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Abstract

Background

High concentrations of methylglyoxal (MGO) cause cytotoxiticy via formation of advanced

glycation endproducts (AGEs) and inflammation. MGO is detoxificated enzymatically by

glyoxalase-I (Glo-I). The aim of this study was to analyze the role of Glo-I during the devel-

opment of cirrhosis.

Methods

In primary hepatocytes, hepatic stellate cells (pHSC) and sinusoidal endothelial cells

(pLSEC) from rats with early (CCl4 8wk) and advanced cirrhosis (CCl4 12wk) expression

and activity of Glo-I were determined and compared to control. LPS stimulation (24h;

100ng/ml) of HSC was conducted in absence or presence of the partial Glo-I inhibitor ethyl

pyruvate (EP) and the specific Glo-I inhibitor BrBzGSHCp2. MGO, inflammatory and fibrotic

markers were measured by ELISA and Western blot. Additional rats were treated with CCl4 ±
EP 40mg/kg b.w. i.p. from wk 8–12 and analyzed with sirius red staining and Western blot.

Results

Expression of Glo-I was significantly reduced in cirrhosis in whole liver and primary liver

cells accompanied by elevated levels of MGO. Activity of Glo-I was reduced in cirrhotic

pHSC and pLSEC. LPS induced increases of TNF-α, Nrf2, collagen-I, α-SMA, NF-kB and

pERK of HSC were blunted by EP and BrBzGSHCp2. Treatment with EP during develop-

ment of cirrhosis significantly decreased the amount of fibrosis (12wk CCl4: 33.3±7.3%; EP

wk 8–12: 20.7±6.2%; p<0.001) as well as levels of α-SMA, TGF-β and NF-κB in vivo.

Conclusions

Our results show the importance of Glo-I as major detoxifying enzyme for MGO in cirrhosis.

The reduced expression of Glo-I in cirrhosis demonstrates a possible explanation for in-

creased inflammatory injury and suggests a “vicious circle” in liver disease. Blunting of the
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Glo-I activity decrease the amount of fibrosis in established cirrhosis and constitutes a novel

target for antifibrotic therapy.

Introduction

Chronic liver inflammation secondary to different noxious agents can lead to the development

of cirrhosis. This inflammation activates hepatic stellate cells (HSC) directly by means of

endotoxin (LPS) or indirectly through proinflammatory cytokines. Activated HSC acquire a

myofibroblastic phenotype which enhances collagen deposition [1] and therefore fibrosis.

Myofibroblasts lead to activation of factors for cell growth, cell proliferation and cell differenti-

ation, mainly mitogen-activated protein kinases (MAPK), and activation of transcription fac-

tors such as nuclear factor-kB (NF-kB) [2,3].

Advanced-glycation-endproducts (AGEs) are observed in several pathophysiological si-

tuations associated with inflammation and are mainly produced due to the cytotoxicity of

methylglyoxal (MGO). At high concentrations, MGO reacts with proteins, nucleic acids and

phospholipids leading to the generation of AGEs [4]. AGEs bind to their receptor (RAGE)

leading to the activation of different signaling pathways including the MAPkinase ERK 1/2, as

well as the downstream activation of nuclear factor kB (NF-kB) [5,6], all of which have been

involved in the activation of stellate cells.

MGO is ubiquitously distributed in cells, as it is a by-product of glycolysis and the ketone

bodies pathway. In order to avoid its above mentioned cytotoxicity, it is detoxified by means of

the glyoxalase system. The enzymes glyoxalase I (Glo-I) and glyoxalase II (Glo-II) catalyze the

conversion of MGO to the hemithioacetal S-D-lactoylglutathione using L-glutathione (GSH)

as a cofactor (S1 Fig) [7].

Despite the fact that MGO and its detoxification through Glo-I have been involved in sev-

eral pathways which hypothetically could lead to stellate cell activation and liver fibrosis, its

implication in these phenomena and cirrhosis is unknown. Furthermore the effects of partial

inhibition of Glo-I activity in hepatic stellate cells has not been explored. Therefore, the aim of

the study was to investigate the expression and activity of Glo-I in early and advanced cirrho-

sis. A secondary aim was to evaluate the effect of Glo-I inhibition on the hepatic stellate cell

secretion of proinflammatory cytokines and markers of fibrosis. Finally, we analyzed the effect

of partial inhibition of Glo-I on progression of cirrhosis.

Material and methods

Induction of cirrhosis

Male Wistar rats (Center of Medical Basic Research (ZMG), Medical Faculty, University of

Halle) were held in standard cages including 4 animals with free access to water and food in a

climate room with 12-hour circuit of light and darkness. Daily visiting of the animals during

the whole procedure to detect distress was done and animals that suffer of any type of distress,

like fatigue or pain were euthanatized. Rats (n = 36) underwent inhalation exposure of carbon

tetrachloride (CCl4, Sigma-Aldrich, Steinheim, Germany) three times a week (approx. 5ml

CCl4 per animal and inhalation). Phenobarbital (0.35g/l, Sigma-Aldrich, Steinheim, Germany)

was added to the drinking water as described previously [8]. Treatment was given for 8 weeks

(early cirrhosis without ascites) or 12–14 weeks (advanced cirrhosis with ascites). Isolation of

primary cells was performed 6–10 days after the last doses of CCl4 and phenobarbital. Age-

matched rats were used as control group.
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Additional male Wistar rats (n = 12) underwent inhalation exposure of CCl4 as described

above. Starting at week 8 the partial Glo-I inhibitor ethyl pyruvate (EP; 40 mg/kg b.w. i.p.

daily) or an equivalent amount of 0.9% saline solution i.p. instead of EP was given and treat-

ment with CCl4 continued until 12–14 weeks. Rats were sacrificed 6–10 days after the last

doses of CCl4, Phenobarbital and EP.

The American Physiological Society guide principles for the care and use of animals were

followed. The Landesverwaltungsamt Sachsen-Anhalt (Institutional Animal Care and Use

committee) previously approved all procedures involving animals (42502-2-1223MLU).

