorders/deficits, and cancer.3–9 Well-

established examples include the increased risk of vaginal clear cell carcinoma following 

prenatal diethylstilbestrol exposure; cognitive decrements among children with prenatal or 

childhood exposure to lead or mercury; and childhood obesity among offspring born to 

smokers, despite lower birth weight.3–5,10
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Environmental chemical exposures are one stressor that may adversely affect normal human 

development. Endocrine disrupting chemicals (EDCs) are a class of chemicals that could 

increase the risk of disease across the lifespan by altering the homeostasis or action of 

endogenous hormones or other signalling chemicals of the endocrine system.11 EDCs may 

increase the risk of disease by altering the production, release, transport, metabolism, 

binding, action, or elimination of endogenous hormones that program or maintain normal 

growth and development (Figure 1). There is particular concern that the fetus, infant, or 

child may have higher exposure to some EDCs or be more vulnerable compared to adults.

The fetus, infant, and child may have higher exposure to some EDCs than adults. because of 

developmentally appropriate differences in diet, behavior, physiology, anatomy, and 

toxicokinetics.12 For instance, infants and children may have higher exposure to some EDCs 

than adults because they consume more water and greater quantities of specific foods, and 

have higher ventilation rates, intestinal absorption, surface area to volume ratios, and hand-

to-mouth activity.13 In addition, breastfed infants may have higher serum concentrations of 

some peristent EDCs than their mothers becaues of lactational exposure.14

In addition to higher exposure to some EDCs, the fetus, infant, and child may be more 

sensitive to the effects of EDCs than adults for two reasons. First, differences in 

toxicokinetics can result in higher circulating or tissue concentrations of an EDC for a given 

dose. For example, compared to adults, the fetus has lower levels of several cytochrome 

P450 enzymes that metabolize environmental chemicals and pharmaceuticals.15,16 Second, 

there are many time-dependent and synchronized processes that are programmed during 

early development that could increase the risk of childhood disease if perturbed. For 

instance, disruption of neurulation, neuronal differentiation/proliferation/migration, 

gliogenesis, synaptogenesis, dendritic growth, myelination, apoptosis, synaptic pruning, or 

neurotransmitter systems could increase the risk of behavioral disorders or cognitive 

deficits.17,18 In addition, epigenetic mechanisms, some of which are hormonally regulated, 

may mediate some of the effects of early life EDCs exposures on long term health 

outcomes.19 Thus, there is concern that early life exposure to EDCs may increase the risk of 

childhood diseases, including neurodevelopmental disorders and obesity. 20,21

EDCs may increase the risk of childhood neurodevelopmental disorders by interfering with 

early life thyroid hormone signaling or metabolism. Thyroid hormones play a critical role in 

neuronal migration, synaptogenesis, and myelination during gestation and childhood.22 Even 

clinically non-significant variations in maternal thyroxine or thyroid stimultaing hormone 

(TSH) levels during pregnancy are associated with reduced cognitive abilities, 23 attention-

deficit hyperactivity disorder (ADHD) symptoms,24 and increased autism risk.23–26 Studies 

show that the timing of thyroid hormone availability influences the neurobehavioral 

phenotype. Gestational thyroxine reductions are associated with deficits in visual processing, 

visuomotor abilities, and motor skills, while postnatal reductions are associated with deficits 

in language, fine motor skills, attention, and memory.27–30 That both pre- and postnatal 

thyroid hormones are necessary for different aspects of neurodevelopment illustrates the 

potential time-dependent sensitivity of the developing brain to thyroid hormone disruptions.
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Early life EDC exposures may perturb neuroendocrine systems involved in growth, energy 

metabolism, appetite, adipogenesis, and glucose-insulin homeostasis to promote childhood 

obesity, cardiometabolic dysfunction, and liver dysfunction.31–34 These perturbations may 

lead to a ‘thrifty phenotype’ that promotes more efficient energy storage, rapid early life 

weight gain, and excess adipose mass.35–41 Rapid growth and excess adiposity lead to 

increased circulating levels of free fatty acids, in turn causing a cascade of metabolic 

changes that reduce the capacity for liver and muscle to absorb, store, and metabolize 

glucose,42–44 which in turn casues increased pancreatic insulin secretion and resistance. In 

the setting of insulin resistance, excess adipose tissue lipolysis contributes to increased 

delivery of free fatty acids to the liver, de novo hepatic lipogenesis, accumulation of 

triglycerides in the liver vacuoles, and hepatic steatosis (i.e., non-alcoholic fatty liver 

disease).45

Despite their seemingly unrelated nature, shared neuroendocrine pathways could be 

disrupted by EDC exposures to influence the risk of both childhood obesity and 

neurodevelopment disorders (Figure 1).46–48 Indeed, the prevalence of excess adiposity is 

higher among children with behavioral disorders, like attention-deficit hyperactivity disorder 

(ADHD), and obese children have lower academic achievement, impaired attention and 

working memory, and reduced cortical thickness and white matter integrity compared to lean 

children.49–51 Moreover, up to 30% of the genes associated with adiposity are the same as 

those associated with processing speed.52 Finally, increased impulsivity, a key feature of 

ADHD, is related to food responsivity in adolescents53 and administration of the 

adipocytokine ghrelin to rodents increases impulsive behaviors.54

There is concern over the health effects of EDC mixtures.55 Despite biomonitoring studies 

documenting that humans are exposed to dozens of potential EDCs across the lifespan and 

that some EDC exposures are correlated with each other,56,57 most epidemiological studies 

have examined the health effects of EDCs as if they occur in isolation from one another. 

