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Abstract

Applications of non-invasive neuroelectronic interfacing in the fields of whole-cell biosensing, 

biological computation and neural prosthetic devices depend critically on an efficient decoding 

and processing of information retrieved from a neuron-electrode junction. This necessitates 

development of mathematical models of the neuron-electrode interface that realistically represent 

the extracellular signals recorded at the neuroelectronic junction without being computationally 

expensive. Extracellular signals recorded using planar microelectrode or field effect transistor 

arrays have, until now, primarily been represented using linear equivalent circuit models that fail to 

reproduce the correct amplitude and shape of the signals recorded at the neuron-microelectrode 

interface. In this paper, to explore viable alternatives for a computationally inexpensive and 

efficient modeling of the neuron-electrode junction, input-output data from the neuron-electrode 

junction is modeled using a parametric Wiener model and a Nonlinear Auto-Regressive network 

with eXogenous input trained using a dynamic Neural Network model (NARX-NN model). 

Results corresponding to a validation dataset from these models are then employed to compare and 

contrast the computational complexity and efficiency of the aforementioned modeling techniques 

with the Lee-Schetzen technique of cross-correlation for estimating a nonlinear dynamic model of 

the neuroelectronic junction.
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1. Introduction

Development of technology for non-invasive interfacing of live neurons to electronic devices 

has important applications in the fields of prosthetic devices, biological computation and 
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whole cell-biosensors for high-throughput drug screening and toxin detection 1–6. All these 

applications, in turn, depend critically on an efficient decoding and processing of the 

information exchanged between the neuron and the electronic sensor device. However, non-

invasive extracellular recordings from neurons interfaced to microelectrode and field effect 

transistor arrays also suffer from problems of low signal to noise ratio, signal attenuation due 

to counter-ion diffusion from the bulk extracellular medium into the ~20–110 nm wide 

neuron-electrode cleft and a modification of the shape of the neuron-generated potentials. 

Therefore, it is important to develop or estimate computational models of the neuron-

electrode interface that can efficiently simulate or model the neuron-electrode junction and 

predict its output despite these problems.

Primarily, to date, linear point or area contact equivalent circuit models have been employed 

for modeling the neuron-electrode interface. Equivalent circuit models, however, fail to 

reproduce the correct amplitude and shape of the extracellular signals recorded using planar 

microelectrode or field effect transistor arrays 7, 8. Therefore, researchers have recently 

started to explore the development of models that incorporate the physics of electrodiffusion 

of ions at the neuron-electrode interface 7–9 with the aim of developing and implementing 

strategies for engineering the neuron-sensor interface using surface chemical modification of 

the electrode surface, microelectrode design or novel electrode materials 10–15. The physics 

of electrodiffusion of ions is governed by the Poisson-Nernst-Planck system of equations 

that are time-dependent coupled nonlinear partial differential equations. However, this 

system of equations does not lend itself to computationally inexpensive simulation or 

analytic solutions for representing the dynamics of the neuron-electrode interface. Although 

important for advancing an understanding of the mechanism of signal transduction at the 

neuron-electrode interface and to engineer it for a better signal to noise ratio, such an 

approach cannot be adapted for a real time modeling of the neuron-electrode junction for 

applications in whole-cell biosensing, biological computation or neural prosthetic devices. 

Therefore, it becomes imperative to develop computationally efficient alternate models for 

representing signals recorded at the neuron-electrode interface. Nonlinear dynamic models 

of the neuron-electrode interface estimated using system identification techniques through a 

use of the experimental input-output data recorded from the neuron-electrode junctions are, 

we believe, particularly well poised to provide such an alternative.

