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Abstract

Understanding the interplay between the neurotransmitters dopamine and glutamate in the striatum 

has become the highlight of several theories of neuropsychiatric illnesses, such as schizophrenia. 

Using in vivo brain imaging in humans, alterations in dopamine and glutamate concentrations have 

been observed in several neuropsychiatric disorders. However, it is unclear a priori how alterations 

in striatal dopamine should modulate glutamate concentrations in the basal ganglia. In this 

selective mini-review, we examine the consequence of reducing striatal dopamine functioning on 

glutamate concentrations in the striatum and cortex; regions of interest heavily examined in the 

human brain imaging studies. We examine the predictions of the classical model of the basal 

ganglia, and contrast it with findings in humans and animals. The review concludes that chronic 

dopamine depletion (>4 months) produces decreases in striatal glutamate levels which are 

consistent with the classical model of the basal ganglia. However, acute alterations in striatal 

dopamine functioning, specifically at the D2 receptors, may produce opposite affects. This has 

important implications for models of the basal ganglia and theorizing about neurochemical 

alterations in neuropsychiatric diseases. Moreover, these findings may help guide a priori 

hypotheses for 1H-MRS studies measuring glutamate changes given alterations in dopaminergic 

functioning in humans.

1. Introduction

Dopamine and glutamate interact with each other in the basal ganglia and prefrontal cortex, 

intimately regulating each other’s function and release (David et al., 2005; Del Arco and 

Mora, 2008; Jones, 2012). Abnormalities in these dopaminergic and glutamatergic systems 

have been observed in numerous neuropsychiatric disorders, including Parkinson’s disease 

(Griffith et al., 2008; Loane and Politis, 2011; Pavese et al., 2011), depression (Musazzi et 

al., 2012; Treadway and Zald, 2011), drug addiction (Martinez et al., 2009; Yang et al., 
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2009; Yucel et al., 2007), and schizophrenia (de la Fuente-Sandoval et al., 2013a,b; de la 

Fuente-Sandoval et al., 2011; Kegeles et al., 2010). The classical model of the basal ganglia 

developed in the 1980s (Obeso and Lanciego, 2011) predicts that loss of striatal dopamine 

will decrease extracellular levels of glutamate in the striatum and cortex (Albin et al., 1989, 

1995; Jones, 2012). Similarly, it predicts that increasing levels of striatal dopamine should 

increase levels of glutamate in the striatum and cortex. However, the classical model of the 

basal ganglia is an incomplete one. For instance, it does not take into account the influence 

of the cholinergic system, and has been criticized for offering a better understanding of 

pathology rather than normal functioning (Obeso et al., 2008; Obeso et al., 2000). 

Undoubtedly, the in vivo environment in which dopamine–glutamate interactions take place 

in the basal ganglia is far more complex than suggested by the classical model.

Positron emission tomography (PET) and proton magnetic resonance spectroscopy (1H-

MRS) are two non-invasive brain-imaging techniques, which allow for quantification of 

biochemical information about the living human brain. PET employs the use of radio-

labelled probes, termed radiotracers or radioisotopes (Baron, 2005; Das, 2015). These 

radiotracers are positron emitting isotopes which are chemically incorporated into a 

biologically active molecule (Das, 2015). For example, the accumulation of 18F-labeled 3,4-

dihydroxy-6-[18F]fluoro-L-phenylalanine ([18F]F-DOPA) in the brain measured with PET 

can be used as a quantitative index of dopamine synthesis capacity (Nanni et al., 2007; 

Pretze et al., 2014). Moreover, dopamineD2/3 receptor availability, as well as changes in 

dopamine concentrations at these receptors, can be measured with 11C- and 18F-labeled 

compounds such as [11C]-raclopride, [11C]-(+)-PHNO, and [18F]-fallypride. 1H-MRS allows 

for quantification of concentrations of several neurometabolites, which are characterized by 

their unique set of 1H chemical shifts (Rae, 2014). These include glutamate, glutamine, 

glutamate + glutamine (Glx), creatine (Cr), myo-inositol (Myo), and N-acetyl-aspartate 

(NAA), among several others (Rae, 2014).

