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Abstract

Pesticide-exposed adolescents may have a higher risk of neurotoxic effects because of

their developing brains and bodies. However, only a limited number of studies have

addressed this risk among adolescents. The aim of this study was to compare neurological

outcomes from two cohorts of Egyptian adolescents working as pesticide applicators. In

2005 and 2009, two cohorts of male adolescents working as pesticide applicators for the

cotton crop were recruited from Menoufia Governorate, Egypt. The same application sched-

ule and pesticides were used at both times, including both organophosphorus, and pyre-

throid compounds. Participants in both cohorts completed three neurobehavioral tests,

health and exposure questionnaires, and medical and neurological screening examinations.

In addition, blood samples were collected to measure butyryl cholinesterase (BChE) activity.

Pesticide applicators in both cohorts reported more neurological symptoms and signs than

non-applicators, particularly among participants in the 2005 cohort (OR ranged from 1.18 to

15.3). Except for one test (Trail Making B), there were no significant differences between

either applicators or non-applicators of both cohorts on the neurobehavioral outcome mea-

sures (p > 0.05). The 2005 cohort showed greater inhibition of serum BChE activity than the

2009 cohort (p < 0.05). In addition, participants with depressed BChE activity showed more

symptoms and signs than others without BChE depression (p < 0.05). Our study is the first

to examine the consistency of health outcomes associated with pesticide exposure across

two cohorts tested at different times from the same geographical region in rural Egypt. This

similar pattern of findings across the two cohorts provides strong evidence of the health

impact of exposure of adolescents to pesticides.
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1. Introduction

Adolescents are occupationally exposed to pesticides while performing a range of tasks during

the pesticide application process. These tasks range from applying with a backpack sprayer,

mixing and loading pesticides, cleaning the equipment or holding signs to mark the edges of

the field during the application process [1]. Pesticide application to the cotton crop in Egypt is

managed and regulated by the Egyptian Ministry of Agriculture. Pesticides are applied during

the summer at 4 time-points according to the life cycles of different cotton worms: cotton boll-

worms (pink and spiny) and cotton leafworms [2]. Early in the growing season, a biological

bacterial insecticide is applied as a growth promoter, followed by 3 cycles of pesticide applica-

tion throughout July and August to control cotton worm infestations. The applied insecticides

include organophosphorus (primarily chlorpyrifos) and pyrethroid compounds [1].

Previous research examining long-term occupational exposure among adults, without pre-

vious poisoning, has demonstrated increased reporting of a wide range of neurological symp-

toms and signs, most commonly fatigue, headache, blurred vision, dizziness [3–5], but also

depression, difficulty with concentration or memory, irritability, and numbness [6, 7]. Others

have reported nerve function abnormalities, paresthesia, increased vibration sensitivity, bal-

ance difficulties, tremors, staggering and weakness, hyper-reflexia and loss of muscle strength

in legs or arms, and difficulty in moving fingers or grasping objects [4, 8, 9]. Neurobehavioral

performance was also examined among adult pesticide workers; it was found that workers

exposed to organophosphorus (OP) pesticides demonstrate deficits in response speed and

coordination, sustained attention, visual perception, and memory [10, 11]. More years work-

ing in agriculture and handling pesticides is associated with increased neurobehavioral deficits

[12, 13]. Few studies have addressed these outcomes among adolescent pesticide applicators

[1, 14–17]. The most commonly reported neurobehavioral deficits among adolescents were

motor speed and coordination, information processing speed and executive functioning,

attention, and memory [1, 14, 16]. Adolescents working in agriculture showed more neurolog-

ical symptoms, e.g. headache, tremors, insomnia, dizziness, irritability, and numbness, than

adolescents not working in agriculture [15, 17].

Cholinesterase activity as a biomarker of effect is often used to characterize exposure to OP

pesticides, where the common mechanism of OP neurotoxicity is the inhibition β-cholinester-

ases: acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE), with a more sensitivity

of BChE [18]. Several studies with adults have found that cholinesterase activity decreased

after exposure [19–21]. Other studies reported lower cholinesterase levels among exposed par-

ticipants than control participants [11, 22]. Studies with adolescents have also demonstrated

lower cholinesterase activity among adolescent applicators compared to non-applicators

[1, 16, 18]. Although numerous studies have examined the relationship between neurological

symptoms reporting and cholinesterase activity [1, 4–7, 17, 21, 23], there is a scarcity of the

studies that interested in studying this relationship among adolescents.