In this regard, it is notable that an experimental stimulation of the neuron-electrode junction 

with band-limited white noise was recently employed to estimate a non-parametric ‘data-

true’ Volterra-Wiener (V-W) model of the neuroelectronic interface 16 using Lee-Schetzen 

cross-correlation technique 17. The estimated V-W model represented the complete 

nonlinear dynamics (up to second order) of the interface that accounted for all possible 

linear and nonlinear physicochemical processes, including electrodiffusion of ions and 

dielectric relaxation of the interfacial medium, occurring at the interface in response to the 

neuron generated electric signals. Furthermore, the estimated first and second order V-W 

kernels, representing the linear and nonlinear impulse response of the neuron-electrode 

junction, yielded an excellent prediction of the extracellular output recorded on the planar 

microelectrode corresponding to an intracellular action potential 16. However, the 

computational complexity for an estimation of the V-W kernels using cross-correlation of 

the input band-limited white noise with its corresponding extracellular output recorded at the 
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planar microelectrode scales up as O(Np) for a system characterized by memory length N 
and order of nonlinearity p. Besides, it also requires very long data records (up to 100 

seconds at a sampling rate of ~10 kHz) from the neuron-electrode junction to achieve a 

reasonable convergence of the V-W kernels. As a consequence, the use of the Lee-Schetzen 

cross-correlation technique to model the neuron-electrode junction proves to be 

computationally very expensive and inefficient. This paper follows up on the work reported 

by Thakore et al 16 to explore a viable alternative of a computationally inexpensive and 

efficient system identification technique by representing input-output data from the neuron-

electrode junction using (i) a parametric Wiener model, and (ii) a Nonlinear Auto-

Regressive network with eXogenous input trained using a dynamic Neural Network (NARX-

NN model). We then compare and contrast the computational complexity and efficiency of 

employing parametric Wiener and NARX-NN modeling with the Lee-Schetzen technique of 

cross-correlation for estimating a nonlinear dynamic model of the neuroelectronic junction.

The remainder of this paper is organized as follows. Section 2 focuses on materials and 

methods, and covers cell-culture and electrophysiological protocols, theoretical background 

on Wiener and NARX-NN modeling techniques and numerical methods employed to 

estimate these models. In Section 3, results from Wiener and NARX-NN modeling of the 

neuron-electrode junction are presented while Section 4 discusses and compares these 

results with those obtained from a V-W model 16 using Lee-Schetzen cross-correlation. The 

conclusions from the results presented in this paper are then summarized in Section 5.

2. Materials and Methods

2.1. Cell-culture and electrophysiological protocols

Briefly, NG108-15 neurons were cultured on top of substrate embedded microelectrode 

arrays and electrophysiological recordings were performed on them in voltage and current 

clamp modes. The neuronal differentiation of the NG108-15 cells was confirmed by 

recording sodium and potassium currents in the voltage clamp mode and by measuring 

action potentials in the current clamp mode using a 200 ms depolarization stimulus. 

Experiments employing white noise stimulation of the neuron-electrode junction were 

performed if the access resistance for the neuron was less than 15 MΩ and the action 

potential evoked a detectable signal on the extracellular electrode. For obtaining the input 

output data records, neurons were stimulated through the intracellular patch pipette in 

voltage clamp mode with band limited (0–500 Hz) Gaussian white noise sampled at a rate of 

9.8 kHz for 100 seconds. The white noise signal was generated in MATLAB (The 

MathWorks, Natick, MA) and imported to pClamp as a stimulus file. Whole cell capacitance 

and resistance were compensated but no series-resistance compensation was used. The 

holding membrane potential was −10 mV and the white noise stimulus spanning an 

amplitude range of ± 50 mV was superposed on this signal. The extracellular signal was 

high and low pass filtered at 1Hz (using a second order Bessel filter) and 1 kHz (using a 

fourth order Bessel filter) respectively. For more details on cell-culture and 

electrophysiology protocols the reader is referred to 3, 16, 18.

Khan et al. Page 3

J Comput Theor Nanosci. Author manuscript; available in PMC 2017 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2. Mathematical Models

2.2.1. Wiener Model—The Wiener model consists of two parametric blocks, a dynamic 

linear subsystem followed by a static non-linear element (Figure 1), which assumes no a 
priori underlying structure for the system. The estimation of the parameters of the Wiener 

model was carried out by a minimization of the error between predicted and actual output. 