Isolation of primary liver cells

Primary rat hepatocytes (pHEP), primary hepatic stellate cells (pHSC) and primary liver sinu-

soidal endothelial cells (pLSEC) were isolated from male Wistar rats as described previously

[9–12]. Briefly, rats were anesthetized using ketamine hydrochloride (Ketavet, Pfizer, Berlin,

Germany, 100mg/kg body wt) and xylazine (Rompun, Bayer, Leverkusen, Germany, 40mg/

animal). After laparotomy, the portal vein and inferior vena cava were cannulated and liver

was perfused with oxygenated (carbon gas, 95% O2, 5% CO2) Krebs–Henseleit solution con-

taining dextrose (11mM, Sigma-Aldrich, Steinheim, Germany) and collagenase (0.7mg/ml,

Serva, Heidelberg, Germany) for pHEP or pronase and DNase (Roche, Mannheim, Germany)

for pHSC and pLSEC at 37˚C for 20 min. Cannulation of portal vein led to decease of rats due

to exsanguination. The liver was then excised, minced and passed through a series of nylon

mesh filters (100μm, Sigma-Aldrich, Steinheim, Germany) and centrifuged at 50 x g for 5 min-

utes for cell isolation.

For culturing, pHEP were plated 2h with MEM + 2% FCS and 1% penicillin/streptavidin

(P/S, Sigma-Aldrich, St. Louis, USA) on collagen-coated dishes and afterward with HGM-Me-

dium including HGF+EGF (PromoCell, Heidelberg, Germany). pLSEC were seperated

through a 25%/50% Percoll gradient by centrifugation (800 x g for 25 minutes at 4˚C). Cells

were plated on 10cm-plates (TPP, Trasadingen, Switzerland) and incubated at 37˚C for 20

minutes. The nonadherent cells were cultured for 1 day in RPMI (RPMI1640, PAA, Pasching,

Austria) with 10% FCS and 1% P/S. Cells were collected in trizol (Qiazol, Qiagen, Hilden, Ger-

many) for RNA isolation or protein lysis buffer (IPP) for protein isolation. pLSEC were culti-

vated in RPMI, pHSC in IMDM (Gibco, NY, USA) with 10% FCS and 1% PS.

Western blot analysis

Protein lysates were boiled for 5 min at 95˚C in SDS protein buffer (Thermo-Scientific, Rock-

ford, USA) and separated by SDS-PAGE following transfer to PVDF membrane. Primary

antibodies were Glo-I (SC-67351), NF-kB (p65 subunit, SC-372), Nrf2 (SC-722), ERK1 (all

rabbit polyclonal IgG, SC-94), pERK (mouse monoclonal IgG2a, SC-7383), Vinculin (rabbit

polyclonal IgG, SC-5573, all Santa Cruz Biotechnology, Dallas, Texas, USA), α-SMA (rabbit

polyclonal IgG, ab5694,), TGF-β (rabbit polyclonal IgG, ab66043, both abcam, Cambridge,

UK) and actin (mouse monoclonal AB, MAB1501, Millipore, California, USA). Secondary

antibodies were anti-mouse (IgG-HRP, 7076P2, horse origin), anti-rabbit (IgG-HRP, 7074P2,

goat origin, all Cell Signaling Technology, Boston, Massachusetts, USA) and anti-goat (IgG-

HRP, 705-035-003, donkey origin, Dianova, Hamburg, Germany). Western blot signals were

quantified using imager (Fusion-Fx-7 with BD-Software, Peqlab, Erlangen, Germany). Signals

were normalized to its respective loading controls using ImageJ-Software (v. 1.48, http://

imagej.nih.gov).
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Measurement of Glo-I activity

Activity of glyoxalase I (Glo-I, E.C.4.4.1.5) was determined by measurement of the reaction

intermediate S-D-lactoylglutathione with ascending absorbance at 240nm [13]. Absorbance

was measured for 5 min at 25˚C in crystal cuvette (Hellma, Berlin, Germany) at photometer

(amersham ultrospec 2100 pro, amershampharmacia biotech, Cambridge, England). For each

test 2mM GSH (Roth, Karlsruhe, Germany) and 2mM MGO (Sigma-Aldrich, Steinheim, Ger-

many) were incubated for 90 sec in 50mM phosphate-buffer (Na2HPO4, pH 7.0, Roth, Karls-

ruhe, Germany) and 10μl of undiluted cell lysate were used per test. Each probe was measured

three times. Phosphate-buffer was set as reference. Enzyme activity was calculated in U by for-

mula: A = (ΔE/min x V) / (ε x d x v). ε for S-D-lactoylglutathione was 2.86 (mol/l x cm). For

specific activity U were referred to protein-concentration.

Inhibition of Glo-I activity in hepatic stellate cells with Ethyl Pyruvate (EP)

or BrBzGSHCp2

Hepatic stellate cells (HSZ-B-S1) were seeded and then treated with EP (1-20mM) or

BrBzGSHCp2 (1–10μM) and/or 100ng/ml LPS (all from Sigma-Aldrich, Steinheim, Germany)

in serum-free medium. EP and BrBzGSHCp2 are two different inhibitors of Glo-I [14,15]. In

order to determine Glo-I activity, cells were washed twice after 24h incubation, lysed and cen-

trifuged at 13000 x g and 4˚C for 15 min. Supernatants were collected and stored at -20˚C.

Protein concentrations were determined using BCA-method following instructions of the

manufacturer (Sigma-Aldrich, Steinheim, Germany). For evaluation of the effect of partial

inhibition of Glo-I activity, supernatants were collected and frozen at -20˚C. For TNF-α-

ELISA (MyBiosource, San Diego, USA) 200μl supernatant, for collagen-I-ELISA (MyBio-

source, San Diego, USA) 40μl supernatant and for α-SMA-ELISA (MyBiosource, San Diego,

USA) 40μl supernatant were used following instructions of the manufacturer.