Without accounting for EDC mixtures, the available literature may fail to quanitfy the 

synergistic or cumulative healht effects of EDCs, as well as confounding due to correlated 

co-pollutants.

Given the above, this narrative review has three objectives. First, this review will discuss 

epidemiological studies examining associations between early-life exposure to several EDCs 

and childhood neurodevelopmental disorders and obesity. It will focus on select EDCs for 

which there is widespread general population exposure, specifically phthalates, bisphenol A 

(BPA), perfluoroalkyl substances (PFAS), and triclosan (Table 1). There are other excellent 

reviews for readers interested in chemicals with declining exposure that have been banned or 

phased out of production (e.g., organochlorine compounds).58 As a second objective, this 

review will describe some limitations to making stronger inferences from epidemiological 

studies about the impact of EDC exposures on child health and propose how researchers 

might address these limitations through better study designs and methods. Finally, this 

review closes with some guidance for clinicians to address patients’ concerns about EDC 

exposure reduction.
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Phthalates

Phthalate Uses, Exposure, and Measurement

Phthalates are a class of EDCs used in a multitude of consumer products, including personal 

care products, medications, and plastics (Table 1). Biomonitoring studies from around the 

world indicate that there is universal phthalate exposure among pregnant women, infants, 

and children.59–72 Phthalate exposure occurs through ingestion, inhalation, or dermal 

absorption.73–76 Additionally, phthalates can cross the placenta, resulting in exposure to the 

fetus.77

After entering the body, phthalates are rapidly hydrolyzed to their respective monoester 

metabolites (Table 1).78 Low molecular weight phthalates (di-ethyl phthalate [DEP], di-n-

butyl phthalate, and di-iso-butyl phthalate) are excreted in the urine as glucuronide or sulfate 

conjugated hydrolytic monoesters, while mono-2-ethylhexyl phthalate, the hydrolytic 

metabolite of di-2-ethylhexyl phthalate (DEHP), undergoes additional enzymatic oxidation 

before being conjugated and excreted. Although phthalates do not persist in the body and 

have short biological half-lives (<24 hours), there is repeated, episodic, and long-term 

exposure. Phthalate exposure is assessed using urine biospecimens since phthalates are 

predominately excreted in the urine and blood levels, which are considerably lower, may be 

subject to exogenous contamination during sample collection, storage, or processing.79

Misclassification of phthalate exposure is a concern in epidemiological studies due to their 

short biological half-lives and the episodic nature of phthalate exposures from diet (e.g., 

DEHP) or personal care products (e.g., DEP). To address this concern, accurate phthalate 

exposure assessment necessitates the collection and analysis of multiple urine samples.80

Biological Mechanisms of Phthalate Action

Phthalates may interfere with the action or metabolism of androgens, thyroid hormones, and 

glucocorticoids. Some phthalates are anti-androgenic and reduce testicular testosterone 

production by decreasing the expression of genes involved in steroidogenesis and steroid 

trafficking.81,82 Animal and human studies show that some phthalates may reduce thyroxine 

and triiodothyronine concentration in pregnant women and children,83–85 antagonize T3 

binding to thyroid receptor-β,86 reduce cellular T3 uptake,87 and affect transcription of the 

sodium-iodine transporter.88 Phthalates can also inhibit 11-β-hydroxysteroid 

dehydrogenase-2, which deactivates cortisol.89 In addition, phthalate exposure may affect 

offspring health by causing oxidative stress90 or via epigenetic re-programming of the fetus 

and placenta.91

There is concern about the health effects of phthalate mixtures since humans are exposed to 

multiple phthalates at once and rodent studies demonstrate that phthalates have 

concentration additive effects on fetal androgen production.82,92 Thus, the aggregate of 

individual phthalate exposures may have an additive impact on human health since 

individual phthalates share a common mechanism of action.
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Phthalates and Neurodevelopment

Six publications from four prospective cohort studies report that prenatal exposure to several 

different phthalates is associated with ADHD behaviors,59,60,93,94 autistic behaviors,61 

reduced mental and psychomotor development,60,62 emotional problems,60 and reduced 

IQ.63 In a prospective cohort of 328 mothers, the reductions in child IQ associated with 

increasing maternal urinary phthalate concentrations were as large as or larger than the 

cognitive decrements observed with childhood lead exposure (5th vs. 1st quintile: 7-points; 

95% confidence interval [CI]: 2, 11).3,63 It is important to note that three other publications 

did not find associations between prenatal phthalate exposure and child neurobehavior.64–66

Three publications report that childhood exposure to some phthalates is associated with 

reduced cognitive abilities65 and behavioral problems.67,68 However, these studies were 

cross-sectional and reverse causality may explain these findings.

In summary, the epidemiological literature to date suggests that prenatal phthalate exposure 

may be associated with behavioral problems and cognitive decrements in children. 

Inconsistencies across studies may be due to differences in the timing of when phthalate 

exposure was assessed (e.g., early vs. late gestation), misclassification of phthalate exposure 

from studies using a single urine sample to assess exposure, or differences in child age at 

neurodevelopment assessment.

