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Abstract

Missing covariate data hampers variable selection in multilevel regression settings. Current 

variable selection techniques for multiply-imputed data commonly address missingness in the 

predictors through list-wise deletion and stepwise-selection methods which are problematic. 

Moreover, most variable selection methods are developed for independent linear regression models 

and do not accommodate multilevel mixed effects regression models with incomplete covariate 

data. We develop a novel methodology that is able to perform covariate selection across multiply-

imputed data for multilevel random effects models when missing data is present. Specifically, we 

propose to stack the multiply-imputed data sets from a multiple imputation procedure and to apply 

a group variable selection procedure through group lasso regularization to assess the overall 

impact of each predictor on the outcome across the imputed data sets. Simulations confirm the 

advantageous performance of the proposed method compared with the competing methods. We 

applied the method to reanalyze the Healthy Directions-Small Business cancer prevention study, 

which evaluated a behavioral intervention program targeting multiple risk-related behaviors in a 

working-class, multi-ethnic population.
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1. Introduction

Multilevel models are commonly used in large-scale, community-based intervention or 

medical trial studies to describe the relationship of the predictors on mean response through 

fixed effects while also describing the clustering of data (e.g. workers within worksites, 
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students within schools) through random effects. It is becoming standard practice to collect 

as many predictors as possible to study the impact of contextual, social or comorbidity 

conditions on the scientific outcome of interest. When performing multilevel models with a 

high number of predictors, variable selection is useful for discovering and understanding 

important underlying associations. A demonstrative example is the Healthy-Directions 

Small-Business (HD-SB) study which studied workers clustered within worksites that were 

randomized to an intervention or control group. The aim of the HD-SB study was to identify 

relevant factors that relate to increased consumption of fruits and vegetables. As often 

encountered in multilevel and longitudinal studies, the selection of important variables is 

hindered by missing data in the covariates and by the introduction of random effects.

There has been considerable amount of work on the topic of variable selection for mixed 

effects models (Fan & Li, 2004; Qu & Li, 2006; Johnson et al., 2008; Ni et al., 2010; Chen 

& Dunson, 2003; Zhu & Zhang, 2006; Crainiceanu, 2008; Zhang & Lin, 2008; Kinney & 

Dunson, 2008; Wang et al., 2010; Bondell et al., 2010; Ibrahim et al., 2011). These methods 

require the data to be fully observed (i.e. no missing data). The need to adequately handle 

missing data is being recognized as a very important aspect of statistical practice with 

implications for main analyses and sensitivity analyses. Often, researchers resort to complete 

case analyses where subjects are only included if there are no missing values for all the 

variables included in the analysis. This strategy is widely known to give rise to bias in model 

parameters, except for the very special setting where the missing values are missing 

completely at random (MCAR) (Little & Rubin, 2002).

To address these issues, methods have been developed to perform variable selection with 

missing data. Garcia et al. (2010) proposed an expectation-maximization (EM) algorithm to 

simultaneously optimize the penalized likelihood function and estimate the tuning parameter 

in the presence of missing data. Johnson et al. (2008) considered a penalized estimating 

function approach to variable selection when missing data is present. Variants of the Akaike 

information criterion (AIC) to select models from partially observed data have been 

proposed by Shimodaira (1994), Hens et al. (2006), and Claeskens & Consentino (2008). A 

criterion for model selection in the presence of incomplete data based on Kullback’s 

symmetric divergence was also proposed by Seghouane et al. (2005). Similarly, Ibrahim et 

al. (2008) developed a class of information-based model selection criteria dependent only on 

output from the EM algorithm to address the missing data problem. A similar EM approach 

for model selection is taken by Bueso et al. (1999). While these methods are important, there 

is a gap in the literature for performing variable selection when the method of dealing with 

missing data is through multiple imputation.

Multiple imputation is a statistical technique that maintains the observed relationship of the 

data while reflecting the uncertainty present in the missing data through multiple datasets. 

Performing multiple imputations in lieu of EM and GEE approaches for statistical inference 

is appealing since it is easy to communicate with collaborators and it tends to be robust 

against departures from the complete-data model (Schafer, 1997). Multiple imputation 

methods for linear mixed-effects models are a recent development (Schafer & Yucel, 2002; 

Demirtas, 2004; Stuart et al., 2009; Demirtas & Hedeker, 2008; Schafer, 1997; Schafer & 

Yucel, 2002; Liu et al., 2000; Yucel, 2008; Goldstein et al., 2009; Van Buuren & Groothuis-
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Oudshoorn, 2011). Whichever imputation method is chosen, a total of m complete data sets 

each with p predictors will be produced. The appealing quality of these m imputed data sets 

is that complete-data methods can be used.

