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Abstract

Purpose of review—Urine- and serum-based biomarkers are useful for assessing individuals’ 

exposure to environmental factors. However, variations in urinary creatinine (a measure of 

dilution) or serum lipid levels, if not adequately corrected for, can directly impact biomarker 

concentrations and bias exposure-disease association measures.

Recent findings—Recent methodological literature has considered the complex relationships 

between creatinine or serum lipid levels, exposure biomarkers, outcomes, and other potentially 

relevant factors using directed acyclic graphs and simulation studies. The optimal measures of 

urinary dilution and serum lipids have also been investigated.

Summary—Existing evidence supports the use of covariate-adjusted standardization plus 

creatinine adjustment for urinary biomarkers and standardization plus serum lipid adjustment for 

lipophilic, serum-based biomarkers. It is unclear which urinary dilution measure is best, but all 

serum lipid measures performed similarly. Future research should assess methods for pooled 

biomarkers and for studying diseases and exposures that affect creatinine or serum lipids directly.
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Introduction

Biomarkers measured in urine or serum are commonly used to assess exposure to 

environmental factors in epidemiologic studies. While investigators typically recognize a 

need to express biomarker concentrations in a way that accounts for inter and intra-

individual differences in urine dilution or serum lipid levels to minimize measurement error, 

there is substantial debate regarding the optimal approach to accomplish this.

When biomarkers are measured in urine, 24-hour urine samples are considered the “gold 

standard” of exposure measurement but investigators often rely on spot urine samples due to 

convenience and cost (1). Biomarker concentrations in spot urine samples vary based on the 

water content of the urine sample and are thus affected by inter- and intra-individual 

differences in hydration. Creatinine, a metabolite of creatine, is used to correct for hydration 

status because its production is constant with no diurnal patterns and it is eliminated mostly 

via glomerular filtration at a relatively stable rate within an individual. In general, dividing 

chemical concentrations by creatinine can therefore account for variability due to urinary 

dilution.

Similarly, concentrations of lipophilic serum-based biomarkers vary depending on serum 

lipid levels. Philips et al. showed that differences in chlorinated hydrocarbon concentrations 

between fasting and non-fasting samples were proportional to differences in fasting and non-

fasting total serum lipid levels (2). Correcting chemical concentrations for serum lipid levels 

eliminated differences by fasting status, demonstrating that the lipid content of serum should 

be accounted for in studies of lipophilic chemicals.

Investigators have employed a variety of statistical approaches to account for individual 

differences in urinary dilution and serum lipid levels. The most common approaches are 

standardization (also called correction) and covariate adjustment. The standardization 

approach accounts for urinary dilution (or serum lipid levels) by dividing the biomarker 

concentration by the creatinine (or serum lipid) concentration measured in the same sample. 

This ratio is thought to represent the residual biomarker concentration after accounting for 

dilution (or serum lipid levels) and is used to model exposure and internal dose. In the 

covariate adjustment approach, uncorrected exposure biomarker concentration is modeled 

and creatinine (or serum lipid) concentration is included as an adjustment variable in 

regression analyses.

Although commonly employed, the standardization and covariate adjustment approaches 

may be problematic in many scenarios. Creatinine and serum lipid levels can be affected by 

individual factors, and inclusion of these factors in statistical models can induce biased 

associations between standardized biomarkers and health (3). These relationships are further 

complicated by the fact that urinary or serum biomarker concentrations are usually proxies 

for concentrations in the more relevant target tissue. Given these considerations, it becomes 

clear that the choice of correction method should be based on the specific causal 

relationships under study.

In this review, we discuss influential papers and recent work evaluating approaches to 

account for variation in exposure biomarkers due to urinary dilution and serum lipid levels. 
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We discuss a novel method, covariate-adjusted standardization, and demonstrate its utility in 

urinary biomarker studies. We also review recent work examining alternative measures of 

urinary dilution or serum lipid levels and suggest areas for future research on creatinine and 

lipid adjustment in studies relying on biomarkers to estimate environmental exposure.

