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Abstract

Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic 

hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. 

Development of targeted therapies for AKI in this setting is hampered by the lack of an animal 

model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-

associated AKI, we aimed to combine carbon tetrachloride (CCl4)-induced fibrosis with chronic 

intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl4 (0.2 

ml/kg 2×wk/6wks) followed by alcohol intragastrically (up to 25 g/kg/day for 3wks) and with 

continued CCl4. We observed that combined treatment with CCl4 and alcohol resulted in severe 

liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury 

was evident only in the combined treatment group. This mouse model reproduced distinct 

pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of 

kidneys revealed profound effects in the combined treatment group, with enrichment for 53 

damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. 

Interestingly, Harcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this 

study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key 

mechanistic pathways.

Introduction

Alcohol’s impact on kidney function is complex, with some reports of moderate 

consumption being beneficial in chronic nephropathy (Schaeffner and Ritz, 2012). Upon oral 
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ingestion, alcohol is diffusing readily through cell membranes and is metabolized by most 

tissues to acetaldehyde, a highly reactive electrophile (Zakhari, 2006). Alcohol toxicity is 

also associated with formation of reactive oxygen and nitrogen species, depletion of co-

factors (e.g., NAD+), impairment in energy homeostasis and activation of pro-inflammatory 

and other signaling pathways in many organs (Rusyn and Bataller, 2013). Liver is one of the 

major targets for alcohol with disease severity ranging from steatosis to steatohepatitis, 

cirrhosis, and hepatocellular carcinoma. Other tissues are also impaired by chronic alcohol 

abuse, including acute and chronic kidney disease (Schaeffner and Ritz, 2012).

Alcohol abuse causes half of the cases of cirrhosis worldwide (World Health Organization, 

2014). Patients with alcoholic cirrhosis often develop alcoholic hepatitis, an acute-on-

chronic form of liver injury that carries a high mortality rate. In these patients, short-term 

mortality is heavily influenced by early occurrence of acute kidney injury (AKI) 

(Altamirano et al., 2012). Alcoholic hepatitis is an acute-on-chronic disease (Casanova and 

Bataller, 2014) characterized by high mortality due to multiple organ failure and systemic 

inflammatory response syndrome even in the absence of an infection (Michelena et al., 
2015). Because of the shortage of effective treatment options for alcoholic hepatitis to 

supplement non-specific first-line therapy with prednisolone or pentoxifylline, there is a 

need to identify key pathogenic drivers of this disease, including impaired kidney function, 

through development of rodent models (Casanova and Bataller, 2014).

There is little information in the published literature regarding the impact of alcohol on 

kidney function and pathology from rodent models. On the one hand, mild nephropathy has 

been observed in rats fed alcohol-containing liquid diet for either 6 or 4 weeks (Van Thiel et 
al., 1977; Latchoumycandane et al., 2014). However, no effect on kidney function or kidney 

injury has been reported in previous mouse studies, including the protocols where large 

amounts of alcohol are administered, either through intragastric feeding (Kono et al., 2000; 

Ueno et al., 2012), or in a liquid diet followed by alcohol binge (Bertola et al., 2013). On the 

other hand, liver fibrosis and neutrophil infiltration, together with bilirubinostasis and 

presence of megamitochondria, are main pathological diagnoses strongly predictive of 

mortality from alcoholic hepatitis (Altamirano et al., 2014). Even though several 

experimental models of alcoholic steatohepatitis in mice are available (Ueno et al., 2012; 

Bertola et al., 2013), none reproduces these features of severe alcoholic hepatitis. 

Interestingly, recent mouse studies demonstrated that co-administration of pro-fibrogenic 

stimulus carbon tetrachloride (CCl4) (Chiang et al., 2013), or pro-inflammatory factor 

lipopolysaccharide (Affo et al., 2014) with moderate alcohol consumption through a liquid 

diet results in exacerbation of liver injury through both activation of the hepatic stellate cells 

and inflammatory cascades.

Because alcoholic hepatitis is a severe form of alcohol-associated disease in subjects with 

pre-existing liver pathologies such as fibrosis, we aimed to replicate the acute-on-chronic 

nature of this life-threatening human syndrome in a mouse model. Specifically, we tested a 

hypothesis that alcohol toxicity will be exacerbated in pro-fibrotic conditions in both liver 

and kidney. In contrast to other models, we elicited fibrosis through sub-chronic (6 weeks) 

low-dose treatment with CCl4 followed by intragastric alcohol feeding with or without 
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additional continuous administration of one-half dose of CCl4 for 3 weeks. This design 

resulted in a clinical phenotype of alcoholic hepatitis complicated by acute kidney injury.

Materials and Methods

Animals

Male mice (C57BL/6J, 20–25 g, 12 weeks of age) were obtained from the Jackson 

Laboratories (Bar Harbor, ME) and housed in a clean, temperature-controlled environment 

with a 12-h light-dark cycle and were given free access to regular laboratory chow diet and 

water for housing in regular cages. All animals were given humane care in compliance with 

National Institutes of Health guidelines and severe alcohol intoxication was assessed 

carefully to evaluate the development of tolerance using a 0–3 behavioral scoring system 

(0=normal behavior, 1=sluggish movement, 2=loss of movement, but animal moves when 

stimulated, 3=loss of consciousness). This work was approved by the Institutional Animal 

Care and Use Committee at UNC-Chapel Hill.