Adolescents may be at greater risk from pesticide exposure than adults because of their

still developing bodies [24, 25]; Furthermore, they may perform agricultural tasks that put

them at risk for exposure, particularly in countries where there are few restrictions addressing

children’s work in agriculture [1, 19]. This demonstrates a need to examine the impact of

exposure to pesticides on neurological outcomes among adolescents occupationally working

in agriculture. In order to advance our understanding, it is important to look for converging

evidence, replicating the neurological and neurobehavioral findings of similar cohorts who are

exposed in the same way and evaluating them using the same tools is needed to confirm the

relationship between exposure of adolescents to pesticides and the deleterious effects of

pesticides.
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Adverse effects associated with pesticide exposure were first identified in a cohort of adoles-

cents in 2005 [1]. A second study in 2009 was conducted to determine if similar effects were

found and to evaluate additional outcome measures [16]. Similar application schedules and

pesticides were applied at both time points. The goal of the current work was to examine the

impact of pesticide exposure on health outcomes, including: neurobehavioral symptoms and

signs, neurobehavioral performance, and butyryl cholinesterase (BChE) activity among the

two cohorts of participants examined in 2005 and 2009, and evaluate whether these effects are

consistent or can be replicated over time.

2. Methods

2.1. Participants

Participants for both cohorts were recruited from Menoufia Governorate, and testing was car-

ried out in August of 2005 and 2009, at the end of the pesticide application season. The season

begins in June and ends in August. During this time, approximately 10 adolescents from each

village were hired by the local stations of the Ministry of Agricultural to apply pesticides to the

cotton crop under supervision of adult agriculture engineers and employees. Adolescents

hired by the Ministry of Agriculture, between 12 and 18 years of age, were recruited in 2005

and 2009 (N = 41 in 2005 and N = 21 in 2009). There was a high response rate at both time

periods (89.3% in 2005 and 91.3% in 2009). Adolescents who had never worked in the cotton

fields was also recruited through friends and relatives of the applicator adolescents (N = 38 in

2005 and N = 20 in 2009) as a comparison group. Non-applicators lived in the same commu-

nity as applicators and attended the same schools, but were not interested in working as pesti-

cide applicators. The pesticide application process was the same at both years and is described

in detail elsewhere [1]. The protocol and consent forms used in this study were approved by

the Oregon Health & Science University (USA) and Menoufia University (Egypt) Institutional

Review Boards. Participants and their legal guardians gave written informed consent prior to

enrollment.

2.2. Procedure

Both cohorts, 2005 and 2009, completed questionnaires, provided a blood sample and per-

formed a battery of neurobehavioral tests. The 2009 participants also provided a urine sample

for the measurement of 3,5,6-trichloro-2-pyridinol (TCPy); a specific metabolite for chlorpyri-

fos, the primary pesticide applied. Although a subset of tests was the same at both years, in

2005, all neurobehavioral tests were traditional tests from the Wechsler Adult Intelligence

Scale—Revised (WAIS-R). In 2009, a series of computerized tests from the Behavioral Assess-

ment and Research System (BARS) replaced some of the individually administered tests

(Table 1). Data collection methods are described in brief below.

2.2.1. Questionnaires. For both cohorts, adolescents with the assistance of their parents,

completed a questionnaire describing their medical and work history, including information

about their exposure to pesticides. The questionnaire included items asking about the fre-

quency of neurological symptoms e.g. headache, pain, and fatigue. In 2009, detailed questions

were added to the questionnaire to get a complete profile of exposure to pesticides at work,

home, and in family fields.

2.2.2. Medical examination. Detailed clinical medical examinations and complete neuro-

logical examinations were administered by specialists during both years. These examinations

included assessment of the following signs among study cohorts: tremors, and neurological

incoordination, in addition to any abnormalities in ankle and knee reflexes, superficial and

deep sensations, or in muscle power.