Creatinine adjustment

In their seminal 2005 paper, Barr et al. (3) discuss the importance of spot urines as a matrix 

for bio-monitoring when 24-hour urine samples are not available. The authors give special 

consideration to the physiology of creatinine formation and clearance, how various 

biological factors affect this physiology, and the use of urinary creatinine concentrations as a 

proxy for urinary dilution levels that vary within individuals over time. Using data from 

22,245 participants from the National Health and Nutrition Examination Survey (NHANES), 

they demonstrate how creatinine levels vary according to a number of biologic factors, 

including age, sex, race/ethnicity, body mass index (BMI), fat free mass, and kidney 

function. When these factors are associated with disease, they can induce an association 

between creatinine and disease and bias the estimated association between creatinine-

standardized biomarker levels and disease. To resolve this issue, Barr et al. recommend 

controlling for creatinine by including it as a covariate in the regression model when 

assessing the relationship between a urine-based biomarker and a health outcome, instead of 

using the classical standardization approach.

A study by Christensen et al (4) used simulations to evaluate the classical standardization 

and covariate adjustment approaches for urinary biomarker measures, as well as measures 

based on excretion rate and estimated daily intakes. The authors showed that, as expected, 

when individuals were randomly assigned an intake dose of di-2-ethylhexyl phthalate, the 

randomly generated intakes, excretion rates, and urine concentrations of di-2-ethylhexyl 

phthalate were not associated with BMI or waist circumference. However, after correcting 

the random urinary phthalate concentrations for creatinine (either through standardization or 

covariate adjustment), the exposure measures were associated with BMI and waist 

circumference despite the random exposure assignment. As the observed associations could 

be the result of an association between creatinine and waist circumference or creatinine and 

BMI, additional simulations using outcomes unrelated to creatinine could provide further 

insights on the relative performance of method in other common scenarios.

O’Brien et al. (2016) (5) tested the validity of classical standardization, adjusting for 

creatinine as a covariate, and other methodological approaches to creatinine adjustment 

using a directed acyclic graph (DAG) framework and simulation studies. Based on the 

observations of Barr et al. (3) that factors such as age, sex, race/ethnicity, and BMI are 

associated with creatinine levels, the authors constructed a DAG (Figure 1). Here, the 

exposure levels measured in urine are a proxy for those in a more outcome-relevant target 

tissue and hydration levels affect both urinary exposure levels and creatinine levels. Target 

tissue exposure levels and hydration are both unmeasured, as are overall exposure levels. 

One or more factor Xs (e.g. age, sex, race/ethnicity, and BMI) can influence creatinine 

(arrow 1), and may also affect overall exposure (arrow 2) or the outcome (arrow 3).
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In their simulations, O’Brien et al. compared seven different methodological approaches to 

creatinine adjustment, including classical standardization (urinary exposure concentration 

divided by creatinine concentration), adjusting for creatinine as a covariate (as suggested by 

Barr et al. (3)), and a novel approach called covariate-adjusted standardization. Covariate-

adjusted standardization is a two-step process. First, creatinine is modeled as a function of 

the measured covariates that affect creatinine (i.e. any factor Xs). Using this regression 

model, individuals are assigned predicted creatinine values based on their X values. The 

observed creatinine values are then divided by the predicted creatinine values to calculate 

the Cratio, which represents a measure of the residual effect of hydration on creatinine. 

Under the assumption that hydration is responsible for the difference between exposure 

levels in urine versus the target tissue, the ratio that results from dividing the urinary 

biomarker levels by the Cratio should represent the target tissue exposure levels (measured 

in the same units as the urinary biomarker). Therefore, the estimated effect of the derived 

ratio on the outcome should be an unbiased estimate of the true effect of the exposure on the 

outcome if the assumptions are met. This interpretation was confirmed in simulation studies, 

with the new covariate-adjusted standardization approach outperforming other methods, 

demonstrating low bias and confidence interval coverage consistent with 95% in all 

scenarios. The novel method performed particularly well when creatinine was also included 

as a covariate in the regression model (hereto referred to as covariate-adjusted 
standardization plus creatinine adjustment).