Partial inhibition of Glo-I activity with Ethyl Pyruvate (EP) during

progression of cirrhosis

Rats were treated with EP or saline as described above. Liver samples were fixed using 4%

formaldehyde, after embedding in paraffin, 4-μm sections were stained with sirius red as

described before [16]. Overview pictures and liver sections were analyzed using the Keyence

Biozero BZ 8000 microscope with BZ Viewer (Osaka, Japan). At least 4 livers for each group

were analyzed with 10 sections per liver from an investigator blinded for the different treat-

ment groups. Area of sirius red was analyzed with ImageJ and MRI_Fibrosis_Tool-Plugin

(http://dev.mri.cnrs.fr/projects/imagej-macros/wiki/Fibrosis_Tool).

Statistics

Results are expressed as mean ±SD. Comparisons between groups were analyzed by one-way

ANOVA followed by post-hoc Bonferroni correction to detect differences between groups. P

values<0.05 were considered as statistically significant. GraphPad Prism 4.0 software was used.

For additional description see S1 File.

Results

Expression and specific activity of Glo-I in normal primary liver cells

In control animals both protein and mRNA expression of Glo-I was detected in all explored

cells. Taking the expression in hepatocytes as the reference (pHEP; PROT: 100.0±15.3%; RNA:

Glyoxalase-I in cirrhosis
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100.0±7.6%), a relatively lower expression of Glo-I was found in primary hepatic stellate cells

(pHSC; PROT: 7.0±1.9%, p = 0.038; RNA: 6.2±0.8%, p = 0.003) and primary sinusoidal endo-

thelial cells (pLSEC; PROT: 16.1±2.7%, p = 0.057; RNA: 10.8±3.0%, p<0.001, Fig 1A1 and

1A2). Despite the lower expression of Glo-I in the latter, the specific activity of the enzyme was

proportionally only slightly higher in pHEP (pHEP: 0.62±0.04 U/mg; pHSC 0.30±0.03 U/mg,

p = 0.001; pLSEC: 0.36±0.06 U/mg, p = 0.016, Fig 1A3).

Expression and specific activity of Glo-I in cirrhosis

Expression of Glo-I was reduced in early and advanced cirrhosis in whole liver compared to

controls in both immunohistochemistry (IHC, Fig 2) and Western blot analysis (Fig 3A1 and

3A2). Furthermore, animals with advanced cirrhosis had a greater reduction in Glo-I expres-

sion (12 wk CCl4: IHC 46.6±4.7%, WB 18.4±2.1%) than early cirrhosis (8 wk CCl4: IHC 66.9

±6.2%; WB 34.3±4.2%;) compared to controls (100%, p = 0.017 and p<0.001 for IHC and WB,

respectively, Figs 2 and 3).

Similar results were also observed in primary cells. In all liver cirrhosis cells, and compared

to controls, protein and mRNA levels of Glo-I were significantly decreased both in early and

advanced cirrhosis (Fig 1B1–1C3). Furthermore, a stepwise decrease in Glo-I expression was

observed in pHSC (8 wk vs. 12 wk CCl4: 58.2±9.4% vs. 15.9±4.3%, p = 0.015) and pLSEC (8 wk

vs. 12 wk CCl4: 51.2±9.0% vs. 16.8±5.9%, p = 0.033) with increasing severity of disease but not

in pHEP (8 wk vs. 12 wk CCl4: 39.1±13.7% vs. 41.5±12.0%, p = 0.90).

When analyzing cells of liver cirrhosis, the specific Glo-I activity was reduced in pHSC

(8 wk CCl4: 60.0±8.0%, p = 0.025; 12 wk CCl4: 74.8±4.7%, p = 0.048) and pLSEC (8 wk CCl4:

61.5±6.3%, p = 0.004; 12 wk CCl4: 42.9±3.1%, p<0.001; Fig 3B2 and 3B3) in cirrhosis com-

pared to controls (100%). Nevertheless, in pHEP an increase in the activity was observed in

advanced cirrhosis (12 wk CCl4: 172.0±22.3%, Fig 3B1) compared to controls (100%, p =

0.049); in these cells no difference was observed when comparing early cirrhosis to controls

(8 wk: 107.0±9.3%, p = 0.68, Fig 3B1). Like in pHEP, analysis of whole liver lysates showed ele-

vated specific Glo-I activity in cirrhosis compared to control (12 wk CCl4: 170±16.7% vs. 100

±5.6%, p = 0.0023, Fig 3A3).

MGO in cirrhosis

In order to further analyze the role of Glo-I in cirrhosis, we measured MGO levels in normal

and cirrhotic livers. The results revealed a significant increase of MGO concentrations in cir-

rhosis. MGO levels were significantly elevated after 8 wk of CCl4 treatment (33.2±7.4 ng/ml

compared to 3.4±2.3 ng/ml in controls, p = 0.003), and even higher after 12 wk of CCl4 (59.7

±3.4 ng/ml; vs control p<0.001). The increase of MGO concentrations from week 8 to 12 also

reached significance (p = 0.03).

Effect of partial inhibition of Glo-I in HSC on the secretion of

proinflammatory cytokines and markers of fibrosis

The expression and activity of Glo-I were confirmed in hepatic stellate cell line (data not

shown). Partial inhibition of specific Glo-I activity by EP was demonstrated without effect on

Glo-I expression (S2A1 and S2A2 Fig). We found dose dependent significant inhibition of

Glo-I enzyme activity in HSC (S2B Fig), that reached significance using a dose of 10mM EP

(73.0±1.7%, p = 0.002). Doses of 15mM and more were prior shown to inhibit Glo-I activity

[14]. We could confirm these results in HSC by using 1-10mM of EP. The significant inhibi-

tion of Glo-I activity was not detectable using 20 mM of EP (S2B Fig).