Pesticide health effects
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2.2.3. Neurobehavioral test battery. Age appropriate versions of tests from the Wechsler

Adult Intelligence Scale—Revised (WAIS-R; the current version available at the time) [26], val-

idated in an Arabic-speaking population [27], were used to assess neurobehavioral function.

In addition, the 2009 cohort also completed computerized neurobehavioral tests from the

Behavioral Assessment and Research System (BARS; Table 1) [28]. All test instructions were

translated into Arabic. Examiners read the instructions to participants for non-computerized

tests, while for the computerized tests, instructions were presented in Arabic on the screen and

also simultaneously delivered orally through headphones. Reliability and validity of BARS tests

were approved for the Arabic speaking populations [16, 29]. For the purpose of the current

study, the comparison between both cohorts was done for the three neurobehavioral tests that

were administered identically to both cohorts.

2.2.4. Butyryl cholinesterase activity. Cholinesterase enzyme activity, as a biomarker of

effect chlorpyrifos, was evaluated at the end of the application season for both study cohorts.

The Weber method [30] was used to measure the serum cholinesterase enzyme (Butyryl cho-

linesterase; BChE) in 2005 through a standard laboratory kit (Test-combination Boehringer

Mannheim GmbH Diagnostica). In 2009, Butyryl cholinesterase activity was measured in

whole blood using the EQM Test-Mate kit (EQM Research, Cincinnati, OH, USA) [31], which

is based on the Ellman method [32].

2.2.5. Data analysis. SPSS version 23 was used for data analysis. Analysis of Variance

(ANOVA) test was employed to test the difference between cohorts (2005 and 2009), across

job categories (applicators and non-applicators), and the interaction between cohorts and job

categories. Odds ratios (ORs) and their confidence intervals were used to estimate the risk of

developing symptoms and signs between groups. These ORs for both cohorts were contrasted

to test their homogeneity using chi-square tests and p-values. When the results were homoge-

nous, Mantel Haenszel common OR was used to test the significance of ORs over the two

study cohorts. Regression analysis was performed to examine the differences in performance

on the three neurobehavioral tests administered to both cohorts, between applicators and non-

applicators across the two cohorts. Differences of adjusted means and their standard errors are

presented for the neurobehavioral tests controlling for age and years of education. The differ-

ences in number of symptoms between cohorts, job categories, and also beween depressed and

non-depressed BChE activity participants were analyzed using the Mann-Whitney test. Chi-

square test was used to examine the differences between cohorts (within job categories) and

Table 1. Neurobehavioral functions assessed and the tests administered for both cohorts (2005 and 2009).

Functions Tests 2005 2009 Format

Memory Match To Sample; MTS a p
Computer

Serial Digit Learning; SDL a p
Computer

Benton Visual Retention; BVRT b p p
Paper-pencil

Attention/Short memory WAIS-R Digit Span; DS b p
Paper-pencil

Digit Span Test; DST a p
Computer

WAIS-R Arithmetic b p
Paper-pencil

Sustained Attention Continuous Performance; CPT a p
Computer

Motor Speed/Coordination Finger Tapping; TAP a p
Computer

Information Processing Speed Simple Reaction; SRT a p
Computer

Visual Motor WAIS-R Digit Symbol b p
Paper-pencil

Symbol Digit; SDT a p
Computer

Trail Making A & B b p p
Paper-pencil

Perception WAIS-R Block Design b p p
Manual

doi:10.1371/journal.pone.0172696.t001
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between job categories (within cohorts) among the participants with depressed BChE activity.

Pearson correlation was run to test the correlation between neurobehavioral tests and BChE

activity for both cohorts.

3. Results

3.1. Characteristics of participants

Table 2 describes the demographic characteristics of participants in both the 2005 and 2009

cohorts. Tests compare the mean responses between cohorts (within job categories), between

job categories (within cohorts), and modification of differences between job categories over

time (interaction effect). Means and standard deviations (SD) were reported and compared

with ANOVA test. Age was not significantly different between all groups, averaging 15.4 years

overall. The 2009 participants had more years of education than the 2005 participants, but

there were no differences in years of education between applicators and non-applicators of

both cohorts. While the 2005 applicators worked significantly more years in agriculture than

the 2009 applicators (p< 0.001), the difference in days worked in pesticide application in 2005

and 2009 was not significantly different between applicators of both cohorts (p = 0.08).