Phthalates and Adiposity/Obesity

Three publications from prospective cohorts examined prenatal phthalate exposure and 

childhood adiposity.70–72 One publication reported that prenatal DEHP exposure is 

associated with decreased body mass index (BMI) in boys and increased BMI in girls,70 

whereas another publication found that non-DEHP phthalate exposures were associated with 

decreased BMI in boys, but not girls.71 A third publication did not report any association 

between prenatal phthalate exposure and childhood adiposity.72 In a pooled cohort including 

US participants from two of the previously mentioned cohort studies, increasing maternal 

urinary mono-3-carboxypropyl phthalate concentrations during pregnancy were associated 

with a doubling in the risk of being overweight or obese (95% CI: 1.2, 4.0).95

Four publications have examined childhood phthalate exposure and adiposity.71,96–98 Three 

of these reported that childhood exposure to DEP was associated with excess adiposity and 

increased prevalence of obesity or excess adiposity,98 but another did not.71 In a prospective 

cohort of over 1,000 US girls, higher DEP exposure at 6–8 years of age was associated with 

increased BMI scores and waist circumference at 7–13 years of age.97 In a cross-sectional 

study of US children, increasing urine concentrations of low molecular weight phthalates 

was associated with a 22% increase in the prevalence of obesity.99

In summary, the associations between early-life phthalate exposure and child adiposity or 

obesity risk have been inconsistent and do not support the hypothesis that phthalates are 

chemical obesogens. The one exception to this was the association between childhood DEP 

exposure and child adiposity or obesity prevalence. However, this association may be due to 

children with higher adiposity also having greater surface area, leading to the application of 
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greater amounts of phthalate-containing personal care products to their skin, which in turn 

results in higher urinary MEP concentrations.99

BPA

BPA Uses, Exposure, and Measurement

BPA is used to produce polycarbonate plastics and resins that are used in a wide range of 

consumer products (Table 1). Oral ingestion is the predominant exposure route since BPA 

can leach into food and beverage containers; however, dermal absorption and inhalation may 

be additional routes of exposure among persons working with BPA-containing 

receipts.100–102 BPA is excreted in the urine as glucuronide/sulfate conjugates, does not 

persist in the body, and has an estimated biological half-life of ~6 hours.103 BPA exposure is 

assessed by measuring urine concentrations of free and conjugated BPA. Urine is used since 

BPA is almost exclusively excreted in the urine, and blood levels are considerably lower and 

subject to exogenous contamination.79 Biomonitoring studies around the world indicate 

nearly universal BPA exposure among pregnant women, infants, and children.56,64,104–120 

Much like some phthalates, urinary BPA concentrations have considerable within-person 

variation due to diet being the predominant source of exposure. Thus, it is essential to collect 

multiple urine samples to ensure accurate exposure assessment.

Biological Mechanisms of BPA Action

BPA may interact with a variety of hormonal systems that affect growth, metabolism, and 

neurodevelopment. Dodds and Lawson recognized BPA as a weak estrogen in 1936.121 BPA 

is a weak agonist of the nuclear estrogen receptors α and β compared to estradiol.122 

However, BPA may also act on plasma protein bound estrogen receptors allowing BPA to 

interfere with estrogenic signaling at nanomolar and picomolar levels.123,124 In vitro studies 

show that BPA may affect androgen/estrogen concentrations by inhibiting key enzymes 

involved in gonadal hormone synthesis and metabolism,125 but results from human studies 

are not consistent.126–128 Rodent studies have found that prenatal BPA exposure is 

associated with higher T4 levels in offspring129 and thyroid-specific gene expression.130 

Some epidemiological studies show that BPA exposure is associated with altered maternal, 

neonatal, or adolescent thyroid parameters.131–133

BPA and Neurodevelopment

In 2008, the National Toxicology Program concluded that there was “some concern” over 

the effect of BPA on neurobehavioral endpoints based on findings in animal studies.134 

Since then, there have been eight studies from five prospective cohorts examining prenatal 

BPA exposure and child neurobehavior.64,110–116 Four publications from three of these 

prospective cohorts reported that prenatal BPA exposure was associated with more 

internalizing behaviors in children, with stronger associations in boys than girls.110,113–115 

Two publications from another cohort reported that prenatal BPA exposure was associated 

with more internalizing and externalizing behaviors in girls, but not boys.111,112 One 

publication reported that prenatal BPA concentrations were associated with increased risk of 

ADHD-related behaviors at 4 years of age, with stronger associations in boys.116 Two other 

publications have reported that prenatal urinary BPA concentrations were not associated 
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with parent-reported reciprocal social behaviors.61,64 The association between prenatal BPA 

exposures and children’s cognitive abilities has not been thoroughly examined, with one 

study reporting that prenatal urinary BPA concentrations were associated with parent-

reported executive function in 3-year old girls.112

Seven publications have examined the relation between childhood BPA exposures and 

behavior problems or ADHD-related behaviors.67,110,112–114,135,136 Generally, the results 

are inconsistent. Some report that childhood BPA exposures were associated with ADHD 

behaviors in boys,135 ADHD behaviors in both boys and girls,135 anxious/depressive/

aggressive behaviors in girls,110,113,114 or learning problems.137 Some publications report 

null associations between childhood BPA exposures and neurobehavior.67,112

In summary, these studies suggest that both prenatal and postnatal BPA exposure is 

associated with parent-reported behavior problems in children, but there are inconsistencies 

across these studies with regard to the period of life with the greatest vulnerability to 

exposure (prenatal vs. infancy vs. childhood) and sex-specific effects. The heterogeneity of 

these findings could be due to the substantial within-person variation of urinary BPA 

concentrations that results in BPA exposure misclassification.

