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Abstract

Two prominent features of tumors that contribute to oncogenic survival signaling are redox 

disruption, or oxidative stress phenotype, and high autophagy signaling, making both phenomena 

ideal therapeutic targets. However, the relationship between redox disruption and autophagy 

signaling is not well characterized and the clinical impact of reactive oxygen species (ROS)-

generating chemotherapeutics on autophagy merits immediate attention as autophagy largely 

contributes to chemotherapeutic resistance. In this commentary we focus on melanoma, using it as 

an example to provide clarity to current literature regarding the roles of autophagy and redox 

signaling which can be applicable to initiation and maintenance of most tumor types. Further, we 

address the crosstalk between ROS and autophagy signaling during pharmacological intervention 

and cell fate decisions. We attempt to elucidate the role of autophagy in regulating cell fate 

following treatment with ROS-generating agents in preclinical and clinical settings and discuss the 

emerging role of autophagy in cell fate decisions and as a cell death mechanism. We also address 

technical aspects of redox and autophagy evaluation in experimental design and data 

interpretation. Lastly, we present a provocative view of the clinical relevance, emerging challenges 

in dual targeting of redox and autophagy pathways for therapy, and the future directions to be 

addressed in order to advance both basic and translational aspects of this field.
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1. Introduction

Melanoma arises from the neoplastic transformation of normal, pigment-producing 

melanocytes, which reside in the basement layer of the epidermis, middle layer of the eye 

(uvea), and mucous membranes such as the gastrointestinal tract or oral cavity [1]. Recent 

studies in melanoma biology highlight the role of two critical cellular mechanisms as 

contributors to disease initiation and tumor maintenance; redox state and autophagy. In 

melanocytes, reactive oxygen species (ROS) serve as critical signaling mediators while 

autophagy serves as a cellular ‘quality control’, recycling mechanism. However, in 

melanoma cells, there exists a redox imbalance, or oxidative stress phenotype, where the 

accumulation of ROS is attributable to mitochondrial uncoupling, oncogenic mutations (i.e., 

BRAFV600E) and switch to glycolytic phenotype [2]. Compared to melanocytes, melanomas 

also display increased autophagic activity, which aids in tumor cell survival through 

sustained proliferative signaling, apoptosis evasion, and chemotherapeutic resistance [3-5]. 

Both redox signaling and autophagy have thus become attractive therapeutic targets to shut 

down pro-survival signaling features selectively in melanoma. However, there is a dearth of 

studies that examine the biological significance of the mechanistic relationship between 

ROS and autophagy in melanoma, feedback mechanisms, and the potential for 

pharmacological targeting of both pro-survival pathways as a therapeutic avenue. The 

purpose of this commentary is to address the known mechanisms that regulate the crosstalk 

between ROS and autophagy in melanoma cell fate outcomes and to present relevant 

research studies that contribute to our understaning of this signaling relationship. We provide 

clarification to current classifications of autophagy with regard to cell fate, particularly 

during pharmacological induction of oxidative damage, the technical challenges of 

measuring ROS and autophagy experimentally as well as the clinical relevance of dual 

targeting of redox and autophagy pathways for therapy. Finally, the preclinical and clinical 

challenges, and future directions in the field of redox-regulated autophagy as a therapeutic 

target are presented.
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2. Role of ROS in melanoma

2.1 Pro-oxidant state potentiates melanomagenesis

Melanocytes are dendritic cells of neural crest origin, and synthesize melanin in specialized 

organelles called melanosomes. Biologically, melanin functions in the epidermal layer to 

absorb light as a UV-protective mechanism, which results in a high pro-oxidant state in 

melanocytes [6]. Melanocytes have an intrinsic antioxidant defense network in order to 

maintain redox homeostasis [7]. However, prolonged disruption of redox balance can result 

in rapid hydrogen peroxide (H2O2) generation and impaired antioxidant activity (catalase, 

heme oxygenase 1), culminating in an oxidative stress state, due to an imbalance of ROS and 

antioxidant capacity [8]. In addition to the pro-oxidant state of melanocytes, genetic 

polymorphisms in genes encoding antioxidant repair enzymes, specifically GPX1, have been 

associated with a significantly increased risk of breast cancer and melanoma [9, 10]. As 

such, elevated ROS and impaired antioxidant activity results in oxidative stress and 

melanomagenesis. Appropriately, melanoma has been termed a “ROS-driven tumor” [8]. 

Many preclinical studies have demonstrated that melanoma cells are particularly susceptible 

to increases in ROS compared with melanocytes [11-14]. This observed redox sensitivity is 

likely attributable to i) elevated antioxidant capacity in melanocytes, able to efficiently 

counteract oxidative insult compared with melanoma cells (which may have antioxidant 

gene mutations [15-17]) and ii) the metabolic requirement for and sensitivity to chronically 

elevated ROS levels for maintenance of oncogenic signaling [18]. A proposed model for the 

basis of this selective sensitivity of melanoma cells to ROS-generating therapeutic agents is 

summarized in Figure 1.