3.2. Neurological manifestations

Table 3 shows that applicators in both cohorts reported higher frequencies of neurological

symptoms and signs than non-applicators, but only the 2005 applicators reported significantly

more neurological symptoms and signs than non-applicators (20 out of the 25 manifestations

had significant 95% CI). A test of homogeneity of ORs of both cohorts for each symptom was

conducted to see if the ORs of both cohorts were different. Outcomes of the homogeneity OR

test indicated that ORs of both cohorts for all symptoms are homogenous, p> 0.1 (Table 3,

the 2nd right column). In the last column of Table 3, the Mantel Haenszel common OR (M-H

OR) is used for all symptoms and signs to examine the significance of common OR across the

two cohorts. Common ORs are significant for most of the neurological symptoms and signs;

this indicates higher frequencies of symptoms and signs among applicators than non-applica-

tors. All reported ORs were unadjusted due the small sample sizes of both cohorts. The median

number of symptoms and signs was also significantly higher among applicators than non-

applicators (within cohorts, p = 0.03) and higher for the 2005 cohort than that of the 2009

cohort (p = 0.005) (Data not shown).

Table 2. Comparison of demographic and exposure characteristics of applicators and non-applicators in 2005 (n = 79), and 2009 (n = 41).

Characteristics 2005 2009 P-value

Non-applicators

(n = 38) Mean (SD)

Applicators (n = 41)

Mean (SD)

Non-applicators

(n = 20) Mean (SD)

Applicators (n = 21)

Mean (SD)

Cohorta Job

categoryb
Interactionc

Age (y) 15.4 (1.7) 15.2 (1.7) 15.5 (1.5) 15.5 (2.1) 0.6 0.8 0.8

Education (y) 7.8 (3.8) 6.8 (4.2) 9.5 (1.5) 9.3 (1.5) < 0.001 0.2 0.4

Days worked 22.4 (6.9) 18.9 (7.4) 0.08

Years worked 5.5 (2.3) 2.1 (1.0) < 0.001

a, comparison between 2005 and 2009 cohorts
b, comparison between applicators and non-applicators across the two years of the study
c, Interaction between job category and cohort

doi:10.1371/journal.pone.0172696.t002
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3.3. Neurobehavioral performance

There were no significant differences between applicators of both study cohorts and also no

significant differences for non-applicators on the neurobehavioral tests after controlling for

age and years of education, except that non-applicators in 2009 took a significantly longer time

to complete the Trail Making-B test than non-applicators in 2005 (Table 4).

3.4. Butyryl cholinesterase activity of both cohorts of the study

The number of participants with BChE inhibition were compared across the study cohorts;

however, different methods were employed to evaluate BChE activity in both cohorts. The

range of normal BChE activity reported by kit manufacturers (3.33–7.03 IU/ml for the 2005

Table 3. Comparison of the neurological symptoms and signs between job categories in each cohort (OR and CI), and homogeneity evaluation of

the comparisons across the two cohorts (X2, p-value) and the significance of the Mantel-Haenszel common odds ratio (M-H OR (95% CI).

Signs/Symptoms 2005 2009 X2 (1df), p M-H OR (95% CI)

Non-

applicators

(n = 38) N (%)

Applicators

(n = 41) N (%)

OR (95% CI) Non-

applicators

(n = 20) N (%)

Applicators

(n = 21) N (%)

OR (95% CI)

Headache 9 (23.7) 15 (36.6) 1.86 (0.70, 4.96) 2 (10.0) 4 (19.0) 2.12 (0.34, 13.1) 0.02, 0.90 1.92 (0.81, 4.54)

Arthralgia 9 (23.7) 11 (26.8) 1.18 (0.43, 3.27) 2 (10.0) 3 (14.3) 1.50 (0.22, 10.1) 0.047,

0.83

1.25 (0.51, 3.06)