Thus, employing a prediction error model, the dynamic linear subsystem can be represented 

in discrete time as

(1)

where t is the discrete time, q is the time delay operator, y(t) is the output of the linear 

subsystem, e(t) is the process disturbance or noise in the system, A and B are the functions 

of the delay operator and nk is the number of input samples that occur before the input 

affects the output, also called the ‘dead time’ in the system. The corresponding transfer 

function H(q), can then be written as

(2)

where na and nb denote the number of poles and zeros of the linear subsystem. The nonlinear 

gain at the output in the Wiener model is approximated by a pth order polynomial in y(t) 
given by

(3)

2.2.2. NARX-NN Model—Neural networks can be classified broadly into static and 

dynamic networks. Dynamic networks employ feedback to model systems in which the 

output is influenced by both the preceding input and output states of the system while static 

networks are used to model systems that do not have any feedback affecting their output 

states. At the neuron-microelectrode junction, the magnitude of the ionic currents flowing 

across the neuronal membrane through ion channels is governed by the potential difference 

across the membrane. The electrodiffusing ions influence the ionic concentrations in the 

interfacial medium that fills the narrow cleft (~ 20–110 nm in width) between the neuronal 

membrane and the microelectrode. Since the electric potential depends on the associated 

charge density distribution, the changing ionic concentrations in the nanoscale neuron-

electrode cleft form a feedback mechanism that in turn regulates the potential across the 

membrane. Therefore, for modeling the time series data experimentally recorded at the 

microelectrode from the neuron-electrode junction, a dynamic neural network employing 

feedback was trained using nonlinear autoregression with the intracellular bandlimited white 

noise input to the junction serving as an exogenous input.
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Multiple steps were employed for estimating a NARX-NN model of the mesoscopic neuron-

electrode junction. The estimated model was trained using a series parallel model for the 

nonlinear autoregressive neural network with an exogenous input. A schematic of the NARX 

neural network with an exogenous input employing tap-delayed values of the true output is 

shown in Figure 2a. In the prediction phase, a parallel configuration was utilized as shown in 

Figure 2b 19. For realizing the neural network structure, an additional input was added to the 

simple feed-forward neural network besides the data signal at the input layer. The nonlinear 

dynamic process for such a network can then be represented as

(4)

where ŷ(t) is the predicted output and the regression vector x(t) is given as,

(5)

2.3. Numerical methods

The estimation of the parametric Weiner and NARX-NN models of the neuron-

microelectrode junction was carried out using in-built functions available in MATLAB’s 

System Identification and Neural Network toolboxes. For both the models, experimental 

input-output data from the band-limited white noise stimulation of the neuroelectronic 

interface was used for an estimation of the model parameters. After an estimation of the 

parameters, the Weiner and NARX-NN models were validated by a prediction of the 

experimental extracellular output recorded on the microelectrode corresponding to a neuron 

generated intracellular action potential (AP).

2.3.1. Wiener model—For estimating the parameters of the Wiener model for the neuron-

microelectrode junction, a two step approach was employed. The first step involved a 

determination of the number of zeros and poles of the transfer function for the dynamic 

linear subsystem using regression. For this purpose, the struc function was used to generate 

all possible model order configurations in a na×nb matrix for na and nb values of the number 

of poles and zeros, ranging from 1 to 10, respectively. This na×nb matrix was then employed 

as an input to arxstruc for an estimation of the ARX model of the linear subsystem through a 

determination of the coefficients ai and bi in the denominator and the numerator of the 

transfer function in Equation (2) corresponding to each model configuration of zeros and 

poles. This facilitated a comparison of the predicted output for the different pole-zero 

configurations with the actual output from the experimental bandlimited white noise 

stimulation of the neuroelectronic junction. Through a calculation of the prediction errors for 

the estimated ARX models, this comparison then allowed the choice of an optimal pole-zero 

configuration for the linear subsystem.

The Wiener model for the neuron-microelectrode junction was then constructed using the 

system-identification toolbox function nlhw(data, [zb na nk], InputNL, OutputNL) that 
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creates and estimates a Hammerstein-Wiener model by specifying an input nonlinearity 

InputNL and output nonlinearity OutputNL, as a nonlinearity estimator object or string 

representing the nonlinearity estimator type. Employing this function to estimate a Wiener 

model required specification of InputNL as a first order 1-dimensional linear polynomial 

while OutputNL was specified as a 1-dimensional second order polynomial. The order of the 

linear subsystem was specified using the variables zb and na that, respectively, represented 

the number of zeros nb plus 1 and the number of poles from the optimal pole-zero 

configuration estimated in the previous step.