Although much attention has been given to constructing parameter estimates with an 

appropriate measure of uncertainty for multiply imputed data, there is no clear guidance on 

how to perform variable selection on the multiply imputed data sets. Practically, variable 

selection can be performed on each imputed dataset. However, it is unclear how to combine 

the selection results as each data set will presumably select different variables in the model. 

Brand (1999) proposed an ad-hoc procedure that constructs a final model with variables that 

are deemed significant in at least 60% of the imputed models. Yang et al. (2005) proposed 

two Bayesian alternative strategies for variable selection in classical linear regression models 

with missing covariates. Heymans et al. (2007) and Wood et al. (2008) developed 

methodology that performs automatic backward selection of multiply-imputed data sets. 

Moreover, none of these methods tackle missing data in the context of mixed models. To fill 

this serious knowledge gap, we propose a new framework for performing variable selection 

for multilevel models when multiply-imputed data are considered.

We make several contributions in this paper. First, we describe a penalized likelihood 

approach for multilevel models that simultaneously uses every multiply-imputed data set to 

select relevant predictors. Secondly, to overcome the challenges of combining across 

multiply-imputed datasets, we propose a novel approach that stacks the multiply-imputed 

data sets which can allow the use of group variable selection via group lasso regularization 

to assess the overall significance of each predictor on the outcome across all the imputed 

data sets. Finally, as the selection of an appropriate tuning parameter poses additional 

problems for multiply imputed data sets, we provide a Bayesian information criterion (BIC) 

for tuning parameter selection.

The format of this paper is as follows. In section 2, we present the multilevel model and 

develop a penalized procedure to perform variable selection for multiply-imputed multilevel 

data. Section 3 provides simulation studies of the proposed methodology. Section 4 applies 

the developed methodology to the analysis of the Healthy Directions-Small Business cancer 

prevention study, followed by our concluding remarks in Section 5.

2. Penalized Multiply-Imputed Likelihood

2.1. Model Representation

Suppose that there are n clusters indexed by i = 1, 2, . . . , n and the nth cluster has a total of 

ki subjects indexed by j = 1, 2, . . . , ki. Let Yi j denote the response on the jth subject within 

the ith cluster. For example, Yi j can denote the outcome for the jth worker in the ith worksite. 

Associated with each Yi j is a p × 1 vector of covariates, Xi j. The vector Xi j can include 

covariates defined at each of the two levels and can also include covariates formed by 

aggregating values over lower-level units. We consider a two-level linear mixed-effects 

model, though the proposal can be extended to a more general mixed-effects setting. In 

particular, it can be adapted to longitudinal multilevel data because longitudinal data is a 
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special case of multilevel data with only a single level of clustering and a specific ordering 

of observations within the cluster.

The two-level linear mixed model (i.e. multilevel model) is given by

(1)

where β is the p × 1 vector of regression coefficients, Zi j is a q × 1 design matrix for the 

random effects which is typically formed from a subset of the covariates, bi is a q × 1 vector 

of latent random effects and is distributed MV N(0, σ2Φ) and εi j are assumed to be i .i .d 
N(0, σ2).

For the ith cluster, let Yi = (Yi1, . . . , Yiki)
T denote the ki × 1 vector of outcomes and εi = 

(εi1, . . . , εiki)
T the residual vector. Similarly, let  denote the ki × p 

design matrix of covariates and Zi the appropriate subset of Xi . Model (1) can be expressed 

as

(2)

where εi ~ N(0, Σ). We assume independence among the different (Yi ,Xi ). We also assume 

that portions of Xi are ignorably missing (i.e. MCAR or MAR). Let  denote the missing 

parts of Xi and denote  the observed parts.

2.2. Multiply-Imputed Likelihood

We propose a penalized likelihood method that performs variable selection simultaneously 

on the multiply imputed data sets for multilevel models via the group lasso. The group lasso 

was first introduced by Yuan & Lin (2006) as a means of selecting grouped factors for 

accurate prediction in regression. The procedure begins by stacking the m complete data sets 

into one wide complete data set. We transform m different multilevel models into one 

multilevel model with up to p × m covariates where each predictor will be represented by up 

to m imputed variables. The scheme of the data stacking procedure is found in figure 1.