2.2 ROS modulation as a therapeutic strategy

A variety of ROS molecules cause irreversible macromolecular damage. Chronically high 

levels of ROS in cancer cells promotes genomic instability and uncontrolled proliferation. 

The ‘threshold concept’ of ROS as a therapeutic target has emerged as a viable anti-cancer 

strategy that takes advantage of the selective vulnerability of cancer cells to disruptions in 

redox homeostasis [19]. We define ROS threshold as a window of redox cycling which a cell 

can sustain, without affecting or triggering cell death mechanisms. We have recently 

demonstrated that human melanoma cells have an elevated oxidative stress phenotype 

compared with melanocytes, and that disrupting the melanoma cell oxidative stress 

‘threshold’ perturbs PI3K/AKT/mTOR oncogenic signaling required for survival, and 

culminates in cell death [20]. Clinical efforts that seek to modulate redox disruption in 

melanoma patients are reinforced by multiple studies showing increased serum levels of 

oxidative stress markers (malondialdehyde; MDA, oxidized protein products, SOD activity 

etc.) in metastatic melanoma patients compared with either healthy volunteers or non-

metastatic patients [21, 22]. Figure 1 depicts the nature of selective ROS generation resulting 

in different cell fates between normal melanocytes and melanoma cells.

In the way of pro-oxidant therapeutics, we present the small molecule STA-4783 

(Elesclomol) as a case study to highlight the utility of a pro-oxidant therapy, in which 

elevation of intracellular ROS results selectively in melanoma cell apoptosis. Elesclomol 

showed exquisite selectively in tumor reduction in vivo, that resulted in a significant 
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doubling of mean progression free survival (PFS) when combined with paclitaxel for 

patients with metastatic melanoma [23-25]. Elesclomol complexes with (Cu)II to disrupt 

mitochondrial electron transport chain, rapidly depolarize mitochondrial membranes, and 

induce apoptosis [23]. The success of Elesclomol against aggressive, late stage melanoma in 

the clinic highlights the significance of developing ROS-inducing drugs as anti-melanoma 

agents. Further, Elesclomol treatment resulted in apoptosis in Vemurafenib-resistant 

melanoma cells, the result of a chronically elevated mitochondrial respiration and oxidative 

stress [14]. Elesclomol has also been evaluated in clinical trials for efficacy against solid 

tumors, lung, breast, and prostate cancers, and most recently acute myeloid leukemia 

[26-28]. At the time of submission of this commentary, Elesclomol is under evaluation for 

combined efficacy with Paclitaxel in a Phase II clinical trial for ovarian, fallopian tube, and 

primary peritoneal cancers, thus laying the foundation for the clinical relevance of pro-

oxidant therapy. In addition to Elesclomol, there is overwhelming support for 

pharmacological redox modulation as a viable therapeutic target across cancer subtypes. 

Specifically, we highlight recent studies in which pharmacological redox modulation results 

in melanoma cell apoptosis, summarized in Table 1 [20, 29-33].

2.3 Antioxidant modulation as a therapeutic strategy

In contrast to a pro-oxidant approach, disrupting the redox balance through modulation of 

the antioxidant defense system has proved to be much less efficacious as an anti-melanoma 

strategy [34]. We discuss two approaches and their cell death efficacy: 1) increasing cellular 

antioxidants and 2) depleting cellular antioxidants.

Historically, antioxidant supplementation has been proposed as a valid anticancer strategy, 

more often than depletion of cellular antioxidants. Preclinical studies have demonstrated that 

antioxidant supplementation leads to selective melanoma cell death through increased ROS-

scavenging activity mediated by elevated SOD and catalase activity [35-37]. By contrast, 

dietary polyphenol antioxidants such as like resveratrol, tocopherol, and quercetin exert 

direct ROS-scavenging activity and have produced highly variable preclinical and clinical 

outcomes [38]. Clinical efforts have consistently failed to demonstrate antioxidant 

supplementation as an efficacious anti-cancer strategy, offering either negative or conflicting 

outcomes. A clinical trial showed that the incidence of melanoma increased in women 

receiving a combination of antioxidant supplementation [39]. Additionally, a pilot trial 

showed that alpha-tocopherol supplementation failed to provide protection against 

chemotherapy-induced DNA damage in melanoma patients [40]. The lack of clinical 

translation of early preclinical data had been perplexing, although newer preclinical data is 

pointing towards a lack of benefit of this modality. The utility of increasing the cellular 