BPA and Adiposity/Obesity

Seven publications from prospective cohort studies have examined whether early-life BPA 

exposure is obesogenic.104–107,117,118,138 Three publications report that higher prenatal BPA 

exposure was associated with lower BMI and that these associations were stronger in 

girls.104–106 Two other publications reported that prenatal BPA exposure was associated with 

increased waist circumference, BMI, and risk of being overweight or obese.107,117 Two 

other publications reported no association between prenatal BPA exposure and child 

adiposity measures.118,138

Some of the aforementioned studies have prospectively examined the relation between infant 

or childhood BPA exposure and subsequent adiposity,104–107 and several cross-sectional 

studies have been conducted.119,120 Among publications with prospective measures of BPA 

exposure during infancy or childhood, there is little evidence to suggest that BPA exposure is 

associated with excess adiposity.104–107 However, cross-sectional studies show that BPA 

exposure is positively correlated with adiposity or the prevalence of being overweight or 

obese.105,106,120 For instance, in a nationally representative sample of US children, children 

in the top 3 quartiles of urinary BPA concentrations were ~25% more likely to be 

overweight and >2-fold more likely to be obese compared to children in the lowest 

quartile.119 However, the strength of this association did not monotonically increase across 

quartiles of BPA exposure, suggesting a threshold effect or potential residual confounding. 

Still, other publications report no association between infant or childhood BPA exposure and 

childhood obesity.104,107

The available epidemiological literature is equivocal about the obesogenic effects of early-

life BPA exposure, with studies showing both increases and decreases in adiposity or risk of 

being overweight or obese with higher early-life BPA exposure. Cross-sectional associations 

between urinary BPA concentrations and childhood adiposity could be due to residual 
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confounding from dietary factors that are associated with both BPA exposure and adiposity. 

In addition, reverse causality could be responsible for these correlations if persons with 

excess adiposity have different dietary patterns that increase their exposure to BPA.

Triclosan

Triclosan Uses, Exposure, and Measurement

Triclosan is an antimicrobial chemical that disrupts bacterial lipid synthesis and cell 

membrane integrity and is used in numerous consumer products (Table 1).139 Exposure is 

predominately through oral and dermal routes.139 Triclosan is not persistent, has a biological 

half-life <24 hours, and is predominately excreted in the urine as a glucuronide or sulfate 

conjugate.140 Triclosan exposure is measured using urine biospecimens for the same reasons 

BPA and phthalates are measured using urine biospecimens.79 Biomonitoring studies 

indicate nearly universal triclosan exposure among pregnant women and children.56,108,141 

While triclosan has a short biological half-life similar to that of BPA and some phthalates, 

unlike BPA and some phthalates, urinary triclosan concentrations are relatively stable over 

time within a person.

Biological Mechanisms of Triclosan Action

Triclosan can disrupt gonadal and thyroid hormone homeostasis. In rodents, triclosan 

reduces testosterone production by disrupting cholesterol biosynthesis in Leydig cells.142,143 

In a systematic review and meta-analysis of eight rodent studies, triclosan exposure reduced 

thyroxine concentrations in the fetus, dam, neonate, and juvenile.144 Triclosan may reduce 

thyroxine concentrations by activating nuclear receptors to increase hepatic catabolism of 

thyroxine.145 Results from epidemiological studies of triclosan and thyroid function are not 

consistent.146,147 However, there are no prospective epidemiological studies examining the 

relation between triclosan and thyroid hormone biomarkers during gestation, infancy, or 

childhood. Finally, given its antimicrobial activity, triclosan may be capable of altering the 

composition or function of the microbiota, but there is little research examining this 

hypothesis.148

Triclosan and Neurodevelopment

Currently, there are no animal or epidemiological studies directly examining the 

neurotoxicity of early-life triclosan exposure. As noted, triclosan exposure may reduce 

serum thyroxine concentrations during pregnancy and this could cause adverse 

neurodevelopment given the important role that thyroxine plays in fetal brain 

development.23 Three epidemiological studies report suggestive inverse associations 

between prenatal triclosan exposure and neonatal anthropometry.118,149,150 Thus, given that 

head circumference is positively correlated with later life IQ, early-life triclosan exposure 

could adversely impact neurodevelopment.151

Triclosan and Adiposity/Obesity

Four publications have reported on the relation between triclosan exposure and childhood 

obesity or excess adiposity.152,153 Two cross-sectional studies using 6–19 year old children 

from the National Health and Nutrition Examination Survey report conflicting results. One 
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publication (years: 2007–2010), found no association between urinary triclosan 

concentrations and BMI z-score, waist circumference, or prevalence of being overweight or 

obese.154 In the second publication (years: 2003–2010), urinary triclosan concentrations 

were associated with a monotonic decrease BMI and waist circumference.153 Another 

publication a reported that urinary triclosan concentrations were similar in lean and 

overweight/obese children.155 In a prospective cohort study, prenatal triclosan exposure was 

not associated with child adiposity at 4 to 9 years of age.138

In summary, there is insufficient evidence to determine if early-life triclosan exposure is 

associated with childhood obesity. The inconsistent results between studies using the 

NHANES speaks to the importance of replication when examining the potential health 

effects of EDCs.

Perfluoroalkyl Substances

PFAS Uses, Exposure, and Measurement

PFAS are a class of man-made fluorinated chemicals used in stain/water resistant coatings 

for textiles, non-stick cookware, food container coatings, floor polish, fire-fighting foam, 

and industrial surfactants (Table 1).156 The strong C-F chemical bond makes PFAS 

extremely resistant to thermal, chemical, and biological degradation, which results in 

bioaccumulation and persistence in human tissues for years.157 Four perfluoroalkyl acids - 

perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid 

(PFNA), and perfluorohexane sulfonate (PFHxS) - are almost universally detected in the 

serum of pregnant women, neonates, and children worldwide, indicating that exposure is 

ubiquitous and these chemicals can cross the placenta.56,64,158–176

Unlike phthalates, BPA, and triclosan, PFAS have long biological half-lives in humans, 

ranging from 3.8 to 7.3 years.177 Thus, a single serum or plasma concentration is sufficient 