We propose the following multilevel model to identify relevant variables across multiply-

imputed data sets is

(3)
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where  denotes the gth predictor for the ith cluster from the ℓth imputed data set (g = 

1, . . . , p and ℓ = 1, . . . , m) and  denotes its corresponding regression coefficient. For 

simplicity, we rewrite model (3) as

(4)

where 

and . Under model (4), we have that the marginal distribution of 

outcome  where . For multilevel model (4), 

we build our variable selection procedure on the restricted maximum likelihood (REML) 

method of estimation in linear mixed models. The REML log-likelihood for the data under 

model (4) is

(5)

The maximum likelihood estimate of β(·) is obtained by maximizing (5) with respect to β(·).

To perform variable selection and to identify non-zero components of β(·), we maximize the 

profile penalized log-REML function

(6)

where λ is a nonnegative tuning parameter, ug is the group size for the gth group (ug = 1 

when there is no missing data on covariate g and ug = m when missing data is present on 

covariate g and m imputations were performed), and || · || is the L2 norm on the Euclidean 

space. The penalty term in (6) encourages sparsity at the group level since the Euclidean 

norm of a vector  is zero if all the components of  are zero. The innovation of the data 

stacking scheme and group lasso penalization formulation is that by treating 

( ) as a group and by summing the Euclidean norms of the loadings in 

each group, we can shrink all the regression estimates in one group to zero simultaneously, 

leading to overall variable selection across imputed data sets. For some values of λ, an entire 
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predictor (across the m imputations) can be removed entirely out of the model across 

imputations, leading to overall variable selection.

There are a few subtleties regarding the proposed procedure that merit attention. If there is 

no missing data present in the design matrix and no imputations are performed, then (6) 

reduces to the typical lasso by considering each covariate as their own individual group. The 

same is true if there exists missingness in the design matrix and only one imputation is 

performed. If one imputed data set is generated then by treating each variable in the imputed 

data as its own group, (6) reduces to

which is equivalent to the traditional lasso penalized likelihood.

Another subtlety that needs to be addressed is the number of predictors to be used in the 

final stacked data set. When performing the m imputations, the columns without missing 

data will be exactly the same across the m imputed data sets (i.e. ) 

for all Xg with completely observed data. It would be inappropriate to treat the these 

variables as a group with m members, as they are perfectly collinear. In the case of a fully 

observed variable, we simply construct a stacked data set where the m imputed columns of a 

fully observed covariate is represented by only one of the columns of the complete variable. 

For example, consider the situation where X = (X1,X2). Of the two predictors of Y, suppose 

X1 contains some missing values and X2 is fully observed. For sake of illustration, suppose 

that to address the missingness in X1, only two imputations (m = 2) are performed. The new 

stacked data structure will contain three predictors, ( , X2). The two imputed 

variables for X1 (i.e.  and ) will be represented as one group and X2 as its own 

group because no missing data was present in X2 and thus no imputation was constructed for 

that predictor. The proposed conditional penalized likelihood function for this illustration 

will take on the following form

(7)

which is an intermediate between the ℓ2 penalty used in ridge regression for the imputed 

variable and an ℓ1 penalty for the completely observed variable.

2.3. Algorithm

Maximizing the penalized profile log-REML function (6), with respect to β(·), presents some 

computational challenges. To maximize (6) with respect to β(·), we consider an approach 

similar to Lin & Zhang (2006) and Wang et al. (2010) that transforms the optimization 

problem into a simpler, but equivalent optimization function.
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Proposition 1—Consider the following two optimization procedures

(8)

(9)

Denote the maximizer of (8) as  and the maximizer of (9) as ( , τ̃g) for g = 1, . . . , p 
and ℓ = 1, . . . , m. Then it follows that

(10)

(11)

The proof of Proposition 1 is provided in the appendix. The relevance of Proposition 1 is 

that instead of maximizing (8) directly, we can maximize (9) and obtain equivalent results 

for . Computationally, we prefer objective function (9) over (8) because (9) resembles a 

generalized ridge regression, which can be solved through a Newton-Raphson algorithm 

when τg is fixed.

We propose to maximize (9) by iteratively cycling between  and τg. The algorithm is as 

follows:

1. Initialize  and  with conceivable values. Unless other information is 

known, initial  values can be set to 0 and  can be set to 1.

2. For iteration k, update  through

3. For iteration k, update  through
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4.
Continue steps 2 and 3 until  is sufficiently small.