Diets and Treatment

CCl4 (>99.5% pure) and olive oil vehicle were from Sigma (St. Louis, MO), ethyl alcohol 

(190 proof, Koptec) was from VWR (Radnor, PA). Procedures for CCl4 injections were as 

detailed elsewhere (Uehara et al., 2014). Prior to each injection, 1 ml of pure CCl4 was 

dissolved in olive oil to a final volume of 10 ml (0.01%, v/v) and stored in light-protected 

bottle. Mice were intraperitoneally injected (15 ml/kg) with dissolved CCl4 (0.2 ml/kg) 

diluted in olive oil vehicle or only olive oil vehicle twice a week for 6 weeks, starting on day 

1 of the experiment (Supplemental Figure 1, injections performed on Monday and Thursday 

at 9 am). Mice were maintained on normal animal chow with free access to food/water for 

this duration. After 6 weeks of treatment, animals underwent surgical intragastric intubation 

(Kono et al., 2000). Following surgery, mice were housed in individual metabolic cages and 

allowed one week to recover with ad libitum access to food and water. Animals had free 

access to water and non-nutritious cellulose pellets throughout the study. Alcohol groups 

received high-fat diet containing ethyl alcohol as detailed elsewhere (Kono et al., 2000). 

Alcohol was delivered continuously through the intragastric cannula initially at 16 g/kg/day 

and was gradually increased 1 g/kg every 2 days until day 14. The dose was then increased 

by 1 g/kg every 3 days until the dose reached 25 g/kg/day.

Five experimental groups (n=3–4 per group) comprised this study. Control (“Cont”) group 

are animals that received i.p. injections (2x week) of olive oil vehicle for 6 weeks. 

“CCl4(6w)” group are animals that received i.p. injections (2x week) of CCl4 (0.2 ml/kg) for 

6 weeks. “CCl4(9w)” are animals that received i.p. injections (2x week) of CCl4 (0.2 ml/kg) 

for 6 weeks and then received i.p. injections (2x week) of CCl4 (0.1 ml/kg) for 3 weeks. 

“EtOH” group are animals that received i.p. injections (2x week) of olive oil vehicle for 6 

weeks and then were administered alcohol intragastrically for 3 weeks. “CCl4(9w)+EtOH” 

group are animals that received i.p. injections (2x week) of CCl4 (0.2 ml/kg) for 6 weeks and 

then were administered alcohol intragastrically with continuous i.p. injections (2x week) 

with CCl4 (0.1 ml/kg).
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Sample Collection

Blood was collected at sacrifice from vena cava into heparin tubes and serum was isolated. 

Sections of the median, left lateral liver lobes and kidney were fixed in 10% formalin and 

embedded in paraffin and the remaining tissues were frozen and stored at −80°C. Urine was 

collected using metabolic cage every morning after starting alcohol administration (at 9 am) 

and stored at −20°C until assayed. Ethanol concentration was determined by measuring 

absorbance at 366 nm resulting from the reduction of NAD+ to NADH by alcohol 

dehydrogenase as detailed elsewhere (Bergmeyer, 1988).

Liver and kidney histopathological evaluation

Formalin-fixed/paraffin-embedded liver and kidney sections were stained with hematoxylin/

eosin (H&E). Liver and kidney pathology was evaluated in a blind manner by two certified 

veterinary pathologists. For quantitative analysis of liver injury, assessments were noted for 

each liver sample; in addition, lesions of interest were semi quantitatively as follows. 

Mallory-Denk bodies (MDBs) and ductular reaction were both scored as 0–4 (0, none; 1, 

rare; 2, moderate; 3, frequent; 4, abundant). MDB scoring was done for zone 1 or zones 1 

plus 3 because MDBs are found preferentially in zone 1 in cholestasis and copper storage 

liver diseases. Hepatocyte ballooning was scored as 0–3 (0, none; 1, rare; 2, frequent; 3, 

abundant) and zonal location noted. Bile plugs and non-bile pigment deposition, and 

intraductal lithiasis were noted for location and semi quantified (0–3 and 0–4, respectively). 

Periductal fibrosis was scored as 0–1 (0, absent; 1, present). Steatosis was scored as 1–3 (1, 

<1%; 2, 1%–5%; 3, >5%).

For quantitative analysis of kidney injury in the form of dilatation and regeneration of the 

focal renal tubule lesions was scored as 0–4 (0, none; 1, minimal; 2, mild; 3, moderate; 4, 

marked). In addition, PAS (periodic acid–Schiff stain for proteinaceous material & basement 

membrane detection), DFS (direct first scarlet stain for amyloid detection) and PTAH 

(phosphotungstic acid hematoxylinstain stain for detection of fibrin) staining was performed 

using established protocols. To determine the presence of fibrosis in liver and kidney, liver 

and kidney sections were subjected to alpha-smooth muscle actin (α-SMA) 

immunohistochemistry, Masson’s trichrome and Sirius red staining. At least five fields from 

all animals of each group were analyzed.