Findings from in vivo brain imaging in neuropsychiatric populations have largely supported 

the predictions of the basal ganglia model. For instance, Parkinson’s disease is a 

neurodegenerative disorder characterized by progressive loss of nigral-striatal dopamine, 

which has been supported by in vivo brain imaging using PET (Loane and Politis, 2011; 

Pavese et al., 2011). Using 1H-MRS, it has been observed that patients with Parkinson’s 

disease have less glutamate-to-creatine ratios in the anterior cingulate gyrus compared to 

healthy controls (−46%; Cohen’s d=1) (Griffith et al., 2008). This is consistent with the 

predictions of the classical model: less striatal-nigral dopamine, less cortical glutamate. 

Notably, no studies have yet been published investigating glutamate concentrations in the 

striatum of persons with Parkinson’s disease with 1H-MRS.

Using PET it has been demonstrated that persons with cocaine addiction have reduced 

dopamine D2/3 receptor (D2/3R) availability, reduced endogenous dopamine levels at D2/3R, 

and reduced evoked dopamine release (Martinez et al., 2009). Consistent with the basal 

ganglia model, persons with cocaine addiction have also been observed to have less 

glutamate-to-creatine in the rostral anterior cingulate (Yang et al., 2009), and less glutamate-

to-glutamine in the dorsal anterior cingulate (Yucel et al., 2007), compared to healthy 

Caravaggio et al. Page 2

Prog Neuropsychopharmacol Biol Psychiatry. Author manuscript; available in PMC 2017 February 23.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



controls. Striatal concentrations of glutamate measured with 1H-MRS have not yet been 

examined in persons with drug addiction.

In patients affected by schizophrenia, it has been demonstrated with PET that there is more 

endogenous dopamine occupying D2/3R in the dorsal caudate (Caravaggio et al., 2015; 

Kegeles et al., 2010). In accordance with the classical model, it has been demonstrated with 
1HMRS that persons at ultra-high risk for psychosis (characterized by sub-threshold 

psychotic symptoms, a high likelihood of a family history of schizophrenia, and a decline in 

everyday functioning) and patients with a first episode of psychosis have increased 

glutamate levels in the dorsal caudate compared to healthy controls (de la Fuente-Sandoval 

et al., 2013a,b; de la Fuente-Sandoval et al., 2011). Note that ultra-high risk for psychosis 

was assessed using the Structured Interview for Prodromal Syndromes (SIPS) criteria 

(Miller et al., 2003). Moreover, it has been shown that four weeks of antipsychotic 

administration can reduce glutamate levels in the dorsal caudate of schizophrenia patients 

similar to the levels of healthy controls (de la Fuente-Sandoval et al., 2013a,b). Importantly, 

in ultra-high risk persons, higher glutamate levels in the striatum were predictive of 

transitioning into psychosis (de la Fuente-Sandoval et al., 2013a,b).

The aforementioned in vivo brain imaging findings in neurological and neuropsychiatric 

populations are notably prima facie observations. That is to say that the observed differences 

in dopamine and glutamate concentrations are correlational and presented as a point of 

reference to the predictions of the classical model of the basal ganglia. Undoubtedly the 

cause(s) of abnormal dopamine–glutamate interactions will differ across neurological and 

psychiatric disorders. For example, it has been proposed that hypofunctioning of the N-

methyl-D-aspartate (NMDA) receptor may account for the increased glutamate and 

exacerbated psychostimulant-induced dopamine release observed in schizophrenia patients 

(Plitman et al., 2014; Poels et al., 2014). Like all working models, the NMDA receptor 

hypofunctioning model of schizophrenia requires further validation and support (Laruelle, 

2014; Laruelle et al., 2005). Regardless of what the sine qua non may be for abnormal 

dopamine levels observed across neurological and neuropsychiatric populations, the in vivo 

brain imaging data suggests that decreased striatal dopamine is related to decreased striatal 

glutamate, and vice-versa. Future work is required to tease out the subtleties, causes, and 

consequences of these observed correlational changes in neurochemistry across disorders.

One study has simultaneously examined in healthy persons striatal dopamine synthesis 

capacity measured with [18F]-DOPA and glutamate concentrations measured with 1H-MRS 

(Gleich et al., 2015). Importantly, a positive correlation was observed between left ventral 

striatal glutamate concentrations and left ventral striatal dopamine synthesis capacity (r2=.