2.4. Penalty Selection Procedure

A fundamental issue with the proposed penalty procedure is how to choose the best 

approximating model among a class of competing models with varying number of 

parameters. This is equivalent to deciding how to choose the tuning parameter λ. Widely 

used variable selection criterion for selecting λ include the BIC and the general cross-

validation (GCV) method. It is widely known that GCV and BIC are not easily computed in 

the presence of missing data because they are functions of the missing data, which lead to 

intractable integrals (Garcia et al., 2010). However, one of the advantages of our proposed 

methodology is that because we generate m complete multiply-imputed datasets, our 

procedure avoids the limitation of GCV and BIC under missing data. It has been shown that 

GCV significantly over fits in most problems, and the BIC has been shown to provide 

consistent variable selection (Wang et al., 2007). We propose a BIC-type criterion to choose 

the appropriate tuning parameter. Given any two estimated models, we choose the tuning 

parameter, λ, that minimizes the following BIC criterion

(12)

where , the total sample size. Although N is not the effective sample size (Jiang 

et al., 2008), this BIC criterion has performed well in our simulation studies and data 

analysis and has some precedence in this form (Pu & Niu, 2006; Bondell et al., 2010). 

Additionally, the degrees of freedom q is the total number of nonzero estimates of β(̂·).

2.5. Post-Procedure Estimation

Once the m multiple imputations have been constructed and the proposed procedure has 

performed variable selection, it is of interest to obtain parameter estimates of the final 

model. For each of the m unstacked imputed data sets, a linear mixed-effects model with 

only the selected variables from the proposed procedure can be performed. To obtain an 

overall estimate of the regression coefficients and standard errors, we can combine the 

results from each of the m data sets using Rubin’s Rules (Rubin, 1987). Rubin’s Rules 

proceed as follows: let  denote the estimated regression coefficient for the jth predictor 

and the ℓth imputation and  its corresponding estimated variance. The overall 

regression parameter estimate can be obtained through
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and its variance estimate as

where the first component of the addition takes into account the variability within each 

imputed data set and the second component accounts for the between-imputation variance. A 

95% confidence interval for βj can be obtained using the approximation 

where

It has been shown by Rubin (1987) that a small number of imputations can lead to high-

quality inference.

3. Numerical Studies

We performed simulation studies to compare the merits and finite sample performance of the 

proposed methodology with standard statistical practices. We compare our proposed 

penalized likelihood procedure to multiple competitors. First, we compare to the regularized 

lasso on full data without any missingness. This will be considered the gold standard as 

variable selection will be performed on the complete data. Second, we compare the proposed 

methodology to the regularized lasso on complete-cases only data. This will assess how 

missing data under a MAR mechanism affects variable selection and whether the proposed 

model improves variable selection performance. We also compared our approach to the 

Brand ad-hoc procedure of selecting covariates that are significant in at least 60% of 

imputed models.

We simulated complete data from a two-level linear mixed effects model with a random 

intercept. We consider three scenarios:

• SCENARIO 1. Data is generated from n = 40 independent clusters with 5 

observations in each cluster where
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where β = (3, 1.5, 0, 0, 2, 0, 0, 0)T, εi j ~ N(0, 1), Xi j = (Xi j,1, . . . , Xi j,8) and 

Xi j,1, . . . , Xi j,8 are N(0, 1) variables and Cor r (Xi j,g,Xi j,g′) = ρ|g−g′| with ρ set 

to 0.3.

• SCENARIO 2. The setting is similar to scenario 1, except we increase the 

number of clusters to n = 60 and increase the number of observations per cluster 

to be 25 to assess a larger sample performance.

• SCENARIO 3. The setting is similar to scenario 2, except we increase the 

number of clusters to n = 150 to correspond to large cluster studies.

We induced missing values  from an MAR mechanism. Let ri j indicate the missingness 

of , where ri j = 1 when Xi j is observed and ri j = 0 when Xi j is missing. We select ri j 

from Bernoulli sampling with success probability given by logit(π(Xobs ;α0,α)) = α0 + 

αXobs, thus imposing MAR. The values of α0 and α were selected to induce 25% missing 

data (missing data was only induced on X1, X2 and X3).

For each of the scenarios above, 500 data sets were produced. For the full data and complete 

cases lasso regularization, the traditional BIC was used to select predictors. For the proposed 

methods, the BIC in (12) was used to select relevant predictors. Multiple imputations were 

performed on the missing data using the MICE methodology (White et al., 2011).