Immunohistochemistry

Paraffin-embedded liver sections (5 μm thick) were stained with primary antibodies using 

Dako Antibody Dilution solution (Dako, Carpinteria, CA). The primary antibodies used in 

these experiments were: rabbit anti-4-hydroxynonenal (4-HNE; Alpha Diagnostics, San 

Antonio, TX; 1:1000, 60 min, room temperature), mouse anti-human alpha-smooth muscle 

actin (αSma; abcam, Cambridge, MA; 1:200, 10 min, room temperature), goat anti-mouse 

TIM-1/KIM-1/HAVCR (R&D systems, Minneapolis, MN; 2 mm/ml, 10 min, room 

temperature), and rat anti-mouse CD68 (CD68; AbD serotec, Raleigh, NC; 1:200, overnight, 

4°C). We used Dako EnVision System (Dako, Carpinteria, CA) HRP kit for HNE and αSma, 

Goat IgG HRP-conjugated antibody (R&D systems, Minneapolis, MN; 1:100, 10min, room 

temperature) as secondary antibody for KIM-1, and VECTASTAIN ABC Kit (Rat; Vector, 

Burlingame, CA) for CD68. Dako Liquid DAB+ Substrate chromogen System (Dako, 
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Carpinteria, CA) was employed for visualization. Slides were counterstained with filtered 

Mayer’s hematoxylin (Sigma) for 5 min. Quantitative analysis was performed using Image-

Pro Premier 9.1 (Media Cybernetics, Silver Spring, MD) at 100× magnification. For α-SMA 

and 4-HNE, five fields of Liver and Kidney tissue were randomly selected to calculate 

percent of positively stained area.

Biochemical Measurements

Serum creatinine levels were determined spectrophotometrically with the Creatinine (serum) 

Assay kits (Cayman Chemical, Ann Arbor, MI). Serum Urea (BUN) levels were determined 

spectrophotometrically with the QuantiChrom Urea Assay Kit (BioAssay Systems, 

Hayward, CA). Urine creatinine levels were determined fluorometrically with the Creatinine 

Assay kits (Sigma). Urine protein levels were quantified using the Qbit. Hepatic levels of 

methionine, SAM, SAH, homocysteine, and reduced (GSH) and oxidized (GSSG) 

glutathione were measured by HPLC coupled with coulometric electrochemical detection as 

previously described (Melnyk et al., 1999).

RNA Isolation and Sequencing

Total RNA was extracted from liver using the RNeasy Mini kit (Qiagen, Valencia, CA) RNA 

concentrations were measured with NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE) and quality was verified using the Bio-Analyzer (Agilent 

Technologies, Santa Clara, CA). Libraries for RNA-seq were prepared using the Illumina 

TruSeq mRNA Sample Prep Kit (Illumina, San Diego, USA). Single-end (50bp) sequencing 

was carried out using the Illumina HiSeq 2500 platform. RNA-seq reads were aligned to 

appropriate reference genomes (NCBI mm9) using the “SNP-tolerant” GSNAP software. 

This alignment pipeline allows for the elimination of mapping biases that arise from 

discrepancies in genetic variation between individual samples and a standard reference 

genome, at both homozygous and heterozygous sites. Sequencing quality and mapping 

statistics were compared across all samples and duplicate entries and transcripts with less 

than 10 counts were removed. Genes which were differentially expressed in treated group 

relative to control mice were identified by a Wald test followed by Benjamini-Hochberg 

correction for multiple testing using the DESeq2 and TCC R packages. A q value <0.1 was 

used to define differentially expressed genes between each group. Gene expression data are 

available at GEO (GSE83529).

Pathway annotation of the differentially expressed genes

The GGRNA tool was used to identify hypoxia-associated transcripts (Naito and Bono, 

2012).The DAVID tool (Dennis et al., 2003) was utilized to execute GO enrichment, KEGG 

pathway analysis, annotation and analysis of related diseases on the DEGs. Benjamini 

method was used to conduct multiple testing correction, and p<0.05 was considered as the 

significantly enriched threshold.

Quantitative real-time PCR

Total RNA (2 μg) was reverse transcribed using random primers and the high capacity 

cDNA archive kit (Applied Biosystems, Foster City, CA). The following assays (Applied 
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Biosystems, Foster City, CA) were used for quantitative real-time Polymerase-Chain 

Reaction: Hacvr1 (Kim-1, Mm00506686_m1), Lcn2 (Mm01324470_m1), Timp1 
(Mm01341361_m1), CD68 (Mm03047343_m1), and Gusb (Mm001197698_m1). Reactions 

were performed in a 96-well assay format using Roche 480 instrument (Roche Applied 

Science, Indianapolis, IN). ΔCt values for all genes relative to the control gene Gusb were 

determined. The ΔΔCt were calculated using treated group means relative to strain-matched 

control group means.

Western Blotting

Proteins were extracted from the liver and analyzed by Pierce BCA Protein Assay Kit 

(Thermo Fisher Scientific Inc, Waltham, MA). Primary antibodies against beta-actin and 

Cytochrome P450 2e1 (Cyp2e1) were from Abcam (Cambridge, MA). IRDye680-

conjugated secondary antibodies were from LiCor (Lincoln, NE). Blots were scanned using 

the Odyssey system (LiCor) and intensity of the bands was quantified with Image Studio 

Ver4.0 (LiCor). The intensity of protein bands on the blots was normalized to beta-actin and 

to control samples.