to characterize exposure for epidemiological studies. The sources and relative contributions 

of different PFAS to human exposure vary according to age-related behavioral factors and 

dietary patterns, and PFAS exposures during infancy can equal or exceed prenatal exposures 

derived from the mother.156,178 For instance, breast milk and formula may contribute almost 

exclusively to infant’s exposure since PFAS are found in breast milk and water, and infants 

consume up to 6 times as much fluid as adults (150 vs. 26 ml/kg/day).179–181

Biological Mechanisms of PFAS Action

PFAS may act on a number of endocrine pathways to affect the risk of neurodevelopmental 

disorders and obesity. In epidemiological studies, PFOA and PFOS exposures are associated 

with lower global DNA cytosine methylation, higher Long Interspersed Nuclear Element-1 

methylation, and changes in the expression of genes involved in cholesterol 

metabolism.182–184 PFOA and PFOS can bind to and activate the peroxisome proliferator 

activated receptor (PPAR)-α/γ to increase adipocyte differentiation and increase body 

fat.185–187 In addition, PFOA, PFOS, and PFHxS inhibit 11-β-hydroxysteroid 

dehydrogenase-2 to increase glucocorticoid concentrations in rodents, which might affect 
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growth and brain development.89 Animal studies show that PFAS are capable of inducing 

changes in thyroid function,188 but results from human studies are not consistent.189

PFAS and Neurodevelopment

Eleven publications from prospective cohorts have examined the relations between prenatal 

PFAS exposure and cognitive abilities,165,166 attainment of developmental milestones,167 

parent or teacher reported behaviors and executive function,64,167–170 psychomotor 

development,169 academic achievement,171 or risk of autism spectrum disorders, ADHD, or 

cerebral palsy.172–174 With regard to the most commonly detected PFAS (PFOA, PFOS, 

PFNA, and PFHxS), these publications report inconsistent results. In a prospective birth 

cohort of 218 mother-child pairs, higher prenatal PFOS exposure was associated with worse 

parent-reported executive function.170 In another prospective birth cohort, increasing 

prenatal PFOS and PFOA exposures were associated with 70 (95% CI: 1.0, 2.8) and 110% 

(95% CI: 1.2, 3.6) increased risk of cerebral palsy, respectively.172 Several studies report 

protective or null associations between prenatal PFAS exposure and child 

neurobehavior.64,165–167,169,173

Four publications have examined the relations between childhood PFAS exposure and 

neurodevelopment.165,168,175,176 Two publications from cross-sectional studies report that 

children’s serum PFAS concentrations were associated with increased prevalence of parent-

reported ADHD or ADHD medication use.168,175 However, in a prospective cohort study 

with exceptionally high PFOA exposure, children’s serum PFOA concentrations were not 

consistently associated with parent- or teacher-reported ADHD-related behaviors or other 

neuropsychological measurements.165,172

The available body of evidence does not consistently suggest that early-life PFAS exposures 

are associated with neurodevelopment. While some studies suggest adverse neurobehavioral 

outcomes among children with elevated prenatal or childhood PFAS exposures, there are 

inconsistencies regarding which individual PFAS exposures may be associated with 

neurobehavior and whether there are heightened periods of vulnerability to PFAS exposures. 

The protective associations between early-life PFAS exposure and neurodevelopment is 

biologically plausible because in vitro studies report that PFOA and PFOS are agonists of 

PPAR-γ and activation of this receptor may be neuroprotective.190 Additional studies with 

longitudinal measures of exposure and comprehensive assessment of neurodevelopment are 

warranted given the ubiquity and persistence of PFAS exposure.

PFAS and Adiposity/Obesity

There is a compelling body of evidence suggesting that prenatal PFAS exposure could affect 

fetal growth and subsequent risk of childhood obesity. In a systematic review of 18 

publications, and subsequent meta-analysis of nine of these, increasing prenatal PFOA 

exposure was associated with a 19 gram decrease in birth weight (95% CI: −30, −8).158 

These results in humans are similar to those observed in 21 rodent studies where each 1 

mg/kg/d increase in PFOA exposure was associated with a 0.023 gram decrease in pup birth 

weight (95% CI: −0.029, −0.016).191 Altered fetal growth patterns related to PFAS exposure 

may increase the risk of subsequent obesity and cardiometabolic disorders as prior studies 
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show that fetal growth deceleration and infancy growth acceleration are associated with 

increased adiposity and cardiometabolic risk markers in later childhood.39,192,193

Consistent with this hypothesis, five publications from prospective cohort studies report that 

prenatal PFAS exposure is associated with alterations in infant or child growth,160,163 

increased adiposity during childhood and adulthood,159–161 and higher waist-to-height 

ratio.162 Two publications from other prospective cohort studies, including one with 

exceptionally high PFOA exposure, did not observe an association between prenatal PFAS 

exposure and child or adult adiposity or risk of being overweight or obese.164,194 These two 

studies used self- or parent-reported anthropometry, which could be responsible for the null 

results since there are well-documented errors in self- and parent-reported anthropometry 

that could misclassify adiposity and attenuate associations towards the null.195,196

Two studies have examined childhood PFAS exposure and adiposity. In a cross-sectional 

study of US adolescents, PFOS exposure was associated with decreased BMI and waist 

circumference, while other PFAS were not associated with BMI or waist circumference.197 

In a prospective cohort study, PFOS exposure at 9 years of age (and to a less precise extent 

PFOA exposure) was associated with increased adiposity at 15 and 21 years of age.198

Challenges to Making Stronger Inferences about EDCs and Child Health

Chemical mixtures, exposure misclassification, confounding, periods of heightened 

vulnerability, and sexually dimorphic associations are challenges to making stronger 

inferences about the causal links between early-life EDC exposures and the risk of 

childhood diseases. I discuss below some tractable solutions that if incorporated into study 

design or statistical analysis, could improve our confidence in making causal inferences.