Pain 6 (15.8) 8 (19.5) 1.29 (0.40, 4.14) 2 (10.0) 2 (9.5) 0.95 (0.12, 7.46) 0.07, 0.79 1.20 (0.44, 3.30)

Fatigue 3 (7.9) 15 (36.6) 6.73 (1.76, 25.7) 1 (5.0) 4 (19.0) 4.47 (0.45, 44.0) 0.09, 0.76 6.06 (1.91, 19.2)*

Blurred vision 2 (5.3) 14 (34.1) 9.33 (1.95, 44.6) 1 (5.0) 3 (14.3) 3.17 (0.30, 33.3) 0.59, 0.44 6.92 (1.92, 25.0)*

Feeling

depressed

2 (5.3) 13 (31.7) 8.36 (1.74, 44.1) 1 (5.0) 4 (19.0) 4.47 (0.45, 44.0) 0.20,

0.66)

6.92 (1.91, 25.1)*

Difficulty in

concentration

2 (5.3) 12 (29.3) 7.45 (1.54, 36.0) 0 1 (4.8) 0.13, 0.72 8.11 (1.69, 39.0)*

Dizziness 2 (5.3) 12 (29.3) 7.45 (1.54, 36.0) 0 0

Difficulty in

understanding a
2 (5.3) 11 (26.8) 6.6 (1.36, 32.1) 1 (5.0) 2 (9.5) 2.00 (0.17, 24.0) 0.67, 0.41 4.86 (1.31, 18.0)*

Troubles in

remembering b
1 (2.6) 12 (29.3) 15.3 (1.88, 125) 1 (5.0) 4 (19.0) 4.47 (0.45, 44.0) 0.65, 0.42 9.56 (2.11, 43.4)*

Feeling irritable 1 (2.6) 11 (26.8) 13.6 (1.66, 111) 1 (5.0) 4 (19.0) 4.47 (0.45, 44.0) 0.52, 0.47 8.82 (1.93, 40.3)*

Numbness 1 (2.6) 9 (22.0) 10.4 (1.25, 86.6) 0 3 (14.3) 0.31, 0.58 14.0 (1.73, 114)*

Superficial

sensation

abnormality

2 (5.3) 12 (29.3) 7.45 (1.54, 36.0) 0 3 (14.3) 0.43, 0.51 9.44 (2.00, 44.6)*

Knee reflex

abnormality

2 (5.3) 10 (24.4) 5.81 (1.18, 28.5) 0 1 (4.8) 0.17, 0.68 6.43 (1.32, 31.3)*

Tremors 2 (5.3) 8 (19.5) 4.36 (0.86, 22.0) 0 1 (4.8) 0.22, 0.64 4.95 (1.00, 24.5)*

Incoordination 1 (2.6) 10 (24.4) 11.9 (1.45, 98.5) 2 (10.0) 4 (19.0) 2.12 (0.43, 13.1) 1.63, 0.20 5.27 (1.43, 19.4)*

Ankle reflex

abnormality

1 (2.6) 6 (14.6) 6.34 (0.73, 55.4) 0 1 (4.8) 0.15, 0.70 7.44 (0.87, 63.6)

Muscle power

abnormality

1 (2.6) 5 (12.2) 5.14 (0.57, 46.2) 0 1 (4.8) 0.19, 0.66 6.21 (0.71, 54.0)

Deep sensation

abnormality

0 1 (2.4) 0 0

a, Difficulty in understanding meanings of newspaper and books
b, Troubles in remembering things observed by relatives

doi:10.1371/journal.pone.0172696.t003
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cohort [30], and 1.35–3.23 U/ml for the 2009 cohort [31]) were used to identify participants

with depressed or low BChE activity relative to the respective normal range. For both cohorts,

a greater percentage of applicators had depressed levels of cholinesterase, relative to the normal

range, than non-applicators (Fig 1; 2005: chi-square = 7.9, p = 0.005; 2009: chi-square = 5.2,

p = 0.02).

Table 4. Differences in neurobehavioral performance between applicators and non-applicators of both cohorts.