Statistical analyses

Statistical significance was determined using GraphPad Prism5 (San Diego, CA). 

Quantitative values are expressed as mean±SD unless otherwise noted. Statistical 

significance was evaluated using one-way ANOVA within each time point followed by the 

Tukey’s post hoc test. Statistical significance is indicated at any level below p < 0.05.

Results

Intragastric administration of alcohol does not induce significant kidney injury in mice

Intragastric feeding of high-fat diet containing alcohol is a well-established rodent model of 

alcohol toxicity (Kono et al., 2000; Ueno et al., 2012). Traditionally, histopathological and 

clinical chemistry assessment of the outcome of the studies that use this model focuses on 

the liver. Thus, we conducted detailed histopathological evaluation of the kidneys from two 

mouse studies where animals were administered alcohol (up to 27 mg/kg/d) in a high fat diet 

using an intragastric intubation model for 28 days. One study was conducted in male 

C57BL/6J mice (Powell et al., 2010), and another was a study of inter-strain differences in 

alcohol-induced liver injury in male mice from 15 inbred strains (129S1/SvImJ, AKR/J, 

BALB/cJ, BALB/cByJ, BTBR T+tf/J, C3H/HeJ, C57BL/6J, C57BL/10J, DBA/2J, FVB/NJ, 

KK/HIJ, MOLF/EiJ, NZW/LacJ, PWD/PhJ, and WSB/EiJ) (Tsuchiya et al., 2012). Between 

two studies, there were 53 mice that were administered high fat diet alone via intragastric 

cannula for 28 days and 72 animals that were co-administered alcohol in the same diet. 

Endpoints examined were light microscopy of H&E-stained slides, as well as specialized 

stains for proteinaceous material and basement membrane material (PAS stain), collagen 

(Masson’s trichrome [MT] stain), amyloid (DFS stain), and fibrin (PTAH stain). Even 

though no evidence of kidney injury was observed in either alcohol- or high fat diet-fed 

animals using conventional light microscopy, we found hyaline-like material in the 

mesangial area in glomeruli in some animals. The material in the mesangial area was PAS-

stain positive and MT-, PTAH-, DFS-stain negative (Figure 1). These lesions were classified 
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as hyaline glomerulopathy, a mild form of acute glomerulonephritis, with incidence of 21% 

(11 out of 53) in high fat diet-fed animals and 13% (9 out of 72) in alcohol and high fat diet-

fed animals. No strain differences were observed in the incidence of the lesions and these 

data show that intragastric alcohol feeding for up to 28 days does not result in 

microscopically discernable kidney injury.

Alcohol intake induces kidney injury in mice with liver fibrosis

Next, we examined the effects of CCl4, alcohol, or a combination treatment on liver and 

kidney phenotypes in mice. Characteristic cycling of circulating alcohol (French, 2005) was 

unaffected by co-administration of CCl4 (Figure 2A, mean urine alcohol concentrations over 

last two weeks of intragastric feeding were EtOH=165±80 mg/dL and CCl4(9w)

+EtOH=163±87 mg/dL). Similarly, behavioral assessment of the degree of alcohol-

associated inebriation of the animals in this study showed no differences among the groups 

(Figure 2B).

Continuous treatment with CCl4 alone resulted in progressive liver injury, primarily 

characterized by fibrotic and inflammatory changes (Figure 3, Supplemental Figure 2), but 

no necrosis or elevation in serum enzymes (data not shown). Alcohol treatment for 4 weeks 

through an intragastric cannula resulted in liver enlargement and severe steatosis, with signs 

of inflammation and necrosis; however, combined treatment with both alcohol and CCl4 

markedly exacerbated liver injury and fibrosis (Supplemental Figure 2). Both lipid 

peroxidation and inflammatory cell infiltration were much more pronounced in the 

combined treatment group as compared to alcohol-only group, or to animals treated with 

CCl4.

The effects of either treatment alone, or combination thereof, on kidney in this model were 

most relevant to the AKI phenotype in human alcoholic hepatitis. Neither CCl4, nor alcohol 

treatments in isolation had an effect on the kidney pathology (Figures 4 and 5). In stark 

contrast, combined treatment resulted in about 20% increase in relative kidney weight, 

severe kidney injury and disruption of kidney function (Figures 4 and 5). Not only there 

were signs of severe capsule fibrosis and amphophilic material deposition in the glomeruli, 

as well as dilation and signs of regenerative proliferation in the renal tubules, but also 

profound upregulation of expression of injury, fibrosis and inflammation markers Kim-1, 

Timp-1, Lcn2 and CD68 (Figure 6). The entire renal cortex was affected by the combined 

treatment with alcohol and CCl4. Interestingly, damage in the renal tubules was much more 

pronounced than the effect on the glomeruli; most of the tubules were dilated and with signs 

of regeneration (Figure 5B).

Macrophages produce pro-fibrotic and pro-inflammatory factors that help in the 

maintenance of mesenchymal cells, thereby promoting fibrosis (Humphreys et al., 2010). 