17). This is at least prima facie consistent with the notion that increased dopaminergic 

activity in the striatum should also result in greater glutamatergic activity therein. This also 

mirrors the findings in persons with schizophrenia, wherein both increased striatal dopamine 

and striatal glutamate levels are observed compared to healthy controls; albeit in the dorsal 

striatum (Caravaggio et al., 2015; Kegeles et al., 2010). However, a negative correlation was 

observed between glutamate concentrations in the left prefrontal cortex and dopamine 

synthesis capacity in the left ventral striatum (r2 = .17). Future PET studies examining 

dopamine synthesis capacity or endogenous dopaminergic tone (Caravaggio et al., 2014; 
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Laruelle et al., 1997; Verhoeff et al., 2001) should also examine glutamate concentrations 

measured with 1H-MRS in the dorsal striatum and cortex; in healthy persons and persons 

with neuropsychiatric diseases.

The effect of dopamine depletion on the glutamatergic system has been extensively 

investigated in non-human primates and rodents, using a myriad of methods and techniques 

(David et al., 2005). However, these in vivo and ex vivo investigations have often not yielded 

consistent support for the classical model’s predictions. The findings from these studies will 

be summarized below, separated by their respective method/technique.

2. Effects of dopamine depletion on tissue concentrations of free amino 

acids

Singh and Malhotra (1964) examined the effect of reserpine-induced (0.5 mg/kg, iv) 

dopamine depletion on brain tissue concentrations of numerous amino acids in adult Rhesus 

monkeys. They observed that reserpine significantly reduced glutamic acid/glutamate 

concentrations in the amygdala (390.9 ± 37.68 vs. 317.9 ± 11.4, p < 0.001), hippocampus 

(340.9±18.4 vs. 292.1±22.7, p < 0.001), and cerebellum (342.8 ± 20.38 vs. 315.2 ± 20.4, p < 

0.001), with the largest effect observed in the cerebellum. However, concentrations in the 

midbrain significantly increased (155.3 ± 11.8 vs. 190.6 ± 19.7, p < 0.001), while there was 

no observed change in the frontal lobe and hypothalamus. Tanaka et al. (1986) examined the 

effect of unilateral 6-hydroxydopamine (6-OHDA) lesions (8 μg) in Wistar rats on striatal 

concentrations of glutamate. After 9 months of dopamine denervation, they observed that 

glutamate content was significantly decreased in the striatum (8.87 ± 0.48 vs 7.72 ± 0.76, p 

< 0.05). However, this study did not compare glutamate content between 6-OHDA treated 

rats and controls. Rather, they examined striatal tissue concentrations ipsilateral and 

contralateral to the 6-OHDA lesion in the same rats. Lindefors and Ungerstedt (1990) 

demonstrated, in Sprague-Dawley rats, that unilateral 6-OHDA lesions (2 μg/μl) caused a 

significant increase in tissue concentrations of glutamate both ipsilateral (45%) and 

contralateral (39%) to the lesion compared to controls. Thus, the lack of a proper sham-

lesion control group poses a major flaw in interpreting the findings from Tanaka and 

colleagues. Collectively, these data suggests that dopamine depletion does not change tissue 

concentrations of glutamate in the cortex, increases concentrations in the striatum bilaterally, 

and decreases concentrations in the cerebellum.

3. Microdialysis of extracellular glutamate

Lindefors and Ungerstedt (1990) showed that unilateral 6-OHDA lesions in Sprague-Dawley 

rats resulted in increased extracellular release of glutamate in the striatum (by 107% 

ipsilateral to lesion, 94% contralateral). This is in accordance with their finding of increased 

striatal tissue concentrations of glutamate given the same administration of 6-OHDA. Biggs 

and Starr (1997) investigated how multiple dopaminergic manipulations affect extracellular 

glutamate release in the entopeduncular nucleus (globus pallidus in humans) in Wistar rats. 

They found that administration of the dopamine D2/3 agonist LY171555 significantly 

decreased glutamate release (by 66.5%). Administration of theD2/3 antagonist raclopride, 

however, had no effect. Reserpine (4 mg/kg, ip, 18 h) resulted in a significant increase in 
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glutamate release (341%), which was reversed by the D2/3 agonist LY17155 but not the D1 

agonist SKF38393. Similarly, unilateral 6-OHDA lesions (8 μg/4 μl, 2 weeks) significantly 

increased glutamate release, both ipislateral (290%) and contralateral (165%) to the lesion. 