We considered changes in the values of m (number of imputations) in our simulation study. 

The results of the numerical studies are presented in table 1. In particular, we present the 

model selection frequency (the percentage of times the true model was selected), the average 

model size, the percentage of false negatives, and the percentage of false positives.

Using the full data and performing lasso to select variables as our benchmark method, the 

results from table 1 indicate that having missing observations in the covariates present in any 

data set lowers the ability for any method to select the correct model. Overall, when missing 

data is present, the method that performs the best at recovering the correct model is our 

proposed method (with m = 5 imputations). We note that performing lasso on the complete 

cases only data set performs adequate variable selection. We also note that having more 

subjects within a cluster (ki = 25), results in higher model selection frequency for all 

methods expect for the Brand approach. As cluster and sample size increases, the Brand 

approach does not select the correct model as frequently as our proposed method.

Simulation results suggest that one imputation is not sufficient to obtain reliable variable 

selection. For instance, the CCO lasso and the proposed methodology have very similar 

model selection frequencies (CCO: 63.6%, proposed: 72.4%; scenario 2) when m = 1, well 

below the full data selection frequency of 87.0%. This should be expected because one 

imputation does not account for the uncertainty in the imputation method. However, when 

more imputations are considered (m = 3), the proposed method outperforms the complete 

case method (proposed: 74.6%, CCO: 63.6%; scenario 2). The proposed methodology is 

almost as good at identifying the correct model as having the full data (full: 91.6%, 

proposed: 88.0%; scenario 3) after 5 imputations.
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In terms of model size, the full model lasso selects models that are closest to the true model 

size on average. Both the CCO and the Brand procedure tend to select larger models on 

average. The proposed methodology produces smaller models than the CCO and Brand 

methods as the number of imputations increase.

4. Data Analysis

This statistical work was motivated by the Healthy-Directions Small-Business study 

(Sorensen et al. 2005). Current epidemiological studies have shown the relationship between 

dietary patterns and physical inactivity with multiple cancers and chronic diseases. One of 

the primary goals of the Healthy-Directions Small-Business study is to investigate whether 

or not the cancer prevention that incorporates occupational health and health promotion can 

lead to significant improvements in the mean consumption of fruits and vegetables, levels of 

physical activity, smoking cessation and reduction of occupational carcinogens. The HD-SB 

study was a randomized, controlled intervention study conducted between 1999 and 2003 as 

part of the Harvard Center Prevention Program Project. The study population of the HD-SB 

study were small manufacturing worksites that employed multi-ethnic, low-wage workers. 

Details of worksite eligibility and recruitment can found in Sorensen et al. (2005). 

Participating worksites were randomized to either the 18-month intervention group or 

minimal intervention control group.

For the purpose of this data analysis, we focus on predictors that are hypothesized to relate 

to mean consumption of fruits and vegetables at followup. Along with intervention status, a 

substantial number of covariates were collected to determine their impact on the primary 

outcome: consumption of red meat per week, levels of leisure physical activity, smoking 

status (1 current and 0 otherwise), educational level (1 if college degree or more and 0 

otherwise), gender (1 if female and 0 otherwise), body mass index, at least one child in 

household less than eighteen years of age (1 if true and 0 otherwise), marital status (1 if 

married and 0 otherwise), race (1 if nonwhite and 0 otherwise), age, multivitamin use (1 if 

takes ≥ 6 days/week and 0 otherwise), poor (1 if ≥ 185% of poverty threshold and 0 

otherwise) and nonimmigrant (1 if participant was born in the United States and 0 

otherwise). The study had 974 respondents of which only complete information on all the 

variables of interest was obtained for 793 respondents (i.e. 18.5% missing data present).

The linear mixed model to answer the primary goal takes on the following form:

where these 15 predictors were considered for selection. A random intercept model was used 

to model the clustering of workers within worksites. We constructed a multilevel model for 

the complete cases data (all missing observations removed) and also using the proposed 

methodology for m = 1, m = 3 and m = 5 imputations. Selection of the tuning parameter was 

based on the BIC in (12). Regression estimates selected by the m = 5 proposed model are 

provided using Rubin’s Rules. The results of the data analysis are in table 2.
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The complete-cases only multilevel model does not perform variable selection; the estimated 

regression coefficients are non-zero for the 15 predictors. What is commonly done in 

practice is to select significant variables to be those with p – value < 0.05. Based on the p-

value criterion, the significant predictors of fruits and vegetables under the CCO scenario are 

baseline fruit, intervention, gender and BMI. Performing lasso on the complete case data 

reveals a model with 11 relevant predictors. The proposed methodology with m = 1, m = 3 

and m = 5 imputations selected baseline fruit, intervention, meat consumption, smoking, 

gender, multivitamin and nonimmigrant, with m = 3 additionally including age.