Glyoxalase-I in cirrhosis
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Fig 1. Protein and mRNA expression of Glo-I in pHEP, pHSC and pLSEC in controls, early and advanced cirrhosis. A1, Protein analysis by

Western blot of Glo-I in pHEP, pHSC and pLSEC indicating highest expression in pHEP. Quantification (A2) of three independent experiments showed

significant lower Glo-I expression in pHSC and pLSEC. A3, Specific activity of Glo-I in pHEP, pHSC and pLSEC. Enzyme kinetics showed highest

specific activity of Glo-I in pHEP (0.62 U/mg). Lower specific Glo-I activity was found in pHSC (0.30 U/mg) and pLSEC (0.36 U/mg). B1-B2, Reduction of

Glo-I in early (8 wk CCl4-treatment) and advanced cirrhosis (12 wk CCl4-treatment) showed by Western blot ((A1), PROT) and RT-PCR ((A2), RNA) in

primary hepatocytes (pHEP), primary hepatic stellate cells (pHSC) and primary liver sinusoidal endothelial cells (pLSEC). Quantification (C1-C3) of at

least three independent experiments confirmed significantly reduced expression of Glo-I in early cirrhosis (8 wk of CCl4-treatment) in isolated pHEP

(PROT: 39.1±13.7%, p = 0.018; RNA: 25.0±15.0%, p = 0.030), pHSC (PROT: 58.2±9.5%, p = 0.041; RNA: 43.4±1.4%, p<0.001) and pLSEC (PROT:
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Glo-I activity of hepatic stellate cells after inflammatory stimulus was evaluated (S2C Fig).

Administration of LPS led to a significant increase of Glo-I activity in HSC after incubation

for 24h. Treatment with EP alone or co-incubation of LPS and EP resulted in significant reduc-

tion of specific Glo-I activity confirming partial inhibition of the enzyme. Furthermore, EP

resulted in significant increase of MGO levels after 24h incubation in HSC (1.03±0.2 vs. 0.34

±0.1 ng/ml, p = 0.004, S2D Fig).

Treatment with EP led to a significant dose-dependent reduction of LPS-induced release of

TNF-α (absence vs. presence of 20mM EP: 397.1±71.3 vs. 121.0±28.2 pg/ml; p = 0.06), colla-

gen-I (9.9±0.9 vs. 1.2±0.5 ng/ml; p<0.001) and α-SMA (76.7±2.0 vs. 52.9±2.0 ng/ml; p<0.001)

in hepatic stellate cell line (Fig 4). Doses of 10mM (data not shown) or 20mM (Fig 4) of EP

without LPS stimulation showed no effects in expression of TNF-α, collagen-I or α-SMA.

In order to evaluate whether these effects are due to the action of EP on Glo-I, similar

experiments with LPS and low-level concentrations of MGO (with simulates the effect of EP

on Glo-I) were performed. Again, a significant decrease of LPS-induced release of TNF-α, col-

lagen-I and α-SMA were observed. In the absence of LPS, neither the administration of EP or

MGO led to changes in the concentration of these aforementioned cytokines.

Similarly, treatment with EP showed significant decrease of LPS-induced NF-kB stimula-

tion in a dose-dependent manner (absence vs. presence of EP 20mM: 137.5±4.4% vs. 84.5

±2.6%; p<0.001; Fig 5A and 5B1). Treatment with EP inhibited the LPS-induced reduction of

Nrf2 (69.2±3.3% vs. 168.1±8.1%; p<0.001, Fig 5A and 5B2). Furthermore, increasing concen-

trations of EP reduced LPS-induced pERK (217.3±25.1% vs. 103.9±13.5%; p = 0.008; Fig 5A

and 5B4) without effect on the ERK expression (100.0±14.9% vs. 97.9±17.9%; p = 0.933; Fig 5A

and 5B4).

Effect of Glo-I inhibitor BrBzGSHCp2 on markers of inflammation and

fibrosis in HSC

In order to confirm our results we used an additional Glo-I inhibitor, S-p-bromobenzylglu-

tathione cyclopentyl diester [15] (BrBzGSHCp2). BrBzGSHCp2 showed significant dose de-

pendent inhibition of specific Glo-I activity with significant reduction at doses of 5μM (p =

0.01) and 10μM (p = 0.02, S3A Fig). Furthermore, treatment with BrBzGSHCp2 resulted in sig-

nificantly reduced expression of α-SMA (10μM vs. control: 20±3% vs. 100±13%, p<0.001),

TGF-β (18±11% vs. 100±15%, p = 0.002) and NF-κB (4±2% vs. 100±9%, p<0.001) with stimu-

lation of Nrf2 (237±10% vs. 100±12%, p<0.001).

Effect of partial inhibition of Glo-I on progression of cirrhosis

In order to evaluate the effect of partial inhibition of Glo-I on development and progression of

cirrhosis we administered EP i.p. to Wistar rats, which underwent CCl4-inhalation for induc-

tion of cirrhosis. The treatment group received additional EP from week 8–12 i.p. daily while

in the control group saline was given. After 12 weeks of CCl4 administration the amount of

fibrotic tissue in the control group was 33.3±7.3% whereas the EP-treated group revealed sig-

nificant lower sirius red content (20.7±6.2%; p<0.001; Fig 6A and 6B).