Likewise, oxidative stress is critical in the pathophysiology of kidney injury (Santos et al., 
2008) and lipid peroxidation is a hallmark of oxidative stress (Niki, 2008). Indeed, in a 

combined treatment group we observed profound effects on both lipid peroxidation and 

inflammatory cell infiltrates, most of the positive staining was primarily located in the renal 

cortex (Figures 4G and H). Hepatic glutathione depletion after chronic alcohol consumption, 

another biomarker of oxidative stress, occurs in experimental animals and in humans 

Furuya et al. Page 7

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Lauterburg and Velez, 1988; Tsuchiya et al., 2012), an effect that was observed in our study 

with respect to the levels of glutathione (GSH) and GSH/GSSG ratio in the liver, but to a 

much lesser degree in kidney and not in serum (Supplemental Figure 3). Interestingly, 

protein levels of Cyp2e1 were increased, as expected, in EtOH-only group in the liver, but 

not in kidney, but were significantly lower in a combined-treatment group (Figure 7), 

demonstrating that oxidative stress in the animals in a combined treatment group is unrelated 

to Cyp2e1 induction, a major source of oxidants in alcoholic liver disease (Bradford et al., 
2005).

Alterations of methionine metabolism have been suggested to play an important role in the 

pathogenesis of alcoholic liver disease (Lu et al., 2002), but little is known about the effect 

of alcohol on this pathway in kidney. To determine what changes in methionine cycle 

metabolites are elicited by alcohol and/or CCl4 in different tissues, concentrations of 

methionine, S-adenosyl-L-methionine (SAM), and S-adenosyl-L-homocysteine (SAH) were 

measured (Supplemental Figure 4). Alcohol-associated liver injury is significantly inversely 

correlated with SAM/SAH ratio (Tsuchiya et al., 2012), and we observed that a decrease in 

SAM was the most pronounced effect in liver and serum in EtOH group, but it was not 

reduced in the combined treatment group. In kidneys, both CCl4 and EtOH treatments, alone 

or in combination, had a significant effect on SAM and SAM/SAH ratio.

Transcriptome analysis identifies degerulated pathways in alcohol-induced kidney injury

To further elucidate the mechanisms of fibrosis- and alcohol-associated AKI, transcriptome 

analysis was performed on kidney tissues (Figure 8). We observed very few significant 

expression changes in the CCl4-alone treatment group; 29 genes in CCl4 (6w) treatment 

group and 4 genes in CCl4 (9w) treatment group were affected and comprised no 

significantly enriched pathway (Figure 8A and Supplemental Tables 1 and 2). In EtOH 

treatment group, we found 729 significantly differentially expressed genes characteristic of 

the induction of cytochrome P450 and drug metabolism and downregulation of terpenoid 

backbone biosynthesis pathways (Figure 8C).

In contrast, profound effects on gene expression were found in the combined treatment 

group (i.e., alcohol administration to mice with liver fibrosis), with almost 8,000 transcripts 

significantly different from control (Figure 8D, Supplemental Table 3). This transcriptional 

response included enrichment for 53 damage-associated pathways, including apoptosis, 

inflammation, and immune response (Figure 8G). Specifically, Havcr1/Kim1 (hepatitis A 

virus cellular receptor 1/Kidney injury molecule-1) and Lcn2/Ngal (Lipocalin 2/Neutrophil 

gelatinase-associated lipocalin), known biomarkers of renal dysfunction (Lcn2 specifically 

in patients with liver cirrhosis (Belcher et al., 2014)), were among the top (in terms of both 

significance and fold change) differentially expressed transcripts in the kidneys of mice with 

AKI (Figure 5G). Interestingly, several inflammatory genes were differentially regulated in 

the kidneys from mice with alcoholic fibrosis (e.g. Vcam1, Spp1 and Cxcl1). In addition, 

fatty acid metabolism pathways and PPAR signaling were markedly downregulated, findings 

that are concordant with the observations in human nephropathies of various etiology (Guan, 

2004). Finally, relatively few significantly affected pathways overlapped between alcohol-

treated and combined treatment groups. Only lysosomal protein expression was among the 
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up-regulated transcripts (Figure 8E), while all significant pathways affected by alcohol alone 

were also affected in the combined treatment group (Figure 8F).

Because clinical alcoholic hepato-renal syndrome is commonly attributed to hemodynamic 

changes, lower renal perfusion rates and tissue hypoxia we also examined changes in gene 

and protein expression of hypoxia-related genes. Specifically, we have examined “hypoxia”-

related transcript changes in all animals using RNA-seq data. We have used GGRNA tool, a 

transcript-oriented search engine for genes and transcripts (Naito and Bono, 2012), to derive 

a list of transcripts that have been annotated as relating to hypoxia in the mouse (Figure 9A 

and Supplemental Table 4) and were expressed in the dataset. Also, we have queried a subset 

of these transcript, those that have been tagged for “kidney” (Figure 9B and Supplemental 

Table 4). In the CCl4(9w)+EtOH group there were marked changes in expression of most of 

these transcripts, with a predominant effect being upregulation. Furthermore, we found that 

Hif1a protein is markedly increased in the CCl4(9w)+EtOH group (Figure 9C). We also 

confirmed expression changes in mRNA of several Hif-related genes using RT-PCR (Figure 

9D).