In addition to the applied example in the original paper by O’Brien et al., (5) the covariate-

adjusted standardization plus creatinine adjustment approach has been utilized in several 

other epidemiologic studies (6–9). For example, Buckley et al. (6) applied this approach to 

estimate associations between environmental phenol biomarker concentrations and 

childhood fat mass in a New York City birth cohort. In sensitivity analyses, the authors 

compared covariate-adjusted standardization plus creatinine adjustment to traditional 

approaches and found that while the point estimates did not materially differ, the covariate-

adjusted standardization plus creatinine adjustment method resulted in more precise interval 

estimates than the other creatinine adjustment approaches. This study also demonstrates how 

the covariate-adjusted standardization plus creatinine adjustment method can be adapted to 

Bayesian and prospective settings.

Creatinine excretion is not a perfect measure of glomerular filtration and elimination can 

also occur through active secretion and passive diffusion. Therefore, correcting for creatinine 

may not be appropriate if the environmental exposure of interest is not eliminated by a 

similar renal clearance mechanism (e.g. mercury or lead) (1, 10). Other recent 

methodological studies of urinary biomarkers have considered this issue. Traditionally, 24-

hour urine collections are treated as the gold standard of exposure measurement, though 

there is likely substantial inter- and intra-individual variation in this metric as well. Given 

this caveat, Hoet et al. (11) found that standardization by specific gravity produced trace 

element concentrations that were often more similar to those observed in the 24-hour urine 

samples than those standardized to creatinine. However, there was no single best method 

across all trace elements. Furthermore, the authors did not apply covariate-adjusted 

standardization to either creatinine or specific gravity, which is also known to be associated 

with factors such as age, sex, and body size (12). Yeh et al. (13) propose the use of 
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osmolality to measure urinary dilution rather than creatinine. Like creatinine and specific 

gravity, this measure demonstrated high variability by factors such as age, sex, race/

ethnicity, and BMI. Therefore, the relative utility of creatinine, specific gravity, and 

osmolality as measures of dilution remains unclear, and may depend on the renal elimination 

mechanism(s) of the biomarker(s) of interest (10, 14). For example, it has been proposed 

that specific gravity may be preferable to creatinine in studies of phthalates, at least some of 

which are eliminated by active tubular secretion (15). Additional research may help to 

determine the predominant filtration or secretion mechanism for each chemical of interest 

and to better justify the corresponding optimal hydration measure(s).

Urine flow rate can also be used to adjust biomarker concentrations for hydration. Several 

studies using simulated or NHANES data have compared traditional approaches to those 

using urine flow rate to calculate biomarker excretion rates (4, 16, 17). In these studies, urine 

flow rate is estimated by dividing void volume by time since last void and biomarker 

excretion rate is then computed by multiplying urine flow rate by urinary analyte 

concentration. Excretion rates can also be adjusted for body weight. While further work is 

needed to determine how best to utilize urine flow rate, future studies may benefit from 

collecting the information necessary to calculate these measures.

Serum lipid adjustment

The groundwork for modern approaches to serum lipid adjustment methods was laid by 

Phillips et al. (1989) (2) and Schisterman et al. (2005) (18). Phillips et al. clearly 

demonstrated how chlorinated hydrocarbon levels varied markedly within individuals over 

the course of a single 24-hour period, depending on recent fat intake. The differences were 

equalized after concurrent serum lipid levels were accounted for using classical 

standardization (chlorinated hydrocarbon level ÷ serum lipid level). In their manuscript, 

Phillips et al. defined a formula for quantifying total serum lipid levels as a combination of 

total cholesterol, free cholesterol, triglycerides, and phospholipids.