For further analysis we determined expression of α-SMA, TGF-β, NF-κB and Nrf2 in cir-

rhotic livers and evaluated effect of in vivo EP treatment. Compared to controls, cirrhotic livers

51.2±9.0%, p = 0.008; RNA: 21.5±4.5%, p<0.001) compared to normal (100%). In advanced cirrhosis (12 wk of CCl4-treatment) expression of Glo-I was

significantly reduced in protein and mRNA levels in pHEP (PROT: 41.5±12.0%, p = 0.016; RNA: 9.9±13.5%, p = 0.014), pHSC (PROT: 15.9±4.3%,

p = 0.043; RNA: 28.6±4.9%, p<0.001) and pLSEC (PROT: 16.5±5.9%, p<0.001; RNA: 0.7±0.3%, p<0.001) compared to normal (100%). Results are

expressed as mean ± S.D. * P<0.05, ** P<0.01, *** P<0.001.

doi:10.1371/journal.pone.0171260.g001
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Fig 2. Expression of Glo-I and MGO in whole rat liver. A, Sections of Wistar rat liver with DAB-staining showing controls, early cirrhosis

after 8 wk CCl4-treatment and advanced cirrhosis after 12 wk CCl4-treatment at 5x (upper line) or 20x (lower line) magnification. Rats

underwent inhalation exposure of CCl4 three times a week, Phenobarbital was added to the drinking water. Isolation of livers was performed

6–10 days after the last doses of CCl4 and phenobarbital. Age-matched rats were used as control group. B, Control section lacking the primary

Glo-I antibody revealed no staining. C, Quantification of at least 3 livers with every 10 sections showed significant reduction in staining intensity

and Glo-I expression in early and advanced cirrhosis D, Analysis of MGO in controls, early and advanced cirrhosis via ELISA. Quantification of

at least three independent experiments revealed significantly elevated MGO levels in cirrhosis after 8 wk and 12 wk CCl4 treatment. Scale

bars: 100μm (A, upper line), 50μm (A, lower line). * P<0.05, ** P<0.01, *** P<0.001.

doi:10.1371/journal.pone.0171260.g002

Fig 3. Protein expression and specific activity of Glo-I in whole liver and specific activity of Glo-I in pHEP, pHSC and pLSEC in controls,

early and advanced cirrhosis. A1, protein analysis of Glo-I by Western blot in Wistar rat livers indicating reduced protein expression after 8 and 12 wk

CCl4-treatment. Quantification (A2) of three independent experiments showed significant reduction of Glo-I in cirrhosis compared to controls. A3,

relative specific Glo-I activity was increased in early and advanced cirrhosis. Average specific Glo-I activity in controls was 1.074 U/mg. Primary liver

cells were isolated in controls and livers with early or advanced cirrhosis using portal vein perfusion with pronase and DNAse. Specific Glo-I-activity was

reduced in cirrhosis in primary hepatic stellate cells (pHSC (B2)) and primary liver sinusoidal endothelial cells (pLSEC (B3)) but elevated in primary

hepatocytes (pHEP (B1)). Results are expressed as mean ± S.D. * P<0.05, ** P<0.01, *** P<0.001.

doi:10.1371/journal.pone.0171260.g003
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showed significantly higher expression of α-SMA (284±18% vs. 100±17%, p<0.001), TGF-β
(148±8% vs. 100±10%, p = 0.003) and NF-κB (243±36% vs. 100±12%, p = 0.003) with reduced

expression of Nrf2 (49±12% vs. 100±13%, p = 0.008). Treatment with EP significantly reduced

the expression of α-SMA (118±35%, p = 0.002), TGF-β (119±11%, p = 0.02), NF-κB (137±6%,

p = 0.008) and raised levels of Nrf2 (99±15%, p = 0.01, Fig 6C and 6D) compared to cirrhotic

livers without EP treatment.

Discussion

Our study aimed at analyzing the expression and activity of Glo-I in cirrhosis and evaluating

the effect of partial Glo-I inhibition in hepatic stellate cells and on progression of cirrhosis. We

observed a significant reduction of Glo-I in cirrhosis compared to controls, both on protein

and mRNA levels accompanied by elevated levels of MGO in cirrhosis. Furthermore, the

reduction in Glo-I expression as well as the increase in MGO concentration were greater with

increasing severity of liver disease. This reduction in cirrhosis was found in the whole liver as

well in all explored liver cells, namely hepatocytes, hepatic stellate cells and sinusoidal endothe-

lial cells. In addition we observed a decreased activity of Glo-I in hepatic stellate cells. On the

other hand, stimulation of non-cirrhotic HSC with LPS as would occur hypothetically in an

initial stadium of liver disease, resulted in significant increase of specific Glo-I activity. Finally,

we could clearly show that reduction of Glo-I activity with two different inhibitors led to a

reduced activation of hepatic stellate cells as shown by a decrease in the secretion of TNF-α,

collagen-I and α-SMA. In vivo experiments confirmed the antifibrotic properties of inhibition

of Glo-I. Partial inhibition of Glo-I by EP resulted in significantly reduced amount of fibrotic

tissue and reduced markers of inflammation and fibrosis. Interestingly, this effect was present

starting the administration of EP in already established cirrhosis.

Glo-I is the main enzyme responsible for the detoxification of MGO, which is cytotoxic in

high concentrations via formation of AGEs. AGEs bind to their receptor RAGE and stimulates

different signaling pathways involved in inflammation that lead to activation of hepatic stellate

cells [17]. According to our results, we hypothesize that the reduction in the expression and

activity of Glo-I in the hepatic stellate cells in cirrhosis perpetuates liver injury as demonstrated

by elevation of MGO levels. Indeed, previous studies have described similar findings in other

chronic inflammatory diseases such as atherosclerosis, in which a decrease in Glo-I expression

and increase in MGO is observed in atherosclerotic plaques as a consequence of the chronic

inflammation [18]. In this regard it has been demonstrated that Glo-I expression is elevated

upon acute oxidative stress whereas formation of subchronic oxidative stress leads to reduced

expression of Glo-I [19]. Our results observing a greater reduction of Glo-I with increasing

severity of liver disease (8 weeks vs. 12 weeks CCl4-treatment), which in turn lead to further

decrease of Glo-I, suggest that there is a “vicious circle” which propagate itself in liver disease.