Discussion

Severe cases of alcoholic hepatitis are often associated with the development of type 1 

hepatorenal syndrome leading to AKI (European Association for the Study of Liver, 2012; 

Egerod Israelsen et al., 2015). Renal dysfunction usually develops secondary to a decrease in 

blood pressure as part of an inflammatory response caused by, among several possible 

etiological factors, severe alcoholic hepatitis (Salerno et al., 2007). This phenotype, however, 

is unattainable in the traditional rodent models of alcohol-induced injury which prompted 

our effort to combine a pro-fibrogenic treatment with alcohol administration. While high 

necrogenic doses of CCl4 are known to cause injury and fibrosis in liver (Weiler-Normann et 
al., 2007), kidney (Ogawa et al., 1992) and other tissues, we aimed to achieve chronic pro-

fibrogenic disease state without overt necro-inflammation. Our previous mouse studies 

(Uehara et al., 2013) showed that continuous administration of low dose CCl4 results in 

pronounced liver fibrosis with mild to minimal signs of hepatotoxicity, but no pathological 

effects on other tissues including the kidney, a result that was supported by the 

transcriptomic analysis of the kidney samples which showed only several; dozen transcripts 

as differentially expressed by CCl4 treatment alone.

Previous studies of intragastric feeding of alcohol in mice showed that diffuse peri-cellular 

liver fibrosis is achievable only under conditions of a combination of high-fat “Western diet” 

pretreatment followed by administration of up to 32 g/kg/day alcohol for over 8 weeks 

(Kisseleva et al., 2012). This phenotype represents a pericellular/perisinusoidal pattern 

observed in human alcoholic fibrosis that is known to begin with the classic “chicken-wire” 

fibrosis and progresses to the portal tracts as bridging central-portal or portal-portal fibrosis 

(Sakhuja, 2014). In our study, a more traditional mouse intragastric feeding model (Kono et 
al., 2000), alcohol alone showed little evidence of fibrogenesis; however, in combination 

with CCl4–induced liver fibrosis alcohol exacerbates liver injury. One explanation for this is 

the role of inflammation and oxidative stress (Uehara et al., 2013). Both CCl4 and alcohol 

are known to promote these mechanisms (Cabre et al., 2000). Peroxidation of lipids leads to 
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cell damage and byproducts of lipid peroxidation have been shown to promote fibrosis 

(Parola et al., 1996). Other potential mechanisms by which CCl4 potentiates alcohol-induced 

liver fibrosis include modulation of the adaptive and innate inflammatory responses, 

activation of stellate cells into myofibroblast-like cells, and promotion of dysbiosis and 

increased gut permeability (Gomez-Hurtado et al., 2011).

The findings of severe AKI in this mouse model of fibrosis- and alcohol-associated liver 

injury is significant. The precise renal pathological features in patients with alcoholic 

hepatitis are largely unknown. Our previous clinical studies investigating the incidence and 

impact of AKI in patients with alcoholic hepatitis (Altamirano et al., 2012; Michelena et al., 
2015) did not include renal histological data. The main reason for the lack of histological 

data on kidney injury in humans is that kidney biopsy is extremely dangerous in patients 

with alcoholic hepatitis, who are severely coagulopathic. In our clinical experience, even 

transjugular renal biopsy carries a mortality risk in this patient population.

Based on our clinical experience and studies in alcoholic cirrhosis, AKI could be mainly due 

to hepatorenal syndrome and/or acute tubular necrosis. Patients with advanced liver fibrosis 

are predisposed to AKI including hepato-renal syndrome, which markedly impairs survival 

(Martin-Llahi et al., 2011). Importantly, alcohol abuse is the main etiology among cirrhotic 

patients with AKI (Garcia-Tsao et al., 2008). In fact, AKI frequently develops in patients 

with alcoholic hepatitis, probably related to hemodynamic derangements associated with 

systemic inflammatory response (Altamirano et al., 2012). Importantly, our findings in the 

mouse model, both clinical and molecular, point strongly to the major role for hepato-renal 

syndrome associated with kidney tissue hypoxia in alcohol- and fibrosis-associated AKI. 

Specifically, presence of both etiological factors for alcoholic hepatitis was necessary to 

elicit AKI in the mouse model, while either factor alone produced virtually no effect on the 

kidney. Therefore, we posit that this mouse model is a considerable step forward in 

identifying critical co-morbidity factors that are behind precipitous worsening of the 

prognosis in subjects with alcoholic hepatitis.

The molecular pathogenesis of AKI in the setting of advanced cirrhosis is largely unknown 

(Gines and Schrier, 2009). Renal hypoperfusion due to the activation of systemic 

vasoconstrictors occurs in many cases, and is associated with decreased intrarenal synthesis 

of vasodilators. Prolonged renal hypoperfusion can lead to acute tubular necrosis, especially 

in patients with alcoholic cirrhosis. The current therapy for AKI in cirrhosis consists of 

splanchnic vasoconstrictors (i.e., terlipressin) and plasma volume expansion with albumin. 

Unfortunately, this therapy fails in many patients and targeted therapies are urgently needed. 

The lack of animal models of AKI in the setting of advanced liver fibrosis hampers 

identification of the molecular drivers of AKI and this mouse model represents a unique 

opportunity to unveil the mechanisms involved in AKI associated with alcoholic fibrosis.