2.3.2. NARX-NN—The implementation of a neural network requires definition of the 

training functions along with a structure of the network. For this purpose, a sigmoid 

characterized by its nonlinear behavior was employed as an activation function. Its 

asymmetry about the origin allowed the inputs to be normalized resulting in an average 

value close to zero. For the training of the NARX neural network, a batch-learning process 

was utilized that allowed an update on the weights following each batch process leading to 

an improved rate of convergence. The availability of the experimental extracellular output at 

the microelectrode corresponding to the intracellular bandlimited white noise input 

facilitated the use of back-propagation using Bayesian regularization 20. Essentially, 

Bayesian regularization also uses the Levenberg-Marquadt algorithm 21 for optimizing the 

weights and biases but helps in generalizing the network better when compared to the latter. 

Both Bayesian regularization (trainbr) and Levenberg-Marquadt (trainlm) algorithms were 

employed to compare the performance of the evolved network. The NARX neural network 

was implemented in MATLAB using an in-built function narxnet (inputDelays, 
feedbackDelays, hiddenLayerSize) of the neural network toolbox. The input and feedback 

delays ranged from 1–2 while the hidden-layer size was systematically optimized. The 

outputs of the hidden layer were mapped using mapminmax function to conform to the 

range of the sigmoid function output node. A delayed version of the input time series data 

was prepared using the function preparets that automatically shifted the input and target time 

series as many steps as were needed to fill the initial input and layer delay states. These 

input and layer states were then employed as inputs to the MATLAB’s in-built neural 

network training function train(net, inputs, targets, inputStates, layerStates).

2.3.3. Comparison of parametric Wiener and NARX-NN models with the 
Volterra-Wiener Model—The performance of the three modeling approaches was 

analyzed based on the speed of convergence of the algorithm used for model estimation and 

the mean square error (mse) of the predicted extracellular output with respect to the 

experimental extracellular output recorded on the planar microelectrode corresponding to an 

intracellular action potential. The algorithms employed for representing the neuron-

microelectrode junction were benchmarked for convergence speed on a workstation with two 

2.66 GHz Intel quad core processors and 8GB RAM.
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3. Results

3.1. Wiener Model

The dynamics of the neuron-microelectrode interface were represented by a linear transfer 

function and the associated nonlinearities were evaluated using static nonlinear functions 

placed at the input and the output of the linear system. For an estimation of the linear 

transfer function for the Wiener model of the neuron-electrode junction, various pole-zero 

configurations were explored using the function arxstruc. Table 1 shows the loss function 

and the fitness percentage for the various pole-zero and dead-time [na nb nk] configurations 

of the linear dynamic subsystem of the Wiener model. The optimal pole-zero and dead-time 

configuration was chosen after an examination of the fitness percentages from both training 

and validation datasets. It can be seen from Table 1 that comparable fitness values were 

obtained for the [na nb nk] configurations in each of [4 4 0], [4 4 1], [4 4 2], [4 5 1] and [5 5 

0] on the training dataset; however, the fitness percentages on the validation dataset showed 

that the optimal [na nb nk] configuration was [4 4 0]. The loss function, presented in Table 1, 

is defined as the determinant of the covariance matrix of the prediction error given by det[E′ 
E]/N, where E is the residual error matrix and N is the total number of time samples, while 

the fitness of the model output was calculated using 100×(1−|y−ŷ|/|y−ȳ|) where y is the 

target output, ŷ is the predicted output and ȳ is the mean of the target output.