Finally, administration of L-DOPA (50 mg/kg, ip) had no effect on the increased glutamate 

release by 6-OHDA lesions.

Findings from Kalivas and Duffy (1997) in Sprague-Dawley rats further suggest a specific 

role of dopamine D2/3 receptors in modulating striatal glutamate release in the nucleus 

accumbens. They found that perfusion with the indirect dopamine agonist amphetamine (1, 

10, and 100 μM) and the D2/3 agonist quinpirole (1, 10, and 100 μM) significantly decreased 

glutamate release in the nucleus accumbens (38% and 24.6%, respectively). Further, this 

amphetamine-induced decrease in glutamate was reversed by administration of the D2/3 

antagonist sulpiride (10 mg/kg, ip). Perfusion with the D1 agonist SKF-82958 (1, 10, and 

100 μM) had no effect on glutamate release. Collectively, the findings from Biggs and Starr 

and Kalivas and Duffy suggest that changes in extracellular levels of striatal glutamate are 

D2/3R dependent and not D1R dependent.

Meshul et al. (1999) examined changes in the glutamatergic system following unilateral 6-

OHDA lesions (8 μg/4 μl) of the medial forebrain bundle in Sprague-Dawley rats after 1 or 3 

months. After 1 month they observed an increase in striatal extracellular glutamate release 

(146%). However, after 3 months a decrease in release was observed (31.25%). Increased 

extracellular glutamate release after 1 month was paralleled by a decrease in the density of 

glutamate immunoreactivity (44%) and a decrease in vesicular (42.65%) and mitochondrial 

(50%) nerve terminal pools of glutamate. After 3 months there was an increase in the density 

of glutamate immunoreactivity (51.7%), and in vesicular (50%) and mitochondrial (54%) 

pools of glutamate. This data collectively suggests that there are time-specific changes in the 

striatal glutamate system following dopamine depletion, likely reflecting compensatory 

mechanisms following chronic catecholamine loss. Specifically, 1 month or less of 

dopamine denervation may result in an increase in extracellular levels of glutamate in the 

striatum compared to controls, whereas >3 months of dopamine denervation may result in a 

decrease.

Jonkers et al. (2002) examined the effect of unilateral 6-OHDA lesions (4 μg/μl), in Wistar 

rats, for 18–21 days. In accordance with the findings of Meshul and colleagues, this 1-month 

period of dopamine denervation resulted in an increase in extracellular glutamate levels in 

the striatum(45%). However, Galeffi et al. (2003) did not replicate this finding in Wistar rats 

after 28 days of unilateral 6-OHDA lesions (5–7 μg of 3 mg/ml), observing no change. 

Similarly, Robelet et al. (2004) observed no change in striatal glutamate in Wistar rats after 

14 days of unilateral 6-OHDA lesions (12 μg/6 μl).

Holmer et al. (2005) examined the effect of acute versus chronic dopamine denervation, via 

the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), on striatal glutamate 

in C57BL/6J mice. The acute dose of MPTP (20 mg/kg, 4 doses in 2 h) results in rapid and 

extensive dopamine denervation, while the chronic dose (30 mg/kg/day, 7 days) results is 

protracted dopamine denervation. The acute dose of MPTP resulted in an increase in 

extracellular glutamate (54%) in the dorsolateral striatum. Administration of L-DOPA (80 
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mg/kg) reversed this increase and further decreased extracellular glutamate levels below 

controls (36%). The chronic dose of MPTP, on the other hand, decreased extracellular levels 

of glutamate (65%), and concurrent L-DOPA administration increased these levels to −20% 

of controls. These data further suggest that there are strikingly different changes in the 

glutamatergic system depending on the extent and length of dopamine denervation, and L-

DOPA may normalize these glutamatergic changes. Finally, Walker et al. (2009) 

demonstrated that bilateral 6-OHDA lesions (2 μg/μl) in Sprague-Dawley rats increased 

extracellular levels of glutamate (130%) in the striatum. In male vervet monkeys, striatal 

dopamine denervation via MPTP resulted in a substantial increase in striatal glutamate 

(~280%) and GABA (~280%) levels measured with microdialysis (Boulet et al., 2008). 