To test whether classical standardization outperformed alternative methods for different 

applications, Schisterman et al. (18) simulated data based on eight potential causal scenarios, 

illustrated using DAGs. They examined a variety of assumptions, including whether the 

exposure affected the outcome or serum lipid levels directly and whether there were other 

covariates causally related to the exposure, the outcome, serum lipids, or the ratio between 

the exposure and serum lipids. They compared the results of classical standardization, serum 

lipid adjustment and a two-stage model. The two-stage model was originally proposed by 

Hunter et al. (19), and is implemented by first calculating the residual term that remains after 

modeling the exposure biomarker as a predictor of serum lipid levels, and then including the 

residual term from the first model in a regression analysis of the effect of the exposure 

biomarker on the outcome. The results of Schisterman et al.’s simulation studies indicated 

that the classical standardization approach was often not the most appropriate method, and 

that adjusting for serum lipid levels as a covariate or using a two-stage model resulted in 

lower bias and mean squared error.
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Li et al. took a different approach to the problem, considering lipids as a concomitant 
variable that is not a confounder but can nevertheless improve the precision of the estimate if 

included in the data analysis (20). In their simulation study, they assume that the 

standardization approach is generally correct, but that (1/serum lipid levels) may not be the 

most appropriate correction factor. They describe how a Box-Cox transformation approach 

can be used to optimize fit. However, the authors found that in the specific simulations and 

examples they considered, the optimal correction factor was equivalent to classical 

standardization for most of the chemicals they examined.

In their 2016 paper, O’Brien et al. (5) expanded on the scenarios originally proposed by 

Schisterman et al. (18) with a few crucial changes. First of all, O’Brien et al. constructed 

DAGs (Figure 2) in which serum exposure levels were not causally related to the outcome of 

interest, but rather a proxy for levels in tissue that is more relevant to the outcome of interest. 

Both the serum exposure levels and target tissue exposure levels are directly related to 

overall (unmeasured) exposure levels. Similar to the DAG for creatinine adjustment, O’Brien 

et al. allowed for other factors (denoted X) to influence serum lipid levels (arrow 1), overall 

exposure (arrow 2) or the outcome (arrow 3). Here, X could be sex, age, or BMI (21). Serum 

lipid levels were assumed to affect serum exposure levels directly, in contrast to the 

creatinine example in which creatinine served as a proxy measure for hydration. The other 

major departure from the Schisterman et al. simulation study was that O’Brien et al. 

modeled exposure levels as z-scores rather than continuous variables to ensure that ratio 

measures and linear (or log-linear) measures were compared on the same measurement 

scale. Under these revised assumptions, the classical standardization methods out-performed 

the other approaches. The authors recommended combining standardization with covariate 

adjustment for serum lipid levels to further control for residual confounding.

Although not as divisive as the debate over how best to quantify hydration, there is also 

some controversy over how best to calculate total serum lipid levels. The original formula 

introduced by Phillips et al. requires that total cholesterol, free cholesterol, triglycerides, and 

phospholipids be measured for each subject. The authors also proposed a modified version 

that includes measured triglycerides and total cholesterol, but estimated free cholesterol and 

phospholipids (2). Their original analysis found that the second “short” formula was less 

successful at eliminating the differences between chlorinated hydrocarbon levels in fasting 

versus non-fasting samples, but a re-investigation by Bernert et al. (22) found that all of the 

total serum lipid estimates were highly correlated. Bergonzi et al. (23) and Rylander et al. 

(24) reached similar conclusions, providing further justification for using the less expensive 

approach of measuring only triglycerides and total cholesterol, with or without the inclusion 

of estimated phospholipids and free cholesterol levels.

Remaining issues in need of further research

Though not included in the DAGs presented here (Figures 1 and 2), creatinine may also be 

directly affected by the diseases or environmental exposures under study. For example, 

certain conditions, including some kidney diseases or diseases associated with muscle 

atrophy, could affect creatinine production or excretion. This would potentially limit the 

utility of creatinine as a proxy for hydration levels in these settings. Similarly, individuals 
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with proteinuria, glucosuria, diarrhea, or other conditions may have altered specific gravity 

or osmolality measures. Such circumstances require careful research on the mechanisms 

involved in eliminating the exposure biomarker and selected hydration measure. If both are 

excreted via the same mechanism(s), the correction may still be valid even if the excretion 

rates are altered in affected individuals.