Neurobehavioral Test Non-applicators Difference (95% CI) Applicators Difference (95% CI)

Block Design 3.9 (-1.5, 9.3) 4.1 (-0.02, 8.2)

Trail Making—A a - 9.9 (-20.0, 0.3) - 8.9 (-20.1, 2.2)

Trail Making—B a - 21.8 (-42.0, -1.7)* - 8.7 (-24.5, 7.2)

a, Differences represents (2005–2009) time in seconds. These are time measures tests, so, higher is worse

* p < 0.05

doi:10.1371/journal.pone.0172696.t004

Fig 1. Percent of participants with depressed BChE activity relative to the normal ranges in 2005 and 2009.

doi:10.1371/journal.pone.0172696.g001
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3.5. Relationship between neurological symptoms and signs and butyryl

cholinesterase activity

Among participants in the 2005 cohort, participants with depressed BChE activity reported a

greater number of neurological symptoms and signs relative to participants that were within

the normal range of BChE activity (p = 0.006). This relationship was also observed when par-

ticipants from the 2005 and 2009 cohorts were combined (p = 0.013). However, this difference

between participants with depressed and normal BChE was not found for the 2009 cohort

(p = 0.75) (Table 5).

3.6. Correlation between neurobehavioral performance and butyryl

cholinesterase

Pearson correlation was used to examine the correlation between neurobehavioral tests and

BChE activity for both study cohorts. A non-significant correlation between neurobehavioral

outcomes in both study cohorts and BChE levels was found, except for Trail making A and B

in the 2005 cohort. However, a significant negative correlation was present between the BChE

level and Trail Making A (r = -0.29, p = 0.01), and also with Trail Making B (r = -0.42,

p< 0.001) (Fig 2). This indicates impaired performance in these tests with more depression of

BChE activity.

4. Discussion

Our study is the first to examine the consistency of health outcomes associated with pesticide

exposure across two cohorts tested at different times from the same geographical region in

rural Egypt. Pesticide applicators in both cohorts reported more neurological manifestations,

neurobehavioral deficits, and BChE inhibition than non-applicators. The consistency of the

findings over the two cohorts of the study provides further evidence of the neurological health

effects of prolonged exposure to organophosphorus pesticides. The two cohorts were exam-

ined in 2005 and 2009 using a similar methodology with similar questionnaires, neurobeha-

vioral testing, medical examination, and evaluation of BChE activity. During the two years of

the study, applicators also applied the same types of pesticides, and followed the same schedule

and methods of pesticide application. However, the 2005 cohort showed more neurological

symptoms and signs, and neurobehavioral deficits, which in part may be due to more years of

working in pesticide application and/or more extensive exposures, and fewer years of

education.

Pesticide applicators from both cohorts reported more neurological symptoms and showed

more signs than non-applicators of both study cohorts. Nevertheless, the significant ORs were

Table 5. Median and interquantile range (IQR) of neurological symptoms and signs of the two cohorts according to BChE activity (in each cohort,

depression in BChE activity was determined relative to normal ranges from the methods used).

2005 (n = 79) 2009 (n = 41) Total (n = 120)

Depressed BChE

(n = 22)

Normal BChE

(n = 57)

Depressed BChE

(n = 8)

Normal BChE

(n = 33)

Depressed BChE

(n = 30)

Normal BChE

(n = 90)

Median 4.0 0.0 0.0 0.0 1.5 0.0

IQR 10.2 2.0 2.2 1.0 9.2 1.0

p-value
a

0.006 0.75 0.013

a, P-value of Mann-Whitney test

doi:10.1371/journal.pone.0172696.t005
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obtained only among the 2005 cohort; the consistent higher frequencies of symptoms and

signs among applicators were confirmed through the homogeneity of OR as shown by the chi-

square test, and the significant common OR by the Mantel-Haenszel test (Table 3). The results

of neurological signs and symptoms among adolescent pesticide applicators of both 2005 and

2009 cohorts agree with the findings of Egyptian studies that examined health hazards among

adult pesticide applicators [3, 11], and applicators and farmworkers worldwide: licensed pri-

vate applicators [6], Florida farmworkers [10], and farm residents [7] in the USA; irrigation

workers in Ghana [33], Indonesian farmers [34], Sri Lankan farmers [4], Spanish greenhouse

sprayers [35], Indian pesticide manufacturing workers [22], and Emirates farmworkers [36].