Several results from this study may seem somewhat counterintuitive. Firstly, the effect of

the partial inhibition of Glo-I activity with EP leading to a reduction in the production of

fibrosis markers in normal hepatic stellate cell cultures is difficult to understand given the

Fig 4. Effect of partial Glo-I inhibition by EP on LPS-induced production of TNF-α, collagen-I and α-SMA in HSC. A1-C2, HSC

were incubated for 24h with 100ng/ml LPS and 1-20mM EP (A1, B1, C1) or 0.1-10mM MGO (A2, B2, C2). Supernatants were analyzed

via ELISA for TNF-α, collagen-I and α-SMA. LPS stimulation led to significantly increased levels of TNF-α, collagen-I and α-SMA. Co-

treatment of LPS and EP indicated significant dose-dependent reduction of LPS-induced markers of inflammation (A1) and fibrosis (B1,

C1). Presence of LPS and treatment with low-level concentrations of MGO (indicating partial inhibition of Glo-I activity without complete

enzyme inhibition) showed significant decrease of LPS-induced release of TNF-α (absence vs. presence of 10mM MGO: 371.8±22.7 vs.

60.9±11.2 pg/ml; p<0.001), collagen-I (10.0±0.3 vs. 1.8±0.5 ng/ml; p<0.001) and α-SMA (68.6±3.6 vs. 43.8±2.2 ng/ml; p<0.001) (A2, B2,

C2). Presence of EP or MGO in absence of LPS revealed no changes in the concentration of TNF-α, collagen-I and α-SMA. Results are

expressed as mean ± S.D. of at least three independent experiments. * P<0.05, ** P<0.01, *** P<0.001.

doi:10.1371/journal.pone.0171260.g004
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decreased activity (and expression) of Glo-I in hepatic stellate cells observed in cirrhosis. In

this regard our results revealed in non-cirrhotic HSC an increase of Glo-I activity upon LPS

stimulation, which was abrogated with partial inhibition of Glo-I by EP. Furthermore, the

reduction of the activity of Glo-I, which is observed in cirrhosis, is much greater than the par-

tial inhibition that is induced with the administration of EP. To clarify this issue we performed

measurements of MGO concentrations expecting higher levels of MGO in cirrhosis. Indeed

the reduction in Glo-I expression seen in cirrhosis lead to a higher concentration of MGO

than with pharmacological inhibition of Glo-I, in which only a slight increase of MGO is

observed. Our findings are further supported through prior analysis regarding Glo-I inhibition

and MGO [15,20,21]. The fact that administration of EP in vivo decreased the amount of fibro-

sis and the progression of the disease as well as the CCl4-induced expression of α-SMA, TGF-β
and NF-κB further affirm these theories.

Although MGO is toxic at high concentrations, a low level of MGO has been shown to acti-

vate transcription factors [22] and modify proteins [23]. In this regard, different MGO levels

could lead to temporary activation or inhibitions of biochemical targets that are regulated via

Glo-I activity. Interestingly, we observed that incubation of HSC with low doses of MGO in

millimolar range resulted in comparable effects on LPS-induced TNF-α, collagen-I and α-

SMA concentration as treatment with EP did. Indeed, previous studies suggest that MGO

could act as an intracellular mediator of the action of Glo-I inhibitors, which is in line with our

results [15]. Recent work showing an inhibitory effect of MGO on NF-kB [24] and transcrip-

tional control of Glo-I by Nrf2 in response to MGO [25,26], which further supports our find-

ings of Nrf2 stimulation via partial Glo-I inhibition by EP in cell culture and in vivo. These

complex and dose dependent regulatory processes could also explain, that EP cause dose

dependent partial inhibition of Glo-I in lower concentrations but higher concentrations could

not inhibit the enzymatic Glo-I activity.

Another potential confusing finding is the observation of higher specific Glo-I activity in

hepatocytes and subsequently whole liver in cirrhosis in contrast to stellate cells and endothe-

lial cells. These results might be a consequence of cell death and repair mechanisms and are a

reflection of compensatory regulations since hepatocytes are the main target of liver injury

[27,28].

Our study has some limitations. Glo-I is an ubiquitous enzyme, total gene-knock-out is

embryological lethal, so these animals are not available. In addition we could not clearly differ-

entiate if the reduction of Glo-I in cirrhotic stellate cells is a cause or a consequence of cirrho-

sis. Our result in LPS-stimulated HSC leading to the interpretation that it is more a cause of

cirrhosis. Furthermore we could not exclude, that the shown effects of EP are mediated via

alternative regulatory pathways than Glo-I. To overcome these limitations, we performed in
vivo experiments with CCl4-model in Wistar rats. Partial inhibition of Glo-I by EP led to sig-

nificantly reduced amount of fibrotic tissue and proinflammatory as well as fibrotic markers

after 12 weeks of CCl4-inhalation. Furthermore, we used another well-known Glo-I inhibitor,

BrBzGSHCp2 [15]. Treatment of HSC with BrBzGSHCp2 resulted in similar effects regarding

reduced expression of α-SMA, TGF-β and NF-κB with stimulation of Nrf2.

In conclusion we showed the importance of Glo-I as a major detoxifying enzyme for MGO

in cirrhosis. The reduced expression of Glo-I in cirrhosis demonstrates a possible explanation

Fig 5. Effect of partial Glo-I inhibition by EP to NF-kB, Nrf2 and ERK-pathways. A-B4, HSC were incubated for 24h with 100ng/ml

LPS and 1-20mM EP. Protein analysis by Western blot indicated significant reduction of NF-kB p65 subunit by EP and attenuation of

LPS-induced NF-kB stimulation (A, B1). EP led to significant elevation of Nrf2 and EP diminished LPS-induced reduction of Nrf2 (A, B2).