Exposure to a nephrotoxicant such as cadmium could directly affect tubular secretion or 

other kidney functions (25). Here again, a more detailed understanding of the physiological 

effects of the exposure and disease of interest on renal function is required to select the most 

appropriate hydration correction metric. If the covariates fit the causal diagram described in 

Figure 1, covariate-adjusted standardization may still be the most useful mathematical 

approach to account for factors that influence exposure, disease, and/or the hydration 

measure of interest, but are independent of hydration itself.

The exposure or outcome of interest could also affect serum lipid levels directly, though the 

direction of any causal association is difficult to ascertain (26, 27). Here, an additional 

concern is whether all serum lipid level components are affected similarly, or if triglycerides, 

phospholipids, total cholesterol, and free cholesterol are each uniquely affected. Once again, 

a more detailed understanding of disease and biomarker physiology is necessary to 

understand how the biomarker distribution would be altered for specific scenarios. With this 

information, it is theoretically possible to re-calibrate serum lipid level measures to account 

for measurable differences in the distribution of the lipid components prior to standardizing 

the exposure biomarker concentrations across those levels.

Another area in need of further research is the optimal methodological approach to adjust for 

creatinine or serum lipid levels in pooled samples. Spot and 24-hour urine samples are 

“snapshot” measures of recent exposure and may not reflect long-term average exposure, 

especially for non-persistent chemicals, such as phthalates or bisphenol A (28, 29). Pooling 

multiple biomarker samples from the same individuals over a specified follow-up period is a 

valid, cost-saving approach to studying longer-term average environmental exposure (30). 

Some designs also allow for samples to be pooled across individuals (31). Because it 

produces a ratio measure, classical standardization is particularly problematic for studies 

utilizing pooled samples, as the average of ratios is not mathematically equivalent to the 

ratio of averages. When pooling an individual’s biomarker samples from multiple time 

points over a follow-up period, there is no clear justification why one approach should be a 

more valid measure than the other for capturing average exposure levels. Covariate-adjusted 

standardization has the benefit of not being a ratio measure, but the method’s utility in 

capturing longitudinal exposure levels has not been thoroughly explored.

Conclusions

Inter- and intra-individual differences in urinary dilution and serum lipid levels need to be 

accounted for when assessing the health effects of environmental exposures measured in 

urine or serum. Recent methodological investigations support the use of covariate-adjusted 

standardization plus creatinine adjustment for urinary biomarkers and standardization plus 

serum lipid adjustment for lipophilic, serum-based biomarkers. There is no universally 
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accepted measure of urinary dilution, but all approaches to quantifying total serum lipid 

levels produce similar results. We recommend using causal diagrams, such as DAGs, to 

examine relationships among variables in studies involving diseases or environmental 

exposures that affect serum lipid levels or creatinine (or other dilution measures) directly, 

with careful consideration of the specific physiologic factors involved. Future research 

should address how best to account for creatinine and serum lipids when working with 

biomarker data that has been pooled within or across individuals.
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Figure 1. 
Variables with solid outlines are observed; those with dashed outlines are unobserved. X 

represents one or more covariates that could potentially affect creatinine (arrow 1), overall 

exposure (arrow 2), and/or the outcome (arrow 3). Examples of X include age, sex, BMI, 

and race. (Reproduced from: O’Brien et al., 2016;124(2):220-7, with permission from 

Environmental Health Perspectives) [5••].
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Figure 2. 
Variables with solid outlines are observed; those with dashed outlines are unobserved. X 

represents one or more covariates that could potentially affect serum lipid levels (arrow 1), 

overall exposure (arrow 2), and/or the outcome (arrow 3). Examples of X include age, sex, 

BMI, and race. (Reproduced from: O’Brien et al., 2016;124(2):220-7, with permission from 

Environmental Health Perspectives) [5••].
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