This consistency of neurobehavioral findings is also found through comparison of neurobe-

havioral tests applied identically to both cohorts: Block Design, Trail Making A and B, where

applicators and non-applicators of both cohorts did not show any statistically significant dif-

ference except on the Trail Making B test (Table 4). Detailed comparisons of neurobehavioral

performance of applicators and non-applicators for each cohort are presented in other publi-

cations [1, 16]. The outcomes of the current study confirm the findings of other studies which

showed that functional domains most consistently affected by OP exposure include psychomo-

tor and cognitive behavior [37]. These findings also were confirmed by a meta-analysis exam-

ining neurobehavioral performance among farmworkers and pesticide applicators [38].

Although pesticide applicators in 2009 did not show significantly more neurological symp-

toms and signs than the non-applicators, most likely due to the small sample size, this did not

affect the homogeneity of OR measured by the chi-square test or the significant common OR

by the Mantel-Haenszel test for the majority of the neurological symptoms and signs (Table 3).

These findings indicate an increase in frequency of both neurological symptoms and signs

among applicators compared to non-applicators, regardless of the examined cohort. The same

results were obtained when comparing the median of the number of symptoms and signs

experienced by each participant between applicators and non-applicators in each cohort and

across the two cohorts (last row-Table 3). This association between neurobehavioral deficits

and occupational exposure to OP pesticides among applicators of both cohorts is confirmed

by the findings of non-significant differences between 2005 and 2009 cohorts in age and days

Fig 2. Correlation between Trail making test (A & B) and butyryl cholinesterase (BChE) levels in participants from the

2005 cohort.

doi:10.1371/journal.pone.0172696.g002
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worked in applying pesticides (Table 2), and also after controlling for both age and years of

education in the regression model for neurobehavioral outcomes (Table 4). The relationship

between OP exposure and neurobehavioral deficits is also strengthened because applicators

from both cohorts used the same chemical compounds, the same method of pesticide applica-

tion and almost the same work duration in both seasons.

In evaluating the biological effects of pesticide exposure of the two cohorts, results found

that a greater percentages of applicators had depressed levels of BChE than non-applicators

(Fig 1). This is consistent with the findings of other studies [19–21]. While the relationship

between neurological symptoms and BChE depression is obvious (Table 5), this is not the case

regarding neurobehavioral performance, where only one test (Trail Making) showed a nega-

tive correlation with BChE levels in the 2005 cohort. This is similar to what was found among

adolescent pesticide applicators in Egypt, where only Information, Digit Span and Trail Mak-

ing were correlated with BChE activity [1]. These results also agree with findings from Roldan-

Tapia and colleagues (2005), that BChE activity is not a valuable tool to explain neurological

deficits among workers occupationally exposed to OP. Changes in BChE activity may be

attributed to several factors e.g. inter- or intra-individual or seasonal variability or factors such

as alcohol consumption [13].

The study was limited by the small sample size and only a single measurement of cholines-

terase activity, which does not provide information about the inhibition of cholinesterase

activity during the application season. Although other biomarkers of exposure are available to

characterize exposure, e.g., TCPy, this information was only available for participants tested in

2009 [16]. Additional work examining the changes across the season is needed to understand

the impact of exposure on neurological outcomes and to estimating the dose response relation-

ship between pesticide exposure and neurobehavioral outcomes.

In conclusion, replicating the health findings associated with pesticide exposure among

adolescent pesticide applicators tested in 2005 and 2009 in the Menoufia Governorate, Egypt

demonstrates the neurological drawbacks and neurobehavioral deficits among adolescents

occupationally exposed to OP pesticides. Neurological symptoms and signs were significantly

higher among applicators than non-applicators, especially for the 2005 cohort. Fewer days and

years worked in 2009 and also the small sample sizes may be the reasons that fewer neurologi-

cal deficits were observed in 2009. These outcomes provide more evidence of the higher risk

the adolescents may be exposed to when they work with dangerous chemicals such as pesti-

cides. Due to the large number of children working in agriculture around the world, including

those working on family farms [39], it is important to understand the impact of exposure on

health outcome in order to change policy.
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