Chemical Mixtures

Exposure to a mixture of EDCs occurs across the lifespan, yet researchers primarily examine 

exposures as if they occur in isolation from one another. This “one chemical at a time” 

approach has left us with insufficient knowledge about the individual, interactive, and 

cumulative health effects of EDC mixtures. Epidemiological studies can address three broad 

questions related to EDC mixtures.199 First, given the large number of environmental agents 

to which humans are exposed, there is a need to identify those most strongly associated with 

adverse child health outcomes, particularly when little data are available about the toxicity 

of individual exposures. Second, multiple EDCs may have a synergistic association with 

health outcomes by disrupting the homeostasis of compensatory mechanisms. Finally, 

cumulative exposure to certain classes of EDCs (e.g., phthalates) could adversely impact 

child health when individual components of the mixture act via common biological 

pathways and cumulative exposure to these individual agents is sufficient to induce an 

adverse effect.

A recent workshop at the National Institute of Environmental Health Sciences brought 

together leaders in the fields of epidemiology, biostatistics, and toxicology to develop, 

implement, and compare different methods of quantifying the health effects of 

environmental chemical mixtures.200,201 Several methods showed promise in addressing 

Braun Page 11

Nat Rev Endocrinol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



questions related to EDC mixtures. For instance, Least Absolute Shrinkage and Selection 

Operator and elastic net methods can identify individual EDCs associated with health 

outcomes and their interactions while controlling for co-pollutant confounding. Bayesian 

Kernel Machine Regression is another method that can estimate the health effects of 

individual EDCs of concern while also examining potential interactions, non-linear dose-

response functions, and co-pollutant confounding.202

Weighted quantile sum regression is a method that shows promise for quantifying the 

cumulative effect of EDC exposures while also estimating the relative contribution of 

individual components of the mixture to the health outcome of interest.203,204 Other 

methods of estimating the cumulative effect of EDC mixtures include mathematically 

weighting the sum of individual components of the mixture by their biological potency (e.g., 

toxic equivalency factors for dioxins),205 or quantifying the biological activity in 

biospecimens.206 These summation methods of examining cumulative exposures are likely 

too simplistic since they assume a single mechanism of EDC action. Thus, there is a need to 

develop methods that incorporate the potency of EDCs on multiple biological pathways.

By implementing methods that account for chemical mixtures, we are likely to identify 

previously undocumented chemical risk factors for childhood disease, susceptible 

subgroups, or aggregate exposures that should be considered in the risk assessment process. 

However, the performance of these methods has not been fully evaluated and a simulation 

study showed that some of these methods do not have perfect sensitivity and in some 

situations, there may be a high rate of false positives. 207

Exposure Misclassification

The episodic nature of many EDC exposures and short biological half-lives of their 

biomarkers can cause exposure misclassification. Exposure misclassification represents a 

signal to noise problem, where the misclassification results in a less precise estimate of an 

individual’s exposure and this makes it more difficult to rank their exposure relative to other 

individuals in the study. If misclassification is not systematically different with respect to 

childhood health outcomes, then the study will have reduced statistical power to detect an 

association and observed associations will be attenuated towards the null.

A simulation study showed that at least 10 estimates of exposure per individual may be 

required to ensure adequate statistical power, especially for chemical exposures like BPA 

and DEHP.80 One solution is to collect multiple urine samples from the same individual 

during a specific developmental period (e.g., 2nd trimester) and then create a pooled 

specimen for each individual using an equal volume of sample from their repeated 

samples.79,80 One disadvantage to the pooling method is that it does not allow for the 

examination of discrete periods of heightened vulnerability unless multiple pools are created 

for different periods of development. When a single measurement of exposure is available, 

statistical techniques like regression calibration could correct non-differential measurement 

error.80 To date, studies have not used regression calibration methods to correct for non-

differential EDC exposure misclassification, but studies of air pollutants have successfully 

used these methods to study a variety of health effects while accounting for exposure 

measurement error.208
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Despite the potential for non-differential misclassification of BPA and phthalate exposures, 

several studies have observed that early life BPA or phthalate exposures are associated with 

adverse child neurodevelopment. If non-differential misclassification is present, then this 

suggests that observed associations may be attenuated towards the null and true associations 

may be much stronger. However, non-causal explanations should not be ruled out, including 

confounding by traditional risk factors for adverse neurodevelopment or correlated co-

pollutants.

Confounding

As is the case for all observational studies, there is the potential for confounding factors 

associated with both early-life EDC exposures and child health to bias study results. 

Socioeconomic factors are important determinants of childhood health and some chemical 

exposures. For instance, in the case of obesogens, many strong determinants of adiposity 

(e.g., diet) are correlated with lifestyle factors (e.g., maternal diet) that may also be 

associated with EDC exposures (Figure 2). Thus, to determine if a given EDC has 

obesogenic effects independent of other predictors of obesity, it is necessary to measure and 

control for factors like diet, physical activity, breast feeding, etc. When examining 

neurotoxic EDCs, many socioeconomic factors associated with exposure are also associated 

with parental IQ or behavior and the quality of caregiving environment, which are important 

determinants of child IQ and behavior. Finally, it is necessary to consider potential 

confounding from other EDC exposures since the effect of one EDC may be misattributed to 

another correlated co-pollutant.