antioxidant pool likely holds the greatest anti-cancer potential in prevention. The potential of 

antioxidnats to protect tumor cells when used as a therapeutic, may explanation the observed 

lack of clinical efficacy. As an alternative approach to antioxidant supplementation, the 

employment of antioxidant-depleting strategies has resulted in considerable higher efficacy 

in melanoma through excessive ROS generation and cell death [41, 42]. For example, 

downregulation of the NRF2 antioxidant defense pathway has shown marked anti-melanoma 

activity [43]. Additionally, depletion of the glutathione system in melanoma appears to have 

marked success in potentiating a pro-apoptotic response, as the accumulation of ROS leads 
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to melanoma inhibition both in vitro and in vivo [44, 45]. Inhibition of SOD activity also 

shows selective anti-melanoma activity and represents an attractive therapeutic target [45, 

46].

One consideration for antioxidant-modulating strategies is the finding that many antioxidant 

enzymes are found to be mutated in cancer, including SOD2, a mitochondrial matrix enzyme 

responsible for superoxide (O2.−) detoxification [41]. However, emerging evidence points to 

molecular redundancies in which SOD1 is overexpressed in cancer cells to cope with the 

genetic or functional loss of SOD2 [41]. Further, literature suggests that a concomitant 

antioxidant capacity is required to cope with increased oxidative stress and metabolic 

demands of cancer cells, implicating antioxidant modulation in tumorigenesis [47]. 

Therefore, future studies that evaluate the role of antioxidant gene mutations and loss of 

function will be necessary before the clinical implementation of an antioxidant-modulating 

therapy, which may promote melanoma development, as was found in prostate cancer 

prevention trial with selenium and vitamin E (SELECT) and the Nutritional Prevention of 

Cancer Trial (NPCT) [48].

2.4 Considerations for ROS evaluation

Experimental set up and data analyses to evaluate ROS can be quite complex. An exhaustive 

review of such methods is beyond the scope of this commentary, but a few basic guidelines 

are suggested. The fluctuating O2 tension in cell culture environment, and supplements 

contained in culture media can be sources of artifacts regarding measures of ROS and 

antioxidants, and must be taken into consideration [49]. In tissue culture assessments of 

ROS, there are many useful tools for generation and detection of total and specific ROS 

molecules. Further, the use of Electron Spin Resonance (ESR) spectroscopy is a robust 

methodology for qualitative and quantitative assessment of specific ROS molecules. The use 

of fluorescent-scanning microplate readers and fluorescence microscopy should be utilized 

judiciously, with careful considerations to minimize photobleaching and well-to-well scatter 

with use of black, clear-bottom culture plates. Chemiluminescent and chromogenic reagents 

are practical alternatives to validate ROS. The dynamics of ROS is an important criterion, as 

intracellular ROS are rapidly produced and detoxified. Therefore, kinetic assessment of ROS 

with controls (inducers and quenchers) is recommended. In animal models or patients, the 

modulation and detection of ROS is more complex than cell culture models, and as such, the 

detection of oxidative stress biomarkers from serum can provide clues to the overall basal 

redox status and after pharmacological modulation. Various biomarkers of oxidative stress 

including serum MDA, lipid peroxidation, reduced glutathione, catalase, glutathione 

peroxidase, and immunostaining for 8-hydroxy-2′-deoxyguanosine may be used. Therapy-

naïve melanoma patients had an elevated oxidative stress profile, as assessed by increased 

plasma levels of Malondialdehyde (MDA) and decreased erythrocyte levels of SOD, 

compared with healthy control volunteers [22]. Interestingly, after complete surgical removal 

of melanoma tissues, patients showed decreased oxidative stress (serum MDA), which was 

elevated again after chemotherapy intervention with 5-(3,3-dimethyltriazene-1-yl)-

imidazole-4-carboxamide (DTIC) and nitrosourea 1-(2-chloroethyl)-3-cyclohexyl-1-

nitrosourea (CCNU) [22]. Clinical evaluation of melanoma patient serum for thiols, catalase 

and SOD activity levels, and protein oxidation products has also been demonstrated as valid 
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means to conclude overall level of oxidative stress [21]. For detailed information regarding 

the measurement of redox status, the reader is encouraged to read an excellent review by 

Liu-Smith et al [50].