Specifically, these increases occurred in the sensorimotor striatum, but not the limbic 

striatum, and persisted after motor symptom recovery.

Data from a substantial portion of the aforementioned studies suggest that extracellular 

levels of glutamate in the striatum may increase after acute dopamine denervation. These 

findings are difficult to reconcile with the classical model of the basal ganglia, which 

predicts striatal levels of glutamate will decrease after dopamine denervation. However, 

some studies demonstrate that extracellular glutamate levels decrease after prolonged 

dopamine denervation. Furthermore, some studies found no effect of dopamine denervation 

on extracellular glutamate in the striatum. It is unclear why there is a discrepancy between 

these studies. It is also unknown whether the change in extracellular glutamate levels is of 

neuronal or glial origins. The finding that intracellular pools of glutamate were decreased 

concurrently with an increase in extracellular levels is suggestive of a glial contribution 

(Meshul et al., 1999). Hypoactivation of D2/3 receptors and not D1 seems to be necessary 

(though not sufficient) for the increases in extracellular glutamate after acute dopamine 

denervation, suggesting a neuronal contribution (Biggs and Starr, 1997). Unfortunately, none 

of the aforementioned studies examined changes in extracellular glutamate levels in the 

cortex.

4. Ex vivo 1H-MRS in rodents

One study examined the effect of bilateral 6-hydroxydopamine (6-OHDA) lesions in 

Sprague-Dawley rats on striatal concentrations of glutamate, glutamine, and GABA 

measured with 1H-MRS ex vivo (Gao et al., 2013). Compared to controls, 6-OHDA rats 

showed increased concentrations of glutamate (1.63 ± 0.24 vs. 1.91 ± 0.1, p = 0.010) and 

GABA (0.55 ± 0.12 vs. 0.69 ± 0.05, p = 0.009) in the right striatum, as well as a decrease in 

glutamine (1.37 ± 0.32 vs. 1.13 ± 0.06, p = 0.049). In the left striatum, they observed 

increased levels of glutamate (1.85 ± 0.33 vs. 2.15 ± 0.12, p = 0.037), decreased levels of 

GABA (0.63 ± 0.14 vs. 0.52 ± 0.05, p = 0.047), and no change in glutamine.

5. In vivo 1H-MRS in rodents

One study has examined, using 13C NMR spectroscopy (4.7-T), how the synthesis of 

glutamate/glutamine from[2-13C] sodium acetate is affected by unilateral 6-OHDA 

injections in male Sprague-Dawley rats (Chassain et al., 2005). This study found that 

dopamine-depletion resulted in an increase in glutamate metabolism in the striatum, which 
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was restored by administration of levodopa. Using a high field MR scanner (9.4-T), it has 

been demonstrated that MPTP-lesioned C57B1/6J mice have increased concentrations of 

glutamate, glutamine, and GABA in the dorsal striatum, both in vivo and in vitro (Chassain 

et al., 2008). However, MPTP-lesioned C57B1/6 J mice showed no difference in cortical 

concentrations of these three amino acids in vivo, despite increased concentrations in the 

dorsal striatum (Chassain et al., 2010. In C57B1/6J mice given MPTP injections, the extent 

of dopamine denervation in the substantia nigra and ventral tegmental area was related to 

increased concentrations of glutamate, glutamine, and GABA in the dorsal and ventral 

striatum, respectively (Chassain et al., 2013). Contrary to the previous findings in rodents, 

MPTP administration in adult beagles did not affect the concentration of glutamate + 

glutamine/creatine ratio in the striatum assessed at 3-T (Choi et al., 2011). However, it is 

important to note that all of the aforementioned in vivo 1H-MRS studies were performed 

while the animals were under anesthesia, and it is unknown how this affects glutamate, 

glutamine, and GABA levels in combination with chemically induced dopamine denervation 

(Pfeuffer et al., 2004). Furthermore, all the studies by Chassain and colleagues (Chassain et 

al., 2013; Chassain et al., 2008; Chassain et al., 2010) in C57B1/6J mice collected MRS 

spectra only from the right hemisphere of the striatum.