Subject matter knowledge should guide the selection of potential confounders and various 

approaches can be used to identify a parsimonious statistical model (For an example, see the 

directed acyclic graphs and change in estimate approach development by Weng and 

colleagues).209 It is imperative to note that it is not appropriate to adjust for variables that 

are caused by EDC exposure and causes of poor childhood health (i.e., causal intermediates) 

since this ‘over-adjustment bias’ may mask causal associations.210 For instance, prenatal 

PFAS exposures are associated with lower birth weight and increased risk of childhood 

obesity. Moreover, birth weight is a determinant of childhood obesity risk.211 Thus, 

adjusting for birth weight might bias associations between PFAS and risk of childhood 

obesity.

Discrete Periods of Heightened Vulnerability

The potential effects of EDCs could be dependent on the timing of exposure given the 

possibility of unique periods of vulnerability to environmental stressors. For instance, the 

effect of EDC exposures on neurodevelopment could depend on different biological 

mechanisms specific to prenatal (e.g., neurulation) and postnatal (e.g., synaptic pruning) 

neurodevelopmental processes.18 This could be a reason for some of the heterogeneity in the 

results of the studies discussed above. This highlights the need for prospective studies with 

serial measures of EDC exposure across the lifespan, as well as appropriate statistical 

methods to identify periods of heightened vulnerability.199
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Sexually Dimorphic Associations

Some associations between EDC exposures and childhood health are sexually dimorphic and 

EDCs may be capable of acting in a sex-specific manner given the important role that 

gonadal hormones play in shaping some sexually dimorphic traits.59,60,69,112,117 For 

instance, in a prospective cohort, prenatal exposure to anti-androgenic phthalates was 

associated with reduced masculine play behavior in boys, but not girls.69 The identification 

of sex-specific effects in epidemiological studies will require larger sample sizes than most 

studies conducted to date.

Advice for Clinicians and Concerned Patients

Presently, there are no evidence-based methods for reducing EDC exposures, but there are 

some general recommendations that clinicians could give to concerned patients. For EDCs 

found in the diet (e.g., BPA, DEHP, and PFAS), eating a balanced diet may be one way to 

avoid exposure from any one foodstuff, but this advice has not been empirically evaluated. 

Intervention studies show that decreasing or eliminating canned or packaged food 

consumption is effective at reducing BPA and DEHP exposure.73,100 An intervention study 

showed that handling BPA-containing thermal receipts was an important route of exposure 

and that wearing gloves could reduce BPA exposure from this route.102 Another study found 

some evidence that children who have handle thermal receipts may have higher BPA 

exposure.109

Individuals may be able to reduce their exposure to DEP and DnBP by reducing or 

eliminating the use of some lotions, cosmetics, and colognes/perfumes.76,212 However, there 

are no requirements for personal care products to include these phthalates in their ingredient 

list, making it difficult to avoid this source of exposure. Individuals can reduce triclosan 

exposure by avoiding triclosan-containing toothpastes. However, because triclosan-

containing toothpastes are clinically indicated for some individuals, the benefits and risk of 

continued use should consider the specific conditions and susceptibilities of the individual 

(e.g., pregnancy). Finally, granular activated carbon water filtration systems may be effective 

at reducing PFAS exposure when consuming PFAS contaminated water,213 but this may 

have a minimal effect on total PFAS body burden when diet is the predominant source of 

PFAS exposure.214

Conclusions

Exposure to BPA, phthalates, triclosan, and PFAS is ubiquitous and occurs during 

potentially sensitive periods of development that are important in the etiology of childhood 

neurodevelopmental disorders and obesity. The available research suggests that prenatal 

BPA and phthalate exposures are related to adverse neurobehavioral outcomes in children. 

Furthermore, prenatal PFAS exposure is related to reduced fetal growth and excess 

childhood adiposity. While this review did not compare the findings of animal or laboratory 

studies to the results of epidemiological ones, future reviews or risk assessments of these 

chemicals should include this important feature of establishing causality.215
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We can make stronger inferences about the role of EDCs in the etiology of childhood 

disease by quantifying the impact of chemical mixtures, reducing exposure misclassification, 

identifying sexually-dimorphic associations and periods of enhanced vulnerability, and 

collecting data on relevant potential confounders in prospective cohort studies. Ultimately, 

quantifying the impact of EDC exposures on child health could lead to the identification of 

susceptible sub-populations and reduction of EDC exposures via public health interventions.
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Box 1

Neurodevelopmental Disorders of Childhood

Many neurodevelopmental disorders develop during childhood, with prevalence in the 

United States of 1.5% for autism spectrum disorders (ASD), 6.7% for attention-deficit 

hyperactivity disorder (ADHD), 7.7% for specific learning disabilities (LD).216,217 The 

clinical presentation of these disorders varies between and within a diagnosis. For ASD, 

children have deficits in social communication and interactions, as well as repetitive, 

restricted, and stereotypic behaviors. Within the ASD diagnosis, deficits can be mild or 

severe and accompanied by intellectual disabilities (IQ<70) and substantial 

comorbidities.218 For ADHD, children present with hyperactivity, inattention, and poor 

impulse control, and display deficits in executive function (e.g., inhibition, behavioral 

regulation, and planning/organizing). ADHD diagnosis is classified into hyperactive/

impulsive or inattentive subtypes.219 LD is characterized by difficulties learning and 

using specific academic skills (e.g., reading and mathematics) and is distinct from 

intellectual disability, which is defined by global impairments in cognitive function.