Our transcriptomic discoveries are most intriguing and provide important initial clues 

towards better characterization of the AKI pathology in alcoholic hepatitis. First, important 

linkages to the molecular signatures of alcoholic hepatitis in human liver were observed, 

such as marked upregulation of expression of osteopontin in a combined treatment group. 

Osteopontin, also known as secreted phosphoprotein 1 (SPP1), is an extracellular matrix 
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protein and a neutrophil-attracting chemokine; it is one of the most pronounced 

transcriptomic signals in liver in subjects with alcoholic hepatitis (Morales-Ibanez et al., 
2013). It is synthesized by multiple cell types and promotes profibrogenic and inflammatory 

actions through binding to integrins and CD44 (Wang and Denhardt, 2008). It plays role in a 

number of physiological and pathologic events such as cell adhesion, migration and cell 

survival, angiogenesis, apoptosis, inflammation and wound healing (Subraman et al., 2015). 

Indeed, the immune response and activation of complement cascade and extracellular 

matrix-associated receptor activation and cytoskeleton remodeling pathways were among the 

most significant findings in the transcriptome analysis of the kidney effects of the combined 

treatment. This finding suggests that besides changes in vasoactive substances, an intrarenal 

inflammatory response, largely mediated by osteopontin and associated molecular drivers, 

could play a role in AKI in alcoholic cirrhosis. Further studies in humans should confirm 

this intriguing finding.

Another intriguing finding that points to a potential therapeutic intervention on the AKI 

component of alcoholic hepatitis is the PPARα pathway. PPARα agonists have been shown 

to be renoprotective (Wu et al., 2009), including against renal fibrosis (Boor et al., 2011). 

Renal fibrosis leads to downregulation of PPARα and mitigation of this effect with 

pharmacological agonists of this receptor is protective both in rats and in vitro (Boor et al., 
2011). We observed that PPARα associated pathways were not affected in kidney by CCl4 

and EtOH treatments individually, which may be one reason for the lack of injury and 

transcriptional response. However, major downregulation of PPARα-mediated fatty acid 

metabolism pathways in a combined treatment group was associated with pronounced 

nephropathy. It is well established that modulation of fatty acid and bile acid metabolism by 

PPARα agonists protects against alcoholic liver disease (Nakajima et al., 2004; Li et al., 
2014) and thus it is likely that this protective effect may be also extendable to AKI 

phenotype in alcoholic hepatitis.

One important caveat to address in this model is the potential effects of CCl4 and/or EtOH 

on Cyp2e1-mediated metabolism in the kidney. Co-administration of ETOH and CCl4 

affects pharmaco- and toxicokinetics of CCl4 since both chemicals share Cyp2e1 as 

common metabolic pathway (Lieber, 1999). However, we posit that our data show that 

Cyp2e1 is unlikely to play a role in the observed kidney injury phenotype in this model. 

First, neither CCl4 nor EtOH alone had an effect on Cyp2e1 protein in the kidney, even 

though a robust expected increase was observed in the liver of EtOH-treated mice. Second, 

circulating blood alcohol values are not affected by CCl4. Finally, protein levels of Cyp2e1 

were significantly down-regulated in the CCl4(9w)+EtOH group, in both liver and kidney. 

Therefore, we reason that observed AKI and lipid peroxidation are due to inflammatory cell 

infiltration and other pathways, not through the Cyp2e1-mediated oxidative stress or 

metabolism of CCl4 to reactive species.

In summary, we demonstrate that administration of alcohol in mice with severe liver fibrosis 

is associated with AKI. Transcriptomic analysis revealed that alcohol administration and 

fibrosis together have a multiplicative adverse effect on kidney function. This mouse model 

also exhibited similar pathological characteristics to human alcoholic hepatitis. Our findings 

reinforce the modern hypothesis that AKI in advanced liver disease is not merely a 
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consequence of systemic vasodilatation, but the response to systemic and intrarenal 

inflammation (Bernardi et al., 2015). Recent clinical evidence shows that most patients with 

alcoholic hepatitis die due to multiorgan dysfunction and that AKI is by far the major 

accompanying organ failure (Michelena et al., 2015). This clinical condition is without 

effective therapeutic options. Many patients with these complications do not respond to 

vasoconstrictors plus albumin. Likewise, renal replacement therapy is associated with high 

mortality rate. While it is likely that novel therapies for AKI will increase the survival of 

these patients, the development of new treatments is hampered by the poor knowledge of the 

mechanisms of AKI in this setting. Thus, identifying key molecular mechanisms of AKI in 

advanced alcoholic liver disease is the first step and an animal model of AKI in the setting of 

alcoholic cirrhosis, as detailed in this study, will be a useful research tool.
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Figure 1. 
Representative photomicrographs of kidney sections from two different male C57BL/6J 

mice treated with alcohol (up to 27 g/kg/day) intragastrically for 28 days [animal treatments 

are detailed in (Tsuchiya et al., 2012)]. Left panel, one representative animal without kidney 

injury; right panel, one representative animal with mild hyaline glomerulopathy (star 

indicated affected glomerulus). Top row, images of H&E; bottom row, PAS staining. 