6. Summary of dopamine–glutamate interactions

The predictions made by the classical model of the basal ganglia, regarding how depleting 

dopamine levels should alter striatal and cortical glutamate levels, has largely been 

unsupported by the in vivo and ex vivo animal literature. Specifically, the animal literature 

suggests that acute hypoactivity of striatal D2Rs (i.e., increasing activity through the indirect 

pathway), but not D1Rs, may increase striatal glutamate levels while leaving cortical 

glutamate levels unchanged. Conversely, the model would predict a decrease in striatal and 

cortical glutamate via increased activity through the indirect pathway and decreased activity 

through the direct pathway (consequence of D2R and D1R hypofunction, respectively). 

Notably, it appears that manipulations of chronic dopamine depletion (>4months) produces 

decreases in striatal glutamate levels which are consistent with the classical model.

7. Future directions and limitations

This review highlights several avenues of future research. It is currently unknown how acute 

dopamine depletion in humans affects striatal and cortical glutamate concentrations 

measured with 1H-MRS. Acute dopamine depletion is possible in humans via administration 

of the tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine (AMPT). Challenges with 

AMPT have been successfully employed in conjunction with PET to estimate endogenous 

dopamine levels at D2/3R in living humans (Caravaggio et al., 2015; Caravaggio et al., 2014; 

Kegeles et al., 2010; Laruelle et al., 1997; Martinez et al., 2009; Verhoeff et al., 2001). Thus, 

measuring glutamate concentrations with 1H-MRS before and after AMPT administration 

could help elucidate how dopamine depletion alters glutamatergic functioning in healthy 

persons and persons with neuropsychiatric diseases. The results from such a study could be 

contrasted with changes observed given acute doses of D1R, D2R, and D3R selective 

antagonists. This would help clarify how hypofunctioning at particular dopamine receptors 

results in glutamatergic changes at a systems level. Moreover, the results from such studies 
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may either prove to be in line with the acute findings in animals, or vindicate the predictions 

of the classical model of the basal ganglia.

There are several limitations to the current investigation. Firstly, this review was not a 

systematic review, nor did we examine all of the neurochemical and physiological alterations 

observed given dopamine depletion in animals and humans. Rather, we focused on the 

consequence of dopamine depletion on measures of glutamate levels in two specific regions 

of interest: the striatum and cortex. We did this since these regions of interest are commonly 

employed in human 1H-MRS studies to quantify in vivo glutamate concentrations. Second, 

we did not examine indirect or secondary measures of changes in glutamate levels given 

dopamine depletion – such as genetic expression changes or changes in glutamate precursor 

or metabolite levels. Third, evidence suggests that midbrain dopamine neurons (particularly 

in the VTA)may not only release dopamine, but also co-release glutamate (Descarries et al., 

2008; Rayport, 2001; Sulzer et al., 1998). In fact, co-transmission of several 

neurotransmitters may occur for all monoaminergic neurons (El Mestikawy et al., 2011; 

Nusbaumet al., 2001; Trudeau, 2004). This co-transmission from dopamine neurons may be 

age-dependent (decreasing with age) (Berube-Carriere et al., 2009) and may be modified by 

6-OHDA administration (Dal Bo et al., 2008). This is another layer of complexity not 

captured by the classical model of the basal ganglia. Future studies should investigate how 

acute and chronic dopamine depletion (via AMPT or specific 6-OHDA/MPTP lesions) 

affects glutamate release from these neurons into the striatum, and in turn striatal glutamate 

concentrations measured using in vivo 1H-MRS. Finally, we did not review how gross 

physiological changes from glutamate-induced neurotoxicity may alter the relationship 

between dopamine and glutamate levels in the striatum and cortex (Plitman et al., 2014). 

These will be important aspects to investigate in future reviews.

It was our hope that by conducting this review, we could help inform and guide a priori 
hypotheses for 1H-MRS studies in humans. Specifically, it may help guide those studies 

which i) cross-sectionally examine glutamate concentrations in persons with 

neuropsychiatric diseases where there are known abnormalities in the dopamine system, and, 

ii) examine how acutely or chronically altering dopamine functioning – either in healthy 

persons or persons with neuropsychiatric diseases – affects glutamate concentrations.
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