Then using the function nlhw, a linear transfer function H(q) as given in Equation (2) for the 

Weiner model was estimated as

(6)

After an evaluation of the coefficients for the linear sub-system, different combinations of 

the higher order polynomials for the nonlinear blocks were further tested using the function 

nlhw. Static nonlinear blocks of order higher than quadratic, when used to model the input-

output corresponding to the bandlimited white noise stimulation of the junction, increased 

the level of misfit. For example, with a pole-zero configuration of na= 4, nb= 4 and a dead 

time of nk= 0, using a cubic polynomial for output nonlinearity reduced the fitness to 

39.34% while a change of the input nonlinearity to a quadratic polynomial decreased the 

fitness metric to 33.34%. The performance of the Wiener model was also evaluated by 

incorporating a wavelet network for modeling the output nonlinearity (data not presented 

here) however no significant difference was observed in the fitness percentage even after an 

increase in the number of training epochs to 100. Thus, following an evaluation of the model 

configurations for the best fit, the input and output nonlinearities were modeled using one-

dimensional polynomial estimators of first and second degree given by

(7)
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(8)

respectively. The model was then validated on the intracellular action potential dataset 

provided by Thakore et al 16. A good fit of the predicted extracellular output from the 

Wiener model for a validation dataset corresponding to an intracellular action potential was 

obtained as shown in Figure 3.

3.2. NARX-NN model

The implementation of the NARX neural network structure for modeling the neuroelectronic 

interface required a two phase process of training and testing of the trained neural network. 

The training phase involved tuning the values of the weights and biases of the network to 

optimize network performance as defined by the network performance function. The 

performance function employed for optimization of the networks was the mean square error 

(mse) between the network output and the target output. In the training phase, there are two 

recurring steps in each epoch known as forward pass and backward pass 22. During the 

forward pass, the training dataset is applied and the outputs are calculated. Then, these 

outputs are compared with the actual target outputs and the corresponding error is 

calculated. During the backward pass, this output error is then propagated back through the 

layers to alter the weights and biases of the network nodes for minimizing the output error. 

With each epoch, for every input-output data pair, the procedure involving a forward pass 

followed by a backward pass is repeated until the error is low enough to satisfy the specified 

error tolerance. At each input of the input layer, two tapped delays were also employed.

Next, the performance of the evolved networks was compared to find the one that best 

minimized the error with respect to the training dataset. In our case, Bayesian regularization 

in conjunction with early stopping 23 was employed to avoid over-training of the network for 

estimating a NARX-NN model of the neuron-electrode junction. Also, compared to 

Levenberg-Marquadt algorithm, it was observed that for an identical network size and 

number of epochs, Bayesian regularization gave a better fit to the predicted output. The 

results for a hidden layer with different sizes showed that while NARX-NN models, 

estimated with higher number of nodes and epochs (Table 2), provided a low mean square 

error on the input-output dataset used for training (corresponding to the bandlimited white 

noise stimulation of the neuron-electrode junction), they also led to a problem of over-fitting 

which negatively affected the prediction of the validation data set. Hence, for a better 

generalized model of the neuron-microelectrode junction, we avoided the over-fit using early 

stopping in the training phase.

For the testing phase, the output of each of the trained networks was tested and compared 

against the validation dataset It was observed that results on the validation dataset for a 

network trained using 30 epochs and comprising the optimal number of fifteen hidden nodes 

gave an mse of 6.232×10−4 while for the same network, trained with fifteen epochs, the mse 
on the validation dataset was observed to be 7.160 × 10−5 thereby justifying an early 

stopping at the 15th epoch in the training phase (Table 3). Further, it was observed that the 
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best fitting results were obtained for an optimized network comprising fifteen hidden nodes 

which was trained using fifteen epochs (Figure 4).

4. Comparison and Discussion

4.1. Comparison of parametric Wiener and NARX-NN models with the Volterra-Wiener 
Model

A comparison of the V-W model estimated using Lee-Schetzen cross-correlation technique 

with the Wiener model showed that although the mean square error was lower for the V-W 

model and it offered a better prediction of the system output, the complexity of computing 

Volterra-Wiener kernels was quite high with an increase in the order of nonlinearity. The 

results for the comparative performance of the sse on the validation data are shown in Table 

4 which indicate that the best performance was obtained using V-W model while the mean 

square error was highest for the NARX-NN model.