3. Role of autophagy

3.1 Autophagy in melanoma development

Autophagy is an evolutionarily conserved catabolic process by which damaged proteins and 

organelles are encapsulated in the double-membraned autophagosome and degraded after 

delivery to the lysosome in a highly orchestrated series of molecular events. Although there 

are 3 subtypes of autophagy, the scope of this commentary focuses on macroautophagy, 

which will be referred to hereafter as “autophagy”. Under basal cellular conditions, 

autophagy serves to maintain homeostasis by recycling of cytosolic components, but is 

induced in response to a multitude of stimuli including starvation, viral invasion, hypoxia, 

increased intracellular ROS, and toxin/drug exposure [51]. Stress signaling kinases like 

JNK1 stimulate autophagy by phosphorylation of BCL2, which promotes the interaction of 

Beclin-1 and Vps34. Low ATP levels and hypoxia also stimulate autophagy by impairing 

mTOR kinase activity through reduced RHEB GTPase activity. Autophagy is generally 

recognized as a pro-survival mechanism, although classifications exist where autophagy is 

considered a type of programmed type-II cell death [52, 53]. The role of autophagy in 

melanoma, like other cancers, although complex, can be simplified as follows: protective 

against tumor initiation (pro-survival for normal melanocytes), and protective against 

chemotherapeutic agents, immune surveillance, and apoptotic signals (pro-survival for 

melanoma cells). So, while the published literature can appear overwhelmingly complex 

with regard to the function of autophagy in cell fate decisions, we present the viewpoint that 

the role of autophagy is exquisitely simple: cell survival at all costs.

A key autophagy-related protein 5 (ATG5; required for autophagosome formation), 

functions to induce senescence in melanocytes to prevent transformation [54, 55]. 

Melanocytes can undergo senescence due to increased polyploidy and subsequent autophagy 

activation during treatment with chemotherapeutic agents [56]. In contrast, loss of ATG7 

results in melanocyte senescence and prevents melanoma development in BRAFV600E/

PTEN-null mice, supporting a pro-tumorigenic role for autophagy [57]. Further, loss of 

ATG7 resulted in decreased melanocyte proliferation owed to increased p16Ink4a activity 

that triggered senescence. Perhaps in the background of BRAF and PTEN mutation, 

autophagy is required for continued tumor growth, but in non-transformed melanocytes it 

contributes to senescence. However, since autophagy is executed independently of ATG7, 

perhaps it is dispensable contextually, and evaluation of autophagy proteins like tumor 

suppressor Beclin-1 might provide a more complete picture of the significance of autophagy 

during melanocyte transformation. Mechanistically, Beclin-1 is a negative regulator of 

Myeloid Cell Leukemia 1 (Mcl-1) and promotes proteasomal degradation of Mcl-1 to 

restrain melanocyte transformation [58]. The autophagic protein, Beclin-1 constitutively 

suppressed melanocyte transformation, and loss of the protein in patients contributed to 

increased Mcl-1 and melanoma progression [58]. Further, autophagy is linked to 

melanogenesis and in melanocytes, LC3 has been shown to drive MITF expression and 
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increase melanin content [59]. As such, autophagy-related proteins like LC3 would be 

detrimental when lost in normal melanocytes, as it is critical for melanogenesis and 

senescence activation.

In contrast to the anti-transformative role of autophagy in melanocytes, the role of 

autophagy in melanoma tumor development and progression is complex [5, 60, 61]. 

Specifically, we found several studies that conclude conflicting roles for autophagy in 

melanoma development and as prognostic markers. Mirraco et al found that Beclin-1 and 

LC3B messenger RNA levels had significant inverse correlation with melanoma 

progression, with the lowest expression seen in metastatic lesions, suggesting that loss of 

autophagy drives melanoma progression [62]. In addition, Liu et al demonstrated that ATG5 

and LC3B protein levels decreased in metastatic melanoma patient samples compared with 

benign nevi, indicating that a loss of autophagy may promote tumor formation [63]. 

However, these two patient-based studies have limitations in that they cannot address the 

dynamic process of protein turnover during autophagy, as lower protein level could represent 

a high turnover and thus high autophagic activity. In contrast, several studies report high 

levels of autophagy proteins as predictors of melanoma, supporting the pro-survival role of 

autophagy in melanoma development and progression. Specifically, elevated LC3B 

expression, p62 and high autophagosome number in melanoma tumors are associated with 

aggressive disease and poor patient survival [5, 60, 61]. One possible explanation for these 

divergent conclusions of the role of autophagy may be owed to genetic mutations which 

modulate the autophagy process. Specifically, PIK3CA and PTEN mutations in the 

PI3K/AKT/mTOR pathway have been shown to drive high autophagic activity [64-67]. The 

clinical relevance of AKT-driven autophagic activity in melanoma is underscored by the 

clinical response of melanoma patients after combined inhibition of PI3K/AKT/mTOR 

activity and autophagy [4, 68]. A summary of studies that examine the effect of 

pharmacological modulation of autophagy on melanoma cell fate is included in Table 2 

[69-74].