EP treatment significantly dimished LPS-stimulated elevation of pERK (A, B4) without significant change in ERK (A, B3). Results are

expressed as mean ± S.D. of at least three independent experiments. * P<0.05, ** P<0.01, *** P<0.001.

doi:10.1371/journal.pone.0171260.g005
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for increased inflammatory injury and suggests a “vicious circle” in liver disease. The regula-

tion of specific Glo-I activity as indicated by EP could be therefore an interesting new target in

the prevention of fibrosis and cirrhosis.
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Glo-I activity after 24h treatment of HSC. B, Western blot analysis of α-SMA, TGF-β, NF-κB

p65 and Nrf2 in HSC. Quantification (C) showed dose dependent significantly reduced ex-

pression of α-SMA, TGF-β and NF-κB after 24h treatment with BrBzGSHCp2 and significant
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doi:10.1371/journal.pone.0171260.g006

Glyoxalase-I in cirrhosis

PLOS ONE | DOI:10.1371/journal.pone.0171260 February 23, 2017 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171260.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171260.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171260.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0171260.s004


Data curation: MH AT MM SP AZ.

Formal analysis: MH AZ CR.

Investigation: MH AZ CR.

Methodology: MH AT MM SP AZ.

Project administration: MH AZ CR.

Resources: MH AT MM SP AZ.

Software: MH AT MM SP AZ.

Supervision: MH AZ CR.

Validation: MH AZ CR.

Visualization: MH AZ CR.

Writing – original draft: MH AZ CR.

Writing – review & editing: MH AZ CR.

References
1. Cubero FJ, Urtasun R, Nieto N. Alcohol and liver fibrosis. Semin Liver Dis. 2009; 29: 211–221. doi: 10.

1055/s-0029-1214376 PMID: 19387920

2. Seth D, Haber PS, Syn WK, Diehl AM, Day CP. Pathogenesis of alcohol-induced liver disease: classical

concepts and recent advances. J Gastroenterol Hepatol. 2011; 26: 1089–1105. doi: 10.1111/j.1440-

1746.2011.06756.x PMID: 21545524

3. Zima T, Kalousova M. Oxidative stress and signal transduction pathways in alcoholic liver disease.

Alcohol Clin Exp Res. 2005; 29: 110S–115S. PMID: 16344594

4. Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ. Binding and modification of proteins by

methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylargi-

nine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem. 1994;

269: 32299–32305. PMID: 7798230

5. Piperi C, Goumenos A, Adamopoulos C, Papavassiliou AG. AGE/RAGE signalling regulation by miR-

NAs: Associations with diabetic complications and therapeutic potential. Int J Biochem Cell Biol. 2015;

60C: 197–201.

6. Barbezier N, Tessier FJ, Chango A. [Receptor of advanced glycation endproducts RAGE/AGER: an

integrative view for clinical applications]. Ann Biol Clin (Paris). 2014; 72: 669–680.

7. Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a met-

abolic pathway fundamental to biological life. Biochem J. 1990; 269: 1–11. PMID: 2198020

8. Zipprich A, Loureiro-Silva MR, Jain D, D’Silva I, Groszmann RJ. Nitric oxide and vascular remodeling

modulate hepatic arterial vascular resistance in the isolated perfused cirrhotic rat liver. J Hepatol. 2008;

49: 739–745. doi: 10.1016/j.jhep.2008.06.027 PMID: 18804307

9. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976; 13: 29–83. PMID: 177845

10. Fehrenbach H, Weiskirchen R, Kasper M, Gressner AM. Up-regulated expression of the receptor for

advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofi-

broblasts. Hepatology. 2001; 34: 943–952. doi: 10.1053/jhep.2001.28788 PMID: 11679965

11. Ribaux P, Gjinovci A, Sadowski HB, Iynedjian PB. Discrimination between signaling pathways in regula-

tion of specific gene expression by insulin and growth hormone in hepatocytes. Endocrinology. 2002;

143: 3766–3772. doi: 10.1210/en.2002-220304 PMID: 12239086

12. Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial

cells by density gradient centrifugation with Stractan. Anal Biochem. 1987; 161: 207–218. PMID: 3578783

13. Mannervik B. Glyoxalase I. In: Enzymatic Basis of Detoxification. Academic Press, New York. 1980; 2:

263–293.

14. Hollenbach M, Hintersdorf A, Huse K, Sack U, Bigl M, Groth M et al. Ethyl pyruvate and ethyl lactate

down-regulate the production of pro-inflammatory cytokines and modulate expression of immune recep-

tors. Biochem Pharmacol. 2008; 76: 631–644. doi: 10.1016/j.bcp.2008.06.006 PMID: 18625205

Glyoxalase-I in cirrhosis

PLOS ONE | DOI:10.1371/journal.pone.0171260 February 23, 2017 16 / 17

http://dx.doi.org/10.1055/s-0029-1214376
http://dx.doi.org/10.1055/s-0029-1214376
http://www.ncbi.nlm.nih.gov/pubmed/19387920
http://dx.doi.org/10.1111/j.1440-1746.2011.06756.x
http://dx.doi.org/10.1111/j.1440-1746.2011.06756.x
http://www.ncbi.nlm.nih.gov/pubmed/21545524
http://www.ncbi.nlm.nih.gov/pubmed/16344594
http://www.ncbi.nlm.nih.gov/pubmed/7798230
http://www.ncbi.nlm.nih.gov/pubmed/2198020
http://dx.doi.org/10.1016/j.jhep.2008.06.027
http://www.ncbi.nlm.nih.gov/pubmed/18804307
http://www.ncbi.nlm.nih.gov/pubmed/177845
http://dx.doi.org/10.1053/jhep.2001.28788
http://www.ncbi.nlm.nih.gov/pubmed/11679965
http://dx.doi.org/10.1210/en.2002-220304
http://www.ncbi.nlm.nih.gov/pubmed/12239086
http://www.ncbi.nlm.nih.gov/pubmed/3578783
http://dx.doi.org/10.1016/j.bcp.2008.06.006
http://www.ncbi.nlm.nih.gov/pubmed/18625205


15. Thornalley PJ, Edwards LG, Kang Y, Wyatt C, Davies N, Ladan MJ et al. Antitumour activity of S-p-bro-

mobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of

apoptosis. Biochem Pharmacol. 1996; 51: 1365–1372. PMID: 8787553

16. Lattouf R, Younes R, Lutomski D, Naaman N, Godeau G, Senni K et al. Picrosirius red staining: a useful

tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 2014;

62: 751–758. doi: 10.1369/0022155414545787 PMID: 25023614

17. Basta G, Navarra T, De SP, Del TS, Gastaldelli A, Filipponi F. What is the role of the receptor for

advanced glycation end products-ligand axis in liver injury? Liver Transpl. 2011; 17: 633–640. doi: 10.