Estimation of the Wiener model required just eleven coefficients including four coefficients 

each for the poles and zeros, one for the first degree polynomial describing the input 

nonlinearity InputNL and two for the second order output nonlinearity OutputNL. For the 

training dataset, the simulations took fewer than 10 minutes for the computations to provide 

us with a supervised model for the Wiener system. In the case of the neural network-based 

model, it is well known that the computational complexity increases with an increase in the 

number of hidden nodes 24. The computational complexity of the neural network is further 

linked to the type of back-propagation algorithm which is used for minimizing the error on 

the training dataset. The description of the estimated NARX-NN model for the neuron-

electrode junction required a total of ninety-one coefficients that included thirty weights 

each for the tap-delayed autoregressive and exogenous inputs, fifteen bias weights for each 

hidden layer node and fifteen weights for each hidden layer node in the output layer along 

with a bias weight. Using the same quad-core machine, which was employed for Wiener 

model estimation, it took approximately 2 hours to obtain the trained neural network. In the 

case of Volterra-Wiener model estimated using Lee-Schetzen cross-correlation technique 16, 

although the predicted output of the estimated model showed efficient mapping on the 

validation data, the Volterra-Wiener series representation required a very large number of 

coefficients (~ 3.6 × 104) computed in about 2–3 days to characterize the neuron-electrode 

junction. Generally, a Volterra system with memory length N and order p has O(NP) 

coefficients 25 resulting in slower convergence rates and longer computation times compared 

to the time required for estimating Wiener or NARX-NN models.

4.2. Discussion

For the comparison of the system under discussion, two criteria can be employed to measure 

their performance. From the point of computational complexity, a comparison of the models 

with regard to their convergence speed to obtain the best fit was made. It was observed that 

among all three techniques, the Wiener model utilized the fewest number of coefficients and 

accordingly presented the fastest convergence for the given dataset. A comparison of the 

performance with regard to obtaining the lowest mean square error on the validation dataset 

showed that the best value was obtained from the V-W model estimated using the Lee-
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Schetzen technique of cross-correlation 16. The NARX-NN model presented moderate 

computational complexity but its convergence was inferior to the Weiner model which was 

also nearly an order of magnitude lower in computational complexity. Thus, a choice can be 

made between the Weiner model and the V-W model depending on the specifications on 

convergence and complexity. The advantage of using a V-W model is that it is non-

parametric and it does not rely on the distribution of the intracellular action potential. On the 

other hand, using a parametric Wiener model, a reliable estimate is obtained but the linear 

model is parameterized according to the experimentally obtained data for intracellular action 

potential.

5. Conclusions

In this paper, we first estimated two parametric nonlinear dynamic models of the neuron-

electrode junction using the computationally efficient data-true techniques of Wiener and 

NARX-NN modeling. Further, these models were employed to predict the extracellular 

output recorded from the neuron-electrode junction corresponding to an intracellular action 

potential. The predicted outputs thus obtained from these models were then compared and 

contrasted with the outputs from the V-W model estimated using Lee-Schetzen cross-

correlation technique. Analysis of computational complexity, that directly impacts the 

computation time required for estimating a model, showed that Wiener model outperformed 

both the NARX-NN model and the V-W model estimated using Lee-Schetzen cross-

correlation. Mean square error analysis, on the other hand, showed that V-W model 

performed the best in prediction of the extracellular output recorded at the neuron-electrode 

junction which was closely followed by the Wiener model. The computational efficiency of 

the NARX-NN technique lay closer to the Wiener model but it did not offer any significant 

advantage over either the Wiener model or the V-W model in terms of obtaining a better 

mean square error for the predicted extracellular output.