3.2 Autophagy as a programmed death mechanism

With regard to autophagic cell death, there have been very few melanoma studies that show 

an exclusive role for autophagy as a cell death mechanism. Opinion in the field is that 

features of autophagy occur during cell death induction, and what really exists is cell death 

‘with’ autophagy, not cell death ‘by’ autophagy [75]. The published literature shows that 

some studies conclude that apoptosis is the consequence of autophagy induction, while 

others argue that the two are independent cell death mechanisms. These differences can be 

corrected when examining the nature of external stimulus applied as was done in some 

studies [76-78].

Another consideration for evaluation of autophagic cell death is the contribution of the 

signaling pathways. For example, many natural compounds used in chemoprevention, have 

demonstrated anti-inflammatory, ant-oxidant and pro-apoptotic activities. Therefore, caution 

is warranted in the interpretation of studies with regard to autophagic cell death, due to the 

multiple signaling cascades being affected simultaneously. We must clarify that some 

components of the autophagic machinery have been shown to be involved in the “switch” 
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from either pro-survival autophagy to pro-apoptotic, or from necrosis to apoptosis, which are 

mediated through the multifunctional, scaffolding protein SQSTM1/p62. These mechanisms 

can include p62 serving as a scaffold for caspase 8 oligomerization and subsequent 

processing (switch from autophagy to apoptosis) and failure of recruitment of Receptor-

interacting serine/threonine-protein kinase 1 (RIPK1) to p62 (resulting in switch from 

apoptosis to necrosis) [79-82]. The contribution of autophagy proteins to cell death, either 

apoptotic or necrotic has been demonstrated, but the exclusive, upstream initiation of 

autophagy by ATG/Beclin-1-dependent mechanisms that lead to autophagosome formation 

and subsequent programmed cell death are lacking, particularly in melanocytes and 

melanoma biology [83]. We acknowledge that autophagic cell death, and autophagy 

induction can exist concurrently with the induction of apoptosis. Additionally, the 

emergence of ferroptosis- which is iron and ROS-dependent programmed cell death- 

certainly warrants further investigation, as a recent study shows that ferroptosis is an 

autophagic cell death process [84]. Future studies will be required to determine whether 

inducing autophagy actually results in autophagy-regulated programmed cell death, and the 

clinical relevance of inducing autophagy for melanoma therapy. Overall, preclinical and 

clinical studies highlight the therapeutic significance of pharmacological inhibition of 

autophagy with either chloroquine or hydroxychloroquine (CQ; HCQ) with melanoma 

regression and increased overall patient survival [5, 68, 85].

3.3. Challenges in autophagy measurement

Although in vivo measurements of autophagy can be more reliable than in vitro culture 

models, it is important to be aware of the limitations and challenges when interpreting data. 

While the ease of modulating autophagy dynamics, throughput nature and ability to use 

multiple cell lines and assays makes cell culture a good model system; it is essential to 

overcome the challenges of data interpretation. Caution is warranted in the measurement of 

mTOR-mediated autophagy, as both autophagic stimulation and inhibition can occur 

contextually. For example, under serum-starved conditions, mTOR-induced autophagy will 

be significantly higher than in serum-replete conditions, and surrogate markers of mTOR 

inhibition (phosphorylation of P70S6K targets phospho-rpS6, phospho-4EBP1), which 

might suggest autophagy induction, can actually conflict with other readouts of autophagy 

inhibition. Additionally, one must be cautious in interpretation of data after pharmacological 

inhibition of mTOR (i.e., rapamycin, rapalogs) compared with starvation-induced 

autophagy, as the result will often be different in magnitude. This difference can be 

attributed to measuring the “basal autophagic flux” during pharmacological inhibition, 

versus measuring the “maximal autophagic capacity” during serum-starved conditions. A 

further complication of mTOR-mediated autophagy is the use of autophagy inhibitors such 

as 3-methyladenine (3-MA), which block autophagosome formation by inhibition of class 

III PI3Ks. The caution of using 3-MA or wortmannin (similar mechanism of PI3K 

inhibition) as autophagy inhibitors comes from multiple reports that use of 3-MA (in 

combination with autophagy modulator of interest) actually stimulates autophagy due to the 

temporal-specific inhibition of class III PI3Ks (transient), and prolonged inhibition of class I 

PI3Ks, which in turn activates autophagic flux [86].
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One particularly challenging aspect of measuring autophagy markers in clinical samples is 

the inability to capture the dynamic process of “autophagic flux”. In contrast to in vitro 
studies, obtaining end point measures of either LC3B-II, ATGs, Beclin-1, or selective 

autophagy substrates such as p62, in human samples are not conclusive measures of 

autophagy. There are many conflicting reports of autophagy protein levels being predictive 

of overall patient survival, or protein (IHC) staining correlating with disease state or 

prognosis [60-62, 87-89]. Presumably, these protein outputs can be increased in patients 

with high autophagy tumors, or increased in patients with low autophagy tumors, reflected 

by a lack of protein degradation. In addition to measuring autophagy protein levels by 

staining intensity, the evaluation of autophagosome formation by transmission electron 

microscopy (TEM) is considered the “gold standard” for autophagosome measurement. 