1002/lt.22306 PMID: 21438128

18. Hanssen NM, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JL et al. Higher levels of

advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rup-

ture-prone phenotype. Eur Heart J. 2014; 35: 1137–1146. doi: 10.1093/eurheartj/eht402 PMID:

24126878

19. Salim S, Asghar M, Taneja M, Hovatta I, Chugh G, Vollert C et al. Potential contribution of oxidative

stress and inflammation to anxiety and hypertension. Brain Res. 2011; 1404: 63–71. doi: 10.1016/j.

brainres.2011.06.024 PMID: 21704983

20. Shamsi FA, Sharkey E, Creighton D, Nagaraj RH. Maillard reactions in lens proteins: methylglyoxal-

mediated modifications in the rat lens. Exp Eye Res. 2000; 70: 369–380. doi: 10.1006/exer.1999.0800

PMID: 10712823

21. Engelbrecht B, Stratmann B, Hess C, Tschoepe D, Gawlowski T. Impact of GLO1 knock down on

GLUT4 trafficking and glucose uptake in L6 myoblasts. PLoS One. 2013; 8: e65195. doi: 10.1371/

journal.pone.0065195 PMID: 23717693

22. Zuin A, Vivancos AP, Sanso M, Takatsume Y, Ayte J, Inoue Y et al. The glycolytic metabolite methyl-

glyoxal activates Pap1 and Sty1 stress responses in Schizosaccharomyces pombe. J Biol Chem. 2005;

280: 36708–36713. doi: 10.1074/jbc.M508400200 PMID: 16141205

23. Sakamoto H, Mashima T, Yamamoto K, Tsuruo T. Modulation of heat-shock protein 27 (Hsp27) anti-

apoptotic activity by methylglyoxal modification. J Biol Chem. 2002; 277: 45770–45775. doi: 10.1074/

jbc.M207485200 PMID: 12226095

24. Laga M, Cottyn A, Van HF, Vanden BW, Haegeman G, Van OP et al. Methylglyoxal suppresses TNF-

alpha-induced NF-kappaB activation by inhibiting NF-kappaB DNA-binding. Biochem Pharmacol. 2007;

74: 579–589. doi: 10.1016/j.bcp.2007.05.026 PMID: 17617381

25. Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N et al. Transcriptional control of

glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J.

2012; 443: 213–222. doi: 10.1042/BJ20111648 PMID: 22188542

26. Palsamy P, Bidasee KR, Ayaki M, Augusteyn RC, Chan JY, Shinohara T. Methylglyoxal induces endo-

plasmic reticulum stress and DNA demethylation in the Keap1 promoter of human lens epithelial cells

and age-related cataracts. Free Radic Biol Med. 2014; 72: 134–148. doi: 10.1016/j.freeradbiomed.

2014.04.010 PMID: 24746615

27. Beier JI, McClain CJ. Mechanisms and cell signaling in alcoholic liver disease. Biol Chem. 2010; 391:

1249–1264. doi: 10.1515/BC.2010.137 PMID: 20868231

28. Rabbani N, Thornalley PJ. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and

disease. Biochem Biophys Res Commun. 2015; 458: 221–226. doi: 10.1016/j.bbrc.2015.01.140 PMID:

25666945

29. Chomczynski P, Mackey K. Short technical reports. Modification of the TRI reagent procedure for isola-

tion of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques. 1995; 19: 942–945.

PMID: 8747660

Glyoxalase-I in cirrhosis

PLOS ONE | DOI:10.1371/journal.pone.0171260 February 23, 2017 17 / 17

http://www.ncbi.nlm.nih.gov/pubmed/8787553
http://dx.doi.org/10.1369/0022155414545787
http://www.ncbi.nlm.nih.gov/pubmed/25023614
http://dx.doi.org/10.1002/lt.22306
http://dx.doi.org/10.1002/lt.22306
http://www.ncbi.nlm.nih.gov/pubmed/21438128
http://dx.doi.org/10.1093/eurheartj/eht402
http://www.ncbi.nlm.nih.gov/pubmed/24126878
http://dx.doi.org/10.1016/j.brainres.2011.06.024
http://dx.doi.org/10.1016/j.brainres.2011.06.024
http://www.ncbi.nlm.nih.gov/pubmed/21704983
http://dx.doi.org/10.1006/exer.1999.0800
http://www.ncbi.nlm.nih.gov/pubmed/10712823
http://dx.doi.org/10.1371/journal.pone.0065195
http://dx.doi.org/10.1371/journal.pone.0065195
http://www.ncbi.nlm.nih.gov/pubmed/23717693
http://dx.doi.org/10.1074/jbc.M508400200
http://www.ncbi.nlm.nih.gov/pubmed/16141205
http://dx.doi.org/10.1074/jbc.M207485200
http://dx.doi.org/10.1074/jbc.M207485200
http://www.ncbi.nlm.nih.gov/pubmed/12226095
http://dx.doi.org/10.1016/j.bcp.2007.05.026
http://www.ncbi.nlm.nih.gov/pubmed/17617381
http://dx.doi.org/10.1042/BJ20111648
http://www.ncbi.nlm.nih.gov/pubmed/22188542
http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.010
http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.010
http://www.ncbi.nlm.nih.gov/pubmed/24746615
http://dx.doi.org/10.1515/BC.2010.137
http://www.ncbi.nlm.nih.gov/pubmed/20868231
http://dx.doi.org/10.1016/j.bbrc.2015.01.140
http://www.ncbi.nlm.nih.gov/pubmed/25666945
http://www.ncbi.nlm.nih.gov/pubmed/8747660