Original magnification, 200×.
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Figure 2. 
Daily average urine alcohol concentrations (A) and behavioral scores (B) in mice treated 

with alcohol intragastrically (EtOH, open circles) or with CCl4 and alcohol (CCl4(9w)

+EtOH, filled circles) as detailed in Methods and Supplemental Figure 1.
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Figure 3. 
Quantitative analysis of liver injury phenotypes. (A) Relative liver weight (%) to body 

weight. (B) Total liver histopathological score as evaluated in a blind test by two certified 

veterinary pathologists. Quantitative analysis of staining for Masson’s trichrome (C), α-

SMA (D), or 4-HNE (E) in liver sections was expressed as % of positive staining area 

relative to total area in five random at 200× magnification fields. (F) Quantitative analysis of 

CD68-positive cells was expressed as an average number of stained cells in five random 

fields at 200× magnification. All data are presented as mean±SD. ap< 0.05, compared to 

control group; bp< 0.05, compared to CCl4 (6w) group; cp< 0.05, compared to CCl4 (9w) 

group; dp< 0.05, compared to the alcohol alone (EtOH) group.
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Figure 4. 
Quantitative analysis of kidney injury phenotypes. (A) Relative kidney weight (%) to body 

weight. Blood urea nitrogen (BUN, B) and serum creatinine (C) levels, as measured by an 

enzymatic assay. (D) Total kidney histopathological score, as evaluated in a blind test by two 

certified veterinary pathologists. Quantitative analysis of staining for Masson’s trichrome 

(E), α-SMA (F), or 4-HNE (G) in liver sections was expressed as % of positive staining area 

relative to total area in five random at 200× magnification fields. (H) Quantitative analysis of 

CD68-positive cells was expressed as an average number of stained cells in five random 

fields at 200× magnification. Cell counting was performed separately for the glomeruli 

(white bars) and cortex (gray bars). All data are presented as mean±SD. Asterisks indicate 

significant differences among groups as indicated in the legend to Figure 3.
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Figure 5. 
Representative photomicrographs of kidney sections from Control, CCl4(6w), CCl4(9w), 

EtOH and CCl4(9w)+EtOH groups. (A) Images of H&E (left) and Masson’s trichrome 

(middle) staining, as well as immunostaining for kidney injury molecule-1 (Kim-1, right). 

Original magnification, 200×. Scale bar, 100μm. (B) H&E-stained sections of kidney tissue 

from CCl4(9w)+EtOH group. Top, original magnification, 100×, scale bar, 200μm. Arrows 

point to dilated renal tubules. Black arrowhead points to the regenerating renal tubules. 

Bottom, original magnification, 200×, scale bar, 100μm. Gray arrowhead points to the area 

of amphophilic material deposition in the glomerulus; white arrowhead points to the fibrosis 

capsule of the glomerulus.
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Figure 6. 
Quantitative analysis of kidney injury markers performed by qRT-PCR. (A) Kim-1; 

Biomarker for renal proximal tubule injury. (B) Lcn2; one of the biomarker of acute kidney 

injury (AKI). (C) Timp-1; fibrosis marker. (D) CD68; general macrophage marker of 

inflammation. All data are presented as mean±SD. Asterisks indicate significant differences 

among groups as indicated in the legend to Figure 3.
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Figure 7. 
Quantitative analysis of Cyp2e1 protein level in liver (A), and kidney (B). All data are 

presented as mean±SD. Asterisks indicate significant differences among groups as indicated 

in the legend to Figure 3. Representative images of the Western blots are shown below each 

bar chart. Protein level of Cyp2e1 and β-actin (Actb) is shown for one sample from each 

group.
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Figure 8. 
Transcriptional effects in mouse kidney. (A–D) Scatter plots of gene expression changes, 

relative to control group, upon treatment with (A) CCl4(6w), (B) CCl4(9w), (C) EtOH, or 

(D) CCl4(9w)+EtOH. Red dots indicate significant (q<0.1) differentially expressed genes. 

(E–F) Venn diagrams of significant differentially expressed (E, for up-regulated; F, for 

down-regulated) genes among CCl4(9w), EtOH, and CCl4(9w)+EtOH groups. (G) Heat map 

of 30 most significant differentially expressed genes (see Supplemental Table 3 for a 

complete ranked list). Colors indicate the fold change in expression difference from the 

mean of control samples, transformed to log2 ratios (see color bar). Samples and transcripts 

are clustered by correlation as indicated by the dendrograms. Group assignment of each 

sample is indicated at the bottom of the figure.
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Figure 9. 
Hypoxia-associated effects in a mouse model of alcoholic liver fibrosis-associated acute 

kidney injury. Supervised clustering diagrams of 213 (panel A, the ranked list of transcripts 

in this figure is included in Supplemental Table 4) and 24 (panel B and Supplemental Table 

4) transcripts identified as related to hypoxia in general, or hypoxia and kidney, respectively, 

in GGRNA (Naito and Bono, 2012). Colors indicate the fold change in expression difference 

from the mean of control samples, transformed to Z-score for each row (see color bar in 

panel A). Quantitative analysis of kidney levels of Hif1a protein (C), and Hif1a and Hif3a 
mRNA (D). All data are presented as mean±SD. Asterisks indicate significant differences 

among groups as indicated in the legend to Figure 3. Representative images of the Western 

blots are shown below bar chart in C. Protein level of Hif1a and β-actin (Actb) is shown for 

one sample from each group.
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