However, technical challenges of TEM are rampant in that clinical samples are often not 

preserved for subsequent TEM evaluation and pathology expertise is crucial for proper 

interpretation of TEM images, as melanosomes can be mistaken for double-membraned 

autophagosomes [90]. Further, melanosomes are degraded by autophagy and are present in 

the cell as macromelanosomes and autophagic giant melanosome complexes, which can add 

a significant complication to evaluation of autophagosome formation not owed to 

melanosome degradation [91]. Other barriers arise in TEM from the melanosome content in 

some but not all melanomas, and thus, one has to be cautious regarding the interpretation of 

autophagy by autophagosome number if melanosomes are highly enriched in a sample. 

However, the combination of proper experimental controls, sample processing, and 

pathology expertise can be implemented to take advantage of TEM as an excellent tool to 

evaluate autophagosome formation in experimental conditions.

Given the divergent conclusions of published studies regarding autophagy protein markers 

and autophagosome formation, the utility of autophagy inhibitors (lysosomotropic agents) 

such as chloroquine (CQ) or hydroxychloroquine (HCQ) in clinical trials for melanoma 

(either alone or as a combination therapy) supports conclusions in the literature that 

autophagy is a pro-survival feature of melanomas, and so inhibiting the process 

pharmacologically is not only of clinical relevance, but a priority [5, 68, 85]. A recent study 

by Kraya et al demonstrates the utility of assessing secreted proteins in serum from patients 

with metastatic melanoma as a way to evaluate the intracellular dynamics of autophagy in 

patients, and to stratify patients as having low versus high autophagy melanoma tumors, 

which could point to therapeutic response [92]. This study signifies the transition to 

validation and acceptance of more relevant approaches to evaluating patient autophagy levels 

as a prognostic factor or as a guide to a specific therapeutic approach. Overall, the clinical 

implementation of autophagy inhibitors seems to be most relevant in conjunction with 

current melanoma chemotherapies, presumably due to the role of autophagy in drug 

resistance and as a pro-survival mechanism in melanoma tumor cells. Specifically, 

autophagy inhibition has been shown to potentiate the anti-melanoma effect of multiple 

preclinical and clinical drugs, including mTOR inhibition by temsirolimus, BRAF inhibition 

with Vemurafenib, and DNA alkylation by temozolomide [85, 93].
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4. ROS-autophagy crosstalk and therapeutic targeting

Reactive oxygen species are generated in response to chemotherapeutic agents [22]. 

Excessive ROS production results in disruption of the electron transport chain and 

production of O2.−, leading to mitochondrial membrane depolarization and initiation of 

mitochondria-induced apoptosis. It is generally accepted that ROS generation precedes 

downstream cellular cascades, including those that determine cell fate either survival 

(autophagy) or death (apoptosis, necrosis). However, ROS generation has also been shown to 

occur following apoptotic stimulation (TRAIL-induced), or autophagy inhibition, which 

places ROS downstream of cell fate cascades [94, 95]. As expected, ROS and autophagy can 

regulate each other depending on the stimulus, and so there exists much complexity in 

dissecting the interplay between ROS and autophagy in cell fate. Based on our review of the 

literature, ROS regulates autophagy and subsequent pro-survival versus pro-death cell fate 

contextually. Cell fate outcomes are largely dependent on the amount of ROS generated and 

the cell’s antioxidant response. A summary of studies that examine the effect of dual 

modulation of ROS and autophagy on melanoma preclinical and clinical outcomes is 

presented in Table 3 [43, 76, 85, 96-100].

During starvation, H2O2 is produced as a result of class III PI3K activation that stimulates 

autophagy through oxidation of ATG4. This inhibits the de-lipidation potential of ATG8, 

ultimately increasing the formation of lipidated LC3-rich autophagosomes [101]. Both O2.− 

and H2O2 can also induce autophagy through AMPK activation and subsequent mTOR 

inhibition, and by transcriptional regulation of autophagy genes such as SQSTM1 (p62) and 

BECN1 [102-104]. ROS may also activate KEAP1/NRF2 in which case, transcriptional 

upregulation of selective autophagy substrate SQSTM1 (p62) occurs [105]. Several studies 

have shown a similar trend where exogenously applied ROS leads to autophagy induction, 

and in a majority of studies the cell fate is apoptosis. A summary of the role of ROS and 

autophagy and resulting cell fate in melanocytes and melanoma can be found in Tables 1-3. 