The proposed methodology in this data analysis produces smaller models than the complete 

cases only lasso, a pattern which was observed in the simulations section. Compared to 

choosing significant variables via p-values, the proposed methodology additionally identifies 

meat consumption, smoking status, immigrant status and multivitamin use to be relevant 

predictors of follow-up fruit/vegetable intake. The parameter estimates for the final model, 

as selected by the proposed method with five imputations, are presented in the last column 

of table 2. Overall, there seems to be a strong positive intervention effect on follow-up fruit 

and vegetable intake. We note the gender gap where females tend to consume more fruits 

and vegetables at followup on average than men, which has been shown in previous studies 

(Sorensen et al., 2007).

5. Discussion

We describe methodology that can perform variable selection for multilevel models with 

missing covariate data. When the method of handling missingness in the covariates is 

through multiple imputation, we describe a penalized likelihood approach that performs 

variable selection across the m imputed data sets simultaneously through group lasso 

regularization. Numerical studies demonstrate the benefits of imputing and then performing 

variable selection instead of doing a complete-cases only analysis, which is typically done in 

practice. Ignoring missing data through methods like complete-cases analyses potentially 

undermine scientific credibility of causal conclusions from intervention studies (Little et al., 

2012).

The proposed methodology may be extended to generalized linear-mixed models (GLMMs) 

as our approach is likelihood based. An additional aspect of the analysis of mixed models is 

the selection of random effects. There are two types of variable selection approaches for 

multilevel models: the first is selecting significant fixed-effect variables (i.e. columns from 

Xi when the random effects are not considered in the selection) and the second is selection of 

both fixed and random effects (i.e. columns from Zi ). The mean and variance of Yi based on 

model (2) are given by

The fixed-effects selection through Xi affects the mean structure of Yi and the selection 

through Zi affects the covariance structure of Yi. We focus our methodology on fixed effects 
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variable selection, though extensions of this work could be developed to identify both 

significant fixed and random effects.

This study does have limitations and indicates areas for future research. First, after 

completing the post-estimation procedure described in this paper, it remains necessary to 

account for modeling bias. Performing variable selection and then using the selected model 

to perform estimation is commonly done in practice, but is likely to yield overly optimistic 

inferences. This is due to the underestimation of variability of the estimated parameters. 

Shen et al. (2004), Hu & Dong (2007), Wang & Lagakos (2009) and Minnier et al. (2011) 

have used data perturbation methods to account for the variable selection process to make 

approximately unbiased inferences. Extensions of data perturbation methods to multiply-

imputed variable selection is needed. Second, the proposed procedure requires a substantial 

amount of observations and clusters to successfully perform these models. As the number of 

covariates with missing data increases, the model increases in size (by multiple of m) which 

could potentially lead to model instability. Third, more works needs to be developed to 

provide rules of thumb for how many imputations are needed. In general, more imputations 

are preferred (Bodner, 2008), but this has the potential to introduce very large, potentially 

unstable proposed models. Lastly, model (3) is a working model and not the true model. 

Other selection criterion such as prediction error or likelihood could have been entertained 

for the selection of the final model. We hope the proposed developments will make it 

possible for researchers to maximize the use of available information in their data and 

uncover important underlying associations.
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Appendix

PROOF OF PROPOSITION 1

We begin by showing (11). Denote the objective function  and  corresponding to the 

two optimization equations respectively

The result in (11) falls after rewriting  as
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The expression inside the square brackets can be rewritten as

We know that a2 + b2 ≥ 2ab, thus

Equality holds if and only if . To show (10), we first show 

.

Therefore, . Now, let . After some algebra similar to 

above, we get observe that . Thus 

. As a result, , 

which leads to the unique maximizer  because  is convex.
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Figure 1. 
Data stacking scheme for proposed variable selection procedure. STEP 1: Identify covariates 

to be included for selection and their corresponding missing values. STEP 2: Perform m 
imputations to produce m complete data sets. STEP 3: Stack the m complete data sets into a 

single wide complete data to be analyzed. Group relevant variables from the m imputed data 

sets.
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