Many epidemiological studies assess continuously distributed measures of functional 

domains related to clinical phenotypes instead of clinical diagnoses.220,221 For instance, 

global measures of cognition (i.e., IQ) and academic performance can be used to study 

whether EDC exposures affect intellectual abilities and specific academic skills, 

respectively. Continuous outcomes are advantageous since they provide a relative ranking 

of an individual’s ability/behavior, which enhances statistical power. Moreover, clinical 

diagnosis could misclassify individuals since they may fail to detect earlier 

manifestations of disease and diagnostic thresholds are often set at arbitrary levels that 

change over time. By examining continuous neurobehavioral measures, epidemiological 

studies can determine if EDC exposures are associated with shifts in these traits at the 

population level, which could result in increased prevalence/incidence of clinical 

disorders (Figure B1).
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Figure B1. 
Density Distribution of IQ in EDC Unexposed and Exposed Populations

Figure B1 represents the distribution of IQ in two populations of one million individuals 

each. The grey line signifies the threshold for IQ scores consistent with intellectual 

disabilities (IQ<70).

In the unexposed population, the mean IQ is 100 (standard deviation=15), while in the 

exposed population the mean IQ is 95 (standard deviation=15). This 5-point shift in IQ 

results in nearly a doubling in the proportion of people with IQ scores consistent with 

intellectual disabilities (IQ<70) in the exposed population (4.48%) compared to the 

unexposed population (2.27%).
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Box 2

Prevalence and Origins of Childhood Obesity

Childhood obesity is a major threat to public health in the United States, with the 

prevalence rising from 7% in 1980 to 17% in 2012.222 Obesity is also a major public 

health problem globally, with 10–14% of adults worldwide being overweight or obese in 

2008.223 Childhood obesity increases the risk of type-2 diabetes, cardiovascular disease, 

and metabolic syndrome, and has adverse effects on pulmonary, musculoskeletal, and 

psychosocial functioning.224

The principal cause of obesity is caloric imbalance from excess calorie intake and 

insufficient physical activity. However, there is considerable evidence that the in utero 
and neonatal environments program the developing fetus and infant for obesity risk.1,2 A 

non-optimal fetal or infant environment can lead to enduring functional and structural 

changes to the body that increase obesity risk by re-programming neuroendocrine 

systems involved in growth, energy metabolism, appetite, adipogenesis, and glucose-

insulin homeostasis.32–34 These environmental stressors may program the fetus or infant 

towards a ‘thrifty phenotype’ that efficiently stores excess calories in a postnatal 

environment with abundant calories and reduced physical activity. Thus, children with 

this phenotype will efficiently store excess calories as fat, have altered insulin 

homeostasis, and ultimately develop a cardiometabolic disease profile.
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Key Points

• Endocrine disrupting chemicals may increase the risk of childhood 

neurodevelopmental disorders or obesity by disrupting hormonally-mediated 

processes during critical periods of development.

• The developing fetus, infant, and child may have enhanced sensitivity to 

environmental stressors like EDCs and greater exposure to some EDCs 

because of developmentally appropriate behavior, anatomy, and physiology.

• The available epidemiological evidence suggests that prenatal bisphenol A 

and phthalate exposure is associated with adverse neurobehavioral outcomes 

in children, but not excess adiposity or risk of obesity/overweight.

• Epidemiological studies show that prenatal PFAS exposure is associated with 

reduced fetal growth, excess adiposity, and risk of being overweight or obese, 

but not neurobehavioral outcomes.

• Improving EDC exposure measurement, reducing confounding bias, 

identifying discrete periods of vulnerability and sexually dimorphic 

associations, and quantifying the effects of EDC mixtures will enhance 

inferences made from epidemiological studies.
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Figure 1. 
Conceptual diagram illustrating general mechanisms of endocrine disrupting chemical 

(EDC) action and examples of specific biological targets relevant to childhood 

neurodevelopmental disorders and obesity
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Figure 2. 
Directed acyclic graph for the relationship between early life PFAS exposure and child 

adiposity
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Table 1

Epidemiological exposure assessment and commercial/industrial uses of phthalates, bisphenol A, 

polybrominated diphenyl ethers, and perfluoroalkyl substances

EDC Exposure Assessment Uses in Commerce or Industry

Di-2-ethylhexyl phthalate (DEHP) Urine concentrations of mono-2-ethylhexyl 
(MEHP), mono-2-ethyl-5-carboxypentyl 
(MECPP), mono-2-ethyl-5-hydroxyhexyl 
(MEHHP), and mono-2-ethyl-5-oxohexyl 
(MEOHP) phthalate

PVC plastics, food packaging, and plastic 
medical tubing and bags.

Butylbenzyl phthalate (BBzP) Urine concentrations of monobenzyl phthalate 
(MBzP)

Vinyl flooring, adhesives, food packaging, 
synthetic leather, and toys.

Diethyl phthalate (DEP) Urine concentrations of monoethyl phthalate 
(MEP)

Scent retainer in personal care products and 
medication excipient.

Di-n/i-butyl phthalate (DnBP and DiBP) Urine concentrations of mono-n/i-butyl 
phthalates (MnBP and MiBP)

Scent retainer in personal care products, 
medication excipients, cellulose plastics, & 
adhesives.

Bisphenol A (BPA) Urine concentrations of BPA Polycarbonate plastics, resins, thermal receipts, 
food cans, dental fillings, and medical equipment.

Triclosan Urine concentrations of triclosan Antimicrobial soaps, personal care products, 
toothpaste, kitchen utensils, clothes, and cleaning 
products.

Perfluoroalkyl substances (PFAS) Serum concentrations of individual 
perfluoroalkyl or perfluorinated chemicals

Stain/water resistant coatings, non-stick 
cookware, food container coatings, floor polish, 
fire-fighting foam, and industrial surfactants.
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