A more critical evaluation of the published literature, specifically with reference to those 

studies that induce ROS with pharmacological agent and measure autophagy and apoptosis, 

reveals a lack of thorough evaluation of autophagy with proper experimental controls (see 

also Challenges in autophagy measurement). In melanoma, the lack of studies that evaluate a 

dose-response effect of ROS on autophagy (stimulation or inhibition) in a mechanistic 

fashion is very concerning from a therapeutic standpoint. Perhaps the role of autophagy is 

dispensable if the ultimate output is cell death? In the aforementioned published literature in 

which autophagy outputs are properly assessed and still found to be stimulated during redox 

disruption, the role of autophagy as a survival feature seems to be validated, even though 

ROS can stimulate autophagic and apoptotic signaling pathways concurrently. In our view, 

the cell’s ability to induce protective autophagy can co-exist with apoptosis, but at reaching 

a certain ‘threshold’, pro-survival autophagy cannot rescue the induction of a cell death 

cascade. Studies that cite induction of autophagy and apoptosis are essentially providing the 

viewpoint of what we might deem as cells that “die trying”. It must also be noted that the 

experimental endpoints of apoptosis and autophagic cell death in response to external 

stimulus cannot capture the potential cell-to-cell intracellular signaling variability (i.e. some 

cells induce apoptosis while others induce pro-survival autophagy). However, bonafide 
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mechanistic measures of autophagy actually promoting apoptosis, as opposed to parallel 

intracellular assessments, might provide a more accurate account of a cell fate “switch” 

during exogenous ROS generation. Further, it cannot be overstated that conflicting measures 

of autophagy inhibition and induction can occur due to the pharmacological approach 

utilized. In multiple other cancers, the inhibition of autophagy during high ROS is better 

characterized, and the molecular mechanisms specifically, caspase activity point to a 

“switch” in the cellular signaling that blunts pro-survival autophagy and instead induces a 

pro-death apoptotic cascade [106]. In particular, cleavage of Beclin-1 by caspase-8 during 

high oxidative damage leads to failure of Beclin-1-regulated autophagy and subsequent 

autophagy inhibition [107]. Further, there is evidence of oxidative damage of autophagy 

gene promoter regions, including p62, which is significant enough to inhibit autophagy 

altogether [108]. There is also evidence that ROS induction inhibits autophagy through 

decreased expression of autophagy initiator ULK1 [109]. Additionally, autophagy proteins 

may be subject to redox-specific post-translational modifications at thiol residues, which 

may determine their role as pro-survival versus pro-death [110]. Specifically, 

phosphorylation of p62 at Ser. 349 during oxidative stress leads to increased NRF2 activity 

by competitive binding to KEAP1 [111].

Clearly, there is a contextual role of ROS on inhibition versus stimulation of autophagy and 

the resultant cell fate. We present a graphical illustration of the divergent cell fate outcomes 

with relation to ROS generation in Figure 2. Preclinical evaluation of chemotherapy-induced 

ROS by the anthracycline, Mitoxantrone further demonstrates that functional autophagy is a 

requisite for efficacious melanoma therapy, highlighting the clinical significance of ROS-

autophagy considerations in translational approaches [112]. Future mechanistic studies of 

these autophagy inhibition mechanisms during ROS generation will ultimately unveil the 

potential impact of pro-oxidants in melanoma. Moreover, pro-oxidant chemotherapeutics 

that stimulate pro-survival autophagy may have enhanced efficacy when combined with 

autophagy inhibitors.

5. Future directions

There are several key issues that hamper the current understanding of the interplay between 

ROS and autophagy dynamics. Firstly, there is a lack of studies that evaluate the dynamic 

interplay between autophagy and redox signaling. In vivo studies that evaluate the 

relationship between ROS production and autophagy in melanoma are limited, and clinical 

studies are absent which evaluate autophagy measurements after traditional ROS-inducing 

chemotherapies. Evidence supporting ROS and autophagy, as individual targets are 

promising, but we urge the push for mechanistic evaluation of ROS-autophagy relationship, 

using proper pharmacological and genetic approaches, in panels of cell lines or human 

tissues, and use of multiple methodological assessments of autophagy. Another key issue is 

regarding the understanding of the role of autophagy as a programmed cell death 

mechanism. In future studies, there is a need to clarify the role of autophagy as a cell death 

mechanism using preclinical and clinical models. Molecular cross talk and genetic overlap 

between autophagy, apoptosis and necrosis mechanisms does exist but bonafide autophagic 

cell death mechanisms and molecular markers are needed.
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One particular challenge to understanding ROS-autophagy dynamics is first in recognizing 

the significance of targeting two pro-survival mechanisms simultaneously. In many 

published studies we found that pro-oxidant treatment (inclding test compounds, 

chemotherapeutics) resulted in ROS-induced apoptosis and autophagy stimulation. Overall, 