Non-invasive techniques of interfacing live neurons to electronic devices are important 

because they offer promising applications in the development of high-throughput drug 

screening and toxin detection platforms, devices exploiting biological computation and 

neural prosthetic devices. The efficacy and performance of each of these applications, in 

turn, depends critically on the speed with which the information obtained through a 

neuroelectronic interface can be exchanged, decoded and processed. It is in this context that 

the use of computationally efficient parametric ‘data-true’ Wiener modeling for estimating a 

nonlinear dynamic model of the neuron-electrode junction provides a promising and 

powerful new alternative to the use of equivalent circuit models and modeling approaches 

based on the physics of electrodiffusion for representing signals recorded through the 

neuroelectronic interface.
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Figure 1. 
Wiener Model Structure.
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Figure 2. 
(a) NARX neural network series parallel model used for training phase. (b) NARX neural 

network parallel model used for prediction phase.
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Figure 3. 
Experimental extracellular output recorded on the planar microelectrode (solid line) and the 

linear (dot-dash line) and total predicted (dotted line) outputs from the Wiener model.
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Figure 4. 
Comparison of the experimentally obtained extracellular output (solid line) from the neuron-

electrode junction with the predicted output obtained from the NARX-NN model (dotted 

line) of the junction.
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Figure 5. 
Comparison of experimentally measured extracellular output (solid line) recorded on the 

planar microelectrode with the predicted outputs obtained using estimated Wiener (dashed 

line), NARX-NN (dotted line) and V-W models (dot-dash line) of the neuron-electrode 

junction.
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Table 1

Loss function and fitness percentage of the Wiener model using different configurations of the linear transfer 

function with 1st order input and 2nd order output nonlinearities.

[na nb nk]

Performance

Training dataset
Validation dataset Fitness (%)

Loss function Fitness (%)

[4 3 0] 2.047 × 10−5 36.89 −116.5

[4 3 1] 2.475 × 10−5 36.89 −116.5

[3 4 0] 2.045 × 10−5 36.92 −115.6

[3 4 1] 2.045 × 10−5 36.92 −115.6

[4 4 0] 1.962 × 10−5 38.25 42.91

[4 4 1] 1.959 × 10−5 38.26 42.71

[4 4 2] 1.951 × 10−5 38.27 42.54

[4 5 0] 2.058 × 10−5 36.92 −115.7

[4 5 1] 1.958 × 10−5 38.28 42.21

[4 5 2] 2.046 × 10−5 36.91 −116.7

[5 5 0] 1.958 × 10−5 38.28 42.15

[5 5 1] 2.046 × 10−5 36.91 −116.3
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Table 2

Mean square error for different numbers of hidden nodes and training epochs in a NARX-NN model.

Number of hidden nodes Performance on the training dataset (mse)

10 epochs 20 epochs

5 11.5 × 10−6 7.06 × 10−6

10 7.38 × 10−6 7.19 × 10−6

15 7.18 × 10−6 7.06 × 10−6
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Table 3

Mean Squared Error for a network realized using fifteen hidden nodes and trained with various numbers of 

epochs in a NARX-NN model for the validation dataset.

Number of epochs Performance on the validation dataset (mse)

10 5.913 × 10−4

13 1.567 × 10−4

14 1.567 × 10−4

15 7.160 × 10−5

16 4.544 × 10−4

17 4.544 × 10−4

20 2.653 × 10−4

30 6.232 × 10−4
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Table 4

Comparison of parametric Wiener and NARX-NN techniques of estimating a model of the neuron-electrode 

junction with the non-parametric Volterra-Wiener model estimated using Lee-Schetzen cross-correlation 

technique.

Non-linear model Performance (mse) Model complexity

Wiener Model 6.15 × 10−5 11 coefficients

NARX-NN Model 7.16 × 10−5 75 weights and 16 bias constants

V-W Model 16 4.10 × 10−5 ~ 3.6 × 104 kernel elements (up to 2nd Order)

J Comput Theor Nanosci. Author manuscript; available in PMC 2017 February 23.


	Abstract
	1. Introduction
	2. Materials and Methods
	2.1. Cell-culture and electrophysiological protocols
	2.2. Mathematical Models
	2.2.1. Wiener Model
	2.2.2. NARX-NN Model

	2.3. Numerical methods
	2.3.1. Wiener model
	2.3.2. NARX-NN
	2.3.3. Comparison of parametric Wiener and NARX-NN models with the Volterra-Wiener Model


	3. Results
	3.1. Wiener Model
	3.2. NARX-NN model

	4. Comparison and Discussion
	4.1. Comparison of parametric Wiener and NARX-NN models with the Volterra-Wiener Model
	4.2. Discussion

	5. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4