the literature suggests that autophagy is induced as a cell survival mechanism, which can be 

concurrent with activation of an apoptotic response. It is essential to evaluate the utility of 

prooxidant and autophagy inhibitors in cases where autophagy induction is observed. As 

such, the efficacy of compounds may improve, as the pro-survival autophagy response is 

diminished. One challenge moving forward would be to judiciously evaluate published 

studies while determining the relevance of combination therapies. In our opinion, 

determining the role of autophagy in cell death during use of chemotherapeutic agents is an 

important challenge. While we suggest that autophagy is primarily a pro-survival 

mechanism in response to redox disruption, there may be cross-talk with cell death 

programming that remains to be elucidated. Evaluation of autophagy dynamics in 

relationship to treatment outcomes, survival curves, tumor burden, and progression-free 

survival in preclinical and clinical studies is needed. Specifically, determining if autophagy 

is a valid target for drug-resistant tumors, holds much promise. Furthermore, it is crucial to 

determine whether current chemotherapy regimens induce ROS, but also stimulate pro-

survival tumor cell autophagy and thus contribute to drug-resistant populations.

In conjunction with the molecular interplay, determinants of oxidative stress and autophagy 

markers in patient serum can be used to evaluate the ROS-autophagy interplay during 

chemotherapy regimens. Such markers could also be an useful avenue for stratification to 

drug response, as was demonstrated with Elesclomol [113]. A future challenge and 

consideration is the reliability of autophagy proteins as actual autophagy determinants when 

evaluating therapy-naïve versus treated patients, as therapeutic modalities may modulate the 

overall tumor microenvironment and autophagy status [114, 115]. Retrospective studies, 

which evaluate tumor autophagy markers and correlate with a ROS-induced chemotherapy 

agent, may provide useful evidence about the ROS-autophagy interplay in patient outcomes. 

Assessment of immunotherapy-ineligible, or chemotherapy-resistant patients’ response to 

dual ROS-autophagy modulating agents would open a therapeutic route for these patients. 

These challenges present opportunities for future research in the emerging field of redox-

autophagy dynamics.
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Figure 1. Hormetic effect of ROS increase on melanoma versus melanocyte cell fate: harnessing 
for therapeutic potential
The proposed model is based on the threshold premise of reactive oxygen species having 

differential effects on cell response. The hormetic principle proposed here speculates that 

different levels of ROS are stimulatory for melanoma and melanocyte survival and provoke 

survival responses such as autophagy in attempt to rid the cell of oxidized/damaged 

contents. However, as ROS increases beyond the cell’s coping threshold, cell fate switches 

to death as apoptotic mechanisms ensue. The autophagy response (dashed curve, bottom) is 

induction as ROS increases, but eventual shut down/decline of the pro-survival autophagic 

mechanisms. We propose that the hormetic curve is altered in melanoma cells (dashed line) 

so that at the same amount of exogenous ROS generation, the melanocyte’s response (solid 

line) will be survival and the melanoma cell response will be death. This represents a 

therapeutic window for ROS-generating anti-cancer agents, and past a certain threshold, 

high enough ROS will lead to toxicity in both cell types. Contributing factors to this 

proposed hormetic alteration is based on literature showing decreased antioxidant capacity 

in melanoma cells owed to mutations in SOD1/2, and the existing basal oxidative stress state 

in melanoma cells that render them particularly susceptible to further ROS escalation.
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Figure 2. Role of ROS-mediated autophagy during melanoma cell fate determination
(A) Cancer cells respond to low or transient exogenous ROS generation (chemotherapy, 

radiation) by KEAP1/NRF2-mediated oxidative stress response, and ER-mediated unfolded 

protein response to rid the cell of damaged lipids and proteins. Autophagy is initiated and 

sustained, leading to cell survival. The result is a cell with increased baseline autophagic 

activity, and continued exogenous ROS-induced stress leads to increased redox stress, 

genomic instability and therapeutic resistance over time. (B) Cancer cells respond to high or 

sustained exogenous ROS generation by an attempted KEAP1/NRF2-mediated oxidative 

stress response and initial autophagy activation. However, sustained ER stress, 

mitochondrial membrane depolarization, and activation of the caspase cascade results in the 

a pro-death response, by which time the autophagy response has been inhibited because the 

cell has committed to die. The molecular switch by which autophagy can no longer serve as 

a survival mechanism occurs when autophagy proteins become dysfunctional, participate in 

pro-apoptotic signaling, are post-translationally modified or the cell’s pro-apoptotic, 

necrotic, or ferroptotic signals have hierarchy above the proautophagic response. In some 

instances, a sustained autophagic response may result in autophagic cell death in the absence 

of pro-apoptotic signaling.
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